WO2017114042A1 - 三罐式自动化颗粒生产方法及系统 - Google Patents

三罐式自动化颗粒生产方法及系统 Download PDF

Info

Publication number
WO2017114042A1
WO2017114042A1 PCT/CN2016/107195 CN2016107195W WO2017114042A1 WO 2017114042 A1 WO2017114042 A1 WO 2017114042A1 CN 2016107195 W CN2016107195 W CN 2016107195W WO 2017114042 A1 WO2017114042 A1 WO 2017114042A1
Authority
WO
WIPO (PCT)
Prior art keywords
baking
pot
cooling
tank
signal
Prior art date
Application number
PCT/CN2016/107195
Other languages
English (en)
French (fr)
Inventor
柏红梅
Original Assignee
柏红梅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 柏红梅 filed Critical 柏红梅
Priority to PL16880832T priority Critical patent/PL3287509T3/pl
Priority to EP16880832.7A priority patent/EP3287509B1/en
Priority to DK16880832.7T priority patent/DK3287509T3/da
Priority to ES16880832T priority patent/ES2784668T3/es
Publication of WO2017114042A1 publication Critical patent/WO2017114042A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/28Moving reactors, e.g. rotary drums
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to the technical field of processing equipment for synthesizing particles, in particular to a three-tank automatic particle production method and system.
  • bio-formed fuel To replace traditional fossil fuels such as coal.
  • the bio-formed fuel is compressed and converted from residual plant fibers such as straw, straw, mixed wood, palm shell and coconut shell by common plants or cash crops.
  • conventional synthetic particle equipment is usually provided with a transport device such as a conveyor belt or the like for inputting the material into the synthetic granular product in the reaction tank, and transferring the synthetic particles to a cooling box for cooling.
  • a transport device such as a conveyor belt or the like for inputting the material into the synthetic granular product in the reaction tank, and transferring the synthetic particles to a cooling box for cooling.
  • the traditional transmission device makes the structure of the device more complicated, and the material transfer process is complicated, which makes the automatic preparation system of the synthetic particles work inefficiently and increases the production cost.
  • the produced synthetic particles are easy to have inconsistent color and unevenness in energy.
  • a three-tank automated particle production method comprising:
  • Feeding step when the baking pot is idle, the materials to be processed are sent to the baking pot in batches;
  • Baking step heating and stirring the material fed into the baking pot at a preset heating temperature for the first predetermined time to obtain the first intermediate material, and after obtaining the first intermediate material, baking The discharge port of the baking pot is docked with the feeding port of the baking pot, and the first intermediate material in the baking pot is sent to the baking pot, and the discharging port of the baking pot and the feeding port of the baking pot are separated;
  • Baking step agitating the first intermediate material fed into the baking pot for a second predetermined time to obtain a second intermediate material, and after obtaining the second intermediate material, the discharging port of the baking pot and the cooling tank The feed port is docked, and the second intermediate material in the baking pot is sent to the cooling tank, and the discharge port of the baking tank and the feed port of the cooling tank are separated;
  • Cooling step stirring and cooling the second intermediate material fed into the cooling tank for a third predetermined time to obtain a final pellet product and output.
  • a three-tank automated particle production system comprising: a baking pot, a baking pot, a cooling tank, a aligning device, and a control module electrically connected to the baking pot, the baking pot, the aligning device and the cooling tank respectively ;
  • the control module sends a feeding signal to the baking pot when the baking pot is idle, and controls to send the materials to be processed into the baking tank in batches;
  • the baking pot heats and stirs the material fed into the baking pot at a preset heating temperature for a first preset time to obtain a first intermediate material
  • the control module After obtaining the first intermediate material, the control module sends a first feeding signal to the alignment device and the baking pot, and the alignment device sends the discharging port of the baking can and the baking can according to the first feeding signal Docking the feed port, the bake tank receiving the first intermediate material fed from the feed port according to the first feed signal;
  • the control module sends a first separation signal to the alignment device after the first intermediate material is fed, and the alignment device causes the discharge port of the baking can and the feeding of the baking can according to the first separation signal. Mouth separation
  • the baking pot agitates the first intermediate material fed into the baking pot for a second predetermined time to obtain a second intermediate material
  • the control module After obtaining the second intermediate material, the control module sends a second feeding signal to the aligning device and the cooling tank, and the aligning device sends the discharging port of the baking can and the cooling tank according to the second feeding signal
  • the feed port is docked, and the cooling tank receives the second intermediate material fed from the feed port according to the second feed signal;
  • the control module sends a second separation signal to the alignment device after the second intermediate material is fed, and the alignment device causes the discharge port of the baking can and the inlet of the cooling tank according to the second separation signal Separate
  • the cooling tank agitates and cools the second intermediate material fed into the cooling tank for a third predetermined time to obtain a final pellet product and output.
  • the above three-tank automatic particle production system improves the utilization rate of the baking cans per unit time, reduces the waiting time of the baking cans, accelerates the production efficiency of the synthetic particles, realizes the automatic generation of the synthetic particles, and produces the synthesized The particles have the same color appearance and uniform energy distribution.
  • FIG. 1 is a schematic flow chart of a three-tank automated particle production method according to an embodiment
  • FIG. 2 is a schematic view showing a heating device of a baking can in an embodiment
  • Figure 3 is a schematic view showing the structure of a baking can in an embodiment
  • FIG. 4 is a schematic structural view of a baking pot in an embodiment
  • Figure 5 is a schematic structural view of a cooling tank in an embodiment
  • 6a and 6b are schematic diagrams showing control structures of two embodiments of a three-tank automated particle production system in an embodiment
  • FIG. 7 is a schematic structural view of a three-tank automated particle production system in an embodiment
  • Figure 8 is a schematic view showing the structure of a three-tank automated particle production system in an embodiment
  • Figure 9 is a schematic view showing the structure of a strip in a can body in an embodiment.
  • Figure 1 provides an automated method of producing synthetic particles in an embodiment employing the three-tank automated pellet production system illustrated in Figures 3 through 5.
  • the system includes three cans of baking pot 100, baking pot 200, and cooling tank 300.
  • the three tanks may have the same structure or different, but both can realize the forward rotation and the reverse rotation of the tank.
  • the material to be treated refers to residual plant fibers of common plants or cash crops (such as straw, straw, mixed wood, palm shell and coconut shell).
  • Each tank body has a main structure of a cylindrical structure, including a feeding port and a discharging port, and an automatic door driving mechanism can be arranged on the feeding port and the discharging port, and the automatic door driving mechanism can control the automatic closing of the feeding port And the discharge port.
  • the cylinder is used to push the swing arm, and at the free end of the swing arm, a closed door that can close the inlet or the discharge port is provided, and the swing arm is driven by the pushing or contracting of the cylinder, and the closing door is fitted to the inlet or The discharge port, or push the closed door away from the inlet or outlet.
  • each of the can bodies further includes a driving mechanism, the driving mechanism is disposed outside the can body, and is meshed with the can body through the gear plate, and can drive the can body to rotate forward or reverse about its own axis for stirring. Or feeding.
  • the driving mechanism is disposed outside the can body, and is meshed with the can body through the gear plate, and can drive the can body to rotate forward or reverse about its own axis for stirring. Or feeding.
  • the baking can 100 is used as a reaction site for preparing a material into a composite material having high heat, and a heating device 104 may be disposed under the can body 105, thereby The ordinary can body is set as the baking can 100.
  • the heating device 104 can include at least one heat pipe 210, a main heat pipe 220, and a gas pressure valve 250.
  • a plurality of hot air inlet holes 211 are defined in the heat conducting tube 210 for the side wall facing the heat source.
  • the main heat pipe 220 communicates with the inner cavity of the can body 105, and the main heat pipe 220 communicates with the heat pipe 210 to form a communication air path; the air pressure valve 250 is disposed on the air passage.
  • the air pressure valve 250 is used to control the air pressure, and is detected by the air pressure valve when the air pressure in the connecting air path is too large, and the pressure relief is started. It can be seen that in the embodiment, the hot air near the heat source is sucked into the connecting gas path through the heat pipe, and the hot air is introduced into the rotatable stirring barrel through the main heat pipe, thereby achieving heating, and the heating mode can be implemented. It makes the heating more uniform and can also dry the moist material in the mixing tank.
  • the heat source mentioned here may be any one which can generate a high temperature gas such as a heating furnace.
  • the driving mechanism is a driving motor 102 disposed outside the can body 105, and is meshed with the can body 105 through the gear plate 231, and can drive the can body 105 to rotate forward or reverse about its own axis for agitation or Feeding.
  • the baking can 200 can adopt a common can body structure.
  • the baking pot 200 realizes the stirring function and can be rotated by the driving motor.
  • a ring gear plate 202 is disposed circumferentially on both ends of the can body 201 of the baking can 200.
  • the gear plate 202 is connected to the motor through a gear transmission mechanism, and after being electrically driven, the can body 201 is driven by the gear to realize the axis line.
  • the rotation of the center line causes the material located in the cavity of the mixing tank to be agitated.
  • the cooling tank 300 is provided with a cooling device 303 on the common tank structure for reducing the temperature of the material in the tank 301.
  • the cooling device 303 may be a water pipe and a water valve disposed above the tank body 301.
  • the water pipe is provided with a plurality of through holes and connected with cooling water.
  • the water valve is controlled to transport the cooling water into the water pipe, for cooling. The water is discharged from the top of the tank through the through hole to realize the cooling treatment of the material in the tank.
  • the driving mechanism is a driving motor disposed outside the can body 301, and is meshed with the can body 301 through the gear plate 302, and can drive the can body 301 to rotate forward or reverse about its own axis for agitation or feeding. .
  • the cooling tank and the baking pot can all be rotated by the motor, and the method of driving the motor can be referred to the above description of the baking pot.
  • the system further includes an automatic feeding device 101 having a conduit communicating with the interior of the baking can 100.
  • a three-tank automated particle production method includes the following steps:
  • step S100 it is determined whether the baking can is idle.
  • step S200 is performed to send the materials to be processed into the baking cans in batches; when the baking cans are not idle, wait .
  • step S310 is first performed, and the material fed into the baking pot is heated and stirred at a preset heating temperature for a first preset time to obtain the first intermediate material.
  • the preset heating temperature is between 200 degrees Celsius and 350 degrees Celsius
  • the first preset time is between 1 and 3 hours. In order to be able to make the material more comprehensive.
  • step S320 after the first intermediate material is obtained, the discharge port of the baking can is docked with the feeding port of the baking can, and the first intermediate material in the baking can is sent to the baking can, and separated and baked.
  • step S410 is performed first, and the first intermediate material fed into the baking pot is subjected to a stirring process for a second predetermined time to obtain a second intermediate material.
  • the second preset time here is greater than or equal to zero. In one embodiment, the second preset time may be 1 to 2 hours.
  • step S420 after obtaining the second intermediate material, the discharge port of the baking can is docked with the feeding port of the cooling tank, and the second intermediate material in the baking tank is sent to the cooling tank, and the baking can is separated. a discharge port of the discharge port and the cooling tank;
  • the second intermediate material fed into the cooling tank is stirred and cooled for a third predetermined time to obtain a final pellet product and output.
  • the cooling temperature in the cooling tank is between 50 degrees Celsius and 100 degrees Celsius
  • the third preset time is 1 to 2 hours. The manner of cooling can be achieved by starting the cooling device as described above.
  • the predetermined time is greater than or equal to the first preset time superimposed on the sum of the execution times of the above step S320.
  • the first predetermined time is greater than or equal to the second predetermined time
  • the second predetermined time is greater than or equal to zero
  • the second predetermined time is greater than or equal to the third predetermined time.
  • the present invention also provides a three-tank automated particle production system comprising: a baking can 610, a baking can 620, a registration device 650, and A cooling tank 630 and a control module 640 electrically connected to the above-described baking can 610, the alignment device 650, the baking can 620, and the cooling can 630, respectively.
  • the control module 640 sends a feed signal to the baking pot 610 when the baking pot 610 is idle, and controls the batch of the material to be processed to be sent to the baking pot 610 in batches;
  • the baking pot 610 is heated and stirred at a preset heating temperature for the material fed into the baking pot 610 for a first preset time to obtain a first intermediate material;
  • the control module 640 sends a first feed signal to the alignment device 650 and the baking pot 620 after obtaining the first intermediate material, and the alignment device 650 bakes the discharge port of the baking can 610 according to the first feeding signal.
  • the feeding port of the tank 620 is butted, and the baking pot 620 receives the first intermediate material fed from the feeding port according to the first feeding signal;
  • the control module 640 sends a first separation signal to the alignment device 650 after the first intermediate material is fed.
  • the alignment device 650 causes the discharge port of the baking can 610 to enter the baking container 620 according to the first separation signal. Separation of the material;
  • the baking pot 620 agitates the first intermediate material fed into the baking pot 620 for a second predetermined time to obtain a second intermediate material
  • the control module 640 sends a second feed signal to the alignment device 650 and the cooling tank 630 after obtaining the second intermediate material.
  • the alignment device 650 sets the discharge port of the baking pot 620 and the cooling tank according to the second feeding signal.
  • the feed port of the 630 is docked, and the cooling tank 630 receives the second intermediate material fed from the feed port according to the second feed signal;
  • the control module 640 sends a second separation signal to the alignment device 650 after the second intermediate material is fed.
  • the alignment device 650 causes the discharge port of the baking can 620 to enter the cooling tank 630. Separation of the material;
  • the cooling tank 630 agitates and cools the second intermediate material fed into the cooling tank 630 for a third predetermined time to obtain a final pellet product and output.
  • the feeding device 101 is used to store the material to be treated, and to be baked by the feeding device 101 and the baking can (100 or 610).
  • the tank (100 or 610) is connected, and the control module 640 can send a feed signal to the feeding device 101 and the baking pot 610 when the baking pot 610 is idle, and control the feeding device 101 to feed the materials to be processed into batches. Go to the baking pot 610.
  • the feeding door When the baking pot 610 receives the feeding signal, the feeding door is opened. Similarly, in the above embodiment, after receiving the baking pot 620, the feeding port is opened according to the first feeding signal, and the feeding port can be received from the feeding port.
  • the second intermediate material is introduced; the cooling tank 630 is configured to open the feed port according to the second feed signal to receive the second intermediate material fed from the feed port.
  • Each of the above tanks needs to close the feed port and the discharge port before performing the rotary agitation.
  • the above-described aligning device may include two separate aligning devices, such as the first aligning device 651 and the second aligning device 652 in Figure 6b.
  • the control module 640 sends a first feed signal to the first alignment device 651 and the baking pot 610 after obtaining the first intermediate material, according to the above a first feeding signal, the first alignment device 651 interfaces the discharge opening of the baking can with the feeding port of the baking can, and the baking can receives the first intermediate material fed from the feeding port;
  • the control module 640 sends a first separation signal to the first alignment device 651 after the first intermediate material is fed. According to the first separation signal, the first alignment device 651 makes the discharge port of the baking can and baking. The feed inlet of the tank is separated;
  • the control module 640 sends a second feeding signal to the second alignment device 652 and the cooling tank 630.
  • the second alignment device 652 outputs the baking container 620.
  • the feed port is docked with the feed port of the cooling tank 630, and the cooling tank 630 receives the second intermediate material fed from the feed port;
  • the control module 640 sends a second separation signal to the second alignment device 652 after the second intermediate material is fed. According to the second separation signal, the second alignment device 652 causes the discharge port and the cooling of the baking pot 620. The feed port of the tank 630 is separated.
  • control module 640 can determine whether the baking can is idle by monitoring the processing time of the material, for example, determining whether the predetermined time is reached, and if so, indicating that the baking can starts to be idle, and if not, indicating baking. The cans are still working. Therefore, the predetermined time is greater than or equal to the first predetermined time, and the feeding port from the discharging port of the baking can is connected with the feeding port of the baking can, to the discharging port of the baking can and the feeding port of the baking can. The sum of the time separating the process.
  • the above-mentioned alignment device may include:
  • the baking pot is movable along the first rail 621, and
  • a first mobile drive (not shown) mounted on the baking pot 620, driving the baking pot 620 along the first track 621 when receiving the first feed signal or the second feed signal from the control module 640 Moving to the baking pot 610 or moving to the cooling tank for docking; when receiving the first separating signal or the second separating signal from the control module 640, driving the baking pot 620 along the first track
  • the 621 moves away from the baking pot 610 or moves away from the cooling tank to achieve separation.
  • the first mobile driver moves the baking pot 620 along the first rail 621 to the baking pot 610 according to the first feeding signal to perform docking with the baking pot 620 along the first track according to the first separating signal.
  • the 621 moves away from the above-described baking can 610 to achieve separation therefrom.
  • the first moving driver further moves the baking pot 620 along the first rail 621 to the cooling tank 630 according to the second feeding signal to abut the same, and the baking pot 620 is separated from the first rail 621 according to the second separating signal.
  • the above cooling tank moves to achieve separation therefrom.
  • the above-mentioned baking can 610, the above-mentioned baking can 620 and the above-mentioned cooling can 630 can be sequentially arranged in a straight line, thereby realizing the shortest displacement during movement, saving material transfer time, and of course, not in a straight line. .
  • the above-mentioned alignment device may further include:
  • a first rotary bearing 622 disposed vertically below the baking pot 620, and the baking pot 620 can be horizontally rotated by a center line perpendicular to a horizontal plane by the first rotating bearing 622, and
  • a first rotary actuator (not shown) mounted on the above-described baking pot 620 drives the baking pot 620 to be perpendicular to a horizontal plane when receiving the first feed signal or the second feed signal from the control module 640
  • the line is horizontally rotated to complete the docking with the baking pot 610 or the cooling tank 630 disposed on the rotating circumference of the baking pot 620; when receiving the first separating signal or the second separating signal from the control module 640, the driving
  • the above-described baking can 620 is horizontally rotated at a center line perpendicular to the horizontal plane to complete separation from the baking can 610 or the cooling can 630 provided on the rotating circumference of the above-described baking can 620.
  • the first rotary driver drives the baking pot 620 to rotate along its own center according to the first feeding signal, and then docks with the discharge port of the baking can 610, and the first rotary driver drives the baking pot 620 according to the second feeding signal. Rotating along its own center and docking with the inlet of the cooling tank 630.
  • the first rotary driver drives the baking pot 620 to rotate along the center of the baking tank 620 according to the first separating signal, and the first rotating driver drives the baking pot 620 along the second separating signal according to the second separating signal. After the center is rotated, it is separated from the feed port of the cooling tank 630.
  • the aligning device can be further divided into two independent first aligning devices 651 and second aligning devices 652 based on FIG. 6b. Docking and separation adjustments allow for more precise operation in docking and separation implementations.
  • the align device includes a first align device 651 and a second align device 652.
  • the first aligning device 651 includes a first track 621 and a first mobile drive (not shown).
  • a first rail 621 is laid under the baking pot 620, and the baking pot is movable along the first rail 621.
  • the first moving driver mounted on the baking pot 620 when receiving the first feeding signal from the control module 640, drives the baking pot 620 to move along the first rail 621 to the baking pot 610 to achieve docking.
  • the baking pot 620 is driven to move away from the baking pot 610 along the first rail 621 to achieve separation.
  • the second alignment device 652 includes a second track 631 and a second mobile drive (not shown).
  • a second rail 631 is laid under the cooling tank 630, and the cooling tank 630 is movable along the second rail 631.
  • the second moving drive mounted on the cooling tank 630 when receiving the second feeding signal from the control module 640, drives the cooling tank 630 to move along the second rail 631 to the baking pot 620 to realize cooling tank and baking.
  • the cooling tank 630 is driven to move away from the baking pot 620 along the second rail 631 to realize separation of the cooling tank from the baking pot.
  • the baking pot 610, the baking pot 620, and the cooling tank 630 may be sequentially arranged along a straight line, thereby realizing the shortest displacement during movement, saving material transfer time, of course, Not aligned along a straight line.
  • the aligning device includes a first aligning device 651 and a second aligning device 652.
  • the first alignment device 651 includes a first rotary bearing 622 and a first rotary drive (not shown).
  • a first rotary bearing 622 vertically disposed below the baking pot 620 is mounted, and the baking pot 620 is horizontally rotatable by a center line perpendicular to a horizontal plane by the first rotating bearing 622.
  • a first rotary drive mounted on the baking pot 620 when receiving the first feed signal from the control module 640, driving the baking pot 620 to horizontally rotate horizontally perpendicular to a horizontal plane of the horizontal plane, and completing and setting the baking
  • the baking pot 610 on the rotating circumference of the pot 620 is docked; when receiving the first separating signal from the control module 640, the baking pot 620 is driven to rotate horizontally perpendicular to the center line of the horizontal plane, and is completed and set in the above baking
  • the can 620 rotates around the circumference of the baking can 610 to effect separation.
  • the second alignment device 652 includes a second rotary bearing 632 and a second rotary drive (not shown).
  • a second rotary bearing 632 vertically disposed below the cooling tank 630 is mounted, and the cooling tank 630 is horizontally rotatable by a center line perpendicular to a horizontal plane by the rotation bearing.
  • a second rotary drive mounted on the cooling tank 630 when receiving the second feed signal from the control module 640, driving the cooling tank to rotate horizontally perpendicular to a center line of the horizontal plane, completing and rotating in the cooling tank Docking of the baking can on the circumference; when receiving the second separation signal from the control module 640, driving the cooling can to rotate horizontally perpendicular to the center line of the horizontal plane to complete the baking can provided on the rotating circumference of the cooling can Separation.
  • the first rotary bearing and the second rotary bearing in the above embodiment may be respectively a device having a base and a rotating shaft, one end of the rotating shaft fixing the can body, and the other end of the rotating shaft is connected to the first rotating driver or the second rotating driver, and the rotating shaft is vertical
  • the first rotary drive or the second rotary drive here may be a drive motor, such as a stepper motor.
  • the driving motor drives the rotating shaft to rotate, thereby causing the tank to rotate horizontally perpendicular to the center line of the horizontal plane.
  • a plurality of spaced strip-shaped strip members 114 are fixedly disposed on the inner wall of the can body 110.
  • Each strip 114 extends helically from one end of the can 110 to the other end. The angle between each of the strips 114 and the axis of the can 110 is equal.
  • the strip 114 rotates with the can 110 to generate a wind that blows into the interior of the can 110, and the material entering from the inlet 112 is prepared into synthetic particles.
  • the can body 110 rotates in the reverse direction, and the strip member 114 rotates in the reverse direction of the can body 110 to generate a wind blown to the outside of the can body 110, thereby processing the processed synthetic particles from the inlet port 112. Output, to achieve the role of the discharge port.
  • the preparation and output of synthetic particles are not limited to this manner.
  • elongated projections may be provided in the can body 110 to effect the preparation of synthetic particles.
  • a discharge port is provided on one end or side wall of the can body 110 away from the feed port 112 to achieve the output of the composite particles.
  • the above three-tank automatic particle production system can provide the utilization rate of the baking cans per unit time by adding the baking can 200 to the conventional double-tank system, and the materials in the baking cans are transferred to the baking can 200.
  • the baking can can be started immediately to continue the processing of the next batch of materials, and the added materials can be heated by the residual temperature of the baking box, and the baking can can be processed all the time by the method of the invention. Therefore, the temperature is not greatly reduced, the energy loss is saved, the waiting time of the baking box is shortened, and the utilization rate per unit time is improved.
  • the reaction time of the material can be prolonged during the stirring process, and the temperature is gradually lowered.
  • the cooling water can be used with as little cooling water as possible. The temperature of the material is cooled, and the overall processing equipment is in an orderly manner, which improves the processing speed of the synthetic particles.

Abstract

一种三罐式自动化颗粒生产方法及系统。该方法包括:在烘烤罐闲置时,将待处理物料分批次送入到烘烤罐中;在预设加热温度下对送入到烘烤罐中的物料,进行加热搅拌处理,持续第一预设时间,获得第一中间物料,将烘烤罐的出料口与烘焙罐的进料口对接,将烘烤罐中的第一中间物料送入到烘焙罐中,分离烘烤罐的出料口与烘焙罐的进料口。

Description

三罐式自动化颗粒生产方法及系统
【技术领域】
本发明涉及合成颗粒的加工设备技术领域,特别是涉及一种三罐式自动化颗粒生产方法及系统。
【背景技术】
目前全球发电厂中发电锅炉的燃煤用量需求非常大,但是煤炭等石化燃料在燃烧时会大量排放造成温室效应的气体和无法消除的尘埃,于是有一种新型的绿色能源“生物成型燃料”用以替代传统的煤炭等石化燃料。该生物成型燃料是由一般植物或经济作物,如稻草、秸秆、杂木、棕榈壳及椰子壳等残留废弃的植物纤维经压缩转换而成。
然而,传统的合成颗粒的设备通常设置有传输装置,例如传送带等,用于将物料输入至反应箱内合成颗粒产品,且将合成颗粒传输至冷却箱进行冷却。但传统的传输装置使得设备的结构较为复杂,物料传输过程复杂,使得合成颗粒的自动制备系统工作效率低下,也增加了生产成本。另外,生产出来的合成颗粒容易外观色泽不一致,能量不均匀。
【发明内容】
基于此,有必要提供一种结构简单、生产效率较高的三罐式自动化颗粒生产方法,同时提供了一种三罐式自动化颗粒生产系统。
一种三罐式自动化颗粒生产方法,其包括:
进料步骤:在烘烤罐闲置时,将待处理物料分批次送入到烘烤罐中;
烘烤步骤:在预设加热温度下对送入到烘烤罐中的物料,进行加热搅拌处理,持续第一预设时间,获得第一中间物料,并在获得第一中间物料之后,将烘烤罐的出料口与烘焙罐的进料口对接,将烘烤罐中的第一中间物料送入到烘焙罐中,分离烘烤罐的出料口与烘焙罐的进料口;
烘焙步骤:对送入到烘焙罐中的第一中间物料进行搅拌处理,持续第二预设时间,获得第二中间物料,在获得第二中间物料后,将烘焙罐的出料口与冷却罐的进料口对接,并将烘焙罐中的第二中间物料送入到冷却罐中,分离烘焙罐的出料口与冷却罐的进料口;
冷却步骤:对送入到冷却罐中的第二中间物料进行搅拌冷却,持续第三预设时间,获得最终颗粒产品并输出。
一种三罐式自动化颗粒生产系统,其包括:烘烤罐、烘焙罐、冷却罐、对位设备,及分别与所述烘烤罐、烘焙罐、对位设备和冷却罐电连接的控制模块;
所述控制模块在烘烤罐闲置时向所述烘烤罐发出进料信号,控制将待处理物料分批次送入到烘烤罐中;
所述烘烤罐在预设加热温度下对送入到烘烤罐中的物料,进行加热搅拌处理,持续第一预设时间,获得第一中间物料;
所述控制模块在获得第一中间物料之后,向所述对位设备和烘焙罐发出第一送料信号,所述对位设备根据所述第一送料信号将烘烤罐的出料口与烘焙罐的进料口进行对接,所述烘焙罐根据所述第一送料信号接收从进料口送入的所述第一中间物料;
所述控制模块在第一中间物料送料完毕后向所述对位设备发出第一分离信号,所述对位设备根据所述第一分离信号使得烘烤罐的出料口与烘焙罐的进料口分离;
所述烘焙罐对送入到烘焙罐中的第一中间物料进行搅拌处理,持续第二预设时间,获得第二中间物料;
所述控制模块在获得第二中间物料后,向所述对位设备和冷却罐发出第二送料信号,所述对位设备根据所述第二送料信号将烘焙罐的出料口与冷却罐的进料口对接,所述冷却罐根据所述第二送料信号接收从进料口送入的第二中间物料;
所述控制模块在第二中间物料送料完毕后向所述对位设备发出第二分离信号,所述对位设备根据所述第二分离信号使得烘焙罐的出料口与冷却罐的进料口分离;
所述冷却罐对送入到冷却罐中的第二中间物料进行搅拌冷却,持续第三预设时间,获得最终颗粒产品并输出。
上述三罐式自动化颗粒生产系统提高了烘烤罐的单位时间内利用率,减少了烘烤罐的等待时间,加快了合成颗粒的生产效率,实现了合成颗粒的自动化生成,并且生产出来的合成颗粒外观色泽一致,能量分布均匀。
【附图说明】
图1为一实施例的三罐式自动化颗粒生产方法的流程示意图;
图2为一实施例中烘烤罐的加热设备示意图;
图3为一实施例中烘烤罐的结构示意图;
图4为一实施例中烘培罐的结构示意图;
图5为一实施例中冷却罐的结构示意图;
图6a和图6b为一实施例中三罐式自动化颗粒生产系统的两种实施例的控制结构示意图;
图7为一实施例中三罐式自动化颗粒生产系统的结构示意图;
图8为一实施例中三罐式自动化颗粒生产系统的结构示意图;及
图9为一实施例中罐体内条形件的结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1提供了一实施例中合成颗粒的自动化生成方法,其采用图3至图5所示的三罐式自动化颗粒生产系统。该系统包括烘烤罐100、烘焙罐200、冷却罐300这三个罐体,这是三个罐体的结构可以相同,也可以不相同,但均可以实现罐体的正转和反转。待处理物料指的是一般植物或经济作物(如稻草、秸秆、杂木、棕榈壳及椰子壳等)的残留废弃的植物纤维。
每个罐体,其主体结构为筒状结构,包括进料口和出料口,在进料口和出料口上可以设置有自动门驱动机构,自动门驱动机构可以受控自动闭合进料口和出料口。例如,采用气缸推动摆臂,而在摆臂的自由端设置可封闭进料口或出料口的闭合门,通过气缸的推动或收缩来驱动摆臂工作,将闭合门贴合进料口或出料口,或者将闭合门推离进料口或出料口。
此外,每个罐体还包括驱动机构,驱动机构设置于罐体的外部,并与罐体通过齿轮盘啮合连接,且可驱动罐体绕自身的轴线正向或者反向旋转,用以实现搅拌或送料。
更进一步地,在上述罐体结构的基础上,如图3所示,烘烤罐100作为将物料制备成具有高热量的合成颗粒的反应场所,可以在罐体105下方设置加热设备104,从而将普通罐体设置成烘烤罐100。例如,在一个实施例中,如图2所示,加热设备104可以包括:至少一个导热管210、主导热管220和气压阀250。上述导热管210上用于面向热源的侧壁上开设有多个热空气进入孔211。上述主导热管220与上述罐体105内腔连通,上述主导热管220与上述导热管210连通构成连通气路;上述气压阀250设置在上述通气路上。气压阀250用来控制气压,当连通气路中的气压过大时通过气压阀来检测,并启动泄压。可见,在本实施例中,通过导热管将热源附近的热空气吸入到连通气路中,并通过主导热管将上述热空气引入到可旋转的搅拌桶内,从而实现加热,这种加热方式可以使加热更加均匀,并且还能给搅拌桶内的潮湿物料进行烘干处理。这里提到的热源可以是加热炉等任意一种可产生高温气体的设备。此外,驱动机构为设置于罐体105外部的驱动电机102,并与罐体105通过齿轮盘231啮合连接,且可驱动罐体105绕自身的轴线正向或者反向旋转,用以实现搅拌或送料。
更进一步地,在上述罐体结构的基础上,烘焙罐200可以采用普通的罐体结构。烘焙罐200实现搅拌功能,可通过驱动电机带动旋转。其中,在烘焙罐200的罐体201的两端沿周向设置一圈齿轮盘202,此齿轮盘202通过齿轮传动机构连接电机,电气驱动后通过齿轮传动带动罐体201实现以轴心线为中线的旋转,从而令位于搅拌桶内腔中的物料完成搅拌。
更进一步地,在上述罐体结构的基础上,冷却罐300在普通罐体结构上增设冷却设备303,用于降低罐体301内物料的温度。例如,冷却设备303可以为设置在罐体301上方的水管及水阀,水管上设置多个通孔,并连接冷却水,当需要实施冷却时,则控制水阀将冷却水输送如水管内,冷却水通过通孔散出从罐体上方淋下,实现对罐体内物料的降温处理。此外,驱动机构为设置于罐体301外部的驱动电机,并与罐体301通过齿轮盘302啮合连接,且可驱动罐体301绕自身的轴线正向或者反向旋转,用以实现搅拌或送料。
当然,冷却罐、烘烤罐均可以通过电机带动旋转,而通过电机驱动的方式可参见上述对烘焙罐的描述部分。此外还如图3所示,系统还包括自动进料装置101,具有一管道连通烘烤罐100的内腔。
图1所示的实施例中,一种三罐式自动化颗粒生产方法,其方法包括以下步骤:
在进料步骤S100中,判断烘烤罐是否闲置,在烘烤罐闲置时,则执行步骤S200将待处理物料分批次送入到烘烤罐中;在烘烤罐非闲置时,则等待。
在烘烤步骤中,先执行步骤S310,在预设加热温度下对送入到烘烤罐中的物料,进行加热搅拌处理,持续第一预设时间,获得第一中间物料。一个实施例中,在步骤S310中,上述预设加热温度在200摄氏度至350摄氏度之间,上述第一预设时间在1至3小时之间。以便能够使物料反应的更加全面。
再执行步骤S320,在获得第一中间物料之后,将烘烤罐的出料口与烘焙罐的进料口对接,将烘烤罐中的第一中间物料送入到烘焙罐中,分离烘烤罐的出料口与烘焙罐的进料口。
在烘焙步骤中:先执行步骤S410,对送入到烘焙罐中的第一中间物料进行搅拌处理,持续第二预设时间,获得第二中间物料。这里的第二预设时间大于或等于零。一个实施例中,上述第二预设时间可以为1至2小时。
再执行步骤S420,在获得第二中间物料后,将烘焙罐的出料口与冷却罐的进料口对接,并将烘焙罐中的第二中间物料送入到冷却罐中,分离烘焙罐的出料口与冷却罐的进料口;
在冷却步骤S500中,对送入到冷却罐中的第二中间物料进行搅拌冷却,持续第三预设时间,获得最终颗粒产品并输出。一个实施例中,在冷却步骤S500中,上述冷却罐中的冷却温度在50摄氏度至100摄氏度之间,上述第三预设时间为1至2小时。冷却的方式可以采用启动前文所述的冷却设备的方式来实现。
此外,进料步骤S100中可以通过监控物料的处理时间来判断烘烤罐是否闲置,例如判断是否到达预定时间,若是,则表示烘烤罐开始闲置,若否,则表示烘烤罐还在工作。所以,预定时间大于或等于上述第一预设时间叠加上述步骤S320的执行时间之和。
此外,为了使三个罐体的协作更加有秩序,并且物料反应更加全面,则在一个实施例中,第一预定时间大于或等于第二预定时间,第二预定时间大于或等于零,或者还可以第二预定时间大于或等于上述第三预定时间。
为了实现上述方法,在其中一个实施例中,如图6a所示,本发明还提供了一种三罐式自动化颗粒生产系统,其包括:烘烤罐610、烘焙罐620、对位设备650和冷却罐630及分别与上述烘烤罐610、对位设备650、烘焙罐620和冷却罐630电连接的控制模块640。
上述控制模块640在烘烤罐610闲置时向上述烘烤罐610发出进料信号,控制将待处理物料分批次送入到烘烤罐610中;
上述烘烤罐610在预设加热温度下对送入到烘烤罐610中的物料,进行加热搅拌处理,持续第一预设时间,获得第一中间物料;
上述控制模块640在获得第一中间物料之后,向上述对位设备650和烘焙罐620发出第一送料信号,上述对位设备650根据上述第一送料信号将烘烤罐610的出料口与烘焙罐620的进料口进行对接,上述烘焙罐620根据上述第一送料信号接收从进料口送入的上述第一中间物料;
上述控制模块640在第一中间物料送料完毕后向上述对位设备650发出第一分离信号,上述对位设备650根据上述第一分离信号使得烘烤罐610的出料口与烘焙罐620的进料口分离;
上述烘焙罐620对送入到烘焙罐620中的第一中间物料进行搅拌处理,持续第二预设时间,获得第二中间物料;
上述控制模块640在获得第二中间物料后,向上述对位设备650和冷却罐630发出第二送料信号,上述对位设备650根据上述第二送料信号将烘焙罐620的出料口与冷却罐630的进料口对接,上述冷却罐630根据上述第二送料信号接收从进料口送入的第二中间物料;
上述控制模块640在第二中间物料送料完毕后向上述对位设备650发出第二分离信号,根据上述第二分离信号,上述对位设备650使得烘焙罐620的出料口与冷却罐630的进料口分离;
上述冷却罐630对送入到冷却罐630中的第二中间物料进行搅拌冷却,持续第三预设时间,获得最终颗粒产品并输出。
如图3和图7所示,在本发明的其中一个实施例中,通过进料装置101与烘烤罐(100或610),进料装置101用于来存储待处理物料,并与烘烤罐(100或610)连通,上述控制模块640在烘烤罐610闲置时可以向进料装置101和上述烘烤罐610发出进料信号,控制进料装置101将待处理物料分批次送入到烘烤罐610中。
上述烘烤罐610接收到进料信号时要开启进料门,同理上述实施例中,在接收到上述烘焙罐620根据第一送料信号要开启进料口,才可接收从进料口送入的第二中间物料;上述冷却罐630根据第二送料信号要开启进料口,才可接收从进料口送入的第二中间物料。上述各个罐体在进行旋转搅拌前需要关闭进料口和出料口。
还可以如图6b所示,在一个实施例中,上述对位设备可以包括两个分离的对位设备,如图6b中的第一对位设备651和第二对位设备652。则相比图6a所示的实施例,与之不同之处在于,上述控制模块640在获得第一中间物料之后,向上述第一对位设备651和烘焙罐610发出第一送料信号,根据上述第一送料信号,上述第一对位设备651将烘烤罐的出料口与烘焙罐的进料口进行对接,上述烘焙罐接收从进料口送入的上述第一中间物料;
上述控制模块640在第一中间物料送料完毕后向上述第一对位设备651发出第一分离信号,根据上述第一分离信号,上述第一对位设备651使得烘烤罐的出料口与烘焙罐的进料口分离;
上述控制模块640在获得第二中间物料后,向上述第二对位设备652和冷却罐630发出第二送料信号,根据上述第二送料信号,上述第二对位设备652将烘焙罐620的出料口与冷却罐630的进料口对接,上述冷却罐630接收从进料口送入的第二中间物料;
上述控制模块640在第二中间物料送料完毕后向上述第二对位设备652发出第二分离信号,根据上述第二分离信号,上述第二对位设备652使得烘焙罐620的出料口与冷却罐630的进料口分离。
此外一个实施例中,上述控制模块640每可以通过监控物料的处理时间来判断烘烤罐是否闲置,例如判断是否到达预定时间,若是,则表示烘烤罐开始闲置,若否,则表示烘烤罐还在工作。所以,预定时间大于或等于上述第一预设时间,与完成从上述烘烤罐的出料口与烘焙罐的进料口进行对接、至烘烤罐的出料口与烘焙罐的进料口分离这一过程的时间之和。
上述实施例中,有关上述各个执行部件的具体执行过程可参见前文中针对图1各个步骤的详细说明,在此不再累述。
一个实施例中,如图7所示,在图6a所示的实施例的基础上,上述对位设备可以包括:
铺设在上述烘焙罐620下方的第一轨道621,上述烘焙罐可沿上述第一轨道621移动,和
安装在上述烘焙罐620上的第一移动驱动器(未标出),当接收到来自上述控制模块640的上述第一送料信号或第二送料信号时,驱动上述烘焙罐620沿上述第一轨道621向上述烘烤罐610移动或者向上述冷却罐移动,用以实现对接;当接收到来自上述控制模块640的上述第一分离信号或第二分离信号时,驱动上述烘焙罐620沿上述第一轨道621背离上述烘烤罐610移动或者背离上述冷却罐移动,用以实现分离。
例如,第一移动驱动器根据第一送料信号,将上述烘焙罐620沿上述第一轨道621向上述烘烤罐610移动实现与其对接,根据第一分离信号,将上述烘焙罐620沿上述第一轨道621背离上述烘烤罐610移动,实现与其分离。
第一移动驱动器还根据第二送料信号,将上述烘焙罐620沿上述第一轨道621向上述冷却罐630移动实现与其对接,根据第二分离信号,将上述烘焙罐620沿上述第一轨道621背离上述冷却罐移动,实现与其分离。如图7所示,上述烘烤罐610、上述烘焙罐620和上述冷却罐630可以依次沿一条直线排列,从而实现移动时的位移最短,节省物料的传送时间,当然也可以不沿一条直线排列。
当然,在另一个实施例中,如图8所示,在图6a所示的实施例的基础上,上述对位设备还可以包括:
安装在上述烘焙罐620下方垂直设置的第一旋转轴承622,上述烘焙罐620可在上述第一旋转轴承622的带动下以垂直于水平面的中心线水平旋转,和
安装在上述烘焙罐620上的第一旋转驱动器(未标出),当接收到来自上述控制模块640的上述第一送料信号或第二送料信号时,驱动上述烘焙罐620以垂直于水平面的中心线水平旋转,完成与设置在上述烘培罐620旋转圆周上的烘烤罐610或冷却罐630的对接;当接收到来自上述控制模块640的上述第一分离信号或第二分离信号时,驱动上述烘焙罐620以垂直于水平面的中心线水平旋转,完成与设置在上述烘培罐620旋转圆周上的烘烤罐610或冷却罐630的分离。
例如,第一旋转驱动器根据上述第一送料信号,驱动上述烘焙罐620沿自身中心旋转后与烘烤罐610的出料口对接,第一旋转驱动器根据上述第二送料信号,驱动上述烘焙罐620沿自身中心旋转后与冷却罐630的进料口对接。
第一旋转驱动器根据上述第一分离信号,驱动上述烘焙罐620沿自身中心旋转后与烘烤罐610的出料口分离,第一旋转驱动器根据上述第二分离信号,驱动上述烘焙罐620沿自身中心旋转后与冷却罐630的进料口分离。
除了上述两种对位设备的设置方式之外,还可以基于图6b所示的,将对位设备分为两个独立的第一对位设备651和第二对位设备652来实现更为灵活的对接和分离调整,这样在对接和分离实现上可以更加精确的操作。
如图7所示,在一个实施例中,对位设备包括第一对位设备651和第二对位设备652。第一对位设备651包括:第一轨道621和第一移动驱动器(图中未标出)。
铺设在上述烘焙罐620下方的第一轨道621,上述烘焙罐可沿上述第一轨道621移动。安装在上述烘焙罐620上的第一移动驱动器,当接收到来自上述控制模块640的上述第一送料信号时,驱动上述烘焙罐620沿上述第一轨道621向上述烘烤罐610移动实现对接,当接收到来自上述控制模块640的上述第一分离信号时,驱动上述烘焙罐620沿上述第一轨道621背离上述烘烤罐610移动实现分离。
第二对位设备652包括:第二轨道631和第二移动驱动器(图中未标出)。
铺设在上述冷却罐630下方的第二轨道631,上述冷却罐630可沿上述第二轨道631移动。安装在上述冷却罐630上的第二移动驱动器,当接收到来自上述控制模块640的第二送料信号时,驱动上述冷却罐630沿上述第二轨道631向上述烘焙罐620移动实现冷却罐与烘焙罐的对接,当接收到来自上述控制模块640的第二分离信号时,驱动上述冷却罐630沿上述第二轨道631背离上述烘焙罐620移动,实现冷却罐与烘焙罐的分离。
本实施例中,如图7所示,上述烘烤罐610、上述烘焙罐620和上述冷却罐630可以依次沿一条直线排列,从而实现移动时的位移最短,节省物料的传送时间,当然也可以不沿一条直线排列。
如图8所示,在另一个实施例中,对位设备包括第一对位设备651和第二对位设备652。第一对位设备651包括:第一旋转轴承622和第一旋转驱动器(图中未标出)。
安装在上述烘焙罐620下方垂直设置的第一旋转轴承622,上述烘焙罐620可在上述第一旋转轴承622的带动下以垂直于水平面的中心线水平旋转。安装在上述烘焙罐620上的第一旋转驱动器,当接收到来自上述控制模块640的上述第一送料信号时,驱动上述烘焙罐620以垂直于水平面的中心线水平旋转,完成与设置在上述烘培罐620旋转圆周上的烘烤罐610对接;当接收到来自上述控制模块640的上述第一分离信号时,驱动上述烘焙罐620以垂直于水平面的中心线水平旋转,完成与设置在上述烘培罐620旋转圆周上的烘烤罐610实现分离。
第二对位设备652包括:第二旋转轴承632和第二旋转驱动器(图中未标出)。
安装在上述冷却罐630下方垂直设置的第二旋转轴承632,上述冷却罐630可在上述旋转轴承的带动下以垂直于水平面的中心线水平旋转。安装在上述冷却罐630上的第二旋转驱动器,当接收到来自上述控制模块640的第二送料信号时,驱动上述冷却罐以垂直于水平面的中心线水平旋转,完成与设置在上述冷却罐旋转圆周上的烘焙罐的对接;当接收到来自上述控制模块640的第二分离信号时,驱动上述冷却罐以垂直于水平面的中心线水平旋转,完成与设置在上述冷却罐旋转圆周上的烘焙罐的分离。
上述实施例中的第一旋转轴承和第二旋转轴承可以分别是,具有一底座和转轴的装置,转轴的一端固定罐体,转轴的另一端连接第一旋转驱动器或第二旋转驱动器,转轴垂直于水平面设置,此处的第一旋转驱动器或第二旋转驱动器可以为驱动电机,例如步进电机。驱动电机带动转轴旋转,从而带动罐体以垂直于水平面的中心线水平旋转。
如图9所示,在其中一个实施例中,无论是烘烤罐、烘培罐或者冷却罐,在其罐体110的内壁上固定设有多个间隔设置的片状的条形件114。每个条形件114从罐体110的一端螺旋延伸至另一端。每个条形件114与罐体110的轴线之间的夹角相等。罐体110旋转时,条形件114随罐体110转动而产生一吹向罐体110的内部的风力,将从进料口112进入的物料制备成合成颗粒。当物料加工完成时,罐体110反向旋转,条形件114随罐体110反向转动而产生一吹向罐体110的外部的风力,进而将加工好的合成颗粒从进料口112处输出,实现出料口的作用。需要指出的是,合成颗粒的制备及输出不仅限于此种方式。例如,罐体110内可以设置长条状凸出部来实现合成颗粒的制备。在罐体110远离进料口112的一端或是侧壁上设置出料口,以实现合成颗粒的输出。
上述三罐式自动化颗粒生产系统通过在传统的双罐系统的基础上增设烘焙罐200,从而可以提供了烘烤罐的单位时间内利用率,当烘烤罐内的物料转入烘焙罐200中后,可以立即启动烘烤罐继续进行下一批次物料的加工,并可以借助烘烤箱的余温继续对加入的物料进行加热,由于采用本发明的方法可以使烘烤罐一直处理工作状态,从而保证温度不会大幅度降低,节省了能量的损失,缩短了烘烤箱的等待时间,提升了单位时间的利用率。同理,在烘培罐内对物料进行中转之后,在搅拌的过程可以延长物料的反应时间,并逐渐降温,当物料被送入到冷却罐内后,可以用尽可能少的冷却水完成对物料的降温,整体加工设备有序的工作,提升了合成颗粒的加工速度。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种三罐式自动化颗粒生产方法,包括:
    将待处理物料分批次送入到烘烤罐中;
    在预设加热温度下对送入到烘烤罐中的物料,进行加热搅拌处理,持续第一预设时间,获得第一中间物料,并在获得第一中间物料之后,将烘烤罐的出料口与烘焙罐的进料口对接,将烘烤罐中的第一中间物料送入到烘焙罐中,分离烘烤罐的出料口与烘焙罐的进料口;
    对送入到烘焙罐中的第一中间物料进行搅拌处理,持续第二预设时间,获得第二中间物料,在获得第二中间物料后,将烘焙罐的出料口与冷却罐的进料口对接,并将烘焙罐中的第二中间物料送入到冷却罐中,分离烘焙罐的出料口与冷却罐的进料口;及
    对送入到冷却罐中的第二中间物料进行搅拌冷却,持续第三预设时间,获得最终颗粒产品并输出。
  2. 根据权利要求1所述的方法,其特征在于,所述预设加热温度在200摄氏度至350摄氏度之间,所述第一预设时间在1至3小时之间。
  3. 根据权利要求1所述的方法,其特征在于,所述冷却罐中的冷却温度在50摄氏度至100摄氏度之间,所述第三预设时间为1至2小时。
  4. 根据权利要求1所述的方法,其特征在于,所述第二预设时间为1至2小时。
  5. 根据权利要求1所述的方法,其特征在于,第一预定时间大于或等于第二预定时间,第二预定时间大于或等于零、或第二预定时间大于或等于所述第三预定时间。
  6. 根据权利要求1所述的方法,其特征在于,在所述进料步骤中每隔预定时间将待处理物料分批次送入到烘烤罐中,所述预定时间为大于或等于所述第一预设时间,与完成从所述烘烤罐的出料口与烘焙罐的进料口进行对接、至烘烤罐的出料口与烘焙罐的进料口分离这一过程的时间之和。
  7. 一种三罐式自动化颗粒生产系统,包括:烘烤罐、烘焙罐、冷却罐、对位设备,及分别与所述烘烤罐、烘焙罐、对位设备和冷却罐电连接的控制模块;
    所述控制模块在烘烤罐闲置时向所述烘烤罐发出进料信号,控制将待处理物料分批次送入到烘烤罐中;
    所述烘烤罐在预设加热温度下对送入到烘烤罐中的物料,进行加热搅拌处理,持续第一预设时间,获得第一中间物料;
    所述控制模块在获得第一中间物料之后,向所述对位设备和烘焙罐发出第一送料信号,所述对位设备根据所述第一送料信号将烘烤罐的出料口与烘焙罐的进料口进行对接,所述烘焙罐根据所述第一送料信号接收从进料口送入的所述第一中间物料;
    所述控制模块在第一中间物料送料完毕后向所述对位设备发出第一分离信号,所述对位设备根据所述第一分离信号使得烘烤罐的出料口与烘焙罐的进料口分离;
    所述烘焙罐对送入到烘焙罐中的第一中间物料进行搅拌处理,持续第二预设时间,获得第二中间物料;
    所述控制模块在获得第二中间物料后,向所述对位设备和冷却罐发出第二送料信号,所述对位设备根据所述第二送料信号将烘焙罐的出料口与冷却罐的进料口对接,所述冷却罐根据所述第二送料信号接收从进料口送入的第二中间物料;
    所述控制模块在第二中间物料送料完毕后向所述对位设备发出第二分离信号,所述对位设备根据所述第二分离信号使得烘焙罐的出料口与冷却罐的进料口分离;
    所述冷却罐对送入到冷却罐中的第二中间物料进行搅拌冷却,持续第三预设时间,获得最终颗粒产品并输出。
  8. 根据权利要求7所述的系统,其特征在于,所述控制模块每隔预定时间发出所述进料信号,所述预定时间为大于或等于所述第一预设时间,与完成从所述烘烤罐的出料口与烘焙罐的进料口进行对接、至烘烤罐的出料口与烘焙罐的进料口分离这一过程的时间之和。
  9. 根据权利要求7所述的系统,其特征在于,所述对位设备包括:
    铺设在所述烘焙罐下方的第一轨道,所述烘焙罐可沿所述轨道移动,和
    安装在所述烘焙罐上的第一移动驱动器,当接收到来自所述控制模块的所述第一送料信号或第二送料信号时,驱动所述烘焙罐沿所述第一轨道向所述烘烤罐移动或者向所述冷却罐移动,实现对接;当接收到来自所述控制模块的所述第一分离信号或第二分离信号时,驱动所述烘焙罐沿所述第一轨道背离所述烘烤罐移动或者背离所述冷却罐移动,实现分离。
  10. 根据权利要求7所述的系统,其特征在于,所述对位设备包括:
    安装在所述烘焙罐下方垂直设置的第一旋转轴承,所述烘焙罐可在所述第一旋转轴承的带动下以垂直于水平面的中心线水平旋转,和
    安装在所述烘焙罐上的第一旋转驱动器,当接收到来自所述控制模块的所述第一送料信号或第二送料信号时,驱动所述烘焙罐以垂直于水平面的中心线水平旋转,完成与设置在所述烘培罐旋转圆周上的烘烤罐或冷却罐的对接;当接收到来自所述控制模块的所述第一分离信号或第二分离信号时,驱动所述烘焙罐以垂直于水平面的中心线水平旋转,完成与设置在所述烘培罐旋转圆周上的烘烤罐或冷却罐的分离。
  11. 根据权利要求9所述的系统,其特征在于,所述对位设备还包括:
    铺设在所述冷却罐下方的第二轨道,所述冷却罐可沿所述第二轨道移动,和
    安装在所述冷却罐上的第二移动驱动器,当接收到来自所述控制模块的第二送料信号时,驱动所述冷却罐沿所述第二轨道向所述烘焙罐移动或者远离向所述烘焙罐,实现冷却罐与烘焙罐的对接;当接收到来自所述控制模块的第二分离信号时,驱动所述冷却罐沿所述第二轨道背离所述烘焙罐移动实现冷却罐与烘焙罐的分离。
  12. 根据权利要求9所述的系统,其特征在于,所述对位设备还包括:
    安装在所述冷却罐下方垂直设置的第二旋转轴承,所述冷却罐可在所述旋转轴承的带动下以垂直于水平面的中心线水平旋转,和
    安装在所述冷却罐上的第二旋转驱动器,当接收到来自所述控制模块的第二送料信号时,驱动所述冷却罐以垂直于水平面的中心线水平旋转,完成与设置在所述冷却罐旋转圆周上的烘焙罐的对接;当接收到来自所述控制模块的第二分离信号时,驱动所述冷却罐以垂直于水平面的中心线水平旋转,完成与设置在所述冷却罐旋转圆周上的烘焙罐的分离。
PCT/CN2016/107195 2015-12-29 2016-11-25 三罐式自动化颗粒生产方法及系统 WO2017114042A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL16880832T PL3287509T3 (pl) 2015-12-29 2016-11-25 Trójzbiornikowego typu sposób i system automatycznej produkcji cząstek
EP16880832.7A EP3287509B1 (en) 2015-12-29 2016-11-25 Three-tank type automatic particle production method and system
DK16880832.7T DK3287509T3 (da) 2015-12-29 2016-11-25 Automatisk tretanks-partikelproduktionsfremgangsmåde og -system
ES16880832T ES2784668T3 (es) 2015-12-29 2016-11-25 Método y sistema de producción automática de partículas de tres tanques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511016865.8 2015-12-29
CN201511016865.8A CN105536645B (zh) 2015-12-29 2015-12-29 三罐式自动化颗粒生产方法及系统

Publications (1)

Publication Number Publication Date
WO2017114042A1 true WO2017114042A1 (zh) 2017-07-06

Family

ID=55816487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107195 WO2017114042A1 (zh) 2015-12-29 2016-11-25 三罐式自动化颗粒生产方法及系统

Country Status (7)

Country Link
EP (1) EP3287509B1 (zh)
CN (1) CN105536645B (zh)
DK (1) DK3287509T3 (zh)
ES (1) ES2784668T3 (zh)
PL (1) PL3287509T3 (zh)
PT (1) PT3287509T (zh)
WO (1) WO2017114042A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647282A (zh) * 2019-01-24 2019-04-19 平湖市凯丰机械制造有限公司 混料烘箱一体机
CN117427559A (zh) * 2023-12-21 2024-01-23 内蒙古蓝色火宴科技环保股份公司 一种环保型生物质燃料颗粒成型装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536645B (zh) * 2015-12-29 2018-01-23 柏红梅 三罐式自动化颗粒生产方法及系统
CN107790062A (zh) * 2016-08-30 2018-03-13 柏红梅 合成颗粒的制备装置及合成颗粒的制备系统
JP2020186362A (ja) 2019-05-13 2020-11-19 バイ ホン メイBai, Hong Mei 固体バイオマス燃料の製造方法
JP2022543297A (ja) 2019-08-08 2022-10-11 ホン メイ バイ 固体バイオマス燃料を生成するための方法
GB2591789A (en) 2020-02-06 2021-08-11 Mei Bai Hong Process for producing solid biomass fuel
GB2599728A (en) 2020-10-12 2022-04-13 Mei Bai Hong Process for producing solid biomass fuel
GB202117376D0 (en) 2021-12-01 2022-01-12 Bai hong mei Process for producing solid biomass fuel
GB2615795A (en) 2022-02-18 2023-08-23 Mei Bai Hong Process for producing solid biomass fuel
GB2622593A (en) 2022-09-20 2024-03-27 Mei Bai Hong Solid biomass fuel anti-coking additive

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030221363A1 (en) * 2002-05-21 2003-12-04 Reed Thomas B. Process and apparatus for making a densified torrefied fuel
CN102146308A (zh) * 2011-02-22 2011-08-10 苏州迪森生物能源有限公司 生物质棒状颗粒的制备系统
CA2833179A1 (en) * 2011-04-15 2012-10-18 Biogenic Reagents LLC Processes for producing high-carbon biogenic reagents
US20140082998A1 (en) * 2012-09-14 2014-03-27 Astec, Inc. Method And Apparatus For Pelletizing Blends Of Biomass Materials For Use As Fuel
US20140202073A1 (en) * 2011-08-23 2014-07-24 Advanced Torrefaction Systems, Llc Torrefaction systems and methods including catalytic oxidation and/or reuse of combustion gases directly in a torrefaction reactor, cooler, and/or dryer/preheater
CN105132068A (zh) * 2015-09-14 2015-12-09 柏红梅 合成颗粒的自动制备系统及其控制方法
CN105536645A (zh) * 2015-12-29 2016-05-04 柏红梅 三罐式自动化颗粒生产方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU505250B2 (en) * 1976-07-28 1979-11-15 Dravo Corporation Rotating drum for agglomeration
JPS61245833A (ja) * 1985-04-23 1986-11-01 Nishi Nippon Giken:Kk 粒状物の製造方法及びその装置
FR2816518B1 (fr) * 2000-11-16 2003-04-25 Bionatec Procede de fabrication de granules
JP2008253910A (ja) * 2007-04-04 2008-10-23 Freunt Ind Co Ltd コーティング装置
CN102120160B (zh) * 2011-01-21 2014-07-16 浙江布莱蒙农业科技股份有限公司 喷浆回转造粒机
JP5813526B2 (ja) * 2011-02-15 2015-11-17 株式会社パウレック コーティング装置
CN103933896B (zh) * 2014-04-26 2016-02-03 绍兴仁飞炭黑有限公司 一种炭黑或高湿含量粉状物的干燥造粒装置
CN105170034B (zh) * 2014-06-11 2017-11-07 柏红梅 合成颗粒的制备系统
CN203990550U (zh) * 2014-06-11 2014-12-10 柏红梅 合成颗粒的制备系统
CN204134597U (zh) * 2014-08-12 2015-02-04 柏红梅 合成颗粒的制备系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030221363A1 (en) * 2002-05-21 2003-12-04 Reed Thomas B. Process and apparatus for making a densified torrefied fuel
CN102146308A (zh) * 2011-02-22 2011-08-10 苏州迪森生物能源有限公司 生物质棒状颗粒的制备系统
CA2833179A1 (en) * 2011-04-15 2012-10-18 Biogenic Reagents LLC Processes for producing high-carbon biogenic reagents
US20140202073A1 (en) * 2011-08-23 2014-07-24 Advanced Torrefaction Systems, Llc Torrefaction systems and methods including catalytic oxidation and/or reuse of combustion gases directly in a torrefaction reactor, cooler, and/or dryer/preheater
US20140082998A1 (en) * 2012-09-14 2014-03-27 Astec, Inc. Method And Apparatus For Pelletizing Blends Of Biomass Materials For Use As Fuel
CN105132068A (zh) * 2015-09-14 2015-12-09 柏红梅 合成颗粒的自动制备系统及其控制方法
CN105536645A (zh) * 2015-12-29 2016-05-04 柏红梅 三罐式自动化颗粒生产方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647282A (zh) * 2019-01-24 2019-04-19 平湖市凯丰机械制造有限公司 混料烘箱一体机
CN109647282B (zh) * 2019-01-24 2024-03-01 平湖市凯丰机械制造有限公司 混料烘箱一体机
CN117427559A (zh) * 2023-12-21 2024-01-23 内蒙古蓝色火宴科技环保股份公司 一种环保型生物质燃料颗粒成型装置
CN117427559B (zh) * 2023-12-21 2024-02-20 内蒙古蓝色火宴科技环保股份公司 一种环保型生物质燃料颗粒成型装置

Also Published As

Publication number Publication date
DK3287509T3 (da) 2020-04-27
EP3287509A4 (en) 2019-01-23
CN105536645B (zh) 2018-01-23
PT3287509T (pt) 2020-04-22
PL3287509T3 (pl) 2020-10-19
ES2784668T3 (es) 2020-09-29
EP3287509A1 (en) 2018-02-28
EP3287509B1 (en) 2020-04-01
CN105536645A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017114042A1 (zh) 三罐式自动化颗粒生产方法及系统
WO2016023259A1 (zh) 合成颗粒的反应装置及合成颗粒的制备系统
CN204285993U (zh) 电池原料用回转窑式干燥装置
WO2017000509A1 (zh) 一种改性沥青基卷材的生产方法
CN206127206U (zh) 一种螺旋推进式生物质连续炭化一体炉
CN102012152A (zh) 一种用于日用瓷干燥的吊篮干燥设备
CN108004365A (zh) 一种双环并行转底炉及球团生产工艺
CN108926920B (zh) 工业废气处理用进气系统
CN207775281U (zh) 一种双环并行转底炉
WO2022073295A1 (zh) 具有进气预热功能的电子窑炉
CN215236740U (zh) 一种土壤热脱附用回转窑
CN204388627U (zh) 膨胀珍珠岩生产用预热炉
CN109354019B (zh) 一种提高活性炭生产效率立式活化炉
CN108214860A (zh) 一种陶瓷管的制备生产装置及其方法
CN107324079A (zh) 一种用于加工耐火砖的多功能设备
CN207487249U (zh) 一种砂浆烘干装置
CN206695571U (zh) 陶瓷废渣烘干回收装置及陶瓷废渣烘干回收系统
CN2670888Y (zh) 烧砖轮窑余热回收及利用系统
CN205635380U (zh) 新型干法水泥生产线用炉料改性装置
CN219926610U (zh) 一种工程塑料除湿用除湿干燥机
CN212293340U (zh) 一种集成式石膏煅烧装置
CN211770963U (zh) 一种石膏煅烧设备
CN210602778U (zh) 一种节能煅烧炉
CN219161003U (zh) 一种水泥窑窑头余风再利用机构
WO2022165879A1 (zh) 三段式回转炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE