WO2016023259A1 - 合成颗粒的反应装置及合成颗粒的制备系统 - Google Patents

合成颗粒的反应装置及合成颗粒的制备系统 Download PDF

Info

Publication number
WO2016023259A1
WO2016023259A1 PCT/CN2014/087319 CN2014087319W WO2016023259A1 WO 2016023259 A1 WO2016023259 A1 WO 2016023259A1 CN 2014087319 W CN2014087319 W CN 2014087319W WO 2016023259 A1 WO2016023259 A1 WO 2016023259A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
cylindrical body
reaction
shaped
plates
Prior art date
Application number
PCT/CN2014/087319
Other languages
English (en)
French (fr)
Inventor
柏红梅
Original Assignee
柏红梅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 柏红梅 filed Critical 柏红梅
Publication of WO2016023259A1 publication Critical patent/WO2016023259A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to the field of new energy biomass energy technology, in particular to a reaction device for synthesizing particles and a preparation system for synthetic particles.
  • the bio-formed fuel is compressed and converted from residual plant fibers such as straw, straw, mixed wood, palm shell and coconut shell by common plants or cash crops.
  • the energy obtained by direct combustion of the fuel is 3,500 cal/g (i.e., the calorific value, and the usual unit is the energy content per unit mass, such as Cal/g).
  • the bio-formed fuel also has a certain amount of exhaust gas and dust discharged during combustion, and the manufacturing process is compressed, and it is easy to absorb moisture deformation in the environment during storage and is useless.
  • a synthesis device for synthesizing particles for preparing a material into synthetic particles comprising:
  • reaction tank comprising a cylindrical body
  • each strip plate is fixedly coupled to an inner wall of the cylindrical body, wherein each strip plate is opposite to the cylindrical body
  • the axis is obliquely disposed, and the plurality of strip plates are arranged along a spiral line, and the spiral line is a curve extending spirally along an axis of the cylindrical body;
  • reaction box rotates to slide the material or the synthetic particles on the plurality of strip plates along the extending direction of the spiral.
  • the angle between the extending direction of the plurality of strip-shaped plates and the axis of the cylindrical body is equal.
  • the angle between the plurality of strip plates and the inner wall of the cylindrical body is equal, and the angle between each of the strip plates and the inner wall of the cylindrical body is 60° ⁇ 90°.
  • one side of each of the strip-shaped plates in the longitudinal direction is fixedly coupled to the inner wall of the cylindrical body, and the width of each of the strip-shaped plates is opposite to that of the cylindrical body
  • the ratio of diameters is 1 ⁇ 2:15.
  • one side of each of the strip plates in the longitudinal direction is fixedly coupled to the side wall of the cylindrical body, and the length of the strip plate and the length of the cylindrical body The ratio is 5 ⁇ 6:30.
  • the reaction box further includes a tapered cylindrical portion, the large end portion and the small end portion of the tapered cylindrical portion are both open, and the tapered cylindrical portion is located outside the cylindrical body.
  • the large end of the tapered tubular portion is fixedly connected to the open end of the cylindrical body, and the tapered tubular portion is in communication with the cylindrical body;
  • the reaction device further includes a strip-shaped transport plate housed in the tapered tubular portion, one side of the strip-shaped transport plate is fixedly connected to an inner wall of the tapered tubular portion, and the strip-shaped transport plate is The small end of the tapered tubular portion extends to the large end; wherein the reaction chamber rotates to slide the material or the synthetic particles along the strip transport plate.
  • the strip-shaped transfer plate is a curved plate, and the strip-shaped transfer plate extends spirally along an axis of the tapered cylindrical portion.
  • the strip-shaped transporting plate is a straight plate
  • the number of the strip-shaped transporting plates is two
  • the two strip-shaped transporting plates are oppositely disposed in the tapered tubular portion
  • two The strip-shaped transport plates are vertically disposed, wherein each of the strip-shaped transport plates is disposed obliquely with respect to an axis of the tapered tubular portion.
  • the two strip-shaped conveying plates are fixedly connected to one end of the small end of the tapered cylindrical portion and away from a side of the tapered cylindrical portion.
  • the reaction device further includes a drive assembly coupled to the cylindrical body and configured to drive the reaction chamber to rotate.
  • the reaction box further includes a fixed cylinder fixedly coupled to the bottom end of the cylindrical body, the fixed cylinder is fixedly sleeved with a ring gear, and the driving assembly is a speed reducing motor.
  • the gear of the reduction motor meshes with the ring gear.
  • the reaction device further includes an insulated housing, the cylindrical body being rotatably disposed through the insulated housing.
  • a synthetic particle preparation system comprising:
  • a heating assembly is disposed outside the reaction chamber for supplying heat to the cylindrical body.
  • the method further includes:
  • a feeding device spaced apart from the reaction device, the charging device being located at an opening of the cylindrical body, the feeding device for inputting the material to an opening of the cylindrical body;
  • cooling device disposed at an interval from the reaction device and spaced apart from the charging device, the cooling device comprising a slidable cooling box;
  • cooling box is slid to the opening of the cylindrical body, and receives the synthetic particles output from the opening of the cylindrical body, and cools the synthetic particles.
  • the cooling box is rotatable.
  • the method further includes:
  • the cooling device spaced apart from the reaction device, the cooling device comprising a rotatable cooling tank for cooling the synthetic particles;
  • the connecting barrel assembly comprising:
  • a first cylinder one end of which is received at one end of the sleeve, and is rotatably fixedly coupled to the sleeve, and the other end is fixedly connected to the open end of the cylindrical body and communicates with the cylindrical body ;
  • a first transfer strip one end of which is received in the first cylinder and fixedly connected to an inner wall of the first cylinder, and the first transfer strip extends spirally along an axis of the first cylinder, the first The other end of a transfer strip is rotatably received in the sleeve;
  • a second cylinder one end of which is received at the other end of the sleeve, and is rotatably fixedly connected to the sleeve, and the other end is fixedly connected to the cooling box and communicates with the cooling box;
  • a second transfer strip one end of which is received in the second cylinder and fixedly connected to an inner wall of the second cylinder, and the second transport strip extends spirally along an axis of the second cylinder, the first The other end of the two transfer strips is rotatably received in the sleeve;
  • a feeding device fixedly connected to the sleeve, and the feeding device is configured to input the material into the feeding hole;
  • first cylinder rotates with the reaction box, and drives the material or the synthetic particles to slide along the first transfer strip
  • second cylinder rotates with the cooling box and drives the The synthetic particles slide along the second transfer strip to transport the composite particles into the cooling tank.
  • the feeding device comprises:
  • a transfer cylinder having one end fixedly disposed on the hopper and the other end extending to an opening of the cylindrical body, wherein the material is sequentially transferred to the cylindrical body through the hopper and the transfer cylinder The opening.
  • the cooling box includes a cylindrical body having open ends and a plurality of strips, an opening of the cylindrical body being contiguous with an opening of the cylindrical body, the plurality of strips
  • the sheet is received in the cylindrical body, and one side of each strip is fixedly connected to an inner wall of the cylindrical body, and each strip is inclined with respect to an axis of the cylindrical body.
  • the plurality of strip pieces are arranged along a spiral line, the spiral line is a curve extending spirally along an axis of the cylindrical body, wherein the cooling box rotates to make the synthetic particles along the plurality of The spiral in which the strips are located slides over the plurality of strips.
  • a gas separation tank is further included, the gas separation tank being connected to the cylindrical body through a pipe through which gas in the cylindrical body enters the gas separation tank.
  • a synthesis device for synthesizing particles for preparing a material into synthetic particles comprising:
  • reaction tank comprising a cylindrical body
  • each set of strip-shaped plate assemblies comprising a plurality of spaced strip-shaped plates, one side of each of the strip-shaped plates and an inner wall of the cylindrical body An upper fixed connection, each of the strip plates being disposed obliquely with respect to an axis of the cylindrical body, a plurality of strip plates of each set of strip plate assemblies being disposed along a spiral, and the spirals are all along a curve in which the axis of the cylindrical body spirally extends, wherein n is an integer greater than or equal to 2;
  • reaction box is rotated and the material or the synthetic particles are slid on the plurality of strip plates along a corresponding spiral of each set of strip plate assemblies.
  • the reaction device for synthesizing particles has a rotatable reaction box and a plurality of strip plates, each strip plate being disposed obliquely with respect to an axis of the cylindrical body, and the plurality of strip plates are arranged along a spiral line, and the spiral line A curve extending spirally along the axis of the cylindrical body of the reaction box, when the reaction box is rotated, the material or synthetic particles can slide along the spiral on the plurality of strip plates, thereby realizing material addition and output of synthetic particles.
  • the addition of the material and the output of the synthetic particles can be easily realized without separately providing a transport device in the reaction box, so that the structure of the above-mentioned synthetic particle preparation system is relatively simple; and the plurality of strip plates rotate with the reaction box, The material in the reaction box can be separated and the material in the cylindrical body can be turned over, so that the material in the reaction box can be more uniformly heated; and because the tube body has a plurality of strips for transmission a plurality of strip plates are spaced apart from each other in the cylindrical body, that is, there is a gap between two adjacent strip plates, so that the material can be better in the opposite direction Turning tank, the material is heated more uniformly, and therefore, a simple structure of the above reaction apparatus only synthetic particles, and the reaction tank can be made more uniform material is heated.
  • FIG. 1 is a schematic structural view of a preparation system of synthetic particles of a first embodiment
  • Figure 2 is an axial sectional view of a reaction tank of the synthetic particle preparation system shown in Figure 1;
  • Figure 3 is a partial schematic view showing the strip-shaped plate of the synthetic particle preparation system shown in Figure 2 and the cylindrical body of the reaction box;
  • Figure 4 is an axial sectional view showing a reaction tank of another structure of the synthetic particle preparation system shown in Figure 1;
  • Figure 5 is a schematic view showing the structure of the synthetic particle preparation system shown in Figure 1 at another angle;
  • Figure 6 is an axial sectional view of a cooling box of the synthetic particle preparation system shown in Figure 1;
  • Figure 7 is an axial sectional view of a cooling tank of another configuration of the synthetic particle preparation system shown in Figure 1;
  • FIG. 8 is a schematic structural view of a preparation system of synthetic particles of a second embodiment
  • Figure 9 is an exploded view of the connecting barrel assembly of the synthetic particle preparation system shown in Figure 8.
  • Fig. 10 is an axial sectional view showing a cylindrical body of a reaction tank of the system for producing synthetic particles of the third embodiment.
  • a synthetic particle preparation system 10 of an embodiment is used to prepare a material into synthetic particles.
  • the material refers to the residual discarded plant fiber of general plants or cash crops (such as straw, straw, miscellaneous wood, palm shell and coconut shell).
  • the synthetic particle preparation system 10 includes a reaction device 100 and a heating assembly (not shown).
  • the reaction device 100 includes a rotatable reaction tank 110 and a plurality of strip plates 120.
  • the reaction tank 110 is a reaction site for converting materials into synthetic particles having high heat.
  • the reaction box 110 includes a cylindrical body 112.
  • the cylindrical body 112 is generally a circular barrel that is open at one end.
  • a plurality of strip plates 120 are spaced apart from each other in the cylindrical body 112, and one side of each of the strip plates 120 is fixedly coupled to the inner wall of the cylindrical body 112, and each of the strip plates 120 is inclined with respect to the axis of the cylindrical body 112. And a plurality of strip plates 120 are arranged along a spiral which is a curve extending spirally along the axis of the cylindrical body 112. Wherein, the reaction tank 110 is rotated to slide the material or synthetic particles along the spiral on the plurality of strip plates 120.
  • the angle ⁇ between the extending direction of the plurality of strip plates 120 and the axis of the cylindrical body 112 is equal, so that the extending direction of the plurality of strip plates 120 and the plurality of strips 120
  • the spiral lines in which the strips 120 are located extend in the same direction to facilitate the sliding of the material or synthetic particles along the spiral on the plurality of strips 120.
  • the line AA in Fig. 3 indicates the axis of the cylindrical body 112
  • the line BB indicates the extending direction of the strip plate 120, where ⁇ is expressed as the angle between the strip plate 120 and the axis of the cylindrical body 112.
  • the angle between the plurality of strip plates 120 and the inner wall of the cylindrical body 112 is equal, and the angle ⁇ between each strip plate 120 and the inner wall of the cylindrical body 112 is 60° to 90°.
  • the angle between the shaped plate 120 and the inner wall of the cylindrical body 112 facilitates the sliding of material or synthetic particles along the spiral over the plurality of strips 120.
  • the CC line in Fig. 3 indicates the direction of the strip plate 120
  • the DD line indicates the direction of the inner wall of the cylindrical body 112
  • indicates the angle between the strip plate 120 and the inner wall of the cylindrical body 112.
  • each strip plate 120 in the longitudinal direction is fixedly connected to the side wall of the cylindrical body 112, and the ratio of the width of each strip plate 120 to the diameter of the cylindrical body 112 is 1. ⁇ 2:15.
  • the ratio of the strips 120 is more conducive to the transfer of material or synthetic particles, and is advantageous for the material to be turned over during the heating process, so that the material is more evenly heated.
  • the ratio of the diameter of the cylindrical body 112 to the width of the strip 120 is 15:1.5.
  • each strip plate 120 in the longitudinal direction is fixedly connected to the side wall of the cylindrical body 112, and the ratio of the length of the strip plate 120 to the length of the cylindrical body 112 is 5-6. : 30; more preferably 5.5:30.
  • the reaction tank 110 further includes a tapered tubular portion 114.
  • the large end portion and the small end end of the tapered tubular portion 114 are both open, and the tapered cylindrical portion 114 is located outside the cylindrical body 112.
  • the large end of the tapered tubular portion 114 is fixedly connected with the open end of the cylindrical body 112, and is tapered.
  • the tubular portion 114 is in communication with the cylindrical body 112.
  • the tapered tubular portion 114 and the cylindrical body 112 are integrally formed.
  • the reaction device 100 further includes a strip-shaped transport plate 130 housed in the tapered tubular portion 114.
  • One side of the strip-shaped transport plate 130 is fixedly coupled to the inner wall of the tapered tubular portion 114, and the strip-shaped transport plate 130 is tapered from the cone.
  • the small end of the portion 114 extends to the large end.
  • the reaction tank 110 is rotated to slide the material or synthetic particles along the strip-shaped transport plate 130.
  • the reaction tank 110 when it is desired to add material to the reaction tank 110, the reaction tank 110 is rotated clockwise, and the material passes from the small end of the tapered tubular portion 114 of the reaction tank 110 along the strip transfer plate. 130 slides into the cylindrical body 112 and slides on the plurality of strip plates 120 along the spiral line where the plurality of strip plates 120 are located, while the plurality of strip plates 120 can turn the animal material; when the material has been prepared into synthetic particles
  • the reaction box 110 is rotated counterclockwise, and the synthetic particles slide on the plurality of strip plates 120 along the spiral line where the plurality of strip plates 120 are located, and slide to the strip-shaped transfer plate 130 in the tapered cylindrical portion 114 of the reaction box 110.
  • the addition of the material and the output of the synthetic particles are achieved by the forward and reverse rotation of the reaction tank 110, and the addition of the material and the output of the synthetic particles are at the small end of the tapered tubular portion 114, that is, the addition of the material and the synthesis of the particles.
  • the output is at the same end of the reaction tank 110.
  • the realization of the output of the synthetic particles from the reaction tank 110 is not limited to the above manner, and other methods may be employed.
  • the bottom of the cylindrical body 112 is provided with a discharge port (not shown), and the reaction chamber 110 is kept clockwise. Rotating, the animal material enters the cylindrical body 112 from the small end of the tapered tubular portion 114. After the material is prepared into synthetic particles, the synthetic particles are output from the discharge port, that is, the reaction box 110 is always rotated in one direction.
  • the addition of the material and the output of the synthetic particles, and the addition of the material and the output of the synthetic particles are respectively at both ends of the reaction tank 110.
  • the bottom of the cylindrical body 112 is provided with a cover body (not shown), and the cover body is disposed on the discharge port. And sealed with the edge of the discharge port.
  • the strip-shaped transmission plate 130 is a straight plate, the number of the strip-shaped transmission plates 130 is two, the two strip-shaped transmission plates 130 are oppositely disposed in the tapered cylindrical portion 114, and the two strip-shaped transmission plates 130 are vertical. Wherein each of the strip-shaped transmission plates 130 is disposed obliquely with respect to the axis of the tapered cylindrical portion 114.
  • the two strip-shaped transmission plates 130 are close to the small head of the tapered tubular portion 114.
  • One end of the end and one side away from the tapered tubular portion 114 are fixedly connected.
  • the strip-shaped transmission plate 130 is not limited to the above-described form, and may be other forms.
  • the strip-shaped transmission plate 130 is a curved plate, and the strip-shaped transmission plate 130 is along the tapered cylindrical portion 114. The axis extends helically.
  • the reaction device 100 further includes a driving assembly 140 connected to the cylindrical body 112 of the reaction box 110 and used to drive the reaction box 110 to rotate.
  • the reaction chamber 110 further includes a stationary barrel 116 that is fixedly coupled to the bottom end of the cylindrical body 112.
  • the fixed cylinder 116 is disposed coaxially with the cylindrical body 112.
  • the fixed cylinder 116 is fixedly sleeved with a ring gear 118.
  • the driving assembly 140 is a speed reducing motor, and the gear of the speed reducing motor meshes with the ring gear 118, so that the driving assembly 140 drives the reaction box 110 to rotate.
  • the ring gear 118 is fixedly sleeved on one end of the fixed cylinder 116 away from the cylindrical body 112.
  • the fixing cylinder 116 may not be provided.
  • the outer wall of the cylindrical body 112 is provided with a plurality of engaging projections arranged along the circumferential direction of the cylindrical body 112.
  • the drive assembly 140 is a reduction motor, and the gear of the drive assembly 140 engages with the engagement projections, thereby enabling the drive assembly 140 to drive the reaction box 110 to rotate.
  • the heating assembly is disposed outside the reaction box 110 for supplying heat to the cylindrical body 112.
  • the reaction tank 110 is supplied with heat by a heat supply unit so that the temperature in the reaction tank 110 is 150 ° C to 300 ° C.
  • the heating component may be a combustion furnace for burning flammable gas, synthetic granules or ordinary wood, or may be an electric furnace.
  • the heating assembly is located below the cylindrical body 112.
  • the number of the heating components is two, and the two heating components are disposed at intervals below the cylindrical body 112.
  • the reaction apparatus 100 further includes a temperature control component (not shown).
  • the temperature control component includes a temperature sensor (not shown) and a temperature display (not shown).
  • the temperature sensor portion is housed in the cylindrical body 112 for detecting the temperature inside the reaction box 110.
  • the temperature display is disposed outside the reaction box 110, and the temperature display is electrically coupled to the temperature sensor for displaying the temperature detected by the temperature sensor.
  • the reaction device 100 further includes an insulated casing 150, and the cylindrical body 112 is rotatably disposed through the heat insulating casing 150.
  • a support member (not shown) is fixedly disposed in the heat insulation casing 150, and the reaction box 110 is rotatably fixed to the support member.
  • the cylindrical body 112 of the reaction tank 110 is disposed through the insulated casing 150, and the tapered tubular portion 114 is located outside the insulated casing 150.
  • the fixed cylinder 116 is located outside of the insulated casing 150.
  • the heating assembly is housed in the heat insulating casing 150; the driving assembly 140 is located outside the heat insulating casing 150 and spaced apart from the heat insulating casing 150.
  • the heat insulating housing 150 is provided with a through hole (not shown), and the position of the through hole corresponds to the position of the heating component, and the operator can open the heating component through the through hole.
  • the heat insulating casing 150 is further provided with a chimney (not shown) communicating with the heat insulating casing 150, and the chimney is disposed to convect the air in the heat insulating casing 150.
  • the heat insulating casing 150 includes a refractory layer (not shown) and a heat insulating layer (not shown) disposed on the inner surface of the refractory layer and laminated with the refractory layer.
  • the material of the refractory layer is steel or refractory brick.
  • the material of the insulation layer is heat insulation cotton.
  • the synthetic particle preparation system 10 further includes a charging device 200 and a cooling device 300.
  • the charging device 200 is spaced from the reaction device 100, and the charging device 200 is located at the opening of the cylindrical body 112 for feeding material to the opening of the cylindrical body 112. Specifically, the feeding device 200 is located at the small end of the tapered tubular portion 114, and the feeding device 200 is for inputting material to the opening of the small end of the tapered tubular portion 114.
  • the charging device 200 includes a holder 210, a hopper 220, and a transfer barrel 230.
  • the holder 210 is a support portion of the entire charging device 200.
  • the hopper 220 is fixed to the fixing frame 210.
  • the hopper 220 is substantially funnel shaped.
  • the transfer cylinder 230 is substantially cylindrical in shape. One end of the transfer cylinder 230 is fixedly sleeved on the hopper 220, and the other end extends to the opening of the cylindrical body 112, wherein the material is sequentially transferred to the opening of the cylindrical body 112 via the hopper 220 and the transfer cylinder 230. Specifically, one end of the transfer cylinder 230 is fixedly sleeved on the neck of the hopper 220, and the other end extends to the opening of the small end of the tapered tubular portion 114. At this time, the material is sequentially transported through the hopper 220 and the transfer cylinder 230. To the opening of the small end of the tapered tubular portion 114. Specifically, in the illustrated embodiment, one end of the transfer cylinder 230 is detachably sleeved on the neck of the hopper 220 to facilitate the output of the synthetic particles in the reaction tank 110.
  • the feeding device 200 further includes a inserting plate (not shown), and the inserting plate is slidably inserted into the neck of the hopper 220 along the radial direction of the neck of the hopper 220, thereby passing through the sliding inserting plate.
  • the inserting plate is slidably inserted into the neck of the hopper 220 along the radial direction of the neck of the hopper 220, thereby passing through the sliding inserting plate.
  • the feeding device 200 further includes a conveyor belt 240 and a conveying plate 250, and the conveyor belt 240 is mounted on the fixing frame 210.
  • the conveying plate 250 is obliquely fixed to the fixing frame 210.
  • One end of the conveying plate 250 is disposed near one end of the conveying belt 240, and the other end of the conveying plate 250 is extended into the hopper 220, thereby transferring the material to the conveying plate 250 through the conveying belt 240, and then Sliding from the transfer plate 250 into the hopper 220.
  • Conveyor belt 240 can be a belt.
  • the cooling device 300 is spaced apart from the reaction device 100 and spaced apart from the charging device 200.
  • the cooling device 300 includes a slidable cooling tank 310, wherein the cooling box 310 slides to the opening of the cylindrical body 112 and receives from the cylindrical body
  • the opening of 112 is output of synthetic particles, and the synthetic particles are cooled.
  • the cooling box 310 is slid to the opening of the small end of the tapered cylindrical portion 114, and receives the synthetic particles output from the opening of the small end of the tapered cylindrical portion 114, and cools the synthetic particles.
  • the sliding of the cooling box 310 can be implemented in the following manner, and the cooling device 300 further includes a guide rail 320 and a bracket 330.
  • One end of the guide rail 320 extends to the opening of the cylindrical body 112.
  • one end of the guide rail 320 extends to the small end of the tapered tubular portion 114.
  • the bracket 330 is slidably disposed on the guide rail 320 along the guide rail 320, and the cooling box 310 is mounted on the bracket 330.
  • the bracket 330 is mounted with a pulley and a motor that are rotated by the motor to drive the bracket 330 to slide along the guide rail 320.
  • the cooling box 310 is rotatable.
  • the rotatable cooling tank 310 is capable of accelerating the cooling rate of the synthetic particles.
  • the cooling box 310 is rotatably mounted on the bracket 330.
  • the cooling device 300 further includes a driving member 340 fixed to the bracket 330 and located outside the cooling box 310.
  • the driving member 340 is connected to the cooling box 310 and used to drive the cooling box 310 to rotate.
  • the cooling box 310 is fixedly sleeved with an engaging ring, and the driving member 340 is a speed reducing motor.
  • the gear of the driving member 340 is engaged with the engaging ring, so that the driving member 340 drives the cooling box 310 to rotate.
  • the engaging ring is a ring gear.
  • the cooling box 310 includes a cylindrical body 312 that is open at both ends, wherein an opening of the cylindrical body 312 can be docked with the opening of the cylindrical body 112, thereby making the cylindrical body 312 is in communication with the cylindrical body 112.
  • the cooling device 300 also includes a plurality of strips 350.
  • a plurality of strips 350 are received in the cylindrical body 312.
  • One side of each strip 350 is fixedly connected to the inner wall of the cylindrical body 312, and each strip 350 is inclined with respect to the axis of the cylindrical body 312.
  • a plurality of strips 350 are arranged along a spiral, and the spiral is a curve extending spirally along the axis of the cylindrical body 312.
  • the cooling box 310 is rotated, so that the synthetic particles slide on the plurality of strips 350 along the spiral in which the plurality of strips are located.
  • the angle between the extending direction of the plurality of strips 350 and the axis of the cylindrical body 312 is equal.
  • the angle between the plurality of strips 350 and the inner wall of the cylindrical body 312 is equal, and the angle between each strip 350 and the inner wall of the cylindrical body 312 is 60° to 90°.
  • each strip piece 350 in the longitudinal direction is fixedly connected to the inner wall of the cylindrical body 312, and the ratio of the width of each strip piece 350 to the diameter of the cylindrical body 312 is 1 ⁇ 2: 15.
  • the strip 350 of the ratio range is more advantageous for the transport of the synthetic particles and facilitates the synthesis of the particles.
  • the strips 350 flip the synthetic particles to accelerate the cooling rate of the synthetic particles.
  • the ratio of the diameter of the cylindrical body 312 to the width of the strip piece 350 is 15:1.5.
  • each strip piece 350 in the longitudinal direction is fixedly connected to the inner wall of the cylindrical body 312, and the ratio of the length of the strip piece 350 to the length of the cylindrical body 312 is 5-6:30. More preferably, it is 5.5:30.
  • the cooling box 310 further includes a tapered feed cylinder portion 314 and a tapered discharge cylinder portion 316.
  • the feeding cylinder portion 314 and the discharging cylinder portion 316 are both located outside the cylindrical body 312, and the large end ends of the feeding cylinder portion 314 and the discharging cylinder portion 316 are fixedly connected to the two open ends of the cylindrical body 312, respectively.
  • the feeding cylinder portion 314 and the discharging cylinder portion 316 are both in communication with the cylindrical body 312.
  • the small end of the feeding cylinder portion 314 is docked with the open end of the cylindrical body 112 of the reaction box 110, so that the small end of the feeding cylinder portion 314 communicates with the cylindrical body 112 of the reaction box 110, thereby facilitating The synthetic particles are directly input into the cooling tank 310 from the reaction tank 110.
  • the small end of the feeding cylinder portion 314 is docked with the small end of the tapered cylindrical portion 114 of the reaction tank 110 such that the small end of the feeding cylinder portion 314 and the tapered cylindrical portion 114 of the reaction tank 110 are The small head ends are connected.
  • the cooling device 300 also includes a first strip-shaped transport member 360 and a second strip-shaped transport member 370.
  • the first strip-shaped transporting member 360 is in the shape of a plate, and the first strip-shaped transporting member 360 is received in the feeding cylinder portion 314, and one side of the first strip-shaped transporting member 360 is fixedly connected to the inner wall of the feeding cylinder portion 314, and The first strip-shaped transport member 360 extends from the small end of the feed barrel portion 314 to the large end.
  • the first strip-shaped transporting member 360 is a straight plate, the number of the first strip-shaped transporting members 360 is two, and the two first strip-shaped transporting members 360 are oppositely disposed in the feeding cylinder portion 314, and the two first The strip-shaped transport members 360 are vertical, wherein each of the first strip-shaped transport members 360 is disposed obliquely with respect to the axis of the feed cylinder portion 314.
  • the two first strip-shaped transport members 360 are close to one end of the small-end end of the feed cylinder portion 314, And fixedly connected to one side away from the feeding cylinder portion 314.
  • the second strip-shaped transporting member 370 is in the shape of a plate, the second strip-shaped transporting member 370 is received in the discharging cylinder portion 316, and one side of the second strip-shaped transporting member 370 is fixedly connected to the inner wall of the discharging cylinder portion 316, and The second strip-shaped transport member 370 extends from the small end of the discharge cylinder portion 316 to the large end.
  • the cooling box 310 is rotatable, and the synthetic particles can be sequentially slid along the first strip-shaped transport member 360, slid on the plurality of strips 350 in the extending direction of the spiral, and slid along the second strip-shaped transport member 370.
  • the second strip-shaped transporting member 370 is a straight plate, the number of the second strip-shaped transporting members 370 is two, and the two second strip-shaped transporting members 370 are oppositely disposed in the discharging cylinder portion 316, and two The second strip-shaped transport member 370 is vertical, wherein each of the second strip-shaped transport members 370 is disposed obliquely with respect to the axis of the discharge barrel portion 316.
  • the two second strip-shaped transport members 370 are adjacent to one end of the small-end end of the discharge cylinder portion 316, And fixedly connected to one side away from the discharge cylinder portion 316.
  • first strip-shaped transporting member 360 and the second strip-shaped transporting member 370 are not limited to the above forms, and may be other forms.
  • first strip-shaped transporting member 360 is a curved plate.
  • the first strip-shaped transport member 360 extends helically along the axis of the feed barrel portion 314;
  • the second strip-shaped transport member 370 is a curved plate, and the second strip-shaped transport member 370 extends helically along the axis of the discharge barrel portion 316.
  • the synthetic particle preparation system 10 further includes a gas-liquid separation tank 400, and the gas-liquid separation tank 400 is connected to the cylindrical body 112 of the reaction tank 110 through a pipe.
  • the gas within the body 112 enters the gas separation tank 400 through a conduit. Since gas is generated in the process of preparing the synthetic particles, the gas in the reaction tank 110 can be made to enter the gas-liquid separation tank 400 by providing the gas-liquid separation tank 400.
  • the gas enters the gas-liquid separation tank 400 to partially condense, and a mixed liquid of water and tar is formed at the bottom of the gas-liquid separation tank 400.
  • the gas-liquid separation tank 400 is provided with an exhaust port 410 and a liquid discharge port (not shown).
  • the gas discharged from the exhaust port 410 can be used as a fuel for recycling, and can also be used as a fuel for the heating unit.
  • a valve (not shown) is fixed to the outside of the gas-liquid separation tank 400, and the position of the valve corresponds to the position of the liquid discharge port, and the valve is used to control the discharge of the liquid at the bottom of the gas-liquid separation tank 400.
  • the pipe connecting the gas-liquid separation tank 400 and the reaction tank 110 is a hose.
  • the pipe is disposed in the fixed cylinder 116, and one end of the pipe is fixedly disposed at the bottom of the cylindrical body 112 of the reaction box 110, and the outer wall of the pipe is sealingly connected with the bottom of the cylindrical body 112, and the other end of the pipe is separated from the gas and liquid.
  • the can 400 is rotatably fixedly coupled. That is, the pipe rotates as the reaction box 110 rotates.
  • the above synthetic particle preparation system 10 processes the preparation of the material into synthetic particles as follows:
  • the driving assembly 140 drives the reaction box 110 to rotate clockwise, the material slides from the hopper 220 to the transfer cylinder 230, and is slid through the transfer cylinder 230 into the small end of the tapered tubular portion 114 of the reaction box 110 that rotates clockwise, due to the cone
  • the tubular portion 114 is tapered such that the material can slide with the strip-shaped transport plate 130 of the tapered tubular portion 114 of the reaction chamber 110 and slide into the cylindrical body 112, along the spiral along which the plurality of strip-shaped plates 120 are located.
  • the heating assembly is turned on, and the cylindrical body 112 of the reaction box 110 rotating clockwise is heated, heated for about 2 hours to obtain synthetic particles, and then
  • the driving assembly 140 controls the reaction box 110 to rotate counterclockwise, and the synthetic particles slide on the strip plate 120 along the spiral line where the plurality of strip plates 120 are located, and output to the strip-shaped transmission plate 130, and slide along the strip-shaped transmission plate 130 to At the opening of the small end of the tapered tubular portion 114; at the same time, the bracket 330 is slid along the guide rail 320 such that the small end of the feeding cylinder portion 314 of the cooling tank 310 and the small end of the tapered tubular portion 114 of the reaction tank 110 Butt end, and make the feeding cylinder 314 small The head end is in communication with the small end of the tapered cylindrical portion 114 of the reaction tank 110, and the cooling tank 310 is rotated so that the synthetic particles output from the opening of the small end
  • the first strip-shaped transport member 360 enters the cylindrical body 312 and is cooled to 80 ° C, and then slides on the strip piece 350 along the spiral line where the plurality of strip-shaped pieces 350 are located, and slides along the second strip-shaped transporting member 370 to discharge.
  • the opening of the small end of the tubular portion 316 is output.
  • the above synthetic particle preparation system 10 has a rotatable reaction tank 110 and a plurality of strip plates 120, each of which is disposed obliquely with respect to the axis of the cylindrical body 112, and the plurality of strip plates 120 are arranged along a spiral And the spiral is a curve extending spirally along the axis of the cylindrical body 112 of the reaction box 110.
  • the material or synthetic particles can be in a plurality of strips along the spiral where the plurality of strips 120 are located.
  • the plate 120 is slid so as to realize the addition of the material and the output of the synthetic particles, and the addition of the material and the output of the synthetic particles can be easily realized without additionally providing a transport device in the reaction tank 110, so that the above-mentioned synthetic particle preparation system 10
  • the structure is relatively simple; and the plurality of strip plates 120 can also separate the material in the reaction box 110 while rotating the reaction box 110, and function to flip the material in the cylindrical body 112, so that the reaction box 110 is inside.
  • the material can be more uniformly heated; and because the plurality of strips 120 are transported in the cylindrical body 112, the plurality of strips 120 are spaced apart from the cylindrical body 112, ie, two There is a gap between the adjacent strip plates 120, so that the material can be flipped more in the reaction box 110, and the material is more uniformly heated. Therefore, the above-mentioned synthetic particle preparation system 10 is not only simple in structure, but also capable of reacting. The material in tank 110 is more evenly heated.
  • the spaced strips 120 can also speed up the heat transfer rate in the reaction chamber and rapidly increase the temperature in the reaction chamber 110, thereby facilitating the improvement of the production efficiency.
  • the synthetic particle preparation system 20 of the second embodiment is substantially the same as the synthetic particle preparation system 10 of the first embodiment, and differs only in the cooling device of the synthetic particle preparation system 20 of the second embodiment.
  • the connection manner of the charging device and the reaction device is different from that of the cooling device, the charging device, and the reaction device of the first embodiment, and the structure of the cooling device is slightly different from that of the cooling device of the first embodiment.
  • the cooling device is disposed at a distance from the reaction device, and the cooling device includes a rotatable cooling box.
  • a cooling box is used to cool the synthetic particles.
  • the synthetic particle preparation system 20 further includes a barrel assembly 500 that connects the reaction tank to the cooling tank.
  • the connecting barrel assembly 500 includes a sleeve 510, a first barrel 520, a first transfer strip 530, a second barrel 540, and a second transfer strip 550.
  • a feed hole 512 is defined in the side wall of the sleeve 510.
  • One end of the first cylinder 520 is received at one end of the sleeve 510, and is rotatably fixedly coupled to the sleeve 510, and the other end is fixedly connected to the open end of the cylindrical body of the reaction box, and communicates with the cylindrical body.
  • one end of the first cylinder 520 away from the sleeve 510 is fixedly connected to the small end of the tapered tubular portion of the reaction box, and communicates with the tapered tubular portion. That is, the first cylinder 520 can rotate with the reaction box.
  • One end of the first transfer strip 530 is received in the first barrel 520 and fixedly connected to the inner wall of the first barrel 520, and the first transfer strip 530 extends spirally along the axis of the first barrel 520, and the first transfer strip 530 The other end is rotatably received in the sleeve 510.
  • One end of the second cylinder 540 is received at the other end of the sleeve 510, and is rotatably fixedly coupled to the sleeve 510, and the other end is fixedly connected to the cooling box and communicates with the cooling box.
  • one end of the second cylinder 540 away from the sleeve 510 is fixedly connected to the small end of the feeding cylinder portion of the cooling box. That is, the second cylinder 540 can rotate with the cooling box.
  • first cylinder 520 and the second cylinder 540 can be respectively formed by the balls at the joints of the first cylinder 520 and the sleeve 510 and the joints of the second cylinder 540 and the sleeve 510.
  • the rotational connection of the barrel 510 can be respectively formed by the balls at the joints of the first cylinder 520 and the sleeve 510 and the joints of the second cylinder 540 and the sleeve 510.
  • One end of the second transfer strip 550 is received in the second barrel 540 and fixedly connected to the inner wall of the second barrel 540, and the second transfer strip 550 is spirally extended along the axis of the second barrel 540, and the second transfer strip 550 The other end is rotatably received in the sleeve 510.
  • the first cylinder 520 rotates with the reaction box, and the animal material or synthetic particles slide along the first transfer bar 530, and the second cylinder 540 rotates with the cooling box, and drives the synthetic particles to slide along the second transfer bar 550 to be synthesized. The particles are transferred to a cooling box.
  • the charging device is disposed at an interval from the reaction device, and is spaced apart from the cooling device.
  • the feeding device is fixedly connected to the sleeve 510 and is used for inputting material to the feeding hole 512.
  • the hopper of the feeding device is fixed on the sleeve 510, and the neck of the hopper is correspondingly communicated with the feeding hole 512.
  • the synthetic particle preparation system 20 realizes the transfer process of the material or synthetic particles as follows:
  • the material falls from the hopper into the first cylinder 520 in the clockwise rotation, and is slidably transported along the first transfer bar 530 to the reaction box in the clockwise rotation.
  • the synthetic particles are counterclockwise.
  • the rotating reaction chamber is transferred to the first cylinder 520 that rotates counterclockwise, and is driven along the first transfer bar 530 to the second cylinder 540 that rotates counterclockwise, and the second transfer bar 550 is transferred to the cooling box.
  • the synthetic particle preparation system 20 of the second embodiment has the advantages of simple structure and ability to make the material in the reaction tank more uniformly heated, since the reaction tank and the cooling tank are connected by a connecting barrel assembly 500, There is no need to slide the cooling box, so that the prepared synthetic particles in the reaction box can be directly transferred to the cooling box through the connecting barrel assembly 500 for cooling, which is more convenient.
  • the preparation system of the synthetic particles of the third embodiment is similar in structure to the production system of the synthetic particles of the first embodiment or the second embodiment, except that the arrangement of the strip plates of the reaction device of the third embodiment is changed.
  • the reaction apparatus of the synthetic particle preparation system of the third embodiment includes n sets of strip-shaped plate assemblies 600.
  • the n sets of strip plate assemblies 600 are spaced apart from the cylindrical body 700, each set of strip plate assemblies 600 including a plurality of spaced apart strip plates 610, one side of each strip plate 610 and the cylindrical body 700
  • the inner wall is fixedly connected, and each strip plate 610 is disposed obliquely with respect to the axis of the cylindrical body 700.
  • the plurality of strip plates 610 of each set of strip plate assemblies 600 are disposed along a spiral line, and the spiral lines are all along the cylindrical body.
  • a curve in which the axis of the 700 is helically extended, where n is an integer greater than or equal to two.
  • each strip plate assembly 600 is a curve extending spirally along the axis of the cylindrical body 700.
  • the reaction chamber is rotatable such that the material or composite particles slide over the plurality of strips 610 along the corresponding helix of each set of strip assemblies 600.
  • strip-shaped plate assemblies 600 there may be two sets of strip-shaped plate assemblies 600, three sets of strip-shaped plate assemblies 600, or more sets of strip-plate assemblies 600 in the cylindrical body 700.
  • the number of strip-shaped plate assemblies 600 increases, not only the number of transport paths of materials or synthetic particles is increased, but also the length of the transport path is shortened, thereby accelerating the transfer rate of materials or synthetic particles, and improving efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

一种用于将物料制备成合成颗粒的反应装置(100)和合成颗粒的制备系统(10、20)。反应装置(100)包括可转动的反应箱(110)及多个条形板(120)。反应箱(110)包括筒形主体(112),多个条形板(120)设置于筒形主体(112)内,每个条形板(120)的一侧边与筒形主体(112)的内壁固定连接,每个条形板(120)相对于筒形主体(112)的轴线倾斜设置,多个条形板(120)沿一螺旋线排列。反应箱(110)转动使物料或合成颗粒沿螺旋线在多个条形板(120)上滑动。

Description

合成颗粒的反应装置及合成颗粒的制备系统
【技术领域】
本发明涉及新能源生物质能技术领域,尤其涉及一种合成颗粒的反应装置及合成颗粒的制备系统。
【背景技术】
目前全球发电厂中发电锅炉的燃煤用量需求非常大,但是煤炭等石化燃料在燃烧时会大量排放造成温室效应的气体和无法消除的尘埃,于是有一种新型的绿色能源“生物成型燃料”用以替代传统的煤炭等石化燃料。
该生物成型燃料是由一般植物或经济作物,如稻草、秸秆、杂木、棕榈壳及椰子壳等残留废弃的植物纤维经压缩转换而成。该燃料直接燃烧所得到的能量为3500Cal/g(即热值,常用单位是单位质量的能量含量,如Cal/g)左右。但是该生物成型燃料在燃烧时还存在一定量的废气和尘埃的排放,因其制作工艺为压缩而成,在储存时易吸收环境中的水分变形而无用。
为了解决此问题,目前有一种途径,就是通过将一般植物或经济作物进行烘烤合成合成颗粒,该合成颗粒的热值能够达到4900~5500Cal/g,具有更高的热量,很适合发电厂使用,且该合成颗粒易于保存,不受潮,且燃烧时无有毒废气和尘埃排放,然而,传统的合成颗粒的设备通常是在合成颗粒的反应箱中设置传输装置用于传输物料和合成颗粒,例如,螺杆装置等,使得整个设备的结构十分的复杂,增加了生产成本;另外,由于大量物料在反应箱中容易堆积,而导致物料受热不均匀,严重影响合成颗粒的生产。
【发明内容】
鉴于此,有必要提供一种结构较为简单且能够使反应箱内的物料受热较为均匀的合成颗粒的反应装置。
此外,还提供含有上述合成颗粒的反应装置的合成颗粒的制备系统。
一种合成颗粒的反应装置,用于将物料制备成合成颗粒,所述反应装置包括:
可转动的反应箱,所述反应箱包括筒形主体;及
多个条形板,间隔设置于所述筒形主体内,每个条形板的一侧边与所述筒形主体的内壁固定连接,所述每个条形板相对所述筒形主体的轴线倾斜设置,且所述多个条形板沿一螺旋线排列,所述螺旋线为沿所述筒形主体的轴线螺旋延伸的曲线;
其中,所述反应箱转动,而使所述物料或所述合成颗粒沿所述螺旋线的延伸方向在所述多个条形板上滑动。
在其中一个实施例中,所述多个条形板的延伸方向与所述筒形主体的轴线之间的夹角相等。
在其中一个实施例中,所述多个条形板与所述筒形主体的内壁的夹角相等,且所述每个条形板与所述筒形主体的内壁的夹角为60°~90°。
在其中一个实施例中,所述每个条形板的长度方向上的一侧边与所述筒形主体的内壁固定连接,且每个所述条形板的宽度与所述筒形主体的直径的比为1~2:15。
在其中一个实施例中,所述每个条形板的长度方向上的一侧边与所述筒形主体的侧壁固定连接,且所述条形板的长度与所述筒形主体的长度的比为5~6:30。
在其中一个实施例中,所述反应箱还包括锥形筒部,所述锥形筒部的大头端和小头端均开口,所述锥形筒部位于所述筒形主体的外部,所述锥形筒部的大头端与所述筒形主体的开口端固定连接,且所述锥形筒部与所述筒形主体相通;
所述反应装置还包括收容于所述锥形筒部内的条形传输板,所述条形传输板的一侧边与所述锥形筒部的内壁固定连接,且所述条形传输板从所述锥形筒部的小头端延伸至大头端;其中,所述反应箱转动,而使所述物料或所述合成颗粒沿所述条形传输板滑动。
在其中一个实施例中,所述条形传输板为弧形板,所述条形传输板沿所述锥形筒部的轴线螺旋延伸。
在其中一个实施例中,所述条形传输板为直板,所述条形传输板的数量为两个,两个所述条形传输板相对设置在所述锥形筒部内,且两个所述条形传输板垂直设置,其中,每个所述条形传输板相对所述锥形筒部的轴线倾斜设置。
在其中一个实施例中,两个所述条形传输板靠近所述锥形筒部的小头端的一端、且远离所述锥形筒部的一侧边固定连接。
在其中一个实施例中,所述反应装置还包括驱动组件,所述驱动组件与所述筒形主体连接,并用于驱动所述反应箱转动。
在其中一个实施例中,所述反应箱还包括与所述筒形主体的底端固定连接的固定筒,所述固定筒上固定地套设有齿圈,所述驱动组件为减速马达,所述减速马达的齿轮与所述齿圈相啮合。
在其中一个实施例中,所述反应装置还包括隔热外壳,所述筒形主体可转动地穿设于所述隔热外壳。
一种合成颗粒的制备系统,包括:
上述反应装置;及
供热组件,设置于所述反应箱的外部,用于给所述筒形主体提供热量。
在其中一个实施例中,还包括:
加料装置,与所述反应装置间隔设置,所述加料装置位于所述筒形主体的开口处,所述加料装置用于向所述筒形主体的开口处输入所述物料;及
冷却装置,与所述反应装置间隔设置,并与所述加料装置间隔设置,所述冷却装置包括可滑动的冷却箱;
其中,所述冷却箱滑动至所述筒形主体的开口处,并接收从所述筒形主体的开口输出的所述合成颗粒,且对所述合成颗粒进行冷却。
在其中一个实施例中,所述冷却箱可转动。
在其中一个实施例中,还包括:
冷却装置,与所述反应装置间隔设置,所述冷却装置包括可转动的冷却箱,所述冷却箱用于冷却所述合成颗粒;及
连接所述反应箱和所述冷却箱的连接筒组件,所述连接筒组件包括:
套筒,侧壁上开设有进料孔;
第一筒体,一端收容于所述套筒的一端,并与所述套筒可转动地固定连接,另一端与所述筒形主体的开口端固定连接,并与所述筒形主体相连通;
第一传输条,一端收容于所述第一筒体内,并与所述第一筒体的内壁固定连接,且所述第一传输条沿所述第一筒体的轴线螺旋延伸,所述第一传输条的另一端可转动地收容于所述套筒内;
第二筒体,一端收容于所述套筒的另一端,并与所述套筒可转动地固定连接,另一端与所述冷却箱固定连接,并与所述冷却箱相连通;
第二传输条,一端收容于所述第二筒体内,并与所述第二筒体的内壁固定连接,且所述第二传输条沿所述第二筒体的轴线螺旋延伸,所述第二传输条的另一端可转动地收容于所述套筒内;
加料装置,与所述套筒固定连接,且所述加料装置用于向所述进料孔输入所述物料;
其中,所述第一筒体随所述反应箱转动,并带动所述物料或所述合成颗粒沿所述第一传输条滑动,所述第二筒体随所述冷却箱转动,并带动所述合成颗粒沿所述第二传输条滑动而将所述合成颗粒传输至所述冷却箱中。
在其中一个实施例中,所述加料装置包括:
固定架;
料斗,固定于所述固定架上;及
传输筒,一端固定地套设于所述料斗上,另一端延伸至所述筒形主体的开口处,其中,所述物料依次经所述料斗和所述传输筒而传输至所述筒形主体的开口处。
在其中一个实施例中,所述冷却箱包括两端开口的筒形本体及多个条形片,所述筒形本体的一个开口与所述筒形主体的开口可对接,所述多个条形片收容于所述筒形本体内,每个条形片的一侧边与所述筒形本体的内壁固定连接,且所述每个条形片相对所述筒形本体的轴线倾斜设置,所述多个条形片沿一螺旋线排列,所述螺旋线为沿所述筒形本体的轴线螺旋延伸的曲线,其中,所述冷却箱转动,而使所述合成颗粒沿所述多个条形片所在的螺旋线在所述多个条形片上滑动。
在其中一个实施例中,还包括气体分离罐,所述气体分离罐与所述筒形主体通过管道相连,所述筒形主体内的气体通过所述管道进入所述气体分离罐中。
一种合成颗粒的反应装置,用于将物料制备成合成颗粒,所述反应装置包括:
可转动的反应箱,所述反应箱包括筒形主体;及
n组条形板组件,间隔设置于所述筒形主体内,每组条形板组件包括多个间隔设置的条形板,每个条形板的一侧边与所述筒形主体的内壁上固定连接,所述每个条形板相对所述筒形主体的轴线倾斜设置,所述每组条形板组件的多个条形板沿一螺旋线设置,且所述螺旋线均为沿所述筒形主体的轴线螺旋延伸的曲线,其中,n为大于或者等于2的整数;
其中,所述反应箱转动,并使所述物料或所述合成颗粒沿所述每组条形板组件对应的螺旋线在所述多个条形板上滑动。
上述合成颗粒的反应装置具有可转动的反应箱及多个条形板,每个条形板相对筒形主体的轴线倾斜设置的,且多个条形板沿一螺旋线排列,而该螺旋线为沿反应箱的筒形主体的轴线螺旋延伸的曲线,当反应箱转动时,物料或者合成颗粒能够沿该螺旋线在多个条形板上滑动,从而实现物料的加入和合成颗粒的输出,无需在反应箱内另外设置传输装置,就能够简单的实现物料的加入和合成颗粒的输出,使得上述合成颗粒的制备系统的结构较为简单;且多个条形板随反应箱转动的同时,还能够隔开反应箱内的物料,并起到翻动筒形主体内的物料的作用,而使得反应箱内的物料能够更加均匀的受热;且由于筒形主体内起到传输作用的是多个条形板,多个条形板又是间隔设置在筒形主体内的,即两个相邻的条形板之间是存在间隙的,使得物料能够更好地在反应箱中翻动,物料受热更加的均匀,因此,上述合成颗粒的反应装置不仅结构简单,且能够使反应箱中的物料受热更加均匀。
【附图说明】
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将会变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1为第一实施方式的合成颗粒的制备系统的结构示意图;
图2为图1所示的合成颗粒的制备系统的反应箱的轴向剖面图;
图3为图2所示的合成颗粒的制备系统的条形板与反应箱的筒形主体的局部示意图;
图4为图1所示的合成颗粒的制备系统的另一种结构的反应箱的轴向剖面图;
图5为图1所示的合成颗粒的制备系统的另一角度的结构示意图;
图6为图1所示的合成颗粒的制备系统的冷却箱的轴向剖面图;
图7为图1所示的合成颗粒的制备系统的另一结构的冷却箱的轴向剖面图;
图8为第二实施方式的合成颗粒的制备系统的结构示意图;
图9为图8所示的合成颗粒的制备系统的连接筒组件的分解图;
图10为第三实施方式的合成颗粒的制备系统的反应箱的筒形主体的轴向剖面图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,一实施方式的合成颗粒的制备系统10,用于将物料制备成合成颗粒。其中,物料指的是一般植物或经济作物(如稻草、秸秆、杂木、棕榈壳及椰子壳等)的残留废弃的植物纤维。该合成颗粒的制备系统10包括反应装置100及供热组件(图未示)。
请一并参阅图2,反应装置100包括可转动的反应箱110及多个条形板120。
反应箱110为将物料转变成具有高热量的合成颗粒的反应场所。其中,反应箱110包括筒形主体112。
具体在图示的实施例中,筒形主体112大致为一端开口的圆形筒体。
多个条形板120间隔设置于筒形主体112内,每个条形板120的一侧边与筒形主体112的内壁固定连接,每个条形板120相对筒形主体112的轴线倾斜设置,且多个条形板120沿一螺旋线排列,该螺旋线为沿筒形主体112的轴线螺旋延伸的曲线。其中,反应箱110转动,而使物料或合成颗粒沿螺旋线在多个条形板120上滑动。
请一并参阅图3,本实施例中,多个条形板120的延伸方向与筒形主体112的轴线之间的夹角α相等,从而使得多个条形板120的延伸方向与多个条形板120所在的螺旋线的延伸方向相同,便于物料或合成颗粒沿螺旋线在多个条形板120上滑动。图3中的AA线表示的筒形主体112的轴线,BB线表示的是条形板120的延伸方向,其中,α即表示为条形板120与筒形主体112的轴线的夹角。
本实施例中,多个条形板120与筒形主体112的内壁的夹角相等,且每个条形板120与筒形主体112的内壁的夹角β为60°~90°,该条形板120与筒形主体112的内壁的夹角有利于物料或者是合成颗粒沿螺旋线在多个条形板120上滑动。图3中的CC线表示的条形板120的方向,DD线表示的是筒形主体112的内壁的方向,β即表示为条形板120与筒形主体112的内壁的夹角。
本实施例中,每个条形板120的长度方向上的一侧边与筒形主体112的侧壁固定连接,且每个条形板120的宽度与筒形主体112的直径的比为1~2:15。该比值范围的条形板120更有利于物料或者合成颗粒的传输,且有利于物料在加热过程中,条形板120翻动物料,以使物料受热更加均匀。优选的,筒形主体112的直径与条形板120的宽度的比为15:1.5。
本实施例中,每个条形板120的长度方向上的一侧边与筒形主体112的侧壁固定连接,且条形板120的长度与筒形主体112的长度的比为5~6:30;更优选为5.5:30。
具体在图示的实施例中,反应箱110还包括锥形筒部114。锥形筒部114的大头端和和小头端均开口,锥形筒部114位于筒形主体112的外部,锥形筒部114的大头端与筒形主体112的开口端固定连接,锥形筒部114与筒形主体112相通。具体在图示的实施例中,锥形筒部114与筒形主体112为一体成型结构。
反应装置100还包括收容于锥形筒部114内的条形传输板130,条形传输板130的一侧边与锥形筒部114的内壁固定连接,且条形传输板130从锥形筒部114的小头端延伸至大头端。其中,反应箱110转动,而使物料或合成颗粒沿条形传输板130滑动。通过设置锥形筒体114和条形传输板130不仅能够便于物料进入筒形主体112内,还可以使得合成颗粒更加顺利的从反应箱100中输出,出料更加完全。
即,例如在图示的实施例中,当需要将物料加入到反应箱110中时,反应箱110顺时针转动,物料从反应箱110的锥形筒部114的小头端沿条形传输板130滑动至筒形主体112内,并沿多个条形板120所在的螺旋线在多个条形板120上滑动,同时多个条形板120能够翻动物料;当物料已经制备成合成颗粒后,反应箱110逆时针转动,合成颗粒沿多个条形板120所在的螺旋线在多个条形板120上滑动,并滑动至反应箱110的锥形筒部114内的条形传输板130上,沿条形传输板130滑动至锥形筒部114的小头端,而锥形筒部114的小头端的开口处输出。通过反应箱110的正转和反转实现物料的加入和合成颗粒的输出,且物料的加入和合成颗粒的输出都是在锥形筒部114的小头端处,即物料的加入和合成颗粒的输出在反应箱110的同一端。
可以理解,实现合成颗粒从反应箱110中输出不限于采用上述方式,还可以采用其它方式,例如,筒形主体112的底部开设有出料口(图未示),保持反应箱110始终顺时针转动,带动物料从锥形筒部114的小头端进入筒形主体112内,当物料制备成合成颗粒后,合成颗粒从出料口输出,即通过反应箱110始终在一个方向上旋转,实现物料的加入和合成颗粒的输出,且物料的加入和合成颗粒的输出分别在反应箱110的两端。此时,为了便于转动中的反应箱110中的物料更好地保持在反应箱110中,筒形主体112的底部设有一盖体(图未示),该盖体盖设于出料口上,并与出料口的边缘密封连接。
本实施例中,条形传输板130为直板,条形传输板130的数量为两个,两个条形传输板130相对设置在锥形筒部114内,且两个条形传输板130垂直,其中,每个条形传输板130相对锥形筒部114的轴线倾斜设置。
请一并参阅图4,本实施例中,为了使两个条形传输板130能够更加稳定的固定在锥形筒部114内,两个条形传输板130靠近锥形筒部114的小头端的一端、且远离锥形筒部114的一侧边固定连接。
可以理解,条形传输板130不限于为上述形式,还可以为其它形式,例如,如图4所示,条形传输板130为弧形板,条形传输板130沿锥形筒部114的轴线螺旋延伸。
请一并参阅图1及图5,具体的,反应装置100还包括驱动组件140,驱动组件140与反应箱110的筒形主体112连接,并用于驱动反应箱110转动。
具体在图示的实施例中,反应箱110还包括与筒形主体112的底端固定连接的固定筒116。其中,固定筒116与筒形主体112同轴线设置。固定筒116上固定地套设有齿圈118,驱动组件140为减速马达,减速马达的齿轮与齿圈118相啮合,从而实现驱动组件140带动反应箱110转动。具体的,齿圈118固定地套设于固定筒116远离筒形主体112的一端。
可以理解,为了实现反应箱110的转动,不限于采用上述方式,可以不用设置固定筒116,例如,筒形主体112的外壁上设有多个沿筒形主体112的周向间隔设置的啮合凸起,驱动组件140为减速马达,驱动组件140的齿轮与啮合凸起相啮合,从而实现驱动组件140带动反应箱110转动。
具体的,供热组件设置于反应箱110的外部,用于给筒形主体112提供热量。通过供热组件给反应箱110供热,以使反应箱110内的温度为150℃~300℃。其中,供热组件可以为燃烧可燃性气体、合成颗粒或者是普通木材的燃烧炉,也可以为电炉。具体的,供热组件位于筒形主体112的下方。
具体的,供热组件的数量为两个,且两个供热组件间隔设置在筒形主体112的下方。
本实施例中,为了便于了解反应箱110内的温度,而更好地控制反应箱110内的温度,反应装置100还包括温控组件(图未示)。具体的,温控组件包括温度传感器(图未示)及温度显示仪(图未示)。温度传感器部分收容于筒形主体112内,用于探测反应箱110内的温度。温度显示仪设置在反应箱110的外部,且温度显示仪与温度传感器电信号连接,用于显示温度传感器探测到的温度。
本实施例中,反应装置100还包括隔热外壳150,筒形主体112可转动地穿设于隔热外壳150。具体的,隔热外壳150内固定设有支撑件(图未示),反应箱110可转动地固定于支撑件上。具体在图示的实施例中,反应箱110的筒形主体112穿设于隔热外壳150,锥形筒部114位于隔热外壳150的外部。固定筒116位于隔热外壳150的外部。此时,供热组件收容于隔热外壳150内;驱动组件140位于隔热外壳150的外部,并与隔热外壳150间隔设置。
本实施例中,隔热外壳150上开设有通孔(图未标),且通孔的位置与供热组件的位置相对应,操作者可通过该通孔开启供热组件。
本实施例中,隔热外壳150上还设有与隔热外壳150相通的烟囱(图未标),通过设置烟囱以使隔热外壳150内的空气形成对流。
本实施例中,隔热外壳150包括耐火层(图未示)及设置于耐火层的内表面上、并与耐火层层叠的隔热层(图未示)。其中,耐火层的材料为钢或耐火砖。隔热层的材料为隔热棉。
本实施例中,合成颗粒的制备系统10还包括加料装置200和冷却装置300。
加料装置200与反应装置100间隔设置,且加料装置200位于筒形主体112的开口处,加料装置200用于向筒形主体112的开口处输入物料。具体的,加料装置200位于锥形筒部114的小头端处,加料装置200用于向锥形筒部114的小头端的开口处输入物料。
具体在图示的实施例中,加料装置200包括固定架210、料斗220及传输筒230。
固定架210为整个加料装置200的支撑部分。
料斗220固定于固定架210上。料斗220大致为漏斗状。
传输筒230大致为圆筒形的管状。传输筒230的一端固定地套设于料斗220上,另一端延伸至筒形主体112的开口处,其中,物料依次经料斗220和传输筒230而传输至筒形主体112的开口处。具体的,传输筒230的一端固定地套设于料斗220的颈部上,另一端延伸至锥形筒部114的小头端的开口处,此时,物料依次经料斗220和传输筒230而传输至锥形筒部114的小头端的开口处。具体在图示的实施例中,传输筒230的一端可拆卸地套设于料斗220的颈部,从而便于反应箱110中的合成颗粒的输出。
为了便于控制加料速度和加料量,加料装置200还包括插板(图未标),插板沿料斗220的颈部的径向可滑动地插设于料斗220的颈部,从而通过滑动插板以达到控制料斗220中物料到传输筒230上的速度和加料量。
更具体的,加料装置200还包括传送带240及传送板250,传送带240安装于固定架210上。传送板250倾斜地固定在固定架210上,传送板250的一端靠近传送带240的一端设置,传送板250的另一端延伸至料斗220内,从而通过传送带240将物料传输至传送板250上,再从传送板250滑动至料斗220内。传送带240可以为皮带。
冷却装置300与反应装置100间隔设置,并与加料装置200间隔设置,冷却装置300包括可滑动的冷却箱310,其中,冷却箱310滑动至筒形主体112的开口处,并接收从筒形主体112的开口输出的合成颗粒,且对合成颗粒进行冷却。具体的,冷却箱310滑动至锥形筒部114的小头端的开口处,并接收从锥形筒部114的小头端的开口输出的合成颗粒,且对合成颗粒进行冷却。
具体的,采用如下方式可实现冷却箱310的滑动,冷却装置300还包括导轨320和支架330。导轨320的一端延伸至筒形主体112的开口处。具体的,所述导轨320的一端延伸至锥形筒部114的小头端。支架330沿导轨320可滑动地设置于导轨320上,冷却箱310安装于支架330上。具体在图示的实施例中,支架330上安装有滑轮和马达,通过马达驱动滑轮转动,以实现支架330沿导轨320滑动。
本实施例中,冷却箱310可转动。可转动的冷却箱310能够加速合成颗粒的冷却速度。其中,冷却箱310可转动地安装于支架330上。冷却装置300还包括驱动件340,驱动件340固定于支架330上,并位于冷却箱310的外部,驱动件340与冷却箱310连接,并用于驱动冷却箱310转动。
更具体的,冷却箱310上固定地套设有啮合圈,驱动件340为减速马达,驱动件340的齿轮与啮合圈相啮合,从而实现驱动件340带动冷却箱310转动。具体的,啮合圈为齿圈。
请一并参阅图6,在本实施例中,冷却箱310包括两端开口的筒形本体312,其中,筒形本体312的一个开口与筒形主体112的开口可对接,从而使筒形本体312与筒形主体112相连通。冷却装置300还包括多个条形片350。
多个条形片350收容于筒形本体312内,每个条形片350的一侧边与筒形本体312的内壁固定连接,每个条形片350相对筒形本体312的轴线倾斜设置,且多个条形片350沿一螺旋线排列,螺旋线为沿筒形本体312的轴线螺旋延伸的曲线。其中,冷却箱310转动,而使合成颗粒沿多个条形片所在的螺旋线在多个条形片350上滑动。
本实施例中,多个条形片350的延伸方向与筒形本体312的轴线之间的夹角相等。
本实施例中,多个条形片350与筒形本体312的内壁的夹角相等,且每个条形片350与筒形本体312的内壁的夹角为60°~90°。
进一步的,每个条形片350的长度方向上的一侧边与筒形本体312的内壁固定连接,且每个条形片350的宽度与筒形本体312的直径的比为1~2:15。该比值范围的条形片350更有利于合成颗粒的传输,且有利于合成颗粒在冷却过程中,条形片350翻动合成颗粒,加速合成颗粒的冷却速度。优选的,筒形本体312的直径与条形片350的宽度的比为15:1.5。
本实施例中,每个条形片350的长度方向上的一侧边与筒形本体312的内壁固定连接,条形片350的长度与筒形本体312的长度的比为5~6:30;更优选为5.5:30。
本实施例中,冷却箱310还包括锥形的进料筒部314和锥形的出料筒部316。且进料筒部314和出料筒部316均位于筒形本体312的外部,且进料筒部314和出料筒部316的大头端分别与筒形本体312的两个开口端固定连接,且进料筒部314和出料筒部316均与筒形本体312相通。其中,进料筒部314的小头端与反应箱110的筒形主体112的开口端可对接,以使进料筒部314的小头端与反应箱110的筒形主体112连通,从而便于合成颗粒从反应箱110中直接输入到冷却箱310中。具体的,进料筒部314的小头端与反应箱110的锥形筒部114的小头端可对接,以使进料筒部314的小头端与反应箱110的锥形筒部114的小头端连通。冷却装置300还包括第一条形传输件360和第二条形传输件370。
第一条形传输件360为板状,第一条形传输件360收容于进料筒部314内,第一条形传输件360的一侧边与进料筒部314的内壁固定连接,且第一条形传输件360从进料筒部314的小头端延伸至大头端。
具体的,第一条形传输件360为直板,第一条形传输件360的数量为两个,两个第一条形传输件360相对设置在进料筒部314内,且两个第一条形传输件360垂直,其中,每个第一条形传输件360相对进料筒部314的轴线倾斜设置。
本实施例中,为了使两个第一条形传输件360能够更加稳定的固定在进料筒部314内,两个第一条形传输件360靠近进料筒部314的小头端的一端、且远离进料筒部314的一侧边固定连接。
第二条形传输件370为板状,第二条形传输件370收容于出料筒部316内,第二条形传输件370的一侧边与出料筒部316的内壁固定连接,且第二条形传输件370从出料筒部316的小头端延伸至大头端。其中,冷却箱310可转动,并可使合成颗粒依次沿第一条形传输件360滑动、沿螺旋线的延伸方向在多个条形片350上滑动及沿第二条形传输件370滑动。
本实施例中,第二条形传输件370为直板,第二条形传输件370的数量为两个,两个第二条形传输件370相对设置在出料筒部316内,且两个第二条形传输件370垂直,其中,每个第二条形传输件370相对出料筒部316的轴线倾斜设置。
本实施例中,为了使两个第二条形传输件370能够更加稳定的固定在出料筒部316内,两个第二条形传输件370靠近出料筒部316的小头端的一端、且远离出料筒部316的一侧边固定连接。
可以理解,第一条形传输件360和第二条形传输件370不限于为上述形式,还可以为其它形式,例如,如图7所示,第一条形传输件360为弧形板,第一条形传输件360沿进料筒部314的轴线螺旋延伸;第二条形传输件370为弧形板,第二条形传输件370沿出料筒部316的轴线螺旋延伸。
请再次一并参阅图1及图5,本实施例中,合成颗粒的制备系统10还包括气液分离罐400,气液分离罐400与反应箱110的筒形主体112通过管道相连,筒形主体112内的气体通过管道进入气体分离罐400中。由于在制备合成颗粒过程中会产生气体,通过设置气液分离罐400能够使反应箱110中的气体进入到气液分离罐400中。其中,气体进入到气液分离罐400中部分冷凝,并在气液分离罐400的底部形成了水和焦油的混合液体。气液分离罐400上开设有排气口410和排液口(图未示)。其中,排气口410排出的气体可以作为燃料回收利用,也可以作为供热组件的燃料。气液分离罐400的外部固定设有阀门(图未示),且阀门的位置与排液口的位置相对应,阀门用于控制气液分离罐400底部的液体的排放。
本实施例中,连接气液分离罐400与反应箱110的管道为软管。管道穿设于固定筒116,且管道的一端固定地穿设于反应箱110的筒形主体112的底部,且管道的外壁与筒形主体112的底部密封连接,管道的另一端与气液分离罐400可转动地固定连接。即管道随反应箱110转动而转动。
上述合成颗粒的制备系统10将物料制备成合成颗粒的过程如下:
驱动组件140驱动反应箱110顺时针转动,物料从料斗220下滑到传输筒230,并通过传输筒230滑入至顺时针方向转动的反应箱110的锥形筒部114的小头端,由于锥形筒部114为锥形,使得物料能够随反应箱110的锥形筒部114的条形传输板130滑动,并滑动至筒形主体112内,而沿多个条形板120所在的螺旋线在条形板120上滑动,当物料加入到一定量时,停止加料,开启供热组件,对顺时针转动的反应箱110的筒形主体112进行加热,加热大致2小时,得到合成颗粒,然后驱动组件140控制反应箱110逆时针转动,合成颗粒沿多个条形板120所在的螺旋线在条形板120上滑动,并输出至条形传输板130上,沿条形传输板130滑动至锥形筒部114的小头端的开口处;同时,使支架330沿导轨320滑动,以使冷却箱310的进料筒部314的小头端与反应箱110的锥形筒部114的小头端对接,且使进料筒部314的小头端与反应箱110的锥形筒部114的小头端对应连通,冷却箱310为转动的,以使从锥形筒部114的小头端的开口输出的合成颗粒从进料筒部314沿第一条形传输件360进入筒形本体312冷却至80℃,然后沿多个条形片350所在的螺旋线在条形片350上滑动,并沿第二条形传输件370滑动至出料筒部316的小头端的开口处输出。
上述合成颗粒的制备系统10具有可转动的反应箱110和多个条形板120,每个条形板120相对筒形主体112的轴线倾斜设置,且多个条形板120沿一螺旋线排列,而该螺旋线为沿反应箱110的筒形主体112的轴线螺旋延伸的曲线,当反应箱110转动时,物料或者合成颗粒能够沿多个条形板120所在的螺旋线在多个条形板120上滑动,从而实现物料的加入和合成颗粒的输出,无需在反应箱110内另外设置传输装置,就能够简单的实现物料的加入和合成颗粒的输出,使得上述合成颗粒的制备系统10的结构较为简单;且多个条形板120随反应箱110转动的同时,还能够隔开反应箱110内的物料,并起到翻动筒形主体112内的物料的作用,而使得反应箱110内的物料能够更加均匀的受热;且由于筒形主体112内起到传输作用的是多个条形板120,多个条形板120是间隔设置在筒形主体112内的,即两个相邻的条形板120之间是存在间隙的,使得物料能够更好地在反应箱110中翻动,物料受热更加的均匀,因此,上述合成颗粒的制备系统10不仅结构简单,且能够使反应箱110中的物料受热更加均匀。
另外,间隔设置的条形板120还能够使得加快反应箱内导热速度,使反应箱110内的温度迅速升温,从而有利于制备效率的提高。
如图8所示,第二实施方式的合成颗粒的制备系统20,与第一实施方式的合成颗粒的制备系统10大致相同,区别仅在于第二实施方式的合成颗粒的制备系统20的冷却装置、加料装置和反应装置的连接方式与第一实施方式的冷却装置、加料装置和反应装置的连接方式不同,且冷却装置的结构与第一实施方式的冷却装置的结构也稍有不同。
请一并参阅图9,具体在图示的实施例中,冷却装置与反应装置间隔设置,冷却装置包括可转动的冷却箱,本实施方式的冷却箱的结构与第一实施方式的冷却箱的结构仍然相同。冷却箱用于对合成颗粒进行冷却。本实施方式中,合成颗粒的制备系统20还包括连接反应箱和冷却箱的连接筒组件500。
连接筒组件500包括套筒510、第一筒体520、第一传输条530、第二筒体540及第二传输条550。
套筒510的侧壁上开设有进料孔512。
第一筒体520的一端收容于套筒510的一端,并与套筒510可转动地固定连接,另一端与反应箱的筒形主体的开口端固定连接,并与筒形主体相连通。具体的,第一筒体520远离套筒510的一端与反应箱的锥形筒部的小头端固定连接,并与锥形筒部相连通。即第一筒体520可随反应箱转动。
第一传输条530的一端收容于第一筒体520内,并与第一筒体520的内壁固定连接,且第一传输条530沿第一筒体520的轴线螺旋延伸,第一传输条530的另一端可转动地收容于套筒510内。
第二筒体540的一端收容于套筒510的另一端,并与套筒510可转动地固定连接,另一端与冷却箱固定连接,并与冷却箱相连通。具体的,第二筒体540远离套筒510的一端与冷却箱的进料筒部的小头端固定连接。即第二筒体540可随冷却箱转动。
具体的,可以通过在第一筒体520和套筒510的连接处、第二筒体540与套筒510的连接处分别安装滚珠来实现第一筒体520、第二筒体540分别与套筒510的转动连接。
第二传输条550的一端收容于第二筒体540内,并与第二筒体540的内壁固定连接,且第二传输条550沿第二筒体540的轴线螺旋延伸,第二传输条550的另一端可转动地收容于套筒510内。其中,第一筒体520随反应箱转动,并带动物料或合成颗粒沿第一传输条530滑动,第二筒体540随冷却箱转动,并带动合成颗粒沿第二传输条550滑动而将合成颗粒传输至冷却箱中。
此时,加料装置与反应装置间隔设置,且与冷却装置间隔设置,加料装置与套筒510固定连接,并用于向进料孔512输入物料。具体的,加料装置的料斗固定于套筒510上,且料斗的颈部与进料孔512对应连通。
此时,合成颗粒的制备系统20实现物料或合成颗粒的传输过程如下:
物料从料斗中落入顺时针转动中的第一筒体520中,并沿第一传输条530滑动传输至顺时针转动中的反应箱内,当物料制备成合成颗粒后,合成颗粒从逆时针转动的反应箱中传输至逆时针转动的第一筒体520中,并沿第一传输条530传动至逆时针转动的第二筒体540中,再第二传输条550传输至冷却箱中。
第二实施方式的合成颗粒的制备系统20除了具有结构简单,且能够使反应箱中的物料受热更加均匀的优点之外,由于反应箱和冷却箱是通过一个连接筒组件500连接在一起的,无需滑动冷却箱,使得反应箱中制备好的合成颗粒可以直接通过连接筒组件500传输到冷却箱中进行冷却,更加方便。
第三实施方式的合成颗粒的制备系统与第一实施方式或第二实施方式的合成颗粒的制备系统的结构相似,区别在于,第三实施方式的反应装置的条形板的设置方式有变化。
如图10所示,第三实施方式的合成颗粒的制备系统的反应装置包括n组条形板组件600。n组条形板组件600间隔设置于筒形主体700内,每组条形板组件600包括多个间隔设置的条形板610,每个条形板610的一侧边与筒形主体700的内壁上固定连接,每个条形板610相对筒形主体700的轴线倾斜设置,每组条形板组件600的多个条形板610沿一螺旋线设置,且螺旋线均为沿筒形主体700的轴线螺旋延伸的曲线,其中,n为大于或者等于2的整数。即每个条形板组件600对应的螺旋线均为沿筒形主体700的轴线螺旋延伸的曲线。此时,反应箱可转动,而使物料或合成颗粒沿每组条形板组件600对应的螺旋线在多个条形板610上滑动。
也即筒形主体700中可以有2组条形板组件600、3组条形板组件600或者是更多组的条板组件600。随着条形板组件600的数量增加,不仅增加了物料或者是合成颗粒的传输路径的数量,还缩短了传输路径的长度,从而加速物料或者是合成颗粒的传输速率,提高效率。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种合成颗粒的反应装置,用于将物料制备成合成颗粒,其特征在于,所述反应装置包括:
    可转动的反应箱,所述反应箱包括筒形主体;及
    多个条形板,间隔设置于所述筒形主体内,每个条形板的一侧边与所述筒形主体的内壁固定连接,所述每个条形板相对所述筒形主体的轴线倾斜设置,且所述多个条形板沿一螺旋线排列,所述螺旋线为沿所述筒形主体的轴线螺旋延伸的曲线;
    其中,所述反应箱转动,而使所述物料或所述合成颗粒沿所述螺旋线在所述多个条形板上滑动。
  2. 根据权利要求1所述的合成颗粒的反应装置,其特征在于,所述多个条形板的延伸方向与所述筒形主体的轴线之间的夹角相等。
  3. 根据权利要求1所述的合成颗粒的反应装置,其特征在于,所述多个条形板与所述筒形主体的内壁的夹角相等,且所述每个条形板与所述筒形主体的内壁的夹角为60°~90°。
  4. 根据权利要求1所述的合成颗粒的反应装置,其特征在于,所述每个条形板的长度方向上的一侧边与所述筒形主体的内壁固定连接,且每个所述条形板的宽度与所述筒形主体的直径的比为1~2:15。
  5. 根据权利要求1所述的合成颗粒的反应装置,其特征在于,所述每个条形板的长度方向上的一侧边与所述筒形主体的侧壁固定连接,且所述条形板的长度与所述筒形主体的长度的比为5~6:30。
  6. 根据权利要求1所述的合成颗粒的反应装置,其特征在于,所述反应箱还包括锥形筒部,所述锥形筒部的大头端和小头端均开口,所述锥形筒部位于所述筒形主体的外部,所述锥形筒部的大头端与所述筒形主体的开口端固定连接,且所述锥形筒部与所述筒形主体相通;
    所述反应装置还包括收容于所述锥形筒部内的条形传输板,所述条形传输板的一侧边与所述锥形筒部的内壁固定连接,且所述条形传输板从所述锥形筒部的小头端延伸至大头端;其中,所述反应箱转动,而使所述物料或所述合成颗粒沿所述条形传输板滑动。
  7. 根据权利要求6所述的合成颗粒的反应装置,其特征在于,所述条形传输板为弧形板,所述条形传输板沿所述锥形筒部的轴线螺旋延伸。
  8. 根据权利要求6所述的合成颗粒的反应装置,其特征在于,所述条形传输板为直板,所述条形传输板的数量为两个,两个所述条形传输板相对设置在所述锥形筒部内,且两个所述条形传输板垂直设置,其中,每个所述条形传输板相对所述锥形筒部的轴线倾斜设置。
  9. 根据权利要求8所述的合成颗粒的反应装置,其特征在于,两个所述条形传输板靠近所述锥形筒部的小头端的一端、且远离所述锥形筒部的一侧边固定连接。
  10. 根据权利要求1所述的合成颗粒的反应装置,其特征在于,所述反应装置还包括驱动组件,所述驱动组件与所述筒形主体连接,并用于驱动所述反应箱转动。
  11. 根据权利要求10所述的合成颗粒的反应装置,其特征在于,所述反应箱还包括与所述筒形主体的底端固定连接的固定筒,所述固定筒上固定地套设有齿圈,所述驱动组件为减速马达,所述减速马达的齿轮与所述齿圈相啮合。
  12. 根据权利要求1所述的合成颗粒的反应装置,其特征在于,所述反应装置还包括隔热外壳,所述筒形主体可转动地穿设于所述隔热外壳。
  13. 一种合成颗粒的制备系统,其特征在于,包括:
    如权利要求1所述的反应装置;及
    供热组件,设置于所述反应箱的外部,用于给所述筒形主体提供热量。
  14. 根据权利要求13所述的合成颗粒的制备系统,其特征在于,还包括:
    加料装置,与所述反应装置间隔设置,所述加料装置位于所述筒形主体的开口处,所述加料装置用于向所述筒形主体的开口处输入所述物料;及
    冷却装置,与所述反应装置间隔设置,并与所述加料装置间隔设置,所述冷却装置包括可滑动的冷却箱;
    其中,所述冷却箱滑动至所述筒形主体的开口处,并接收从所述筒形主体的开口输出的所述合成颗粒,且对所述合成颗粒进行冷却。
  15. 根据权利要求14所述的合成颗粒的制备系统,其特征在于,所述冷却箱可转动。
  16. 根据权利要求13所述的合成颗粒的制备系统,其特征在于,还包括:
    冷却装置,与所述反应装置间隔设置,所述冷却装置包括可转动的冷却箱,所述冷却箱用于冷却所述合成颗粒;及
    连接所述反应箱和所述冷却箱的连接筒组件,所述连接筒组件包括:
    套筒,侧壁上开设有进料孔;
    第一筒体,一端收容于所述套筒的一端,并与所述套筒可转动地固定连接,另一端与所述筒形主体的开口端固定连接,并与所述筒形主体相连通;
    第一传输条,一端收容于所述第一筒体内,并与所述第一筒体的内壁固定连接,且所述第一传输条沿所述第一筒体的轴线螺旋延伸,所述第一传输条的另一端可转动地收容于所述套筒内;
    第二筒体,一端收容于所述套筒的另一端,并与所述套筒可转动地固定连接,另一端与所述冷却箱固定连接,并与所述冷却箱相连通;
    第二传输条,一端收容于所述第二筒体内,并与所述第二筒体的内壁固定连接,且所述第二传输条沿所述第二筒体的轴线螺旋延伸,所述第二传输条的另一端可转动地收容于所述套筒内;
    加料装置,与所述套筒固定连接,且所述加料装置用于向所述进料孔输入所述物料;
    其中,所述第一筒体随所述反应箱转动,并带动所述物料或所述合成颗粒沿所述第一传输条滑动,所述第二筒体随所述冷却箱转动,并带动所述合成颗粒沿所述第二传输条滑动而将所述合成颗粒传输至所述冷却箱中。
  17. 根据权利要求14或16所述的合成颗粒的制备系统,其特征在于,所述加料装置包括:
    固定架;
    料斗,固定于所述固定架上;及
    传输筒,一端固定地套设于所述料斗上,另一端延伸至所述筒形主体的开口处,其中,所述物料依次经所述料斗和所述传输筒而传输至所述筒形主体的开口处。
  18. 根据权利要求15或16所述的合成颗粒的制备系统,其特征在于,所述冷却箱包括两端开口的筒形本体及多个条形片,所述筒形本体的一个开口与所述筒形主体的开口可对接,所述多个条形片收容于所述筒形本体内,每个条形片的一侧边与所述筒形本体的内壁固定连接,且所述每个条形片相对所述筒形本体的轴线倾斜设置,所述多个条形片沿一螺旋线排列,所述螺旋线为沿所述筒形本体的轴线螺旋延伸的曲线,其中,所述冷却箱转动,而使所述合成颗粒沿所述多个条形片所在的螺旋线在所述多个条形片上滑动。
  19. 根据权利要求13所述的合成颗粒的制备系统,其特征在于,还包括气体分离罐,所述气体分离罐与所述筒形主体通过管道相连,所述筒形主体内的气体通过所述管道进入所述气体分离罐中。
  20. 一种合成颗粒的反应装置,用于将物料制备成合成颗粒,其特征在于,所述反应装置包括:
    可转动的反应箱,所述反应箱包括筒形主体;及
    n组条形板组件,间隔设置于所述筒形主体内,每组条形板组件包括多个间隔设置的条形板,每个条形板的一侧边与所述筒形主体的内壁上固定连接,所述每个条形板相对所述筒形主体的轴线倾斜设置,所述每组条形板组件的多个条形板沿一螺旋线设置,且所述螺旋线均为沿所述筒形主体的轴线螺旋延伸的曲线,其中,n为大于或者等于2的整数;
    其中,所述反应箱转动,而使所述物料或所述合成颗粒沿所述每组条形板组件对应的螺旋线在所述多个条形板上滑动。
PCT/CN2014/087319 2014-08-12 2014-09-24 合成颗粒的反应装置及合成颗粒的制备系统 WO2016023259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410395854.4A CN105435708B (zh) 2014-08-12 2014-08-12 合成颗粒的制备系统
CN201410395854.4 2014-08-12

Publications (1)

Publication Number Publication Date
WO2016023259A1 true WO2016023259A1 (zh) 2016-02-18

Family

ID=55303833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087319 WO2016023259A1 (zh) 2014-08-12 2014-09-24 合成颗粒的反应装置及合成颗粒的制备系统

Country Status (3)

Country Link
CN (1) CN105435708B (zh)
MY (1) MY180683A (zh)
WO (1) WO2016023259A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108619997A (zh) * 2017-03-22 2018-10-09 柏红梅 炉体加热装置
CN110436152A (zh) * 2019-09-03 2019-11-12 徐州工业职业技术学院 一种电气自动化下料装置
CN114136859A (zh) * 2021-11-27 2022-03-04 重庆纤维研究设计院股份有限公司 一种用于核级玻璃纤维空气过滤纸性能研究的加料装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790062A (zh) * 2016-08-30 2018-03-13 柏红梅 合成颗粒的制备装置及合成颗粒的制备系统
JP2020186362A (ja) 2019-05-13 2020-11-19 バイ ホン メイBai, Hong Mei 固体バイオマス燃料の製造方法
KR20220044891A (ko) 2019-08-08 2022-04-12 홍 메이 바이 고체 바이오매스 연료의 생산공정
GB2591789A (en) 2020-02-06 2021-08-11 Mei Bai Hong Process for producing solid biomass fuel
GB2599728A (en) 2020-10-12 2022-04-13 Mei Bai Hong Process for producing solid biomass fuel
GB202117376D0 (en) 2021-12-01 2022-01-12 Bai hong mei Process for producing solid biomass fuel
GB2615795A (en) 2022-02-18 2023-08-23 Mei Bai Hong Process for producing solid biomass fuel
GB2622593A (en) 2022-09-20 2024-03-27 Mei Bai Hong Solid biomass fuel anti-coking additive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478170A (en) * 1983-07-05 1984-10-23 Olin Corporation Spray grainer
CN1054965A (zh) * 1990-12-27 1991-10-02 成都科技大学 内分级内返料磷肥造粒装置
JP2001096143A (ja) * 1999-09-29 2001-04-10 Lion Corp 回転円筒型造粒機およびそれを用いた造粒物の製造方法
CN102503644A (zh) * 2011-11-03 2012-06-20 广西得盛生物科技有限公司 高氮有机-无机复混肥料、复混肥料免蒸气造粒设备
CN203990550U (zh) * 2014-06-11 2014-12-10 柏红梅 合成颗粒的制备系统
CN204134597U (zh) * 2014-08-12 2015-02-04 柏红梅 合成颗粒的制备系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201195715Y (zh) * 2008-03-28 2009-02-18 张陈良 旋转式外热型炭化炉
CN102443404B (zh) * 2010-10-13 2013-11-20 张大伟 一种制造生物碳的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478170A (en) * 1983-07-05 1984-10-23 Olin Corporation Spray grainer
CN1054965A (zh) * 1990-12-27 1991-10-02 成都科技大学 内分级内返料磷肥造粒装置
JP2001096143A (ja) * 1999-09-29 2001-04-10 Lion Corp 回転円筒型造粒機およびそれを用いた造粒物の製造方法
CN102503644A (zh) * 2011-11-03 2012-06-20 广西得盛生物科技有限公司 高氮有机-无机复混肥料、复混肥料免蒸气造粒设备
CN203990550U (zh) * 2014-06-11 2014-12-10 柏红梅 合成颗粒的制备系统
CN204134597U (zh) * 2014-08-12 2015-02-04 柏红梅 合成颗粒的制备系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108619997A (zh) * 2017-03-22 2018-10-09 柏红梅 炉体加热装置
CN110436152A (zh) * 2019-09-03 2019-11-12 徐州工业职业技术学院 一种电气自动化下料装置
CN114136859A (zh) * 2021-11-27 2022-03-04 重庆纤维研究设计院股份有限公司 一种用于核级玻璃纤维空气过滤纸性能研究的加料装置

Also Published As

Publication number Publication date
CN105435708A (zh) 2016-03-30
MY180683A (en) 2020-12-07
CN105435708B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
WO2016023259A1 (zh) 合成颗粒的反应装置及合成颗粒的制备系统
AU2017374532B2 (en) Material heating device
WO2017114042A1 (zh) 三罐式自动化颗粒生产方法及系统
CA2806776C (en) External heating type coal material decomposition apparatus with multiple tubes
CN105612262B (zh) 用于在冶金单元或熔釜中吹送或吹入富氧气体的喷射设备和电弧炉
ITMO20130235A1 (it) Impianto per la produzione di energia mediante gassificazione.
CN101781585B (zh) 生物质气化炉气化剂喷射装置
CN101900489A (zh) 链箅机-回转窑-环冷机烘炉装置及其烘炉方法
CN105112081A (zh) 一种滚动式热解炭化和裂解气化一体炉
CN108930964B (zh) 一种垃圾热解气化炉旋转炉排装置
KR20130078816A (ko) 가연성폐기물 기체화시스템
CN102141251A (zh) 燃烧装置
CN219328303U (zh) 分段式回转炉
WO2022165878A1 (zh) 分段式回转炉
JP4567100B1 (ja) ヤシガラ炭の製造方法及び装置
CN209116318U (zh) 生物质颗粒燃烧机
CN107828434B (zh) 一种连续回转式生物质热解炭化设备
KR20120027069A (ko) 수직 원통형 탄화장치
WO2022165879A1 (zh) 三段式回转炉
KR20100116148A (ko) 폐기물 공급장치
CN205782956U (zh) 带有耐高温套管的焚烧生产系统
WO2022165880A1 (zh) 两段式回转炉
CN110499191B (zh) 一种中部出气的下吸式生物质气化炉
KR20070101612A (ko) 폐목재의 활성탄 제조장치
CN205897146U (zh) 加装冷渣机的焚烧处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899622

Country of ref document: EP

Kind code of ref document: A1