WO2017113539A1 - 一种二氧化碳吸收并矿物化装置及方法 - Google Patents

一种二氧化碳吸收并矿物化装置及方法 Download PDF

Info

Publication number
WO2017113539A1
WO2017113539A1 PCT/CN2016/078963 CN2016078963W WO2017113539A1 WO 2017113539 A1 WO2017113539 A1 WO 2017113539A1 CN 2016078963 W CN2016078963 W CN 2016078963W WO 2017113539 A1 WO2017113539 A1 WO 2017113539A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorption
ratio
tower body
absorbing
Prior art date
Application number
PCT/CN2016/078963
Other languages
English (en)
French (fr)
Inventor
蒋国强
张建涛
于常军
丁海川
Original Assignee
原初科技(北京)有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 原初科技(北京)有限公司, 清华大学 filed Critical 原初科技(北京)有限公司
Publication of WO2017113539A1 publication Critical patent/WO2017113539A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/21Organic compounds not provided for in groups B01D2251/206 or B01D2251/208
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/608Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/80Organic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • This invention relates to the field of mineralized disposal of carbon dioxide, and more particularly to a carbon dioxide absorption and mineralization apparatus and method.
  • CO 2 collection and disposal mainly includes geological storage, marine storage, mineralized storage and biological carbon sequestration.
  • Mineral carbonation CO 2 CO 2 fixing reactor means containing a basic or alkaline earth metal oxide ore (mainly calcium and magnesium silicate ore), generating a series of processes so as to be sealed carbonate.
  • Mineralized storage is a method of absorption of CO 2 in nature.
  • the carbonate produced is a thermodynamically stable form of carbon and has no effect on the environment. Therefore, carbonation fixation is the most stable and safe way to fix carbon.
  • there are many kinds of ore capable of absorbing CO 2 in nature and the reserves are huge and the price is low; therefore, mineral carbonation and carbon fixation is the best choice for CO 2 collection and disposal technology.
  • Direct dry gas-solid carbonation uses a route in which CO 2 directly reacts with ore to form a carbonate.
  • the reaction route has a slow reaction rate and low efficiency, and even if it is pressurized to increase the reaction rate, it is difficult to meet the needs of large-scale industrial absorption. Therefore, liquid phase absorption carbonation becomes the main carbonation carbon fixation technology.
  • Liquid phase absorption carbonation can be divided into direct absorption method and indirect absorption method.
  • the direct absorption method is to grind the ore such as calcium magnesium silicate into fine particles, and react with CO 2 in the liquid phase to form a carbonate.
  • the essential reaction and the direct dry gas-solid carbonation are not different, but only in the liquid.
  • CO 2 is dissolved into carbonic acid, and the reaction rate is greatly increased when it is further reacted with fine ore particles.
  • the grinding cost of the ore is very high, and the reaction rate still cannot meet the needs of large-scale absorption, so the method is still not the best choice in terms of economy and efficiency.
  • the indirect liquid phase absorption method first converts the ore into an alkaline solution or suspension (hereinafter referred to as alkali solution), and absorbs CO 2 in the alkali solution to form a carbonate, and further separates the carbonate to sequester CO 2 .
  • alkali solution an alkaline solution or suspension
  • the two core aspects of the law are the conversion of ore and the absorption of CO 2 . Different routes can be obtained depending on the route used to obtain the lye and the conversion of the lye; and depending on the system of the absorption reaction (solution, suspension or emulsion), the absorption reaction also has different technical solutions.
  • Patent WO2009039445 also discloses a design method and structure for the bubble column reactor used for absorption.
  • this technology is economically uncompetitive due to the use of high-energy electrolysis to obtain NaOH. Because NaOH has high solubility in water, its absorption process is a neutralization reaction in solution, the reaction rate is fast, and the reactor design is relatively simple.
  • the true meaning of the indirect liquid phase absorption method is to absorb CO 2 by using a large and inexpensive calcium magnesium silicate, and finally to form carbonates such as CaCO 3 and MgCO 3 in a solid state.
  • the method generally converts calcium magnesium silicate into an oxide and further produces a base, and then absorbs CO 2 in a suspension or emulsion of a base to form a carbonate.
  • PCT Patent WO2013106730 (Chinese Patent No. CN104284707A) discloses an indirect route using calcium silicate, HCl medium, and Mg salt as OH - carrier.
  • the absorption of CO 2 is achieved by reacting with a mixture of Ca(OH) 2 , Mg(OH) 2 , or Mg(OH) 2 and CaCl 2 to form a carbonate.
  • a process that is mediated by acetic acid The Characters of CO2 fixation by chemical conversion to carbonate salts (Chemical Engineering Journal, 231:287-293) reports the absorption of CO 2 by ethanolamine (MEA), diethanolamine (DEA), or methyldiethanolamine (MDEA).
  • MEA ethanolamine
  • DEA diethanolamine
  • MDEA methyldiethanolamine
  • the rate of CO 2 dissolution, the rate of dissolution of the basic chemical, and the rate of crystallization of the carbonate affect the absorption efficiency, and any of these steps may be a limiting step in the absorption process, usually by a simple bubbling method.
  • the absorption and conversion rate of CO 2 is usually not high.
  • the alkali metal hydroxide absorbs and converts, since the solubility of such a hydroxide is very low, if absorbed by a solution, the absorption load is very low, and at the same time, a large amount of water is circulated, so that suspension of hydroxide is required.
  • the liquid absorbs CO 2 .
  • a carbon dioxide absorption and mineralization apparatus comprising a reactor and a three-phase separator, the reactor being vertically disposed, the reactor comprising a tower body and a draft tube, the flow guiding a cylinder is disposed inside the tower body, and the tower body is provided with an inlet pipe and an intake pipe, and the outlet ends of the inlet pipe and the intake pipe pass through the tower body and are located inside the guide pipe
  • the three-phase separator includes a casing, a riser pipe, and a downcomer, a lower end of the casing being connected to an upper end of the reactor, a lower end of the pipe being connected to the reactor, and an upper end extending into the lower end Inside the liquid pipe, the lower end of the downcomer is provided with an opening, a liquid descending passage is formed between the liquid lifting pipe and the downcomer; a settling tank is formed between the outer casing and the downcomer, and the liquid is lowered.
  • the passage is in communication with the settling
  • the upper end and the lower end of the draft tube are provided with an opening, the inlet of the inlet pipe and the inlet pipe are located in the opening of the lower end of the draft tube, and the outlet of the inlet pipe is located at the inlet Above the exit.
  • a gas distributor is provided at the outlet of the inlet pipe.
  • the tower body and the guide tube are both cylindrical structures, and the height ratio of the two is 0.5:1 to 0.8:1, and the diameter ratio is 0.6:1 to 0.75:1.
  • the flow guiding tube is provided with a through hole, and the area of the through hole is less than 0.4 times the area of the end surface of the guiding tube.
  • the three-phase separator comprises a first drain pipe, a gas outlet and a second drain pipe
  • the first drain pipe is for discharging the upper liquid in the three-phase separator
  • the gas outlet is for discharging The treated gas is used to discharge the bottom liquid in the three-phase separator.
  • the first drain pipe and the second drain pipe are respectively located at an upper portion and a bottom of the settling tank, and the gas outlet is located at an upper end of the outer casing.
  • a cross-sectional area of the settling tank along a radial direction of the outer casing and a cross-sectional area of the tower body along a radial direction thereof The ratio is 1.5:1 to 4:1.
  • a weir is further included, the weir being disposed circumferentially along the outer casing and fixed to a lower side of the first drain.
  • the overflow weir forms an upwardly facing overflow trough with the inner wall of the outer casing, and the height difference between the overflow opening edge of the overflow trough and the upper end of the riser pipe is 0.3 to 1 times the diameter of the riser pipe.
  • a method for absorbing and mineralizing carbon dioxide which utilizes the above carbon dioxide absorption and mineralization device to absorb and mineralize carbon dioxide by an alkali solution; the volume of carbon dioxide in the gas to be treated is 0.05%. 20%, the volume content of carbon dioxide in the gas to be treated is 0.05% to 20%, the volume of carbon dioxide per minute is 0.02-0.2 times the volume of the reactor; the gas velocity of the empty tower calculated by the whole volume is 0.5 ⁇ 8cm/s.
  • the lye is a solution or suspension of a substance that reacts with carbon dioxide to form an insoluble carbonate.
  • the lye is a hydroxide suspension of calcium and/or magnesium, wherein the content of the hydroxide is 1 to 1500 times its saturated solubility; the ratio of the molar flow rate of the hydroxide to the molar flow rate of the carbon dioxide is 0.5:1 to 4:1.
  • the lye is a suspension of a mixture of calcium and/or magnesium hydroxide and a calcium or/or magnesium hydrochloride or sulphate mixture, wherein the hydroxide content is from 1 to 1500 times its saturated solubility.
  • the ratio of the amount of the salt to the hydroxide is from 0:1 to 4:1; the ratio of the molar flow of the hydroxide to the molar flow of the carbon dioxide is from 0.5:1 to 4:1.
  • the lye is a solution of a weak acid salt of calcium and/or magnesium, and the pKa value of the acid corresponding to the weak acid group is greater than the pKa value of the carbonic acid; the ratio of the molar flow rate of the weak acid radical to the molar flow rate of the carbon dioxide is 2 :1 ⁇ 10:1.
  • the lye is ammonia water in which calcium and/or magnesium hydrochloride or sulfate is dissolved, the mass fraction of ammonia is 2 to 20%, and the ratio of the amount of salt to ammonia is 0.2:1 to 2:1.
  • the ratio of the molar flow rate of ammonia to the molar flow rate of carbon dioxide is from 0.5:1 to 4:1.
  • the lye is ethanolamine, diethanolamine, or a mixture of an aqueous solution of methyldiethanolamine and a solution of calcium or/or magnesium hydrochloride or an aqueous solution of sulfate, ethanolamine, diethanolamine, or methyldiethanolamine having a mass fraction of 5 ⁇ 30%, the ratio of the mass of the salt to the above alcohol amine is 0.2:1 to 2:1; the ratio of the molar flow rate of the amine group to the molar flow rate of carbon dioxide is 0.5:1 to 4:1.
  • the carbon dioxide absorption and mineralization device provided by the invention provides a gas-liquid solid mixing state by the flow of the air-lift circulating flow in the reactor, and a dissolution rate of the solid alkali solute is improved by providing a flow guiding tube in the reactor.
  • the macroscopic absorption reaction rate and the absorption rate can be improved;
  • the reaction device integrates a three-phase separator, and the reaction can be simultaneously Sedimentation and separation of carbonate reduces the solid content in the solution, while reducing the transport of water in the absorption and separation unit, improving the process efficiency and reducing the process energy consumption; the produced carbonate particles can be obtained. Good control, so that higher sedimentation efficiency can be obtained.
  • Figure 1 is a schematic view showing the structure of a carbon dioxide absorption and mineralization device of the present invention
  • Figure 2 is a schematic illustration of the process for treating carbon dioxide using the carbon dioxide absorption and mineralization apparatus of the present invention.
  • the carbon dioxide absorption and mineralization apparatus comprises a reactor 1 and a three-phase separator 2, the reactor 1 being vertically disposed, and the three-phase separator 2 being disposed in the reactor 1
  • the upper end and the reactor 1 and the sedan separator 2 are in communication with each other.
  • the reactor 1 includes a tower body 11, a draft tube 12, an inlet pipe 13, and an intake pipe 14.
  • the tower body 11 has a cylindrical structure, preferably a cylindrical shape, and has a height to diameter ratio of 5:1 to 9:1.
  • the guide tube 12 has a cylindrical shape with an opening at the upper and lower ends, and is disposed in the cylindrical shape.
  • the inside of the tower body 11 has a height to the height of the tower body 11 of 0.5:1 to 0.8:1, and a ratio of the diameter to the diameter of the tower body 11 is 0.6:1 to 0.75:1,
  • the guide tube 12 is vertically disposed along the axial direction of the tower body 11, and preferably, the guide tube 12 is collinear with the axial direction of the tower body 11, and the end portion of the draft tube 12 at the lower side is close to a lower end of the tower body 11; further, a through hole (not shown) is disposed on the wall of the draft tube 12, the area of the through hole being smaller than the end surface area of the draft tube 12 0.4 times.
  • the inlet pipe 13 and the intake pipe 14 are both disposed at the lower end of the tower body 11, and the inlet ends of the inlet pipe 13 and the intake pipe 14 pass through the tower body 11 and are located at the guide tube In the opening at the lower end of the 12, preferably, the outlet end of the intake pipe 14 is located in the axial direction of the guide tube 12, and the height difference between the outlet end of the intake pipe 14 and the lower end of the draft tube 12 Not more than 1/8 of the height of the draft tube 12, or the height difference is not more than 50 cm; the outlet end of the inlet pipe 13 is higher than the outlet end of the intake pipe 14.
  • a gas distributor 15 is also provided, which is disposed at the The outlet end of the intake pipe 14 and the gas distributor 15 are located on the lower side of the outlet end of the inlet pipe 13 in the vertical direction.
  • the three-phase separator 2 includes a casing 21, a riser pipe 22, a downcomer 23, a first drain pipe 24, a gas outlet 25, and a second drain pipe 26.
  • the outer casing 21 is preferably a cylindrical structure.
  • the ratio of the diameter of the outer casing 21 to the tower body 11 is 1.5:1 to 2.5:1, the height ratio of the outer casing 21 to the tower body 11 is 1:2 to 1:4, and the upper portion of the outer casing 21 is closed.
  • the lower end is provided with a housing connecting portion 211 which has a cylindrical structure, and has a first end diameter which is the same as a diameter of the outer casing 21, and a second end diameter which is the same as the diameter of the tower body 11,
  • the first end and the second end of the outer casing connecting portion 211 are respectively connected to the outer casing 21 and the outer wall of the tower body 11, and the outer casing 21 and the tower body 11 are connected together, preferably, the outer casing 21 and the tower Body 11 is axially collinear.
  • the diameter of the riser tube 22 is less than or equal to the diameter of the tower body 11, greater than or equal to the diameter of the guide tube 12, the length of which is smaller than the length of the outer casing 21, and the riser tube 22 passes the liquid lift
  • the pipe connection portion 221 is connected to the upper end of the tower body 11, and the riser pipe connection portion 221 is a cone-shaped cylinder having a first end having the same diameter as the riser pipe 22 and a second end diameter and the tower.
  • the body 11 has the same diameter, and the first end and the second end of the riser connecting portion 221 are connected to the riser tube 22 and the tower body 11, respectively, and the riser tube 22 and the tower body 11 are connected together.
  • the riser tube 22 is collinear with the axis of the tower body 11.
  • a settling tank 27 is formed between the outer wall of the riser pipe 22 and the inner wall of the outer casing 21, and the volume ratio of the settling tank 27 to the tower body 11 is 1:1 to 3:1, and the settling tank 27
  • the ratio of the cross-sectional area in the radial direction of the outer casing 21 to the cross-sectional area of the tower body 11 in the radial direction thereof is 1.5:1 to 4:1.
  • the downcomer 23 is disposed in the outer casing 21, the diameter of which is larger than the diameter of the riser tube 22, smaller than the diameter of the outer casing 21, the cross-sectional area of the downcomer 23 in the radial direction thereof
  • the ratio of the cross-sectional area of the settling tank 27 is 1:6 to 1:4, the length of the downcomer 23 is smaller than the length of the outer casing 21, and the first end of the downcomer 23 is connected to the outer casing 21 to be sealed.
  • the end of the state, and the riser 22 is partially located within the downcomer 23, preferably, the downcomer 23 is co-linear with the axis of the riser 22, the downcomer 23 and the riser A downcomer passage 20 is formed between the tubes 22, and the downcomer passage 20 communicates with the settling tank 27.
  • the first drain pipe 24, the gas outlet 25 and the second drain pipe 26 are all disposed on the outer casing 21, and the first drain pipe 24 is disposed on the side wall of the outer casing 21 and is located close to a position of the sealing end of the outer casing 21; the gas outlet 25 is disposed on an end surface of the sealing end of the outer casing 21, and the gas outlet 25 is located in the downcomer 23; the second drainage pipe 26 is disposed at the It is described above on the outer casing connecting portion 211.
  • the outer casing 21 is further provided with a weir 28 which is disposed along the circumferential direction of the inner wall of the outer casing 21, and the overflow weir 28 is fixed to the first drain
  • a weir 28 which is disposed along the circumferential direction of the inner wall of the outer casing 21, and the overflow weir 28 is fixed to the first drain
  • the upper side of the tube 22, and the difference in height between the opening edge of the overflow tank 29 and the upper end of the riser tube 22 is 0.3 to 1 times the diameter of the riser tube 22.
  • the carbon dioxide absorption and mineralization device integrateds the reactor 1 and the three-phase separator 2 into one body, which simplifies the equipment, realizes the integration of reaction and separation, improves the processing efficiency, and reduces the energy consumption.
  • the three-phase separator 2 facilitates separation of the gas-liquid-solid three-phase mixture after the reaction.
  • the method of absorbing carbon dioxide using the carbon dioxide absorption and mineralization device provided by the present invention is:
  • the lye is first introduced into the tower body 11 through the inlet pipe 13 at a certain flow rate, and the carbon dioxide is still present when the liquid level is higher than the outlet end of the inlet pipe 13.
  • the gas to be treated is introduced into the tower body 11 through the intake pipe 14 at a constant flow rate.
  • the carbon dioxide in the gas reacts with the lye to form a carbonate, and the gas which removes carbon dioxide overflows in the liquid and is discharged from the gas outlet 25; the liquid level in the tower 11 continues to rise as the lye continuously flows in.
  • the liquid containing the carbonate particles flows into the settling tank 27 through the downcomer passage 20, and the carbonate particles settle after being settled in the settling tank 27
  • the upper liquid in the upper portion of the settling tank 27 forms a clear liquid, the bottom liquid contains carbonate, and the carbonate is discharged from the second drain pipe 26, and after further concentration treatment A solid carbonate is obtained; the night of the upper portion of the settling tank 27 is discharged by the first drain pipe 24, and then circulated to the lye preparation system, thereby completing the gas-liquid-solid three-phase separation.
  • the average density of the gas-liquid-solid mixture in the draft tube 12 is smaller than the density of the mixture between the draft tube 12 and the tower body 11 due to the introduction of the gas, in density
  • the circulation around the draft tube 12 as shown in FIG. 2 can be poorly generated, and the circulation can improve the contact of the gas-liquid-solid three-phase, thereby increasing the absorption rate of carbon dioxide and the solubility of the solute in the lye. .
  • the lye described in the present invention is an alkaline solution capable of reacting with carbon dioxide to form an insoluble carbonate, preferably a supersaturated solution, for example:
  • the lye is: a suspension of calcium and magnesium hydroxide, that is, a suspension of calcium hydroxide, magnesium hydroxide and a mixture of the two in any proportion, wherein the content of the hydroxide is 1 to 1500 times its saturated solubility;
  • the lye is: a suspension of a mixture of calcium, magnesium hydroxide and its salt (hydrochloric acid or sulphate), wherein the content of the hydroxide is 1 to 1500 times its saturated solubility, and the amount of the substance of the salt and the hydroxide The ratio is 0:1 to 4:1;
  • the lye is: a solution of a weak acid salt of calcium and magnesium, wherein the pKa value (273K) of the acid corresponding to the acid radical is greater than the pKa value of the carbonic acid;
  • the lye is: ammonia water dissolved with calcium or magnesium salt (hydrochloric acid or sulfate), the ammonia mass is 2-20%, salt The ratio of the amount of the substance to the ammonia is 0.2:1 to 2:1;
  • the lye is: ethanolamine, diethanolamine, or a mixture of an aqueous solution of methyldiethanolamine and an aqueous solution of calcium or magnesium salt (hydrochloric acid or sulfate), and the mass fraction of ethanolamine, diethanolamine or methyldiethanolamine is 5 to 30%.
  • the ratio of the salt to the mass of the above alcoholamine is from 0.2:1 to 2:1.
  • the flow rate of the lye is: the ratio of the flow rate (molar flow rate) in terms of hydroxide or ammonia, or the flow rate (molar flow rate) of carbon dioxide is 0.5:1. ⁇ 4:1; if a weak acid group is contained, the ratio of the flow rate (molar flow rate) to the weak acid base and the flow rate (molar flow rate) of carbon dioxide may be 2:1 to 10:1.
  • the gas to be treated includes various gases mainly composed of carbon dioxide and air such as flue gas, and the volume content of carbon dioxide is 0.05% to 20%.
  • the aeration amount of the gas to be treated (in terms of carbon dioxide) is 0.02 to 0.2 times unit volume of carbon dioxide per minute per unit reaction section volume; the superficial gas velocity in terms of total volume is 0.5 to 8 cm/s.
  • the absorption and conversion reactions can be carried out at normal pressure or under pressure.
  • Example 1 Absorption and mineralization of carbon dioxide with a suspension of Ca(OH) 2
  • the total volume of the apparatus is 65 L, wherein the volume of the reactor 1 is 25 L, and the volume of the three-phase separator 2 is 40 L (wherein the volume of the settling tank 27 is 34 L).
  • the tower body 11 is 1160 mm high and 160 mm in diameter (the ratio of diameter to height is 7.25:1); the height of the draft tube 12 is 1120 mm (the ratio of the height of the draft tube 12 to the height of the tower 11 is 0.97:1), The diameter is 114 mm (the ratio to the diameter of the tower 11 is 0.72:1).
  • the through-bore 12 is disposed at a distance of 420 mm from the top, and the through-hole area is 27% of the cross-sectional area of the draft tube 12.
  • the gas distributor 15 is a micropore distributor having a distance of 50 mm from the lower edge of the draft tube 12.
  • the inlet pipe 13 is located at the lower inner portion of the draft tube 12 above the gas distributor 15.
  • the outer casing 21 of the three-phase separator 2 has a diameter (inner diameter) of 330 mm (the ratio of the diameter of the tower body 11 is 2.1 to 1); the height of the outer casing 21 is 510 mm (the height ratio to the tower body 11 is 1:2.1).
  • the riser tube 22 has a diameter of 120 mm and a height of 280 mm; the downcomer 23 has a diameter of 180 mm and a height of 360 mm; and the ratio of the cross-sectional area of the settling tank 27 to the cross-sectional area of the tower body 11 is 3.6: 1.
  • the ratio of the cross-sectional area of the downcomer 23 to the cross-sectional area of the settling tank 27 is 1:5.6.
  • the overflow trough 29 is located above the opening of the riser tube 22, the distance to the upper portion of the riser tube 22 is 80 mm, the weir 28 is 35 mm high, and the overflow trough 29 is 20 mm wide.
  • the absorption reaction was carried out at 25 ° C, and the gas to be treated was a mixed gas of air and carbon dioxide, wherein the volume fraction of carbon dioxide was 10%, and the flow rate of the gas to be treated was 10 L/min (the gas velocity of the empty column was 4.7 cm/s).
  • the content and flow rate of the suspension of Ca(OH) 2 were as follows: A) content of 10 g / L (corresponding to 6.7 times of saturated solubility), flow rate of 36 L / h; B) content of 20 g / L (equivalent At a saturation solubility of 13.3 times), the flow rate is 24 L/h; the C) content is 50 g/L (corresponding to 33.3 times the saturated solubility), and the flow rate is 12 L/h.
  • the absorption rate of carbon dioxide is defined as:
  • Option A Option B Option C CO 2 absorption rate 72% 76% 74% Carbonate mass fraction 69% 73% 65%
  • the reaction apparatus is the same as in the first embodiment.
  • the absorption reaction is carried out at 25 ° C, the content of the suspension of Ca(OH) 2 is 20 g / L; the gas to be treated is a mixed gas of air and carbon dioxide, the flow rate is 10 L / min (the velocity of the empty tower gas is 4.7 cm / s),
  • the absorption rate of carbon dioxide and the content of carbonate in the carbonate concentrate are shown in Table 2.
  • Option A Option B
  • Option C CO 2 absorption rate 68% 76% 72% Carbonate mass fraction 71% 73% 64%
  • Example 3 Absorbing and mineralizing carbon dioxide with a suspension of Mg(OH) 2 or Mg(OH) 2 mixed with Ca(OH) 2
  • the reaction apparatus is the same as in the first embodiment.
  • the absorption reaction was carried out at 25 ° C, and the gas to be treated was a mixed gas of air and carbon dioxide, wherein the volume fraction of carbon dioxide was 10%, and the flow rate of the gas to be treated was 10 L/min (the gas velocity of the empty column was 4.7 cm/s).
  • the content and flow rate of the suspension are as follows: A) Mg(OH) 2 content 5 g / L (corresponding to 750 times its saturated solubility), flow rate 60 L / h; B) Mg (OH) 2 content is 10 g /L (corresponding to 1500 times of saturated solubility), flow rate 36 L / h; C) Mg (OH) 2 content of 10 g / L, Ca (OH) 2 content of 10 g / L, total flow rate of 30 L / h. Under the three schemes, the absorption rate of carbon dioxide and the content of carbonate in the carbonate concentrate are shown in Table 3.
  • Option A Option B Option C CO 2 absorption rate 70% 72% 76% Carbonate mass fraction 72% 71% 69%
  • Example IV to CaCl 2 and Mg (OH) 2 and a suspension of mineral absorption of CO 2
  • the reaction apparatus is the same as in the first embodiment.
  • the absorption reaction was carried out at 25 ° C, and the gas to be treated was a mixed gas of air and carbon dioxide, wherein the volume fraction of carbon dioxide was 10%, and the flow rate of the gas to be treated was 10 L/min (the gas velocity of the empty column was 4.7 cm/s).
  • the flow rate of the suspension is 60L/h
  • the composition has the following three schemes: A) the content of Mg(OH) 2 in the suspension is 5g/L, the content of CaCl 2 is 15g/L, and the flow rate is 60L/h; B) The content of Mg(OH) 2 in the suspension is 5 g/L, the content of CaCl 2 is 20 g/L, and the flow rate is 60 L/h; C) the content of Mg(OH) 2 in the suspension is 10 g/L, CaCl 2 The content is 30g / L, the flow rate is 26L / h; under the three schemes, the absorption rate of carbon dioxide and the content of carbonate in the carbonate concentrate are shown in Table 4.
  • Option A Option A
  • Option B CO 2 absorption rate 68% 66% 70% Carbonate mass fraction 72% 76% 71%
  • Example Five to CaCl 2 and Mg (OH) 2 and a suspension of mineral absorption of CO 2
  • the total volume of the apparatus is 246 L, wherein the volume of the reactor 1 is 104 L, and the volume of the three-phase separator 2 is 142 L (wherein the volume of the settling tank 27 is 125 L).
  • the tower body 11 is 2100 mm high and 250 mm in diameter (the ratio of diameter to height is 8.4:1); the height of the draft tube 12 is 1800 mm (the ratio of the height of the draft tube 12 to the height of the tower 11 is 0.85:1),
  • the guide tube 12 has a diameter of 180 mm, and the through-tube 12 is provided at a distance of 740 mm from the top, and the through-hole area is 32% of the cross-sectional area of the draft tube 12.
  • the gas distributor 15 is a micropore distributor having a distance of 100 mm from the lower edge of the draft tube 12.
  • the outer casing 21 of the three-phase separator 2 has a diameter (inner diameter) of 480 mm (the ratio of the diameter of the tower body 11 is 2.1 to 1); the height of the outer casing 21 is 840 mm (the height ratio to the tower body 11 is 1:2.5).
  • the riser tube 22 has a diameter of 200 mm and a height of 580 mm; the downcomer 23 has a diameter of 280 mm and a height of 500 mm; and the ratio of the cross-sectional area of the settling tank 27 to the cross-sectional area of the tower body 11 is 3.0: 1.
  • the ratio of the cross-sectional area of the downcomer 23 to the cross-sectional area of the settling tank 27 is 1:5.
  • the overflow trough 29 is located above the opening of the riser tube 22, the distance to the upper portion of the riser tube 22 is 100 mm, the weir 28 is 50 mm high, and the overflow trough 29 is 50 mm wide.
  • the absorption reaction was carried out at 25 ° C, and the gas to be treated was a mixed gas of air and carbon dioxide, wherein the volume fraction of carbon dioxide was 10%, and the flow rate of the gas to be treated was 29 L/min (the gas velocity of the empty column was 5.9 cm/s).
  • the content of Mg(OH) 2 in the suspension was 10 g/L, the content of CaCl 2 was 30 g/L, and the flow rate of the suspension was 90 L/h. Under this condition, the absorption rate of carbon dioxide is 73%, the mass fraction of CaCO 3 in the carbonate concentrate is 62%, and the mass fraction of MgCO 3 is 6%.
  • Example 6 Absorbing and mineralizing carbon dioxide with methyldiethanolamine (MDEA) solution and CaCl 2 solution
  • the reaction apparatus is the same as in the first embodiment.
  • the absorption reaction was carried out at 25 ° C, and the gas to be treated was a mixed gas of air and carbon dioxide, wherein the volume fraction of carbon dioxide was 15%, and the flow rate of the gas to be treated was 10 L/min (the gas velocity of the empty column was 4.7 cm/s).
  • the methyldiethanolamine solution has a mass fraction of 10% and a flow rate of 18 L/h; the CaCl 2 solution has a mass fraction of 20% and a flow rate of 2.5 L/h.
  • the carbon dioxide absorption rate of 88% under these conditions, the absorption of carbon dioxide into CaCO 3 conversion rate of 89% mass fraction of CaCO 3 CaCO 3 in the dope is 62%.
  • Example 7 absorption of CO 2 with calcium acetate
  • the reaction apparatus is the same as in the first embodiment.
  • the absorption reaction is carried out at 40 ° C, and the pressure in the reactor is 0.3 MPa (gauge pressure).
  • the gas to be treated is a mixed gas of nitrogen and carbon dioxide, wherein the volume fraction of carbon dioxide is 15%, and the flow rate of the gas to be treated is 8 L/min (standard condition) ).
  • the absorption liquid was a calcium acetate Ca(CH 3 COO) 2 solution having a content of 180 g/L and a flow rate of 12 L/h. Rate of carbon dioxide absorption under conditions of 65%, mass fraction of CaCO 3 CaCO 3 in the dope is 59%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种二氧化碳吸收并矿物化装置和方法,装置包括反应器(1)和三相分离器(2),反应器(1)包括塔体(11)和导流筒(12),导流筒(12)设置在塔体(11)内部,塔体(11)上设置有进液管(13)和进气管(14),进液管(13)与进气管(14)的出口端均位于导流筒(12)内部,反应器内部流动方式是气升式环流;三相分离器(2)设置在反应器(1)的上端,包括升液管(22)、降液管(23)和沉降槽(27),在反应的同时沉降分离碳酸盐。方法包括利用该装置通过碱液对二氧化碳进行吸收并矿物化。

Description

一种二氧化碳吸收并矿物化装置及方法
本申请要求了2015年12月29日提交的、申请号为201511016729.9、发明名称为“一种二氧化碳吸收并矿物化装置及方法”的中国发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及二氧化碳的矿物化处置的领域,特别是一种二氧化碳吸收并矿物化装置及方法。
背景技术
收集处置二氧化碳(CO2),以减小温室气体排放,是环境和生态领域内重要的技术问题。目前,CO2的收集处置主要包括地质储存、海洋储存、矿物化储存和生物固碳等。CO2的矿物碳酸化固定是指CO2与含有碱性或碱土金属氧化物的矿石(主要是钙镁硅酸盐的矿石)反应,生成碳酸盐从而被封存的一系列过程。矿物化储存是自然界中CO2的吸收方法,所生成的碳酸盐是碳元素的热力学稳定形式,且对环境无任何影响,因此碳酸化固定是一种最稳定和最安全的固碳方式;并且,自然界中存在多种能够吸收CO2的矿石,储量巨大、价格低廉;因此,、矿物碳酸化固碳是CO2收集处置技术最好的选择。
目前,公开报道的CO2的碳酸化固定工艺和技术,包括直接干法气固碳酸化和液相吸收碳酸化。直接干法气固碳酸化采用CO2直接与矿石发生一步气固反应生成碳酸盐的路线。该反应路线反应速率慢,效率低,即使加压来提高反应速率,也很难满足大规模工业吸收的需要。因此,液相吸收碳酸化成为主要的碳酸化固碳技术。
液相吸收碳酸化又可分为直接吸收法和间接吸收法。直接吸收法是将钙镁硅酸盐等矿石研磨成细小颗粒后,在液相中和CO2反应生成碳酸盐,其本质的反应和直接干法气固碳酸化没有区别,只是由于在液相中CO2溶解为碳酸,进一步和细小的矿石颗粒反应时,反应的速率得到了大幅提高。矿石的研磨成本非常高,而反应速率仍不能满足大规模吸收的需要,因此该法在经济性和高效性上仍不是最好的选择。
间接液相吸收法则将矿石先转化得到碱性溶液或悬浮液(以下简称碱液),并在碱液中吸收CO2并形成碳酸盐,进一步分离碳酸盐以封存CO2。该法的两个核心环节是 矿石的转化和CO2的吸收。根据所采用的矿物质及其转化得到碱液的路线不同,可以得到不同的工艺路线;而根据吸收反应的体系不同(溶液、悬浮液或乳状液),吸收反应也有不同的技术方案。关于各种方案的工艺和特点在文章Carbon capture and storage using alkaline industrial wastes(Progress in Energy and Combustion Science,38:302-320)以及A review of mineral carbonation technology in sequestration of CO2(Journal of Petroleum Science and Engineering,109:364–392)中已经详细论述。
由于钠盐广泛存在、价格低廉,而NaOH在水中具有很高的溶解度,因此以钠盐为吸收矿物质的工艺首先被提出并实现了工业化。典型的工艺如PCT专利WO2009039445(中国专利CN101970084A)所公开的采用以NaHCO3/Na2CO3为碳酸盐的工艺。类似的技术还如PCT专利WO2010068924(中国专利CN101896425A)报道的吸收技术。这些专利通常通过电解钠盐(如Na2SO4)获得NaOH,以NaOH吸收CO2,得到NaHCO3或Na2CO3。专利WO2009039445同时还公开了吸收所使用的鼓泡塔反应器的设计方法和结构。但是该技术因采用高能耗的电解得到NaOH而使其在经济性上失去竞争力。因为NaOH在水中的溶解度高,因此其吸收过程是溶液中的中和反应,反应速率快,反应器的设计也相对较为简单。
间接液相吸收法的真正意义则在于采用储量巨大而且廉价的钙镁硅酸盐吸收CO2,并最终生成固体状态的CaCO3、MgCO3等碳酸盐。该法一般先将钙镁硅酸盐转化为氧化物并进一步生产碱,然后以碱的悬浮液或乳状液吸收CO2,生成碳酸盐。例如PCT专利WO2013106730(中国专利CN104284707A)公布了一种采用钙硅酸盐,以HCl媒介,以Mg盐为OH-载体的间接路线。这类工艺路线中,CO2的吸收是通过与Ca(OH)2、Mg(OH)2,或者Mg(OH)2和CaCl2的混合物反应,生成碳酸盐实现的。类似的还有以醋酸为媒介的过程。文献Characteristics of CO2 fixation by chemical conversion to carbonate salts(Chemical Engineering Journal,231:287–293)报道了以乙醇胺(MEA),二乙醇胺(DEA),或者甲基二乙醇胺(MDEA)为媒介吸收CO2,然后结合CaCl2生成碳酸盐的工艺。在上述这些过程中,都涉及CO2在溶解在液相中并反应生成碳酸盐这一核心过程。CO2的溶解速率,碱性化学品的溶解速率以及碳酸盐的结晶沉降速率都会影响吸收效率,而这些步骤中的任一步骤都可能成为吸收过程的限制步骤,通常以简单的鼓泡方法及鼓泡反应器进行该吸收反应时,CO2的吸收和转化率通常不高。例如,以碱金属氢氧化物吸收转化时,由于这类氢氧化物的溶解度非常低,如果以溶液 吸收,则吸收负荷非常低,同时将导致大量水的循环,因此需要以氢氧化物的悬浮液吸收CO2。相关动力学研究表明,氢氧化物的溶解将是以悬浮液吸收过程的限速步骤,其动力学特征与以溶液吸收不同。另一方面,在传统的吸收反应中,吸收和分离分别在不同的单元进行,由于碳酸盐的含量通常不高,这就导致大量的水从吸收到分离单元输送,或者循环,导致能量的消耗。迄今为止,仍然没有针对这种吸收过程专门开发高效、集反应和分离一体化的吸收反应器的公开报道。
发明内容
有鉴于此,本发明的目的在于提供一种二氧化碳吸收并矿物化装置及方法,以解决现有技术中存在的上述技术问题。
根据本发明的第一方面提供一种二氧化碳吸收并矿物化装置,包括反应器和三相分离器,所述反应器竖直设置,所述反应器包括塔体和导流筒,所述导流筒设置在所述塔体内部,所述塔体上设置有进液管和进气管,所述进液管与进气管的出口端均穿过所述塔体并位于所述导流筒的内部;所述三相分离器包括外壳、升液管和降液管,所述外壳的下端连接至所述反应器的上端,所述升液管下端与反应器相连通,上端伸入所述降液管内部,所述降液管下端设有开口,在所述升液管和降液管之间形成降液通道;所述外壳与所述降液管之间形成沉降槽,所述降液通道与沉降槽连通。
优选地,所述导流筒上端和下端设置有开口,所述进液管与进气管的出口位于所述导流管下端的开口内,且所述进液管的出口位于所述进气口的出口上方。
优选地,所述进液管的出口处设置有气体分布器。
优选地,所述塔体与导流筒均为圆筒形结构,两者的高度比为0.5:1~0.8:1,直径比为0.6:1~0.75:1。
优选地,所述导流筒上设置有通孔,所述通孔的面积小于所述导流筒的端面面积的0.4倍。
优选地,所述三相分离器包括第一排液管、气体出口和第二排液管,所述第一排液管用于排出三相分离器内的上层液体,所述气体出口用于排出处理后的气体,所述第二排液管用于排出所述三相分离器内的底层液体。
优选地,所述第一排液管和第二排液管分别位于所述沉降槽的上部和底部,所述气体出口位于所述外壳的上端。
优选地,所述沉降槽沿所述外壳径向上的截面积与所述塔体沿其径向上的截面积 之比为1.5:1~4:1。
优选地,还包括溢流堰,所述溢流堰沿所述外壳周向设置在其内部,并固定在所述第一排液管的下侧。
优选地,所述溢流堰与外壳内壁形成开口向上的溢流槽,所述溢流槽开口边缘与升液管上端的高度差为所述升液管直径的0.3~1倍。
根据本发明的第二方面,提供一种二氧化碳吸收并矿物化的方法,利用上述二氧化碳吸收并矿物化装置通过碱液对二氧化碳进行吸收并矿物化;待处理气体中二氧化碳的体积含量为0.05%~20%,待处理气体中二氧化碳的体积含量为0.05%~20%,每分钟通入的二氧化碳的体积是所述反应器体积的0.02-0.2倍;以全部体积计算的空塔气速为0.5~8cm/s。
优选地,所述碱液为与二氧化碳反应生成不溶性碳酸盐的物质的溶液或悬浮液。
优选地,所述碱液为钙和/或镁的氢氧化物悬浮液,其中氢氧化物的含量为其饱和溶解度的1~1500倍;氢氧根的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
优选地,所述碱液为钙和/或镁的氢氧化物与钙和/或镁的盐酸盐或硫酸盐混合物的悬浮液,其中氢氧化物的含量为其饱和溶解度的1~1500倍,盐与氢氧化物的物质的量之比为0:1~4:1;氢氧根的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
优选地,所述碱液为钙和/或镁的弱酸盐的溶液,所含弱酸根所对应酸的pKa值大于碳酸的pKa值;弱酸根的摩尔流量和二氧化碳的摩尔流量之比为2:1~10:1。
优选地,所述碱液为溶解有钙和/或镁盐酸盐或硫酸盐的氨水,氨质量分数为2~20%,盐与氨的物质的量之比为0.2:1~2:1;氨的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
优选地,所述碱液为乙醇胺,二乙醇胺,或者甲基二乙醇胺水溶液与钙和/或镁的盐酸盐或硫酸盐水溶液的混合物,乙醇胺,二乙醇胺,或者甲基二乙醇胺质量分数为5~30%,盐与上述醇胺的物质量之比为0.2:1~2:1;胺基的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
本发明提供的二氧化碳吸收并矿物化装置,通过在反应器内设置导流筒,反应器内以气升式环流的流动使气液固混合状态更好,固体的碱液溶质的溶解速率提高,从而可提高宏观吸收反应速率和吸收率;反应装置集成了三相分离器,在反应的同时可 沉降分离碳酸盐,减小了溶液中的固体含量,同时减小了水在吸收和分离单元的转运,提高了过程效率,减小了过程能耗;生成的碳酸盐的颗粒可得到较好的控制,从而可以获得较高的沉降效率。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1为本发明二氧化碳吸收并矿物化装置结构示意图;
图2为利用本发明二氧化碳吸收并矿物化装置处理二氧化碳过程示意图。
具体实施方式
以下将参照附图更详细地描述本发明的各种实施例。在各个附图中,相同的元件采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
如图1所示,本发明提供的二氧化碳吸收并矿物化装置包括反应器1和三相分离器2,所述反应器1竖直设置,所述三相分离器2设置在所述反应器1的上端,且所述反应器1与三厢分离器2相互连通。
如图1所示,所述反应器1包括塔体11、导流筒12、进液管13和进气管14。所述塔体11为筒形结构,优选为圆筒形,其高度与直径比为5:1~9:1,所述导流筒12为上下端均设置开口的筒形,设置在所述塔体11的内部,其高度与所述塔体11的高度比为0.5:1~0.8:1,直径与所述塔体11的直径比为0.6:1~0.75:1,所述导流筒12沿所述塔体11的轴向方向竖直设置,优选地,所述导流筒12与所述塔体11的轴向共线,且所述导流筒12位于下侧的端部靠近所述塔体11的下端;进一步地,所述导流筒12的筒壁上设置有通孔(图中未示出),所述通孔的面积小于所述导流筒12的端面面积的0.4倍。所述进液管13和进气管14均设置在所述塔体11的下端,且所述进液管13和进气管14的出口端均穿过所述塔体11并位于所述导流筒12下端的开口内,优选地,所述进气管14的出口端位于所述导流筒12的轴向上,且所述进气管14的出口端与所述导流筒12的下端的高度差不大于所述导流筒12高度的1/8,或者,所述高度差不大于50cm;所述进液管13的出口端高于所述进气管14的出口端。为使气体能够均匀分布,优选地,还设置有气体分布器15,所述气体分布器15设置在所 述进气管14的出口端,且所述气体分布器15在竖直方向上位于所述进液管13的出口端下侧。
所述三相分离器2包括外壳21、升液管22、降液管23、第一排液管24、气体出口25和第二排液管26,所述外壳21优选为圆筒形结构,所述外壳21与塔体11的直径比为1.5:1~2.5:1,所述外壳21与塔体11的高度比为1:2~1:4,所述外壳21的上为封闭状态,下端设置有外壳连接部211,所述外壳连接部211为圆筒形结构,且其第一端直径与所述外壳21的直径相同,第二端直径与所述塔体11的直径相同,所述外壳连接部211的第一端和第二端分别连接至所述外壳21和塔体11的外壁上,将所述外壳21与塔体11连接到一起,优选地,所述外壳21与塔体11轴向共线。所述升液管22的直径小于或等于所述塔体11的直径,大于或等于所述导流筒12的直径,其长度小于所述外壳21的长度,所述升液管22通过升液管连接部221连接至所述塔体11的上端,所述升液管连接部221为锥形筒,其第一端直径与所述升液管22直径相同,第二端直径与所述塔体11直径相同,所述升液管连接部221的第一端与第二端分别连接至所述升液管22和塔体11上,将所述升液管22和塔体11连接到一起,优选地,所述升液管22与塔体11轴线共线。所述升液管22的外壁与所述外壳21的内壁之间形成沉降槽27,所述沉降槽27与所述塔体11的容积比为1:1~3:1,所述沉降槽27沿所述外壳21径向上的截面积与所述塔体11沿其径向上的截面积之比为1.5:1~4:1。所述降液管23设置在所述外壳21内,其直径大于所述升液管22的直径,小于所述外壳21的直径,所述降液管23在其径向上的截面积与所述沉降槽27的截面积之比为1:6~1:4,所述降液管23的长度小于所述外壳21的长度,所述降液管23的第一端连接至所述外壳21密封状态的端部,且所述升液管22部分位于所述降液管23内,优选地,所述降液管23与升液管22的轴线共线,所述降液管23与升液管22之间形成有降液通道20,所述降液通道20与所述沉降槽27连通。
所述第一排液管24、气体出口25和第二排液管26均设置在所述外壳21上,所述第一排液管24设置在所述外壳21的侧壁上,并位于靠近所述外壳21密封端的位置;所述气体出口25设置在所述外壳21密封端的端面上,且所述气体出口25位于所述降液管23内;所述第二排液管26设置在所述外壳连接部211上。优选地,所述外壳21内还设置有溢流堰28,所述溢流堰28在所述外壳21的内壁上沿其周向设置,所述溢流堰28固定在所述第一排液管24的开口下侧,所述溢流堰28与所述外壳21内壁之间形成开口位于所述上侧的溢流槽29,且所述溢流槽29的开口位于所述升液 管22的上侧,且所述溢流槽29的开口边缘与所述升液管22的上端的高度差为所述升液管22直径的0.3~1倍。
本发明提供的二氧化碳吸收并矿物化装置将所述反应器1与三相分离器2设置成为一体,既简化了设备,又实现了反应和分离一体化,提高了处理效率,减小了能耗。且所述三相分离器2方便将反应后的气液固三相混合物分离。
使用本发明提供的二氧化碳吸收并矿物化装置吸收二氧化碳的方法为:
如图2所示,首先将碱液通过所述进液管13以一定的流速通入所述塔体11内,待液面高于所述进液管13的出口端时向将还有二氧化碳的待处理气体以一定流量通过所述进气管14通入所述塔体11内。气体中的二氧化碳与碱液发生反应生成碳酸盐,除去二氧化碳的气体在液体中溢出后由所述气体出口25排出;所述塔体11内的液面随着碱液的不断流入而持续上升,至页面高于所述升液管22时,含有碳酸盐颗粒的液体通过所述降液通道20流入所述沉降槽27内,在所述沉降槽27内经沉降后碳酸盐颗粒沉降到所述沉降槽27的底部,所述沉降槽27上部的上层液体形成清液,底层液体含有碳酸盐,所述碳酸盐由所述第二排液管26排出,并经过进一步浓缩处理后得到固体碳酸盐;所述沉降槽27上部的清夜由所述第一排液管24排出,然后循环至碱液制备系统中,至此完成气液固三相分离。
在所述塔体11内,由于所述气体的通入使所述导流筒12内的气液固混合物的平均密度小于所述导流筒12与塔体11之间的混合物密度,在密度差的作用下,可差生如图2中所示的围绕所述导流筒12的环流,这种环流能够提高气液固三相的接触,从而提高二氧化碳的吸收率及碱液中溶质的溶解度。
本发明中所述的碱液为能够与二氧化碳反应生成不溶的碳酸盐的碱性溶液,优选为过饱和溶液,例如:
1、碱液为:钙、镁氢氧化物悬浮液,即氢氧化钙、氢氧化镁以及两者任意比例混合物的悬浮液,其中氢氧化物的含量为其饱和溶解度的1~1500倍;
2、碱液为:钙、镁氢氧化物与其盐(盐酸或硫酸盐)混合物的悬浮液,其中氢氧化物的含量为其饱和溶解度的1~1500倍,盐与氢氧化物的物质的量之比为0:1~4:1;
3、碱液为:钙镁的弱酸盐的溶液,所含酸根所对应酸的pKa值(273K)大于碳酸的pKa值;
4、碱液为:溶解有钙、镁盐(盐酸或硫酸盐)的氨水,氨质量为分数2~20%,盐 与氨的物质的量之比为0.2:1~2:1;
5、碱液为:乙醇胺,二乙醇胺,或者甲基二乙醇胺水溶液与钙、镁盐(盐酸或硫酸盐)水溶液的混合,乙醇胺,二乙醇胺,或者甲基二乙醇胺质量分数为5~30%,盐与上述醇胺的物质量之比为0.2:1~2:1。
当碱液为上述溶液时,碱液的流量为:以氢氧根计、或者以氨计、或者以胺基计的流量(摩尔流量)和二氧化碳的流量(摩尔流量)之比为0.5:1~4:1;若含有弱酸根也可以以弱酸根计的流量(摩尔流量)和二氧化碳的流量(摩尔流量)之比为2:1~10:1。
待处理气体包括烟道气等各种以二氧化碳和空气为主要成分的气体,其中二氧化碳的体积含量为0.05%~20%。待处理气体的通气量(以二氧化碳计)为每分钟每单位反应段体积通入0.02~0.2倍单位体积的二氧化碳;以全部体积计算的空塔气速为0.5~8cm/s。吸收和转化反应,可以常压操作,也可以加压操作。
下面以具体实施例对本发明二氧化碳吸收并矿物化装置进行详细介绍:
实施例一:以Ca(OH)2的悬浮液吸收并矿物化二氧化碳
本实施例采用的二氧化碳吸收矿物质装置的参数如下:
装置总容积65L,其中所述反应器1的容积25L,所述三相分离器2的容积40L(其中所述沉降槽27的容积为34L)。所述塔体11高1160mm,直径为160mm(直径和高度之比为7.25:1);所述导流筒12高度为1120mm(导流筒12与塔体11高度之比为0.97:1),直径114mm(与塔体11直径之比为0.72:1)。所述导流筒12距顶部420mm处设置所述通孔,所述通孔面积为导流筒12截面积的27%。
所述气体分布器15为微孔分布器,距离所述导流筒12下边沿的距离50mm。所述进液管13位于导流筒12内下部,气体分布器15上方。
所述三相分离器2的外壳21直径(内径)为330mm(与塔体11的直径之比为2.1~1);所述外壳21高度为510mm(与塔体11的高度比为1:2.1);所述升液管22的直径为120mm,高280mm;所述降液管23的直径为180mm,高度360mm;所述沉降槽27的截面积与塔体11的截面积之比为3.6:1,所述降液管23截面积和沉降槽27的截面积之比为1:5.6。所述溢流槽29开口位于所述升液管22开口上方,到所述升液管22上沿的距离为80mm,所述溢流堰28高35mm,所述溢流槽29宽20mm。
吸收反应在25℃进行,待处理气体为空气和二氧化碳的混合气体,其中二氧化碳 的体积分数为10%,待处理气体的流量为10L/min(空塔气速为4.7cm/s)。Ca(OH)2的悬浮液的含量和流量分别按以下三个方案:A)含量为10g/L(相当于饱和溶解度的6.7倍),流量36L/h;B)含量为20g/L(相当于饱和溶解度的13.3倍),流量24L/h;C)含量为50g/L(相当于饱和溶解度的33.3倍),流量为12L/h。二氧化碳的吸收率定义为:
吸收率=(1-排出气体中二氧化碳流量/进入反应器气体中二氧化碳流量)×100%
三个方案下,二氧化碳的吸收率和碳酸盐浓液中碳酸盐质量分数如表1所示。
表1 以Ca(OH)2的悬浮液吸收CO2的结果
  方案A 方案B 方案C
CO2的吸收率 72% 76% 74%
碳酸盐质量分数 69% 73% 65%
实施例二:以Ca(OH)2的悬浮液吸收并矿物化CO2
反应装置同实施例一。吸收反应在25℃进行,Ca(OH)2的悬浮液的含量为20g/L;待处理气体为空气和二氧化碳的混合气体,流量为10L/min(空塔气速为4.7cm/s),有二氧化碳的体积分数不同的三个操作方案:A)待处理气体中二氧化碳的体积分数为5%,悬浮液流量12L/h;B)待处理气体中二氧化碳的体积分数为10%,悬浮液流量24L/h;C)待处理气体中二氧化碳的体积分数分别为20%,悬浮液流量48L/h。三个方案下,二氧化碳的吸收率和碳酸盐浓液中碳酸盐的含量如表2所示。
表2 以Ca(OH)2的悬浮液吸收CO2的结果
  方案A 方案B 方案C
CO2的吸收率 68% 76% 72%
碳酸盐质量分数 71% 73% 64%
实施例三:以Mg(OH)2或Mg(OH)2与Ca(OH)2混合的悬浮液吸收并矿物化二氧化碳
反应装置同实施例一。吸收反应在25℃进行,待处理气体为空气和二氧化碳的混合气体,其中二氧化碳的体积分数为10%,待处理气体的流量为10L/min(空塔气速为4.7cm/s)。悬浮液的含量和流量分别按以下三个方案:A)Mg(OH)2含量5g/L(相当于 其饱和溶解度的750倍),流量60L/h;B)Mg(OH)2含量为10g/L(相当于饱和溶解度的1500倍),流量36L/h;C)Mg(OH)2含量为10g/L,Ca(OH)2含量为10g/L,总流量为30L/h。三个方案下,二氧化碳的吸收率和碳酸盐浓液中碳酸盐的含量如表3所示。
表3 以Mg(OH)2或Mg(OH)2与Ca(OH)2的悬浮液吸收CO2的结果
  方案A 方案B 方案C
CO2的吸收率 70% 72% 76%
碳酸盐质量分数 72% 71% 69%
实施例四:以CaCl2和Mg(OH)2的悬浮液吸收并矿物化CO2
反应装置同实施例一。吸收反应在25℃进行,待处理气体为空气和二氧化碳的混合气体,其中二氧化碳的体积分数为10%,待处理气体的流量为10L/min(空塔气速为4.7cm/s)。悬浮液的流量为60L/h,组成有以下三个方案:A)悬浮液中Mg(OH)2的含量为5g/L,CaCl2的含量为15g/L,流量为60L/h;B)悬浮液中Mg(OH)2的含量为5g/L,CaCl2的含量为20g/L,流量为60L/h;C)悬浮液中Mg(OH)2的含量为10g/L,CaCl2的含量为30g/L,流量为26L/h;三个方案下,二氧化碳的吸收率和碳酸盐浓液中碳酸盐的含量如表4所示。
表4 以Mg(OH)2与CaCl2的悬浮液吸收CO2的结果
  方案A 方案B 方案C
CO2的吸收率 68% 66% 70%
碳酸盐质量分数 72% 76% 71%
实施例五:以CaCl2和Mg(OH)2的悬浮液吸收并矿物化CO2
本实施例采用的反应装置结构参数如下:
装置总容积246L,其中所述反应器1容积104L,所述三相分离器2容积142L(其中沉降槽27的容积为125L)。塔体11高2100mm,直径为250mm(直径和高度之比为8.4:1);所述导流筒12高度为1800mm(导流筒12与塔体11高度之比为0.85:1),所述导流筒12直径180mm,所述导流筒12距顶部740mm处设置所述通孔,所述通孔面积为导流筒12截面积的32%。
所述气体分布器15为微孔分布器,距离所述导流筒12下边沿的距离100mm。
所述三相分离器2的外壳21直径(内径)为480mm(与塔体11的直径之比为2.1~1);所述外壳21高度为840mm(与塔体11的高度比为1:2.5);所述升液管22的直径为200mm,高580mm;所述降液管23的直径为280mm,高度500mm;所述沉降槽27的截面积与塔体11的截面积之比为3.0:1,所述降液管23截面积和沉降槽27的截面积之比为1:5。所述溢流槽29开口位于升液管22开口上方,到升液管22上沿的距离为100mm,所述溢流堰28高50mm,所述溢流槽29宽50mm。
吸收反应在25℃进行,待处理气体为空气和二氧化碳的混合气体,其中二氧化碳的体积分数为10%,待处理气体的流量为29L/min(空塔气速为5.9cm/s)。悬浮液中Mg(OH)2的含量为10g/L,CaCl2的含量为30g/L,悬浮液的流量为90L/h。此条件下二氧化碳的吸收率为73%,碳酸盐浓液中CaCO3的质量分数为62%,MgCO3的质量分数为6%。
实施例六:以甲基二乙醇胺(MDEA)溶液和CaCl2溶液吸收并矿物化二氧化碳
反应装置同实施例一。吸收反应在25℃进行,待处理气体为空气和二氧化碳的混合气体,其中二氧化碳的体积分数为15%,待处理气体的流量为10L/min(空塔气速为4.7cm/s)。甲基二乙醇胺溶液的质量分数为10%,流量为18L/h;CaCl2溶液的质量分数为20%,流量为2.5L/h。此条件下二氧化碳的吸收率为88%,吸收的二氧化碳转化为CaCO3的转化率为89%,CaCO3浓液中的CaCO3的质量分数为62%。
实施例七:以醋酸钙吸收CO2
反应装置同实施例一。吸收反应在40℃进行,反应器内压力为0.3MPa(表压)待处理气体为氮气和二氧化碳的混合气体,其中二氧化碳的体积分数为15%,待处理气体的流量为8L/min(标况)。吸收液为醋酸钙Ca(CH3COO)2溶液,含量为180g/L,流量为12L/h。此条件下二氧化碳的吸收率为65%,CaCO3浓液中的CaCO3的质量分数为59%。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (17)

  1. 一种二氧化碳吸收并矿物化装置,其特征在于,包括反应器(1)和三相分离器(2),所述反应器(1)竖直设置,所述反应器(1)包括塔体(11)和导流筒(12),所述导流筒(12)设置在所述塔体(11)内部,所述塔体(11)上设置有进液管(13)和进气管(14),所述进液管(13)与进气管(14)的出口端均穿过所述塔体(11)并位于所述导流筒(12)的内部;所述三相分离器(2)包括外壳(21)、升液管(22)和降液管(23),所述外壳(21)的下端连接至所述反应器(1)的上端,所述升液管(22)下端与反应器(1)相连通,上端伸入所述降液管(23)内部,所述降液管(23)下端设有开口,在所述升液管(22)和降液管(23)之间形成降液通道(20);所述外壳(21)与所述降液管(23)之间形成沉降槽(27),所述降液通道(20)与沉降槽(27)连通。
  2. 根据权利要求1所述的二氧化碳吸收并矿物化装置,其特征在于,所述导流筒(12)上端和下端设置有开口,所述进液管(13)与进气管(14)的出口位于所述导流管(12)下端的开口内,且所述进液管(13)的出口位于所述进气口(14)的出口上方。
  3. 根据权利要求2所述的二氧化碳吸收并矿物化装置,其特征在于,所述进液管(13)的出口处设置有气体分布器(15)。
  4. 根据权利要求1所述的二氧化碳吸收并矿物化装置,其特征在于,所述塔体(11)与导流筒(12)均为圆筒形结构,两者的高度比为0.5:1~0.8:1,直径比为0.6:1~0.75:1。
  5. 根据权利要求1所述的二氧化碳吸收并矿物化装置,其特征在于,所述导流筒(12)上设置有通孔,所述通孔的面积小于所述导流筒(12)的端面面积的0.4倍。
  6. 根据权利要求1所述的二氧化碳吸收并矿物化装置,其特征在于,所述三相分离器(2)包括第一排液管(24)、气体出口(25)和第二排液管(26),所述第一排液管(24)用于排出三相分离器内的上层液体,所述气体出口(25)用于排出处理后的气体,所述第二排液管(26)用于排出所述三相分离器(2)内的底层液体。
  7. 根据权利要求6所述的二氧化碳吸收并矿物化装置,其特征在于,所述第一排液管(24)和第二排液管(26)分别位于所述沉降槽(27)的上部和底部,所述气体出口(25)位于所述外壳(21)的上端。
  8. 根据权利要求1所述的二氧化碳吸收并矿物化装置,其特征在于,所述沉降槽(27)沿所述外壳(21)径向上的截面积与所述塔体(11)沿其径向上的截面积之比为1.5:1~4:1。
  9. 根据权利要求8所述的二氧化碳吸收并矿物化装置,其特征在于,还包括溢流堰(28),所述溢流堰(28)沿所述外壳(21)周向设置在其内部,并固定在所述第一排液管(24)的下侧。
  10. 根据权利要求9所述的二氧化碳吸收并矿物化装置,其特征在于,所述溢流堰(28)与外壳(21)内壁形成开口向上的溢流槽(29),所述溢流槽(29)开口边缘与升液管(22)上端的高度差为所述升液管(22)直径的0.3~1倍。
  11. 一种二氧化碳吸收并矿物化的方法,其特征在于,利用权利要求1~10中任一项所述的二氧化碳吸收并矿物化装置通过碱液对二氧化碳进行吸收并矿物化;待处理气体中二氧化碳的体积含量为0.05%~20%,每分钟通入的二氧化碳的体积是所述反应器(1)体积的0.02-0.2倍;以全部体积计算的空塔气速为0.5~8cm/s。
  12. 根据权利要求11所述的二氧化碳吸收并矿物化的方法,其特征在于,所述碱液为与二氧化碳反应生成不溶性碳酸盐的物质的溶液或悬浮液。
  13. 根据权利要求12所述的二氧化碳吸收并矿物化的方法,其特征在于,所述碱液为钙和/或镁的氢氧化物悬浮液,其中氢氧化物的含量为其饱和溶解度的1~1500倍;氢氧根的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
  14. 根据权利要求12所述的二氧化碳吸收并矿物化的方法,其特征在于,所述碱液为钙和/或镁的氢氧化物与钙和/或镁的盐酸盐或硫酸盐混合物的悬浮液,其中氢氧化物的含量为其饱和溶解度的1~1500倍,盐与氢氧化物的物质的量之比为0:1~4:1;氢氧根的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
  15. 根据权利要求12所述的二氧化碳吸收并矿物化的方法,其特征在于,所述碱液为钙和/或镁的弱酸盐的溶液,所含弱酸根所对应酸的pKa值大于碳酸的pKa值;弱酸根的摩尔流量和二氧化碳的摩尔流量之比为2:1~10:1。
  16. 根据权利要求12所述的二氧化碳吸收并矿物化的方法,其特征在于,所述碱液为溶解有钙和/或镁盐酸盐或硫酸盐的氨水,氨质量分数为2~20%,盐与氨的物质的量之比为0.2:1~2:1;氨的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
  17. 根据权利要求12所述的二氧化碳吸收并矿物化的方法,其特征在于,所述碱液为乙醇胺,二乙醇胺,或者甲基二乙醇胺水溶液与钙和/或镁的盐酸盐或硫酸盐 水溶液的混合物,乙醇胺,二乙醇胺,或者甲基二乙醇胺质量分数为5~30%,盐与上述醇胺的物质量之比为0.2:1~2:1;胺基的摩尔流量和二氧化碳的摩尔流量之比为0.5:1~4:1。
PCT/CN2016/078963 2015-12-29 2016-04-11 一种二氧化碳吸收并矿物化装置及方法 WO2017113539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511016729.9A CN105457461B (zh) 2015-12-29 2015-12-29 一种二氧化碳吸收并矿物化装置及方法
CN2015110167299 2015-12-29

Publications (1)

Publication Number Publication Date
WO2017113539A1 true WO2017113539A1 (zh) 2017-07-06

Family

ID=55595885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078963 WO2017113539A1 (zh) 2015-12-29 2016-04-11 一种二氧化碳吸收并矿物化装置及方法

Country Status (3)

Country Link
US (1) US10343113B2 (zh)
CN (1) CN105457461B (zh)
WO (1) WO2017113539A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105457461B (zh) * 2015-12-29 2018-04-10 原初科技(北京)有限公司 一种二氧化碳吸收并矿物化装置及方法
US11247940B2 (en) 2016-10-26 2022-02-15 The Regents Of The University Of California Efficient integration of manufacturing of upcycled concrete product into power plants
US11230473B2 (en) 2017-06-30 2022-01-25 The Regents Of The University Of California CO2 mineralization in produced and industrial effluent water by pH-swing carbonation
WO2019036386A1 (en) 2017-08-14 2019-02-21 The Regents Of The University Of California MITIGATION OF THE ALKALI-SILICA REACTION IN CONCRETE USING EASILY SOLUBLE CHEMICAL ADDITIVES
CN107398160B (zh) * 2017-08-18 2023-09-29 北京拉非克石油工程技术有限公司 脱硫装置
CN108355380A (zh) * 2018-03-20 2018-08-03 洛阳智达石化工程有限公司 一种酸烃分离器及酸烃分离工艺
CN109593644A (zh) * 2019-02-19 2019-04-09 山东科技大学 一种用于嗜盐菌诱导碳酸盐矿物的装置
US11384029B2 (en) 2019-03-18 2022-07-12 The Regents Of The University Of California Formulations and processing of cementitious components to meet target strength and CO2 uptake criteria
CN111534829B (zh) * 2020-05-22 2022-04-19 安徽工业大学 一种含低共熔溶剂的水基电解液及其应用
CN114426298B (zh) * 2020-10-29 2023-08-01 中国石油化工股份有限公司 碳化法制备氢氧化铝的系统及其碳化反应器
US20220177399A1 (en) * 2020-11-10 2022-06-09 Shell Oil Company Systems and methods for generating a carboxylic acid from a co2 gas stream
CN114377536A (zh) * 2022-01-19 2022-04-22 苏州大学 二氧化碳捕集方法及捕集装置
CN115228278B (zh) * 2022-07-19 2024-04-30 天津中材工程研究中心有限公司 pH值调控碳酸钙加速矿化吸收烟气中CO2的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229417A (en) * 1976-02-28 1980-10-21 Chiyoda Chemical Engineering & Construction Co., Ltd. Gas-liquid contacting apparatus
WO2002062705A2 (en) * 2000-10-31 2002-08-15 United States Filter Corporation System and method for precipitating salts
WO2013106730A1 (en) * 2012-01-11 2013-07-18 Skyonic Corporation Carbon dioxide sequestration involving two-salt-based thermolytic processes
CN104353343A (zh) * 2014-11-06 2015-02-18 南京大学 一种低浓度co2的脱除工艺
CN105457461A (zh) * 2015-12-29 2016-04-06 原初科技(北京)有限公司 一种二氧化碳吸收并矿物化装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2791027Y (zh) * 2005-04-28 2006-06-28 中国石油化工集团公司 用于污水处理的三相生物流化床反应器
CN100412170C (zh) * 2006-12-07 2008-08-20 天津大学 以环流反应器生产生物柴油的方法
CN101050190A (zh) * 2007-05-18 2007-10-10 天津大学 以环流反应器生产芥酸酰胺的方法
CN101249405A (zh) * 2008-04-03 2008-08-27 中国石化扬子石油化工有限公司 一种气升式环流反应器
US9162207B2 (en) * 2009-10-21 2015-10-20 China Petroleum & Chemical Corporation Fluidized-bed reactor and hydrotreating method thereof
CN101985381A (zh) * 2010-09-29 2011-03-16 天津大学 玉米秸秆燃料乙醇蒸馏废水及高氨氮预处理废水集成处理装置与方法
CN102658014A (zh) * 2012-04-16 2012-09-12 国电环境保护研究院 一种采用湿法矿化封存的燃煤电厂烟气二氧化碳减排系统
JP6329952B2 (ja) * 2012-09-04 2018-05-23 ブルー プラネット,エルティーディー. 炭素隔離方法およびシステム、ならびにそれにより生成された組成物
GB2515995A (en) * 2013-04-10 2015-01-14 Cambridge Carbon Capture Ltd Method and system of sequestrating carbon dioxide
CN104907010B (zh) * 2014-03-13 2018-03-16 中国科学院过程工程研究所 一种用于氨介质体系强化钙基固废矿化固定二氧化碳的反应器及使用方法
CN205495307U (zh) * 2015-12-29 2016-08-24 原初科技(北京)有限公司 一种二氧化碳吸收并矿物化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229417A (en) * 1976-02-28 1980-10-21 Chiyoda Chemical Engineering & Construction Co., Ltd. Gas-liquid contacting apparatus
WO2002062705A2 (en) * 2000-10-31 2002-08-15 United States Filter Corporation System and method for precipitating salts
WO2013106730A1 (en) * 2012-01-11 2013-07-18 Skyonic Corporation Carbon dioxide sequestration involving two-salt-based thermolytic processes
CN104353343A (zh) * 2014-11-06 2015-02-18 南京大学 一种低浓度co2的脱除工艺
CN105457461A (zh) * 2015-12-29 2016-04-06 原初科技(北京)有限公司 一种二氧化碳吸收并矿物化装置及方法

Also Published As

Publication number Publication date
CN105457461B (zh) 2018-04-10
US20170182458A1 (en) 2017-06-29
CN105457461A (zh) 2016-04-06
US10343113B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2017113539A1 (zh) 一种二氧化碳吸收并矿物化装置及方法
CN100435910C (zh) 多重循环稳定双碱法烟气脱硫工艺及装置
CN203284223U (zh) 一种射流式臭氧光催化-膜处理有机废水装置
CN204865480U (zh) 一种高效脱硫、脱硝、除尘及节水一体化工艺系统
CN102658016B (zh) 一种烟气氨法脱硫并副产高纯度亚硫酸氢铵的方法
CN101422693A (zh) 硫酸尾气深度脱硫方法
EP3405275B1 (en) Method and apparatus for removing carbon dioxide from flue gas
CN205495307U (zh) 一种二氧化碳吸收并矿物化装置
CN101948705A (zh) 一体化沼气安全生物脱硫装置
CN203075830U (zh) 一种脱硫塔
Wang et al. Gas cyclone-liquid jet absorption separator used for treatment of tail gas containing HCl in titanium dioxide industry
JP3564289B2 (ja) 脱硫吸収液の処理方法及びその装置
CN202427348U (zh) 脱除烟气中二氧化碳并制备硫酸铵复合肥和轻质碳酸钙的系统
CN105833719A (zh) 一种工业烟气多污染物深度净化装置及工艺
CN106166438B (zh) 一种光解氯气水溶液诱导自由基脱除硫化氢的方法及装置
CN203820498U (zh) 污水泡沫光解处理器
CN113816457B (zh) 油田酸性采出水的集成处理工艺系统
CN206463773U (zh) 双循环回路湿法烟气脱硫系统
CN116099347A (zh) 一种co2循环吸收-矿化制备轻质碳酸钙的系统及方法
CN205461680U (zh) 一种脱硫除尘装置
TW201531329A (zh) 一種處理酸性氣體的方法及裝置
CN201686523U (zh) 臭氧光催化污水治理反应器
CN204039177U (zh) 一种用于处理含重金属高浓度氨氮废水的装置
JP3408571B2 (ja) 湿式排煙処理方法と湿式排煙処理装置
CN109550338A (zh) 一种烟气脱硫脱硝除尘工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880347

Country of ref document: EP

Kind code of ref document: A1