WO2017113120A1 - 移相器、天线和无线通信设备 - Google Patents

移相器、天线和无线通信设备 Download PDF

Info

Publication number
WO2017113120A1
WO2017113120A1 PCT/CN2015/099551 CN2015099551W WO2017113120A1 WO 2017113120 A1 WO2017113120 A1 WO 2017113120A1 CN 2015099551 W CN2015099551 W CN 2015099551W WO 2017113120 A1 WO2017113120 A1 WO 2017113120A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay line
arc
coupling section
main
phase
Prior art date
Application number
PCT/CN2015/099551
Other languages
English (en)
French (fr)
Inventor
廖志强
林铮
卢麒屹
范雄辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/099551 priority Critical patent/WO2017113120A1/zh
Priority to EP15911751.4A priority patent/EP3386026B1/en
Priority to MX2018007994A priority patent/MX2018007994A/es
Priority to CN201580085599.6A priority patent/CN108475834B/zh
Publication of WO2017113120A1 publication Critical patent/WO2017113120A1/zh
Priority to US16/023,774 priority patent/US10741898B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/183Coaxial phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • H01P9/006Meander lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a phase shifter, an antenna, and a wireless communication device.
  • phase shifter is an important component of the ESC antenna, and its phase adjustment range has a great influence on the effect of the standing wave matching.
  • the miniaturization of phase shifters is becoming more and more urgent.
  • the phase shifter changes the output phase of the output port by adjusting the signal transfer length from the input port to the output port.
  • it is often necessary to increase or decrease the signal transmission length of the input port to the output port, thereby increasing the size of the phase shifter. .
  • embodiments of the present invention provide a phase shifter, an antenna, and a wireless communication device, which can effectively reduce the size of the phase shifter and have good electrical performance.
  • an embodiment of the present invention provides a phase shifter, including: a cavity, a rotating shaft, a main circuit printed circuit board PCB, a first sliding member, and a second sliding member.
  • the first a sliding member is disposed on the front surface of the main PCB, and is coupled to the main PCB.
  • the second sliding member is located on a back surface of the main PCB, and is coupled to the main PCB.
  • the rotating shaft is inserted into the cavity, and the rotating shaft is inserted into the cavity.
  • the first sliding member and the second sliding member are coupled to drive the first sliding member and the second sliding member to rotate relative to the main PCB; wherein: the cavity is configured to constitute the phase shifting The upper and lower layers of the strip line of the device;
  • the main PCB includes a main signal line, a main center coupling section, a first arc-shaped phase delay line, and a second arc-shaped phase delay line; wherein the main signal line is used for Receiving an input signal coupled to the main center coupling section, the main center coupling section being adjacent to the rotating shaft, disposed on the main PCB substrate On both sides, and the circuits of the main center coupling section are in communication with each other, the first arc-shaped phase delay line and the second arc-shaped phase delay line are distributed at the center of the rotating shaft, and are located at An outer side of the main center coupling section, the first arcuate phase delay line has two output ports, and the second arcuate phase delay line has two output ports;
  • the first slider includes a first pair a central coupling section,
  • At least one of the first arc-shaped phase delay line and the second arc-shaped phase delay line is a phase delay line using an ultra-slow wave structure.
  • the first arc-shaped phase delay line and the second arc-shaped phase The delay line is on the same side of the spindle.
  • the phase shifter further includes a zero phase line, The zero phase line is connected to the main signal line and has a third output port.
  • the first sliding member is a metal block or a PCB;
  • the second sliding member is a metal block or a PCB.
  • the phase shifter further includes a third arc shape A phase delay line having two output ports.
  • the first sliding component further includes a third transmission segment and a third delay line coupling segment, the third The delay line coupling section is coupled to the first sub-center coupling section through the third transmission section such that the third delay line coupling section is coupled to the third arc-shaped phase delay line.
  • the third arc-shaped phase delay line is opposite to the first arc shape
  • the phase delay line is distributed on the other side of the rotating shaft.
  • each of the output port distributions is coupled to a radiating element.
  • an embodiment of the present invention provides an antenna, where the antenna includes a phase shifter of any of the possible implementations of the first aspect.
  • an embodiment of the present invention provides a wireless communication device, where the wireless communication device includes an antenna of any possible implementation manner of the second aspect.
  • an embodiment of the present invention provides a wireless communications device, where the wireless communications device includes a phase shifter of any of the possible implementations of the first aspect.
  • the phase shifter, the antenna and the wireless communication device of the embodiment of the present invention under the condition of the same size and the same output port, compared with the existing phase shifter, since the two sliding members respectively transmit the signals from the center to the center Two arc-shaped phase delay lines, two arc-shaped phase delay lines respectively have corresponding transmission segments, the length of each transmission segment is longer than that of the existing phase shifter, and the input port of the phase shifter to the output port The adjustment range of the signal transmission length is increased, and the phase adjustment range of the output port is expanded, thereby making it easier to perform standing wave matching and improving the electrical performance of the phase shifter.
  • FIG. 1 is a longitudinal cross-sectional view showing a structure of a phase shifter according to an embodiment of the present invention
  • FIG. 2 is a schematic exploded view showing the internal structure of a phase shifter according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a main center coupling section of a phase shifter according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an arc-shaped phase delay line using a conventional structure according to another embodiment of the present invention.
  • FIG. 6 is a diagram showing an output phase change of an arc-shaped phase delay line using an ultra-slow wave structure according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing an output phase change of an arc-shaped phase delay line using a conventional structure according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an external structure of a phase shifter according to another embodiment of the present invention.
  • FIG. 9 is a schematic plan view showing the internal structure of a front side of a main PCB of a phase shifter according to another embodiment of the present invention.
  • FIG. 10 is a schematic plan view showing the internal structure of the back side of the main PCB of the phase shifter according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an external structure of a phase shifter according to another embodiment of the present invention.
  • FIG. 12 is a schematic plan view showing the internal structure of the front side of the main PCB of the phase shifter according to another embodiment of the present invention.
  • the phase shifter includes a cavity 101, a rotating shaft 102, and a printed circuit board (PCB) 103.
  • the first slider 104A and the second slider 104B are used to form the upper and lower layers of the strip line of the phase shifter.
  • the first slider 104A and the second slider 104B are respectively located on the front and back sides of the main PCB 103, and are coupled to the main PCB 103.
  • the main PCB 103 The upward side is the front side, and the corresponding downward side is the back side, the first slider 104A is above the main PCB 103, and the second slider 104B is below the main PCB 103.
  • the main PCB 103 can be coupled to the first slider 104A and the second slider 104B in various manners, for example, using an insulating film, a coating material, etc., and the first slider 104A and the second slider 104B can be a PCB or The metal member, the embodiment of the invention is not limited thereto.
  • the main PCB 103, the first sliding PCB 104A, and the second sliding PCB 104B are both housed in the cavity 101 such that there is no contact point between the signal strips of the phase shifter and the cavity 101, forming a stripline distribution.
  • the rotating shaft 102 is inserted into the cavity 101 and connected to the first sliding member 104A and the second sliding member 104B respectively to drive the first sliding member 104A and the second sliding member 104B to rotate relative to the main PCB 103.
  • the rotating shaft 102 is inserted into the cavity 101 through the through hole, and sequentially passes through the first sliding member 104A, the main PCB 103 and the second sliding member 104B, the first sliding member 104A and the second sliding member 104B from top to bottom. They are respectively fastened on the rotating shaft 102, so that when the rotating shaft 102 rotates, the first sliding member 104A and the second sliding member 104B are driven to rotate relative to the main PCB 103.
  • the embodiments herein are merely examples, and the embodiments of the present invention are not limited thereto.
  • the main PCB 103 includes a main signal line 103-1, a main center coupling section 103-3, and a first arc.
  • the main signal line 103-1 has an input port Pin for receiving an input signal and is connected to the main center coupling section 103-3.
  • the main center coupling section 103-3 is adjacent to the rotating shaft 102 and is disposed on the substrate of the main PCB 103. On both sides, the main center coupling section 103-3 is in communication with each other on the sides of the substrate of the main PCB 103, as shown in FIG.
  • the main center coupling section 103-3 may be disposed at the center of the center of the rotating shaft 102.
  • the main center coupling section 103-3 may be annular, surround the rotating shaft 102, or may be an arc of a circle centered on the rotating shaft 102.
  • the main center coupling section 103-3 may also be a coupling section of other shapes in the vicinity of the rotating shaft 102. It should be noted that the present invention is merely an example, and the present invention is not limited thereto.
  • the first arc-shaped phase retardation line 103-4 and the second arc-shaped phase retardation line 103-5 are distributed center-of-center with the rotation shaft 102 and are located outside the main center coupling section 103-3.
  • the first arc-shaped phase delay line 103-4 has two output ports P2 and P4, and the second arc-shaped phase delay line 103-5 There are two output ports P1 and P5.
  • the first slider 104A has a first sub-center coupling section 104A-1, a first transmission section 104A-2, and a first delay line coupling section 104A-3.
  • the first sub-center coupling section 104A-1 is adjacent to the rotating shaft 102 and coupled to the main central coupling section 103-3.
  • the first sub-center coupling section 104A-1 may be deployed at the center of the rotating shaft 102, where the first pair
  • the central coupling section 104A-1 may be annular, surround the rotating shaft 102, or may be an arc of a circle centered on the rotating shaft 102.
  • the first secondary center coupling section 104A-1 may also be a coupling section of other shapes in the vicinity of the rotating shaft 102. It should be noted that the embodiments herein are merely illustrative, and the embodiments of the present invention are not limited thereto.
  • the main center coupling section 103-3 and the first sub-center coupling section 104A-1 are both close to the rotating shaft, and the positions of their deployment ensure that the two can also be coupled.
  • the first sub-center coupling section 104A-1 and the first delay line coupling section 104A-3 are connected by the first transmission section 104A-2 such that the first delay line coupling section 104A-3 and the first arc-shaped phase delay Lines 103-4 are coupled to ensure that signals can be coupled to the first arcuate phase delay line 103-4 via the first delay line coupling section 104A-3.
  • the first sub-center coupling section 104A-1 and the first delay line coupling section 104A-3 are respectively located at two ends of the first transmission section 104A-2, and the first transmission section 104A-2 may be a straight segment shape or may be Other fold line segments or curved segment shapes, the linear distance between the two ends may be such that the first delay line coupling segment 104A-3 and the first arc-shaped phase delay line 103-4 are coupled and coupled, in one embodiment of the invention.
  • the difference in radius between the first arc-shaped phase delay line 103-4 and the first sub-center coupling section 104A-1 matches the linear distance between both ends of the first transmission section 104A-2. It should be noted that the examples herein are not limited thereto.
  • the first slider 104A can be used to transfer signal coupling to the first arcuate phase delay line 103-4.
  • the second slider 104B has a second sub-center coupling section 104B-1, a second transmission section 104B-2, and a second delay line coupling section 104B-3.
  • the second sub-center coupling section 104B-1 is adjacent to the rotating shaft 102 and coupled to the main center coupling section 103-3.
  • the implementation is similar to that of the first sub-center coupling section 104A-1, and details are not described herein again. Since the main PCB 103 and the second slider 104B are coupled, the main center coupling section 103-3 and the second sub-center coupling section 104B-1 They are all close to the shaft, and their deployed position ensures that the two can also be coupled.
  • the second sub-center coupling section 104B-1 and the second delay line coupling section 104B-3 are connected by the second transmission section 104B-2 such that the second delay line coupling section 104B-3 and the second arc-shaped phase delay Lines 103-5 are coupled to ensure that signals can be coupled to the second arcuate phase delay line 103-5 via the second delay line coupling section 104B-3.
  • the second slider 104B is similar to the first slider 104A. See the foregoing description of the components of the first slider 104A, and details are not described herein, except that the second delay in the second slider 104B is different.
  • the line coupling section 104B-3 is coupled to the second arcuate phase delay line 103-5, and the second slider 104B is for transmitting signal coupling to the second arcuate phase delay line 103-5.
  • the signal is input from the input port Pin, and is transmitted to the main coupling section 103-3 via the main signal line 103-1.
  • the signal is divided into two, and is respectively coupled to the first arc shape through the first slider 104A and the second slider 104B.
  • one of the two signals is coupled to the first sub-coupling section 104A-1 coupled to the main coupling section 103-3 and transmitted via the first transmission section 104A-2.
  • the coupling is transferred to the first arcuate phase delay line 103-4 coupled to the first delay line coupling section 104A-3.
  • the other way of transmitting the signal transmitted through the second slider 104B is similar, and will not be described again here.
  • the rotating shaft 102 drives the first slider 104A and the second slider 104B to rotate relative to the main PCB 103, the signal transmission length of the input port Pin to each output port is changed, so that the phase of each output port output signal is correspondingly increased or decreased.
  • the signal transmission length of the input port Pin to each output port is changed, so that the phase of each output port output signal is correspondingly increased or decreased.
  • the phase shifter provided by the embodiment of the invention has the same size and the same output port as the existing phase shifter, because the two sliding members respectively transmit the signals from the center of the circle to the two arcs.
  • the phase delay line and the two arc-shaped phase delay lines respectively have corresponding transmission segments, and the length of each transmission segment is longer than that of the existing phase shifter, so that standing wave matching is easier; and the input of the phase shifter is further
  • the adjustment range of the signal transmission length from the port to the output port is also increased, and the phase of the phase shifter is enlarged.
  • the bit adjustment range improves the electrical performance of the phase shifter.
  • the main PCB 103 may further include a zero phase line 103-2.
  • the zero phase line 103-2 is connected to the main signal line, and the phase output of the output port P3 is constant for outputting zero phase, and may be combined with other output ports.
  • the output phase forms an equal phase.
  • the P3 phase is 0, and is adjusted by rotating the rotating shaft 102 such that the phases of the outputs of P1, P2, P3, P4, and P5 are -2 ⁇ , -1 ⁇ , 0, 1 ⁇ , 2 ⁇ , respectively, where ⁇ is the phase angle.
  • FIG. 4 is a schematic structural diagram of an arc-shaped phase delay line using an ultra-slow wave structure according to another embodiment of the present invention
  • FIG. 5 is a schematic diagram of an arc-shaped phase delay line using a conventional structure according to another embodiment of the present invention
  • the arc-shaped phase delay line 203-4 having an ultra-slow wave structure has a serpentine shape, and the serpentine slit has a depth l1, and its radius with respect to the axis of the rotating shaft 202 is r1, and the arc-shaped phase delay The difference between the inner and outer diameters of the wire, that is, the width d1.
  • the arc-shaped phase delay line 203-5 of the conventional structure has a radius r2 with respect to the axis of the rotating shaft 202, and the difference between the inner diameter and the outer diameter of the arc-shaped phase delay line, that is, an arc
  • the width of the phase retardation line is d2.
  • the phase delay line using the ultra-slow wave structure is generally serpentine.
  • the width d1 of the arc-shaped phase line using the ultra-slow wave structure is generally larger than the arc-shaped phase delay line d2 using the conventional structure, for example, D1 is greater than twice the d2, and the depth l1 of the serpentine slit may take a value of 0.6 to 0.9 times d1. It should be noted that the embodiments herein are merely examples, and the embodiments of the present invention are not limited thereto.
  • the slider 204 has a sub-center coupling section 204-1, a transmission section 204-2 and a delay line coupling section 204-3 that couple signals from the main coupling section 203-3 near the rotating shaft 202 to the circle.
  • the arc phase delay line is output to the output port.
  • the slider 204 is swung from the angle 1 to the angle 2 along the axis, the ultra-slow wave is used.
  • the phase change of the output port P1 of the arc-shaped phase delay line 203-4 of the structure is as shown in Fig.
  • the phase change of the output port P2 of the arc-shaped phase delay line 203-5 of the conventional structure is as shown in Fig. 7.
  • the vertical axis is the phase
  • the unit is the degree
  • the horizontal axis is the frequency
  • the unit is GHz.
  • the arc phase phase delay line 203-4 using an ultra-slow wave structure has an output phase at angle 1 -64.3344 degrees
  • the output phase at angle 2 is -296.0942 degrees
  • the arc-shaped phase delay line 203-5 using the conventional structure has an output phase of -45.6899 degrees at angle 1 and an output phase of -145.1370 at angle 2. It can be seen from the data of Fig. 6 and Fig.
  • the output phase of the arc-shaped phase delay line using the ultra-slow wave structure is smaller than the output phase of the arc-shaped phase delay line using the conventional structure at the same frequency and the same angle.
  • the phase shift amount of the two arc-shaped phase delay lines is compared, and the phase shift amount here is the absolute value of the difference between the output phases of the angle 1 and the angle 2, and the meaning thereof It can indicate the adjustment range of the phase, and the phase shift amount of the arc-shaped phase delay line 203-4 using the ultra-slow wave structure is 231.6487 degrees, and the phase shift amount of the arc-shaped phase delay line 203-5 of the conventional structure is 99.4471. degree.
  • At least one of the first arc-shaped phase delay line and the second arc-shaped phase delay line is an arc-shaped phase delay line using an ultra-slow wave structure.
  • the first arc-shaped phase delay line 103-4 is an arc-shaped phase delay line using a conventional structure
  • the second arc-shaped phase delay line 103-5 is an arc shape using an ultra-slow wave structure.
  • the first arc-shaped phase delay line 103-4 is an arc-shaped phase delay line using an ultra-slow wave structure
  • the second arc-shaped phase delay line is an arc-shaped phase delay line using a conventional structure.
  • the embodiments herein are merely illustrative, and the embodiments of the present invention are not limited thereto. Due to the same radius, that is, under the same size, the phase shifting amount of the phase delay line using the ultra-slow wave structure can be more than doubled compared with the phase delay line using the conventional structure, so that it can be further The phase adjustment range of the phase shifter is more than doubled.
  • FIG. 8 is an external structural diagram of a phase shifter according to another embodiment of the present invention.
  • the phase shifter is a lumped 6-port phase shifter
  • FIG. 9 is a front side of a main PCB of the phase shifter provided in the embodiment.
  • FIG. 10 is a schematic plan view showing the internal structure of the phase shifter on the back side of the main PCB provided by the embodiment.
  • the phase shifter 40 includes a cavity 401, a rotating shaft 402, a main PCB 403, a first slider 404A and a second slider 404B.
  • the front and back sides of the main PCB 403 are coupled to the first slider 404A and the second slider 404B, respectively, and are inserted into the slots of the cavity 401 so that there is no contact between the signal strip of the phase shifter and the cavity 401. Form a stripline distribution.
  • the rotating shaft 402 is inserted into the cavity 401 and connected to the first sliding member 404A and the second sliding member 404B respectively to drive the first sliding member 404A and the second sliding member 404B to rotate relative to the main PCB 403.
  • the main PCB 403 includes a main signal line 403-1, a zero phase line 403-2, a main center coupling section, a first arc-shaped phase delay line 403-4, and a second arc-shaped phase delay line 403-5.
  • the main signal line 403-1 has an input port Pin for receiving an input signal and is connected to the main center coupling section.
  • the first arc-shaped phase retardation line 403-4 and the second arc-shaped phase retardation line 403-5 are distributed center-centered by the center of the rotating shaft 402, are located outside the main center coupling section, and are located on the same side of the rotating shaft 402.
  • the first arc-shaped phase delay line 403-4 has two output ports P1 and P5, and the second arc-shaped phase delay line 403-5 has two output ports P2 and P4.
  • the zero phase line 403-2 is connected to the main signal line 403-1 and has an output port P3.
  • the first slider 404A includes a first sub-center coupling section 404A-1, a first transmission section 404A-2, and a first delay line coupling section 404A-3.
  • the first slider 404A is for transmitting signal coupling to the first arcuate phase delay line 403-4.
  • the second slider 404B includes a second sub-center coupling section 404B-1, a second transmission section 404B-2, and a second delay line coupling section 404B-3.
  • the second slider 404B is for transmitting signal coupling to the second arcuate phase delay line 403-5.
  • the phase shifter 40 can also include a coaxial line 412 for electrically connecting the output signals to the respective input ports and output ports for connecting the radiating elements such that the signals can be effectively output to produce a pattern.
  • the phase shifter provided by the embodiment of the invention has the same size and the same output port as the existing phase shifter, because the two sliding members respectively transmit the signals from the center of the circle to the two arcs.
  • the phase delay line and the two arc-shaped phase delay lines respectively have corresponding transmission segments, and the length of each transmission segment is longer than that of the existing phase shifter, so that standing wave matching is easier; and the input of the phase shifter is further
  • the adjustment range of the signal transmission length from the port to the output port is also increased, the phase adjustment range of the phase shifter is expanded, and the electrical performance of the phase shifter is improved.
  • the arc-shaped phase delay line may be added to the main PCB of the phase shifter, and each arc-shaped phase delay line has two output ports.
  • each of the arc-shaped phase delay lines may have a center of the rotating shaft distributed on the same side or both sides. Accordingly, it is necessary to add a sub-center coupling section, a transmission section and a delay line coupling section on the first slider or the second slider for transmitting signals from the center coupling to the newly added arc-shaped phase delay line output.
  • FIG. 11 is an external structural diagram of a phase shifter according to another embodiment of the present invention.
  • the phase shifter has 8 ports.
  • FIG. 12 is a schematic plan view showing the internal structure of the front side of the main PCB of the phase shifter provided by the embodiment. .
  • the phase shifter 50 includes a cavity 501, a rotating shaft 502, a main PCB 503, a first slider 504A and a second slider 504B.
  • the main PCB 503 includes a main signal line 503-1, a zero phase line 503-2, a main center coupling section, a first arc-shaped phase delay line 503-4, and a second arc-shaped phase delay line 503-5.
  • the first slider 504A includes a first sub-center coupling section 504A-1, a first transmission section 504A-2, and a first delay line coupling section 504A-3.
  • the first slider 504A is for transmitting signal coupling to the first arcuate phase delay line 503-4.
  • the second slider 504B includes a second sub-center coupling section, a second transmission section, and a second delay line coupling section.
  • the second slider 504B is for transmitting signal coupling to the second arc-shaped phase delay line 503-5.
  • the second arc-shaped phase delay line 503-5 and the second slider 504B are located on the back of the main PCB.
  • the main PCB 503 further includes a third arc-shaped phase delay line 503-6.
  • the third arc-shaped phase delay line 503-6 is distributed centered on the center of the rotating shaft 502, and is located outside the main center coupling section, and is opposite to the first
  • the arc-shaped phase delay line 503-3 is distributed on the other side of the rotating shaft 502, and the radius thereof may be the same as the radius of the first arc-shaped phase delay line 503-4, or may be the same with the first arc-shaped phase delay line 503- The radius of 4 is different.
  • the third arc-shaped phase delay line 503-6 may be an ultra-slow wave structure or a conventional structure. It should be noted that the embodiments herein are merely examples, and the embodiments of the present invention are not limited thereto.
  • the third arc-shaped phase delay line 503-6 has two output ports.
  • the first slider 504A further includes a third sub-center coupling section 504A-4, a third transmission section 504A-5, and a third delay line coupling section 504A-6.
  • the third sub-center coupling section 504A-4 is adjacent to the rotating shaft 502, and is coupled to the main center coupling section, and may be an annular surrounding rotating shaft 502 or an arc of a circle centered on the rotating shaft 502.
  • the third secondary center coupling section 504A-4 can also be a coupling section of other shapes in the vicinity of the rotating shaft 502.
  • the third sub-center coupling section 504A-4 may be coupled to the first sub-center coupling section 504A-1 as a sub-center coupling section or may be separated from the first sub-center coupling section 504A-1. It should be noted that the embodiments herein are merely illustrative, and the embodiments of the present invention are not limited thereto.
  • the third sub-center coupling section 504A-4 and the third delay line coupling section 504A-6 are connected by a third transmission section 504A-5 such that the third delay line coupling section 504A-6 and the third arc-shaped phase delay Line 503-6 is coupled to ensure that the signal can be coupled to the third arcuate phase delay line 503-6 via the third delay line coupling section 504A-6.
  • the phase shifter 50 can also include a coaxial line 512 for electrically connecting the output signals to the input and output ports to connect the radiating elements such that the signals can be effectively output to produce a pattern.
  • phase shifter provided by the embodiment of the present invention not only has the advantages of the phase shifter of the foregoing embodiment, but also increases the deployment of the arc-shaped phase delay line on the other side of the rotating shaft, so that the output port of the phase shifter is in the foregoing embodiment. It has also been increased on the basis.
  • the embodiment of the present invention further provides an antenna.
  • the phase shifter included in the antenna shown in this embodiment is as described above, and is not described in detail in this embodiment.
  • the antenna can be used in a wireless communication device.
  • the embodiment of the present invention further provides a wireless communication device.
  • the antenna included in the wireless communication device in this embodiment refers to the foregoing embodiment.
  • the embodiment of the present invention further provides a wireless communication device.
  • the phase shifter included in the wireless communication device in this embodiment is as described above, and is not described in detail in this embodiment.
  • the wireless communication device herein may be a base station or a terminal device. Embodiments of the invention are not limited thereto.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本发明实施例公开了移相器、天线和无线通信设备。该移相器包括腔体、转轴、主电路印刷板PCB,第一滑动件和第二滑动件。第一滑动件位于主PCB的正面,与主PCB耦合连接,用于将信号耦合传递到主PCB的第一圆弧状相位延迟线;第二滑动件位于主PCB的背面,与主PCB耦合连接,用于将信号耦合传递到主PCB的第二圆弧状相位延迟线;转轴插入腔体与第一滑动件和第二滑动件连接,以带动第一滑动件和第二滑动件相对于主PCB转动;第一圆弧状相位延迟线和第二圆弧状相位延迟线以转轴的中心为圆心分布,并且位于主中心耦合段的外侧。上述移相器可以增加输出端口的相位调节范围,提高移相器的电性能。本发明还公开了天线和无线通信设备。

Description

移相器、天线和无线通信设备 技术领域
本发明实施例涉及通信领域,尤其涉及移相器、天线和无线通信设备。
背景技术
随着移动通信应用日益广泛,人们对通信容量和质量都提出了更高的要求。下倾角可调的电调天线可以实现良好的覆盖,并且减少小区之间的干扰。移相器作为电调天线的一个重要部件,其相位调节范围对驻波匹配的效果有着较大的影响。另一方面,随着基站射频系统中天线端口数不断增加,移相器的小型化需求也越来越迫切。
移相器通过调节输入端口到输出端口的信号传递长度改变输出端口的输出相位。在现有技术中,为了提高移相器的电性能,扩大相位调节范围,往往需要使得输入端口到输出端口的信号传递长度可以在较大范围内进行增加或减少,从而增加移相器的尺寸。
发明内容
有鉴于此,本发明实施例提供了一种移相器、天线和无线通信设备,能有效减小移相器的尺寸并且具有良好的电性能。
第一方面,本发明实施例提供了一种移相器,包括:腔体、转轴、主电路印刷板PCB、第一滑动件、第二滑动件,在所述腔体中,所述第一滑动件位于所述主PCB的正面,与所述主PCB耦合连接,所述第二滑动件位于所述主PCB的背面,与所述主PCB耦合连接,所述转轴插入所述腔体,与所述第一滑动件和所述第二滑动件连接,以带动所述第一滑动件和所述第二滑动件相对于主PCB转动;其中:所述腔体,用于组成所述移相器的带状线的上下地层;所述主PCB包括主信号线、主中心耦合段、第一圆弧状相位延迟线以及第二圆弧状相位延迟线;其中,所述主信号线用于接收输入信号,与所述主中心耦合段连接,所述主中心耦合段靠近所述转轴,部署在所述主PCB基材 的两侧,且所述主中心耦合段的电路相互连通,所述第一圆弧状相位延迟线和所述第二圆弧状相位延迟线以所述转轴的中心为圆心分布,并且位于所述主中心耦合段的外侧,所述第一圆弧状相位延迟线具有两个输出端口,所述第二圆弧状相位延迟线具有两个输出端口;所述第一滑动件包括第一副中心耦合段,第一传输段和第一延迟线耦合段;其中,所述第一副中心耦合段靠近所述转轴,与所述主中心耦合段耦合连接,所述第一延迟线耦合段通过所述第一传输段与所述第一副中心耦合段连接,以使得所述第一延迟线耦合段与第一圆弧状相位延迟线耦合连接;所述第二滑动件包括第二副中心耦合段,第二传输段和第二延迟线耦合段;其中,所述第二副中心耦合段靠近转轴,与所述主中心耦合段耦合连接,所述第二延迟线耦合段通过所述第二传输段与所述第二副中心耦合段连接,以使得所述第二延迟线耦合段与第二圆弧状相位延迟线耦合连接。
在第一方面的第一种可能的实现方式中,所述第一圆弧状相位延迟线与所述第二圆弧状相位延迟线中至少有一个为采用超慢波结构的相位延迟线。
结合第一方面或者第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一圆弧状相位延迟线与所述第二圆弧状相位延迟线在所述转轴的同一侧。
结合第一方面,或者第一方面第一到第二种中任意一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述移相器还包括零相位线,所述零相位线与所述主信号线连接,具有第三输出端口。
结合第一方面,或者第一方面第一到第三种中任意一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一滑动件为金属块或PCB;所述第二滑动件为金属块或PCB。
结合第一方面,或者第一方面第一到第四种中任意一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述移相器还包括第三圆弧状相位延迟线,所述第三圆弧状相位延迟线具有两个输出端口。
结合第一方面第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第一滑动件还包括第三传输段和第三延迟线耦合段,所述第三延迟线耦合段通过所述第三传输段与所述第一副中心耦合段连接,以使得所述第三延迟线耦合段与第三圆弧状相位延迟线耦合连接。
结合第一方面的第五种或第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第三圆弧状相位延迟线相对于所述第一圆弧状相位延迟线分布在所述转轴的另一侧。
结合第一方面上述任一中可能的实现方式,在第一方面的第八种可能的实现方式中,各所述输出端口分布与辐射单元连接。
第二方面,本发明实施例提供一种天线,所述天线包括第一方面任一种可能的实现方式的移相器。
第三方面,本发明实施例提供一种无线通信设备,所述无线通信设备包括第二方面任一种可能的实现方式的天线。
第四方面,本发明实施例提供一种无线通信设备,所述无线通信设备包括第一方面任一种可能的实现方式的移相器。
本发明实施例的移相器、天线和无线通信设备,相比于现有移相器,在相同尺寸,相同输出端口的条件下,由于两个滑动件都是从圆心将信号分别耦合传递到两个圆弧状相位延迟线,两个圆弧状相位延迟线分别有对应的传输段,各传输段的长度相比于现有移相器更长,移相器的输入端口到输出端口的信号传递长度的调节范围得以增加,输出端口的相位调节范围扩大,从而更容易进行驻波匹配,提高了移相器的电性能。
附图说明
图1为本发明一实施例提供的移相器的结构纵向剖面示意图;
图2为本发明另一实施例提供的移相器的结构内部分解示意图;
图3为本发明另一实施例提供的移相器的主中心耦合段剖面图;
图4为本发明另一实施例提供的采用超慢波结构的圆弧状相位延迟线的 结构示意图;
图5为本发明另一实施例提供的采用常规结构的圆弧状相位延迟线的结构示意图;
图6为本发明另一实施例提供的采用超慢波结构的圆弧状相位延迟线的输出相位变化图;
图7为本发明另一实施例提供的采用常规结构的圆弧状相位延迟线的输出相位变化图;
图8为本发明另一实施例提供的移相器外部结构图;
图9为本发明另一实施例提供的移相器的主PCB正面一侧的内部结构的平面示意图;
图10为本发明另一实施例提供的移相器的主PCB背面一侧的内部结构的平面示意图;
图11为本发明另一实施例提供的移相器外部结构图;
图12为本发明另一实施例提供的移相器的主PCB正面一侧的内部结构的平面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,可以理解的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明一实施例提供的移相器的结构纵向剖面示意图,如图1所示,移相器包括:腔体101,转轴102,主印刷电路板(printed circuit board,PCB)103,第一滑动件104A以及第二滑动件104B。其中,腔体101用于组成移相器的带状线的上下地层。在腔体101中,第一滑动件104A和第二滑动件104B分别位于主PCB 103的正面和背面,与主PCB 103耦合连接。例如,如图1所示,主PCB103 向上的一面为正面,则相应地向下的一面为背面,则第一滑动件104A在主PCB 103的上面,第二滑动件104B在主PCB 103的下面。主PCB 103可以采用多种方式与第一滑动件104A、第二滑动件104B形成耦合连接,例如,采用绝缘膜,涂覆料等,第一滑动件104A以及第二滑动件104B可以是PCB或者金属件,本发明实施例并不限于此。主PCB 103、第一滑动PCB 104A以及第二滑动PCB 104B均居于腔体101中,使得移相器的信号带线与腔体101之间无接触点,形成带状线分布。
转轴102插入腔体101,与第一滑动件104A、第二滑动件104B分别连接,以带动第一滑动件104A、第二滑动件104B相对于主PCB 103转动。在一种实现方式中,转轴102通过穿孔插入腔体101,从上至下依次穿过第一滑动件104A,主PCB 103以及第二滑动件104B,第一滑动件104A和第二滑动件104B分别紧固在转轴102上,从而转轴102转动时,带动第一滑动件104A和第二滑动件104B相对于主PCB 103转动。需要说明的是,此处仅是举例,本发明实施例并不限于此。
参见图2,为本发明另一实施例提供的移相器的结构内部分解示意图,如图所示:主PCB 103包括主信号线103-1,主中心耦合段103-3,第一圆弧状相位延迟线103-4以及第二圆弧状相位延迟线103-5。
其中,主信号线103-1具有输入端口Pin,用于接收输入信号,并与主中心耦合段103-3连接,主中心耦合段103-3靠近转轴102,部署于主PCB 103的基材的两侧,主中心耦合段103-3在主PCB 103的基材的两侧的电路是相互连通的,如图4所示。主中心耦合段103-3可以是以转轴102的中心为圆心部署,这里主中心耦合段103-3可以是圆环状,环绕转轴102,也可以是以转轴102为圆心的一段圆弧。主中心耦合段103-3也可以是在转轴102附近的其他形状的耦合段。需要说明的是,此处仅为举例,本发明不限于此。
第一圆弧状相位延迟线103-4和第二圆弧状相位延迟线103-5以转轴102的中心为圆心分布,并且位于主中心耦合段103-3的外侧。第一圆弧状相位延迟线103-4具有两个输出端口P2和P4,第二圆弧状相位延迟线103-5 具有两个输出端口P1和P5。
第一滑动件104A,具有第一副中心耦合段104A-1、第一传输段104A-2和第一延迟线耦合段104A-3。
第一副中心耦合段104A-1靠近转轴102,与主中心耦合段103-3耦合连接,例如,第一副中心耦合段104A-1可以是以转轴102的中心为圆心部署,这里第一副中心耦合段104A-1可以是圆环状,环绕转轴102,也可以是以转轴102为圆心的一段圆弧。第一副中心耦合段104A-1也可以是在转轴102附近的其他形状的耦合段。需要说明的是,此处仅为举例说明,本发明实施例并不限于此。由于主PCB 103和第一滑动件104A耦合连接,主中心耦合段103-3和第一副中心耦合段104A-1均靠近转轴,其部署的位置保证两者也能耦合连接。第一副中心耦合段104A-1和第一延迟线耦合段104A-3之间通过第一传输段104A-2连接,以使得第一延迟线耦合段104A-3和第一圆弧状相位延迟线103-4耦合连接,从而保证信号可以通过第一延迟线耦合段104A-3耦合传递到第一圆弧状相位延迟线103-4。例如,第一副中心耦合段104A-1和第一延迟线耦合段104A-3分别位于第一传输段104A-2的两端,第一传输段104A-2可以是直线段形状,也可以是其他折线段或者曲线段形状,两端之间的直线距离使得第一延迟线耦合段104A-3和第一圆弧状相位延迟线103-4耦合连接即可,在本发明的一个实施例中,第一圆弧状相位延迟线103-4和第一副中心耦合段104A-1之间的半径差与第一传输段104A-2的两端之间的直线距离相匹配。需要说明的是,此处均为举例,并不限于此。从而第一滑动件104A可以用于将信号耦合传递到第一圆弧状相位延迟线103-4。
第二滑动件104B,具有第二副中心耦合段104B-1、第二传输段104B-2和第二延迟线耦合段104B-3。
第二副中心耦合段104B-1靠近转轴102,与主中心耦合段103-3耦合连接,其实现方式与第一副中心耦合段104A-1类似,此处不再赘述。由于主PCB 103和第二滑动件104B耦合连接,主中心耦合段103-3和第二副中心耦合段104B-1 均靠近转轴,其部署的位置保证两者也能耦合连接。第二副中心耦合段104B-1和第二延迟线耦合段104B-3之间通过第二传输段104B-2连接,以使得第二延迟线耦合段104B-3和第二圆弧状相位延迟线103-5耦合连接,从而保证信号可以通过第二延迟线耦合段104B-3耦合传递到第二圆弧状相位延迟线103-5。第二滑动件104B与第一滑动件104A的实现方式类似,可参见前述对第一滑动件104A各部件的描述,此处不再赘述,所不同的是第二滑动件104B中的第二延迟线耦合段104B-3是与第二圆弧状相位延迟线103-5耦合连接,第二滑动件104B用于将信号耦合传递到第二圆弧状相位延迟线103-5。
信号从输入端口Pin输入,经由主信号线103-1传递到主耦合段103-3,信号一分为二,分别通过第一滑动件104A和第二滑动件104B耦合传递到第一圆弧状相位延迟线103-4和第二圆弧状相位延迟线103-5。以第一滑动件104A为例,一分为二的其中一路信号耦合传递到与主耦合段103-3耦合连接的第一副中心耦合段104A-1,并经由第一传输段104A-2传递到第一延迟线耦合段104A-3,再耦合传递到与第一延迟线耦合段104A-3耦合连接的第一圆弧状相位延迟线103-4。通过第二滑动件104B传递的另一路信号的传递方式与之类似,此处不再赘述。
当转轴102带动第一滑动件104A和第二滑动件104B相对主PCB 103转动时,输入端口Pin到各输出端口的信号传递长度发生改变,从而各输出端口输出信号的相位相应增加或减小。以第一圆弧状相位延迟线的两个输出口为例说明,如图3所示,当第一滑动件104A从左往右,如角度1转动到角度2时,Pin到P1的信号传递长度增加,Pin到P5的信号传递长度减小,从而P1输出信号的相位减少,P5输出信号的相位增加。
本发明实施例提供的移相器,相比于现有移相器,在相同尺寸,相同输出端口的条件下,由于两个滑动件都是从圆心将信号分别耦合传递到两个圆弧状相位延迟线,两个圆弧状相位延迟线分别有各自对应的传输段,各传输段的长度相比于现有移相器更长,从而更容易进行驻波匹配;此外移相器的输入端口到输出端口的信号传递长度的调节范围也得以增加,扩大了移相器的相 位调节范围,提高了移相器的电性能。
可选地,主PCB 103还可以包括零相位线103-2,零相位线103-2与主信号线连接,其输出端口P3的相位输出恒定,用于输出零相位,可以和其他各输出端口的输出相位形成等差相位。例如,P3相位为0,通过转动转轴102调节,使得P1、P2、P3、P4和P5输出的相位分别为-2Φ,-1Φ,0,1Φ,2Φ,其中Φ为相位角。
图4为本发明另一实施例提供的采用超慢波结构的圆弧状相位延迟线的结构示意图,图5为本发明另一实施例中提供的采用常规结构的圆弧状相位延迟线的结构示意图。如图4、图5所示,以转轴202的中心为圆心,圆弧状相位延迟线以转轴202的中心为圆心分布。参见图4,采用超慢波结构的圆弧状相位延迟线203-4呈蛇形,蛇形缝隙的深度为l1,其相对于转轴202的轴心的半径为r1,该圆弧状相位延迟线内径和外径的差值,也就是宽度为d1。参见图5,采用常规结构的圆弧状相位延迟线203-5,其相对于转轴202的轴心的半径为r2,该圆弧状相位延迟线内径和外径的差值,也就是圆弧状相位延迟线的宽度为d2。采用超慢波结构的相位延迟线总体上呈蛇形,在相同阻抗下,采用超慢波结构的圆弧状相位线的宽度d1一般大于采用常规结构的圆弧状相位延迟线d2,例如,d1大于两倍的d2,蛇形缝隙的深度l1可以取值为0.6~0.9倍的d1。需要说明的是,此处仅为举例,本发明实施例并不限于此。
在图4和图5中,滑动件204具有副中心耦合段204-1,传输段204-2以及延迟线耦合段204-3,将信号从转轴202附近的主耦合段203-3耦合到圆弧状相位延迟线输出到输出口。当r1=r2时,图4和图5中角度1是相同的,图4和图5中角度2也是相同的,滑动件204沿着轴心从角度1摆动到角度2时,采用超慢波结构的圆弧状相位延迟线203-4的输出口P1的相位变化如图6所示,采用常规结构的圆弧状相位延迟线203-5的输出口P2的相位变化如图7所示。其中,纵轴均为相位,单位为度,横轴均为频率,单位为GHz。例如,在频率为2.2GHz时,采用超慢波结构的圆弧状相位延迟线203-4在角度1的输出相位为 -64.3344度,在角度2的输出相位为-296.0942度,而采用常规结构的圆弧状相位延迟线203-5在角度1的输出相位为-45.6899度,在角度2的输出相位为-145.1370。从图6和图7的数据可以看出,在相同频率,相同角度下,采用超慢波结构的圆弧状相位延迟线的输出的相位小于采用常规结构的圆弧状相位延迟线的输出相位。在滑动件204从角度1摆动到角度2时,对比两个圆弧状相位延迟线的移相量,这里的移相量也就是角度1和角度2的输出相位之差的绝对值,其含义可以表示相位的调节范围,则采用超慢波结构的圆弧状相位延迟线203-4的移相量为231.6487度,采用常规结构的圆弧状相位延迟线203-5的移相量为99.4471度。可见采用超慢波结构的圆弧状相位延迟线的相位的调节范围要远大于采用常规结构的圆弧状相位延迟线。需要说明的是,此处各数据均只是举例,本发明实施例并不限于此。
在本发明一个实施例中,第一圆弧状相位延迟线和第二圆弧状相位延迟线中至少有一个为采用超慢波结构的圆弧状相位延迟线。如图2所示,第一圆弧状相位延迟线103-4为采用常规结构的圆弧状相位延迟线,第二圆弧状相位延迟线103-5为采用超慢波结构的圆弧状相位延迟线。也可以是,第一圆弧状相位延迟线103-4为采用超慢波结构的圆弧状状相位延迟线,第二圆弧状相位延迟线为采用常规结构的圆弧状相位延迟线,或者两者皆为采用超慢波结构的圆弧状相位延迟线。需要说明的是,这里只是举例说明,本发明实施例并不限于此。由于在相同半径下,也就是相同尺寸的条件下,采用超慢波结构的相位延迟线的移相量相比采用常规结构的相位延迟线的移相量可以提升一倍以上,从而可以进一步将移相器的相位调节范围提升一倍以上。
图8为本发明另一实施例提供的移相器的外部结构图,该移相器为集总式6端口移相器,图9为该实施例提供的移相器的主PCB正面一侧内部结构的平面示意图,图10为该实施例提供的移相器的位于主PCB背面一侧内部结构的平面示意图。参见图9~10,该移相器40包括:腔体401,转轴402,主PCB403,第一滑动件404A和第二滑动件404B。
主PCB403其正面和背面分别与第一滑动件404A和第二滑动件404B耦合连接,被卡入腔体401的槽孔中,使得移相器的信号带线与腔体401之间无接触点,形成带状线分布。
转轴402插入腔体401,与第一滑动件404A、第二滑动件404B分别连接,以带动第一滑动件404A、第二滑动件404B相对于主PCB403转动。
主PCB 403包括主信号线403-1,零相位线403-2,主中心耦合段,第一圆弧状相位延迟线403-4以及第二圆弧状相位延迟线403-5。主信号线403-1具有输入端口Pin,用于接收输入信号,并与主中心耦合段连接。第一圆弧状相位延迟线403-4和第二圆弧状相位延迟线403-5以转轴402的中心为圆心分布,位于主中心耦合段的外侧,且位于转轴402的同一侧。第一圆弧状相位延迟线403-4具有两个输出端口P1和P5,第二圆弧状相位延迟线403-5具有两个输出端口P2和P4。零相位线403-2与主信号线403-1连接,具有输出端口P3。
第一滑动件404A包括第一副中心耦合段404A-1、第一传输段404A-2和第一延迟线耦合段404A-3。第一滑动件404A用于将信号耦合传递到第一圆弧状相位延迟线403-4。
第二滑动件404B包括第二副中心耦合段404B-1、第二传输段404B-2和第二延迟线耦合段404B-3。第二滑动件404B用于将信号耦合传递到第二圆弧状相位延迟线403-5。
该移相器40还可以包括同轴线412,用于与各输入端口和输出端口电连接输出信号,以便连接辐射单元,使得信号能有效输出产生方向图。
当信号从Pin输入,一部分能量经由零相位线403-2的输出口P3输出,形成零相位,另一部分能量通过主中心耦合段一分为二,分别通过第一滑动件404A和第二滑动件404B耦合传递到第一圆弧状相位延迟线403-4和第二圆弧状相位延迟线403-5,从各输出端口P1、P2、P4和P5输出。
第一滑动件404A和第二滑动件404B被转轴402带动绕转轴402中心转动时,从输入端口Pin到达不同输出端口P1,P2,P4和P5的信号传递长度发生变 化,改变了上述输出端口的相位值,从而产生移相作用。
需要说明的是,本发明实施例的结构和连接方式可参见前述实施例的相关记载,其实现原理和技术效果类似,在此不再赘述。
本发明实施例提供的移相器,相比于现有移相器,在相同尺寸,相同输出端口的条件下,由于两个滑动件都是从圆心将信号分别耦合传递到两个圆弧状相位延迟线,两个圆弧状相位延迟线分别有各自对应的传输段,各传输段的长度相比于现有移相器更长,从而更容易进行驻波匹配;此外移相器的输入端口到输出端口的信号传递长度的调节范围也得以增加,扩大了移相器的相位调节范围,提高了移相器的电性能。
进一步地,为了增加输出端口,基于上述实施例,移相器的主PCB上还可以增加部署圆弧状相位延迟线,每个圆弧状相位延迟线均具有两个输出端口。为了使信号从转轴的中心耦合传递到各圆弧状相位延迟线,各圆弧状相位延迟线可以转轴的中心为圆心分布在同侧或者两侧。相应地在第一滑动件或者第二滑动件上需要增加副中心耦合段,传输段以及延迟线耦合段,用于将信号从圆心耦合传递到新增加的圆弧状相位延迟线输出。
图11为本发明另一实施例提供的移相器的外部结构图,该移相器具有8端口,图12为该实施例提供的移相器的主PCB正面一侧的内部结构的平面示意图。该移相器的主PCB背面一侧的内部结构的平面示意图可以参考前述实施例,此处不赘述。参见图11~12,该移相器50包括:腔体501,转轴502,主PCB503,第一滑动件504A和第二滑动件504B。主PCB503包括主信号线503-1,零相位线503-2,主中心耦合段,第一圆弧状相位延迟线503-4以及第二圆弧状相位延迟线503-5。第一滑动件504A包括第一副中心耦合段504A-1、第一传输段504A-2和第一延迟线耦合段504A-3。第一滑动件504A用于将信号耦合传递到第一圆弧状相位延迟线503-4。第二滑动件504B包括第二副中心耦合段、第二传输段和第二延迟线耦合段。第二滑动件504B用于将信号耦合传递到第二圆弧状相位延迟线503-5。其中第二圆弧状相位延迟线503-5和第二滑动件504B位于主PCB背 面,其结构和部署可以参见前述实施例,此处不再赘述。
主PCB503还包括了第三圆弧状相位延迟线503-6,第三圆弧状相位延迟线503-6以转轴502的中心为圆心分布,位于主中心耦合段的外侧,且相对于第一圆弧状相位延迟线503-3分布在转轴502的另一侧,其半径可以与第一圆弧状相位延迟线503-4的半径相同,也可以与第一圆弧状相位延迟线503-4的半径不同。第三圆弧状相位延迟线503-6可以采用超慢波结构,也可以采用常规结构。需要说明的是,此处仅为举例,本发明实施例并不限于此。第三圆弧状相位延迟线503-6具有两个输出端口。
相应地,第一滑动件504A还包括第三副中心耦合段504A-4,第三传输段504A-5和第三延迟线耦合段504A-6。第三副中心耦合段504A-4靠近转轴502,与主中心耦合段耦合连接,可以是圆环状环绕转轴502,也可以是以转轴502为圆心的一段圆弧。第三副中心耦合段504A-4也可以是在转轴502附近的其他形状的耦合段。进一步地,第三副中心耦合段504A-4可以和第一副中心耦合段504A-1连接成为一个副中心耦合段,也可以和第一副中心耦合段504A-1分离开来。需要说明的是,此处仅为举例说明,本发明实施例并不限于此。
第三副中心耦合段504A-4和第三延迟线耦合段504A-6之间通过第三传输段504A-5连接,以使得第三延迟线耦合段504A-6和第三圆弧状相位延迟线503-6耦合连接,从而保证信号可以通过第三延迟线耦合段504A-6耦合传递到第三圆弧状相位延迟线503-6。
该移相器50还可以包括同轴线512,用于与各输入端口和输出端口电连接输出信号,以便连接辐射单元,使得信号能有效输出产生方向图。
需要说明的是,本发明实施例的结构和连接方式可参见前述实施例的相关记载,其实现原理和技术效果类似,在此不再赘述。
本发明实施例提供的移相器,不仅具有前述实施例移相器的优点,并且由于在转轴的另一侧增加部署圆弧状相位延迟线,从而移相器的输出端口在前述实施例的基础上也得到了增加。
本发明实施例还提供了一种天线,本实施例所示的天线所包括的移相器请参见上述所示,具体在本实施例中不做赘述。该天线可以用于无线通信设备。
相应地,本发明实施例还提供了一种无线通信设备,本实施例所述的无线通信设备所包括的天线参见上述实施例。
本发明实施例还提供了一种无线通信设备,本实施例所述的无线通信设备所包括的移相器参见上述所示,具体在本实施例中不做赘述。
这里的无线通信设备可以是基站,也可以是终端设备。本发明实施例并不限于此。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种移相器,其特征在于,所述移相器包括腔体、转轴、主电路印刷板PCB、第一滑动件、第二滑动件,在所述腔体中,所述第一滑动件位于所述主PCB的正面,与所述主PCB耦合连接,所述第二滑动件位于所述主PCB的背面,与所述主PCB耦合连接,所述转轴插入所述腔体,与所述第一滑动件和所述第二滑动件连接,以带动所述第一滑动件和所述第二滑动件相对于主PCB转动;其中:
    所述腔体,用于组成所述移相器的带状线的上下地层;
    所述主PCB包括主信号线、主中心耦合段、第一圆弧状相位延迟线以及第二圆弧状相位延迟线;其中,
    所述主信号线用于接收输入信号,与所述主中心耦合段连接,所述主中心耦合段靠近所述转轴,部署在所述主PCB基材的两侧,且所述主中心耦合段的电路相互连通,所述第一圆弧状相位延迟线和所述第二圆弧状相位延迟线以所述转轴的中心为圆心分布,并且位于所述主中心耦合段的外侧,所述第一圆弧状相位延迟线具有两个输出端口,所述第二圆弧状相位延迟线具有两个输出端口;
    所述第一滑动件包括第一副中心耦合段,第一传输段和第一延迟线耦合段;其中,
    所述第一副中心耦合段靠近所述转轴,与所述主中心耦合段耦合连接,所述第一延迟线耦合段通过所述第一传输段与所述第一副中心耦合段连接,以使得所述第一延迟线耦合段与第一圆弧状相位延迟线耦合连接;
    所述第二滑动件包括第二副中心耦合段,第二传输段和第二延迟线耦合段;其中,
    所述第二副中心耦合段靠近转轴,与所述主中心耦合段耦合连接,所述第二延迟线耦合段通过所述第二传输段与所述第二副中心耦合段连接,以使得所述第二延迟线耦合段与第二圆弧状相位延迟线耦合连接。
  2. 根据权利要求1所述的移相器,其特征在于,所述第一圆弧状相位延迟线与所述第二圆弧状相位延迟线中至少有一个为采用超慢波结构的相位延迟线。
  3. 根据权利要求1或2所述的移相器,所述第一圆弧状相位延迟线与所述第二圆弧状相位延迟线在所述转轴的同一侧。
  4. 根据权利要求1至3任一项所述的移相器,其特征在于,所述移相器还包括零相位线,所述零相位线与所述主信号线连接,具有第三输出端口。
  5. 根据权利要求1至4任一项所述的移相器,其特征在于,所述第一滑动件为金属块或PCB;所述第二滑动件为金属块或PCB。
  6. 根据权利要求3所述的移相器,所述移相器还包括第三圆弧状相位延迟线,所述第三圆弧状相位延迟线具有两个输出端口。
  7. 根据权利要求6所述的移相器,所述第一滑动件还包括第三传输段和第三延迟线耦合段,所述第三延迟线耦合段通过所述第三传输段与所述第一副中心耦合段连接,以使得所述第三延迟线耦合段与第三圆弧状相位延迟线耦合连接。
  8. 根据权利要求6或7所述的移相器,所述第三圆弧状相位延迟线相对于所述第一圆弧状相位延迟线分布在所述转轴的另一侧。
  9. 根据权利要求1至8任一项所述的移相器,其特征在于,各所述输出端口分布与辐射单元连接。。
  10. 一种天线,其特征在于,所述天线包括权利要求1至9任一项所述的移相器。
  11. 一种无线通信设备,其特征在于,所述无线通信设备包括权利要求10所述的天线。
  12. 一种无线通信设备,其特征在于,所述无线通信设备包括权利要求1至9任一项所述的移相器。
PCT/CN2015/099551 2015-12-29 2015-12-29 移相器、天线和无线通信设备 WO2017113120A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/099551 WO2017113120A1 (zh) 2015-12-29 2015-12-29 移相器、天线和无线通信设备
EP15911751.4A EP3386026B1 (en) 2015-12-29 2015-12-29 Phase shifter, antenna and wireless communication device
MX2018007994A MX2018007994A (es) 2015-12-29 2015-12-29 Desplazador de fase, antena y dispositivo de radiocomunicacion.
CN201580085599.6A CN108475834B (zh) 2015-12-29 2015-12-29 移相器、天线和无线通信设备
US16/023,774 US10741898B2 (en) 2015-12-29 2018-06-29 Phase shifter having arc-shaped phase delay lines on opposite sides of a PCB which are adjusted by slidable parts, an antenna, and radio communications device formed therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099551 WO2017113120A1 (zh) 2015-12-29 2015-12-29 移相器、天线和无线通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/023,774 Continuation US10741898B2 (en) 2015-12-29 2018-06-29 Phase shifter having arc-shaped phase delay lines on opposite sides of a PCB which are adjusted by slidable parts, an antenna, and radio communications device formed therefrom

Publications (1)

Publication Number Publication Date
WO2017113120A1 true WO2017113120A1 (zh) 2017-07-06

Family

ID=59224154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099551 WO2017113120A1 (zh) 2015-12-29 2015-12-29 移相器、天线和无线通信设备

Country Status (5)

Country Link
US (1) US10741898B2 (zh)
EP (1) EP3386026B1 (zh)
CN (1) CN108475834B (zh)
MX (1) MX2018007994A (zh)
WO (1) WO2017113120A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232454A (zh) * 2018-03-21 2018-06-29 中天宽带技术有限公司 一种具有间隙矫正装置的移相器
CN114122645A (zh) * 2021-08-31 2022-03-01 北京华镁钛科技有限公司 一种低损耗移相器及液晶天线

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556097A (zh) * 2018-12-07 2019-04-02 深圳市冠科科技有限公司 一种感应元件及可调插拔控制接口装置
US20230307831A1 (en) * 2019-11-26 2023-09-28 Commscope Technologies Llc Stripline wiper-type phase shifter for a base station antenna
CN111725630A (zh) * 2020-06-23 2020-09-29 Oppo广东移动通信有限公司 阵列天线组件、天线模组及电子设备
CN212392361U (zh) 2020-07-22 2021-01-22 昆山立讯射频科技有限公司 移相器
WO2022099502A1 (en) * 2020-11-11 2022-05-19 Nokia Shanghai Bell Co., Ltd. Phase shifter and antenna device
CN114883764B (zh) * 2022-05-23 2024-02-02 中国人民解放军63660部队 一种宽频带高功率微波移相器
CN117810697A (zh) * 2022-09-26 2024-04-02 华为技术有限公司 移相器、基站天线及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019720A1 (en) * 2001-08-23 2003-03-06 Ems Technologies, Inc. Microstrip phase shifter
CN1853314A (zh) * 2003-07-14 2006-10-25 Ace技术株式会社 具有功率分配功能的移相器
CN102119468A (zh) * 2008-08-11 2011-07-06 Ace技术株式会社 电缆电连接的天线
CN102263313A (zh) * 2011-07-27 2011-11-30 华为技术有限公司 一种移相装置及其应用的天线系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938862C1 (de) 1999-08-17 2001-03-15 Kathrein Werke Kg Hochfrequenz-Phasenschieberbaugruppe
US7298233B2 (en) 2004-10-13 2007-11-20 Andrew Corporation Panel antenna with variable phase shifter
KR100894994B1 (ko) * 2007-10-05 2009-04-24 (주)에이스안테나 회전 부재와 가이드 부재가 결합되는 구조를 가지는 페이즈쉬프터
KR101017672B1 (ko) * 2008-06-26 2011-02-25 주식회사 에이스테크놀로지 페이즈 쉬프터
WO2012106903A1 (zh) * 2011-07-19 2012-08-16 华为技术有限公司 一种移相器
JP5620534B2 (ja) * 2013-03-15 2014-11-05 有限会社Nazca 移相器及びアンテナシステム
KR101553261B1 (ko) * 2014-05-09 2015-09-15 주식회사 감마누 개선된 구조의 위상 가변기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019720A1 (en) * 2001-08-23 2003-03-06 Ems Technologies, Inc. Microstrip phase shifter
CN1853314A (zh) * 2003-07-14 2006-10-25 Ace技术株式会社 具有功率分配功能的移相器
CN102119468A (zh) * 2008-08-11 2011-07-06 Ace技术株式会社 电缆电连接的天线
CN102263313A (zh) * 2011-07-27 2011-11-30 华为技术有限公司 一种移相装置及其应用的天线系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232454A (zh) * 2018-03-21 2018-06-29 中天宽带技术有限公司 一种具有间隙矫正装置的移相器
CN108232454B (zh) * 2018-03-21 2024-04-09 中天宽带技术有限公司 一种具有间隙矫正装置的移相器
CN114122645A (zh) * 2021-08-31 2022-03-01 北京华镁钛科技有限公司 一种低损耗移相器及液晶天线

Also Published As

Publication number Publication date
MX2018007994A (es) 2019-01-10
CN108475834B (zh) 2020-01-03
EP3386026A1 (en) 2018-10-10
EP3386026B1 (en) 2021-03-17
CN108475834A (zh) 2018-08-31
EP3386026A4 (en) 2018-12-26
US10741898B2 (en) 2020-08-11
US20180316075A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2017113120A1 (zh) 移相器、天线和无线通信设备
JP6981475B2 (ja) アンテナ、アンテナの構成方法及び無線通信装置
US8384607B2 (en) Compact antenna system
EP2586099B1 (en) A broadband monopole antenna with dual radiating structures
JP4400929B2 (ja) 極小型超広帯域マイクロストリップアンテナ
US10186772B2 (en) Multi-brand radiating element
WO2014110508A1 (en) Multiple-input multiple-output ultra-wideband antennas
TWI565275B (zh) 方位不知毫米波無線電鏈路
EP2950394A1 (en) Array antenna
US9257736B1 (en) Broadband spiral transmission line power splitter
WO2019196383A1 (zh) 一种宽波束平面背射及双向圆极化天线
CN104638359A (zh) 一种圆锥形四臂正弦天线及该天线的极化控制方法
JP2018536358A (ja) 偏波共用平面超広帯域アンテナ
CN105789802A (zh) 一种基于新型互联结构的超宽带巴伦
CN107887678B (zh) 一种移相器的设计方法
CN209767534U (zh) T型偏置电路以及用于基站天线的校准板
JP2007129682A (ja) 円偏波アンテナ
CN103794854B (zh) 一种具有低截止频率的紧凑型超宽带天线
CN111262027A (zh) 小型化宽带正交馈电网络
US10020584B2 (en) Hourglass-coupler for wide pattern-bandwidth sector
WO2014115653A1 (ja) アンテナ及びセクタアンテナ
CN112134005A (zh) 一种偶极子天线及无线设备
CN110661063A (zh) 一种基片集成波导馈电的宽带同轴旋转关节
KR101484976B1 (ko) 포트 전송선 갭을 포함하는, 4포트로 구성된, 2-섹션 하이브리드 커플러
CN203813004U (zh) 漏泄馈线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007994

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015911751

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911751

Country of ref document: EP

Effective date: 20180705