WO2017111514A1 - 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지 - Google Patents

이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2017111514A1
WO2017111514A1 PCT/KR2016/015132 KR2016015132W WO2017111514A1 WO 2017111514 A1 WO2017111514 A1 WO 2017111514A1 KR 2016015132 W KR2016015132 W KR 2016015132W WO 2017111514 A1 WO2017111514 A1 WO 2017111514A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeating unit
derived
monomer
weight
copolymer
Prior art date
Application number
PCT/KR2016/015132
Other languages
English (en)
French (fr)
Inventor
강민아
류동조
한선희
최철훈
한혜수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16879381.8A priority Critical patent/EP3396750B1/en
Priority to CN201680060322.2A priority patent/CN108140840B/zh
Priority to US15/761,600 priority patent/US10862126B2/en
Priority to PL16879381T priority patent/PL3396750T3/pl
Priority claimed from KR1020160176434A external-priority patent/KR101952673B1/ko
Publication of WO2017111514A1 publication Critical patent/WO2017111514A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/04Polyadducts obtained by the diene synthesis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery binder composition, and a secondary battery electrode and a lithium secondary battery comprising the same, more specifically, a secondary battery binder composition having an excellent adhesion and low resistance of the electrode material, including alkali metal ions, and the same It relates to a secondary battery electrode, and a lithium secondary battery comprising the same.
  • An electrode of a lithium secondary battery is prepared by mixing a positive electrode active material or a negative electrode active material with a binder resin component and dispersing it in a solvent to make a slurry, and applying this to the surface of an electrode current collector to form a mixture layer after drying.
  • the binder is used to secure adhesion or binding force between the active material and the active material, and between the active material and the electrode current collector, but an excess binder is required to improve the adhesion between the electrode current collector and the active material.
  • the excess binder has a problem of lowering the electrode capacity and conductivity.
  • insufficient adhesive force causes the electrode peeling phenomenon in the process of electrode drying, pressing, etc., thereby increasing the electrode defect rate.
  • an electrode with low adhesive force may be peeled off by an external impact, and this electrode peeling may increase contact resistance between the electrode material and the current collector, which may cause deterioration of electrode output performance.
  • the binder and the use of the present invention can provide a secondary battery having improved performance by providing better adhesion and solving an electrochemical performance deterioration problem due to electrode peeling, detachment of the active material from the current collector, or a change in contact interface between the active materials.
  • the problem to be solved of the present invention is to provide a binder composition for a secondary battery that can improve the electrochemical performance of the battery by showing a low resistance while providing more excellent adhesion.
  • Another object of the present invention is to provide a secondary battery electrode comprising the secondary battery binder composition.
  • Another object of the present invention is to provide a lithium secondary battery including the secondary battery electrode.
  • the problem to be solved of the present invention is to provide a binder composition for a secondary battery that can improve the electrochemical performance of the battery by showing a low resistance while providing more excellent adhesion.
  • Another object of the present invention is to provide a secondary battery electrode comprising the secondary battery binder composition.
  • Another object of the present invention is to provide a lithium secondary battery including the secondary battery electrode.
  • the binder composition for a secondary battery according to the present invention includes a binder including a copolymer containing a predetermined amount of alkali metal ions, the binder exhibits improved adhesion and is also provided by the alkali metal ions included in the copolymer. Since it exhibits a low resistance and can exhibit more stable electrochemical performance, it can be usefully used for the production of a lithium secondary battery.
  • the secondary battery binder composition according to the present invention is a copolymer containing a functional group; And alkali metal ions substituted with a functional group or a functional group constituent element of the copolymer.
  • the copolymer may include (a) a repeating unit derived from a conjugated diene monomer or a unit derived from a conjugated diene polymer; (B) repeating units derived from (meth) acrylic acid ester monomers; (C) at least one repeating unit selected from the group consisting of a vinyl monomer-derived repeating unit, a (meth) acryl amide monomer-derived repeating unit, and a nitrile monomer-derived repeating unit; And (d) three or more selected from the group consisting of unsaturated carboxylic acid monomer-derived repeating units.
  • the copolymer included in the binder composition may include 0.2 to 5 parts by weight of alkali metal ions relative to 100 parts by weight of the copolymer, and specifically, may include 0.25 to 3 parts by weight.
  • the alkali metal ions may provide additional electrical conductivity by being included in the copolymer included in the binder composition
  • the copolymer included in the binder composition of the present invention may have a low resistance, thus providing the binder composition with An electrode for secondary batteries containing can exhibit excellent performance.
  • the copolymer included in the binder composition contains less than 0.2 parts by weight of alkali metal ions with respect to 100 parts by weight of the copolymer, the effect of reducing the electrical resistance according to the inclusion of the alkali metal ions is insignificant, and may exceed 5 parts by weight. In this case, there is a problem in that the adhesive strength of the binder decreases, thereby reducing the life characteristics of the electrode.
  • the alkali metal ion may be at least one selected from the group consisting of lithium ions, sodium ions, potassium ions, rubidium ions, cesium ions, and francium ions, and specifically, may be lithium ions, sodium ions, or potassium ions.
  • the alkali metal ion may be included in the copolymer during the polymerization of the copolymer included in the binder, for example, by using a monomer containing an alkali metal salt during polymerization of the copolymer, or including an alkali metal salt. A method of adding an existing substance from the beginning of polymerization of the copolymer may be used. Alternatively, after the copolymer is prepared, the alkali metal ions may be included in the copolymer included in the binder through a method of reacting the copolymer with a hydrate of the alkali metal.
  • the alkali metal ion contained in the copolymer may be bonded to a functional group of the copolymer, or an element such as hydrogen of the functional group of the copolymer may be substituted with the alkali metal ion.
  • the copolymer may specifically include three or more monomer-derived repeating units or polymer-derived units.
  • the monomer-derived repeating unit or polymer-derived unit includes (a) a repeating unit derived from a conjugated diene monomer or a unit derived from a conjugated diene polymer, (b) a repeating unit derived from a (meth) acrylic acid ester monomer, and a (c) vinyl monomer-derived repeating unit.
  • At least one repeating unit selected from the group consisting of a unit, a repeating unit derived from a (meth) acryl amide monomer, and a repeating unit derived from a nitrile monomer, and (d) 3 selected from the group consisting of a repeating unit derived from an unsaturated carboxylic acid monomer. It may be more than one species.
  • the monomer-derived repeating unit or the polymer-derived unit is based on the total weight of 100 parts by weight of the (A) conjugated diene-based monomer-derived repeating units or conjugated diene-based polymer-derived units 10 parts by weight to 97 parts by weight, (b) ( 1 to 49 parts by weight of a repeating unit derived from a meta) acrylic acid ester monomer, (C) a repeating unit derived from a vinyl monomer, a repeating unit derived from a (meth) acrylamide monomer, and a repeating unit derived from a nitrile monomer. 1 to 60 parts by weight of one or more monomers, and (D) 1 to 20 parts by weight of a repeating unit derived from an unsaturated carboxylic acid monomer.
  • the copolymer included in the binder composition may include two kinds such as a conjugated dienes copolymer (A) and an acrylic copolymer (B).
  • the copolymer included in the binder composition includes a conjugated diene-based copolymer (A) and an acrylic copolymer (B) together, an improved adhesive force may be exhibited, and thus, the adhesion of the electrode material to the electrode current collector and the active material. Since the adhesion between each other is improved, the secondary battery can maintain a more stable electrochemical performance can exhibit an improved performance.
  • the copolymer includes the conjugated diene copolymer (A) and the acrylic copolymer (B)
  • the conjugated diene copolymer (A) and the acrylic copolymer (B) may be present as phases independent of each other. .
  • the independent phase means a state in which each copolymer is not modified by being agglomerated or chemically reacted with another copolymer.
  • the conjugated diene copolymer (A) and the acrylic copolymer (B) may have elasticity such as latex, and may be formed in a particle shape. Therefore, the binder included in the secondary battery binder composition according to an example of the present invention may include a conjugated diene copolymer (A) particle and an acrylic copolymer (B) particle as a copolymer.
  • the conjugated diene copolymer (A) particles may have an average particle diameter of 50 nm to 300 nm.
  • the conjugated diene-based copolymer (A) particles have an average particle diameter of 50 nm to 300 nm, the electrolyte swelling phenomenon is small at high temperatures, and exhibits proper elasticity to accommodate the thickness change of the electrode and reduce the gas generation phenomenon. If it is out of the above range, the adhesion may be reduced.
  • the acrylic copolymer (B) particles When the acrylic copolymer (B) is formed in a particle shape, the acrylic copolymer (B) particles may have an average particle diameter of 100 nm to 700 nm. When the acrylic copolymer (B) particles have an average particle diameter of 100 nm to 700 nm, the adhesive strength of the binder may be improved, and when the size of the acrylic copolymer (B) particles is smaller than an appropriate range, the adhesive strength may be reduced. If it is larger than the appropriate range, the acrylic copolymer (B) particles themselves may act as a resistance.
  • the binder composition may include the conjugated diene copolymer (A) and the acrylic copolymer (B) in a weight ratio of 1:99 to 99: 1.
  • the acrylic copolymer (B) When the acrylic copolymer (B) is included 1 part by weight or more based on 99 parts by weight of the conjugated diene copolymer (A), battery resistance can be improved, and the acrylic copolymer (B) is the conjugated diene-based air.
  • the binder composition When included in an amount of 99 parts by weight or less with respect to 1 part by weight of the copolymer (A), the binder composition may be suitably suppressed from occurring at high temperature due to affinity with the carbonate electrolyte of the acrylic copolymer (B). The deterioration of the high temperature characteristic of the film can be prevented.
  • the conjugated diene copolymer (A) includes (a) a repeat unit derived from a conjugated diene monomer or a unit derived from a conjugated diene polymer, (b) a repeat unit derived from a vinyl monomer, a repeat unit derived from a (meth) acrylamide monomer, and a nitrile. It may include at least one monomer selected from the group consisting of repeating units derived from a monomer, and repeating units derived from a (poly) unsaturated carboxylic acid monomer.
  • the conjugated diene copolymer (A) is based on 100 parts by weight of the total weight of the conjugated diene copolymer (A), the (A) 10 to 97.9 weight of the repeating unit derived from the conjugated diene monomer or the unit derived from the conjugated diene polymer 1 to 60 parts by weight of one or more monomers selected from the group consisting of the (b) vinyl monomer-derived repeating unit, (meth) acrylamide monomer-derived repeating unit, and nitrile monomer-derived repeating unit; 1 to 20 parts by weight of a repeating unit derived from an unsaturated carboxylic acid monomer.
  • the acrylic copolymer (B) is a repeating unit derived from (b) a (meth) acrylic acid ester monomer, a repeating unit derived from (c) a vinyl monomer, a repeating unit derived from a (meth) acrylamide monomer, and a repeating unit derived from a nitrile monomer. It may include one or more monomers selected from the group consisting of, and (D) a repeating unit derived from an unsaturated carboxylic acid monomer.
  • the acrylic copolymer (B) is based on 100 parts by weight of the total weight of the acrylic copolymer (B), 10 to 97.9 parts by weight of the (B) (meth) acrylic acid ester monomer-derived repeating unit, the (C) vinyl-based 1 to 60 parts by weight of at least one monomer selected from the group consisting of monomer-derived repeating units, (meth) acryl amide monomer-derived repeating units and nitrile monomer-derived repeating units, and the (d) unsaturated carboxylic acid monomer-derived repeat It may include 1 to 20 parts by weight of the unit.
  • the conjugated diene monomer may be 1,3-butadiene, isoprene, chloroprene, or pyreriden.
  • the conjugated diene polymer is a polymer of two or more monomers selected from the group consisting of 1,3-butadiene, isoprene, chloroprene, and pyreridene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, styrene-isoprene
  • the copolymer, acrylate-butadiene rubber, acrylonitrile-butadiene-styrene rubber, ethylene-propylene-diene based polymers, and these may be at least one selected from the group consisting of partially hydrogenated, epoxidized, or brominated polymers.
  • the (meth) acrylic acid ester monomer is methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n- amyl acrylate, iso amyl acrylate, n- Ethylhexyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl Methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, n-ethylhexyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, and hydroxy Propy
  • conjugated diene copolymer (A) or the acrylic copolymer (B) other components are as follows.
  • the vinyl monomer may be at least one selected from the group consisting of styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-t-butylstyrene, and divinylbenzene.
  • the (meth) acryl amide monomer is a group consisting of acryl amide, n-methylol acrylamide, n-butoxy methylacrylamide, methacrylamide, n-methylol methacrylamide, n-butoxy methyl methacrylamide It may be one or more selected from.
  • the nitrile monomer may be an alkenyl cyanide, and the alkenyl cyanide may be one or more selected from the group consisting of acrylonitrile, methacrylonitrile, and allyl cyanide.
  • the unsaturated carboxylic acid monomer may be at least one selected from the group consisting of maleic acid, fumaric acid, methacrylic acid, acrylic acid, glutaric acid, itaconic acid, tetrahydrophthalic acid, crotonic acid, isocrotonic acid and nadic acid.
  • the conjugated diene copolymer (A) or the copolymer included in the acrylic copolymer (B) may be a polymer of a monomer containing an alkali metal ion, the monomer containing the alkali metal ion is the monomer
  • An alkali metal ion may be bonded to a functional group of, or an element such as hydrogen of the functional group of the monomer may be substituted with an alkali metal ion.
  • the monomer containing the alkali metal ion may be an alkali metal salt of the (meth) acrylic acid ester monomer, an alkali metal salt of the unsaturated carboxylic acid monomer, and is not particularly limited, but specific examples include lithium methacrylate and lithium acryl.
  • the rate, sodium methacrylate, sodium acrylate, potassium methacrylate, potassium acrylate, sodium methyl aryl sulfonate, 3-sulfo propyl acrylate potassium salt, 3-sulfo propyl methacrylate potassium salt, etc. are mentioned.
  • the method for producing the conjugated diene copolymer (A) or the acrylic copolymer (B) is not particularly limited, but may be prepared by, for example, suspension polymerization, emulsion polymerization, seed polymerization, or the like.
  • the conjugated diene copolymer (A) or acrylic copolymer (B) may include one or more other components such as alkali metal salts, polymerization initiators, crosslinking agents, buffers, molecular weight regulators, emulsifiers, if necessary.
  • an alkali metal salt type emulsifier, an initiator, and the like may be used for the inclusion of the alkali metal ion.
  • the monomer containing the alkali metal ion may be used together as a monomer for polymerization of the copolymer included in the conjugated diene copolymer (A) or the acrylic copolymer (B).
  • the alkali metal content of the final polymer may be used separately from the monomer containing no alkali metal salt and may be included 0.01 to 20% by weight relative to the total weight of the polymer 100.
  • the conjugated diene copolymer (A) and / or the acrylic copolymer (B) will be described in the case of producing by emulsion polymerization method.
  • the diene copolymer (A) and the acrylic copolymer (B), or the binders thereof are prepared by emulsion polymerization, and the binder has a particle shape, the particle size of the binder according to the content of the emulsifier
  • the amount of emulsifier is increased, the average particle diameter of the particles may be reduced, and when the amount of emulsifier is decreased, the average particle diameter of the particles may be increased.
  • the polymerization temperature and the polymerization time may be appropriately determined according to the kind of polymerization method polymerization initiator, etc., for example, the polymerization temperature may be 50 ° C to 300 ° C, and the polymerization time may be 1 hour to 20 hours, but is not particularly limited.
  • Inorganic or organic peroxides may be used as the polymerization initiator, and for example, water-soluble initiators including potassium persulfate, sodium persulfate, ammonium persulfate, and the like, or oil-soluble initiators including cumene hydroperoxide, benzoyl peroxide, and the like. Can be.
  • an activator may be used together to promote the initiation reaction of the polymerization initiator, the activator is selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate and dextrose 1 or more types are mentioned.
  • the crosslinking agent may be used to promote crosslinking of the binder, for example, amines such as diethylenetriamine, triethylene tetraamine, diethylamino propylamine, xylene diamine, isophorone diamine, dodecyl succinic anhydride acid anhydrides such as dodecyl succinic anhydride, phthalic anhydride, polyamide resins, polysulfide resins, phenol resins, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylol propane trimethacrylate, trimethylol methane triacrylate, glycidyl meta Acrylates and the like.
  • the grafting agent may be used together, such as aryl methacryl
  • buffer examples include NaHCO 3 , NaOH, or NH 4 OH.
  • molecular weight regulator examples include mercaptans, terpins such as terbinolene, dipentene, t-terpyene, and halogenated hydrocarbons such as chloroform and carbon tetrachloride.
  • the emulsifier may be an anionic emulsifier, a nonionic emulsifier, or both, and when the nonionic emulsifier is used together with the anionic emulsifier, in addition to the electrostatic stabilization of the anionic emulsifier, an additional colloidal form through the van der Waals force of the polymer particles Stabilization may be provided.
  • anionic emulsifier examples include phosphate, carboxylate, sulfate, succinate, sulfosuccinate, sulfonate, or disulfonate emulsifiers.
  • nonionic emulsifiers include ester type, ether type, and ester-ether type emulsifiers, and although not particularly limited, polyoxyethylene glycol, polyoxyethylene glycol methyl ether, polyoxyethylene monoallyl ether, poly Oxyethylene bisphenol-A ether, polypropylene glycol, polyoxyethylene neopentyl ether, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethyl oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene decyl Ether and polyoxyethylene octyl ether.
  • the binder composition may be used as a binder in the production of a secondary battery electrode, and thus the present invention provides a secondary battery electrode including the binder composition.
  • the secondary battery electrode may be used as a lithium secondary battery electrode, the lithium secondary battery may include a negative electrode, a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, the above-described binder, a conductive material, and a dispersant in a positive electrode active material, and then applying the coating (coating) to a current collector of a metal material, compressing it, and drying the same to prepare a positive electrode.
  • the current collector of the metal material is a metal having high conductivity, and is a metal to which the slurry of the positive electrode active material can easily adhere, and is particularly limited as long as it has high conductivity without causing chemical change in the battery in the voltage range of the battery.
  • surface treated with carbon, nickel, titanium, silver, or the like on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel may be used.
  • fine unevenness may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • the current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and may have a thickness of 3 to 500 ⁇ m.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may be used in an amount of 1 wt% to 20 wt% with respect to the total weight of the positive electrode slurry.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the negative electrode may be prepared by a conventional method known in the art, and for example, a negative electrode active material slurry is prepared by mixing and stirring additives such as the negative electrode active material, the binder, and the conductive material, and then, the negative electrode current collector It can be prepared by applying, drying and compressing.
  • the solvent for forming the negative electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the negative electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be included in less than 10% by weight in the total weight of the slurry for the negative electrode active material, specifically, may be included in 0.1% by weight to 10% by weight. If the content of the binder is less than 0.1% by weight, the effect of using the binder is insignificant and undesirable. If the content of the binder exceeds 10% by weight, the capacity per volume may decrease due to the decrease in the relative content of the active material due to the increase in the content of the binder. Not desirable
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive materials such as polyphenylene derivatives.
  • the conductive material may be used in an amount of 1% by weight to 9% by weight based on the total weight of the slurry for the negative electrode active material.
  • the negative electrode current collector used for the negative electrode according to an embodiment of the present invention may have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on the surface of copper, gold, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver and the like, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the active material slurry may include a viscosity modifier and / or fillers as needed.
  • the viscosity adjusting agent may be carboxymethyl cellulose, polyacrylic acid, or the like, and the viscosity of the active material slurry may be adjusted to facilitate the preparation of the active material slurry and the coating process on the electrode current collector by addition.
  • the filler is an auxiliary component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical changes in the battery.
  • the filler include, for example, olefin polymers such as polyethylene and polypropylene, glass fibers, and carbon fibers. It may be a fibrous material.
  • separator conventional porous polymer films conventionally used as separators, such as polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer
  • the porous polymer film prepared by using a single or a lamination thereof may be used, or a conventional porous nonwoven fabric, such as a high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used, but is not limited thereto.
  • organic solvent included in the electrolyte solution those conventionally used in the electrolyte for secondary batteries may be used without limitation, and typically propylene carbonate (PC), ethylene carbonate (ethylene carbonate, EC ), Diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane , Vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, tetrahydrofuran, any one selected from the group consisting of, or mixtures of two or more thereof may be representatively used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC Diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate dipropyl carbon
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used because they have high dielectric constants to dissociate lithium salts in the electrolyte, and may be preferably used in such cyclic carbonates.
  • a low viscosity, low dielectric constant linear carbonate such as ethyl carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared, and thus it can be used more preferably.
  • the electrolyte solution stored according to the present invention may further include additives such as an overcharge inhibitor included in a conventional electrolyte solution.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • distilled water 250 g of distilled water, 50 g of 1,3-butadiene, 34 g of styrene, 10 g of methyl methacrylate, 4 g of acrylic acid, 2 g of sodium acrylate, 0.4 g of sodium lauryl sulfate as emulsifier, and potassium peroxide as polymerization initiator 0.5 g of sulfate was added to initiate the reaction, followed by stirring while maintaining 70 for 10 hours to obtain a binder having a solid content of 40%.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 1, except that acrylonitrile was used in the same weight as in Example 1 in place of styrene.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 1, except that fumaric acid was used in the same weight as in Example 1 instead of acrylic acid.
  • Example 2 Except for using the same weight of acrylic acid in place of sodium acrylate in Example 1, and after the reaction is complete, 0.2 g of potassium hydroxide was added and stirred for 1 hour, the same as in Example 1 By the method, a binder having a solid content of 40% was obtained.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 4, except that 0.5 g of sodium hydroxide was added in place of potassium hydroxide.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 1, except that lithium methacrylate was used at the same weight instead of sodium acrylate in Example 1.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 1, except that the amount of sodium acrylate was changed to 10 g in Example 1.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 1, except that the amount of sodium hydroxide in Example 5 was changed to 2 g.
  • a binder was prepared by mixing 80 parts by weight of the copolymer (A) and 20 parts by weight of the copolymer (B).
  • a binder having a solid content of 40% was obtained in the same manner as in Example 1 except that the polymerization was carried out without using sodium acrylate in Example 1.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 1, except that the amount of sodium acrylate was changed to 25 g in Example 1.
  • a binder having a solid content of 40% was obtained in the same manner as in Example 4, except that the amount of potassium hydroxide in Example 3 was changed to 8 g.
  • the binder was mixed with a lithium polyacrylate salt to prepare a final binder.
  • 96 g of LiCoO 2 , 2 g of acetylene black, and 2 g of polyvinylidene fluoride (PVdF) as a positive electrode active material were added to N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry for the positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • the anode slurry was coated on an aluminum (Al) thin film to a thickness of 350 ⁇ m, dried to prepare a cathode, and then roll-rolled to prepare a cathode.
  • the anode prepared above was punched to have a surface area of 13.33 cm 2 , and the anode prepared above was punched to have a surface area of 12.60 cm 2 to prepare a mono-cell.
  • a tap was attached to the upper part of the positive electrode and the negative electrode, and the resultant was loaded into an aluminum pouch through a separator made of a polyolefin microporous membrane between the negative electrode and the positive electrode, and 500 mg of the electrolyte was injected into the pouch.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the pouch was sealed using a vacuum packaging machine and maintained at room temperature for 12 hours, followed by a constant current charging process to maintain a constant current at a rate of about 0.05 C and maintain a voltage until about 1/6 of the current. .
  • a constant current charging process to maintain a constant current at a rate of about 0.05 C and maintain a voltage until about 1/6 of the current.
  • Example 1-1 Except for using the binders prepared in Examples 2 to 10, and Comparative Examples 1 to 5, respectively, in place of the binder prepared in Example 1 as a binder in the preparation of the negative electrode in Example 1-1, A negative electrode was produced in the same manner as in the preparation of the negative electrode of Example 1-1, and a lithium secondary battery was produced in the same manner as in the method described in Example 1-1 using each of the prepared negative electrodes. At this time, a positive electrode prepared according to the production of the positive electrode of Example 1-1 was used.
  • the alkali metal content of the binders prepared in Examples 1 to 10 and Comparative Examples 1 to 5 was measured and shown in Table 1 below.
  • the content of alkali metal ions shown in Table 1 below is the total amount of all alkali metal ions, and was measured using ICP analysis.
  • Example 1 Alkali metal content (% by weight) Example 1 0.67 Example 2 0.67 Example 3 0.67 Example 4 0.32 Example 5 0.47 Example 6 0.32 Example 7 2.41 Example 8 1.31 Example 9 0.79 Example 10 0.21 Comparative Example 1 0.18 Comparative Example 2 5.08 Comparative Example 3 5.38 Comparative Example 4 2.36 Comparative Example 5 1.2
  • Charge and discharge tests were performed 300 times with a charge and discharge current density of 1 C, a charge end voltage of 4.2 V (Li / Li + ), and a discharge end voltage of 3 V (Li / Li + ) in a 45 ° C. oven.
  • the lithium secondary batteries of Examples 1-1 to 10-1 each including a negative electrode manufactured by using the binders prepared in Examples 1 to 10 have excellent discharge characteristics and lifetime characteristics. It could be confirmed that.
  • the lithium secondary battery of Comparative Example 1-1 including the negative electrode prepared using the binder of Comparative Example 1 having a relatively low content of alkali metal ions has a 2C discharge capacity of Examples 1-1 to 10-1 It was inferior to the secondary battery, and through this, when the content of alkali metal ions was relatively high, it was confirmed that the discharge characteristics of the battery were improved due to the excellent resistance characteristics.
  • the lithium secondary batteries of Comparative Examples 2-1 and 3-1 including the anodes prepared using the binders of Comparative Examples 2 and 3 each having an alkali metal ion content exceeding an appropriate level are those of Examples 1-1 to 1.
  • the discharge characteristics were better than the lithium secondary battery of 10-1, but the capacity retention rate of 300 cycles was low.
  • the adhesive strength of the binder is lowered, thereby lowering the adhesive strength to the electrode. It was confirmed that the life characteristics deteriorated.
  • the lithium secondary batteries of Comparative Examples 4-1 and 5-1 including the negative electrode prepared using the binder of Comparative Examples 4 and 5 has a 2C discharge capacity and 300 cycle capacity retention rate of Examples 1-1 to 10-1 It was inferior to the lithium secondary battery of the, it was confirmed that even if the content of the alkali metal ion in the appropriate range, the resistance properties and the adhesion to the electrode is affected by the composition of the copolymer included in the binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 관능기를 포함하는 공중합체; 및 상기 공중합체의 관능기에 결합 또는 관능기 구성 원소에 치환된 알칼리금속 이온을 포함하는 이차전지용 바인더 조성물에 관한 것으로, 상기 이차전지용 바인더 조성물은 향상된 접착력을 발휘함과 함께, 상기 공중합체가 포함하는 알칼리금속 이온에 의해 낮은 저항을 나타내어, 보다 안정적인 전기 화학적 성능을 발휘할 수 있다.

Description

이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지
[관련출원과의 상호 인용]
본 출원은 2015년 12월 24일자 한국 특허 출원 제10-2015-0186395호 및 2016년 12월 22일자 한국 특허 출원 제10-2016-0176434호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지에 관한 것으로, 보다 자세하게는 알칼리금속 이온을 포함하여 우수한 전극 물질의 접착력 및 낮은 저항을 가지는 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 전극은 양극 활물질 또는 음극 활물질과 바인더(binder) 수지 성분을 혼합하여 용매에 분산시켜 슬러리(slurry)를 만들고, 이것을 전극 집전체 표면에 도포하여 건조 후 합제층을 형성시켜 제작된다.
바인더는 활물질과 활물질 간, 활물질과 전극 집전체 간의 접착력 또는 결착력 확보를 위하여 사용되나, 전극 집전체와 활물질 간의 접착력을 향상시키기 위해서는 과량의 바인더가 요구된다. 그러나 과량의 바인더는, 전극의 용량 및 전도성을 낮추게 되는 문제가 있다. 반면에, 충분하지 않은 접착력은 전극 건조, 압연(pressing) 등의 공정에서 전극 박리 현상을 유발하여 전극 불량률을 높이는 원인이 된다. 또한, 접착력이 낮은 전극은 외부 충격에 의해서 박리될 수 있고, 이러한 전극 박리는 전극 물질과 집전체 간 접촉 저항을 키워, 전극 출력 성능 저하의 원인이 될 수 있다.
특히, 리튬 이차전지의 충방전시에는 리튬과의 반응에 의한 음극 활물질의 부피 변화가 발생하고, 계속적인 충방전시 음극 활물질이 집전체로부터 탈리되거나, 활물질 상호간 접촉 계면의 변화에 따른 저항 증가로 인해, 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되어 사이클 수명이 짧아지는 문제점을 가지고 있다. 또한, 방전 용량의 증대를 위하여 실리콘, 주석, 실리콘-주석 합금 등과 같은 재료를 복합하여 사용하는 경우, 실리콘, 주석 등이 리튬과의 반응에 의해 보다 큰 부피 변화를 일으키므로, 이러한 문제점이 더욱 두드러지게 된다.
따라서, 더욱 우수한 접착력을 제공하여 전극 박리, 활물질의 집전체로부터의 탈리, 또는 활물질 간의 접촉 계면 변화로 인한 전기화학적 성능 저하 문제를 해결하여, 성능이 향상된 이차전지를 제공할 수 있는 바인더 및 이를 사용하여 제조된 이차전지용 전극의 개발이 지속적으로 요구되고 있다.
본 발명의 해결하고자 하는 과제는 더욱 우수한 접착력을 제공하면서 낮은 저항을 나타내어 전지의 전기 화학적 성능을 향상시킬 수 있는 이차전지용 바인더 조성물을 제공하는 것이다.
본 발명의 다른 해결하고자 하는 과제는 상기 이차전지용 바인더 조성물을 포함하는 이차전지용 전극을 제공하는 것이다.
본 발명의 또 다른 해결하고자 하는 과제는 상기 이차전지용 전극을 포함하는 리튬 이차전지를 제공하는 것이다.
본 발명의 해결하고자 하는 과제는 더욱 우수한 접착력을 제공하면서 낮은 저항을 나타내어 전지의 전기 화학적 성능을 향상시킬 수 있는 이차전지용 바인더 조성물을 제공하는 것이다.
본 발명의 다른 해결하고자 하는 과제는 상기 이차전지용 바인더 조성물을 포함하는 이차전지용 전극을 제공하는 것이다.
본 발명의 또 다른 해결하고자 하는 과제는 상기 이차전지용 전극을 포함하는 리튬 이차전지를 제공하는 것이다.
본 발명에 따른 이차전지용 바인더 조성물은 일정 함량의 알칼리금속 이온을 포함하는 공중합체를 포함하는 바인더를 포함하므로, 상기 바인더가 향상된 접착력을 발휘함과 함께, 상기 공중합체가 포함하는 알칼리금속 이온에 의해 낮은 저항을 나타내어, 보다 안정적인 전기 화학적 성능을 발휘할 수 있으므로, 리튬 이차전지의 제조에 유용하게 사용될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따른 이차전지용 바인더 조성물은 관능기를 포함하는 공중합체; 및 상기 공중합체의 관능기에 결합 또는 관능기 구성 원소에 치환된 알칼리금속 이온을 포함한다.
상기 공중합체는 (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위; (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위; (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위; 및 (라) 불포화 카르본산계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 3종 이상을 포함하는 것이다.
상기 바인더 조성물이 포함하는 공중합체는 알칼리금속 이온을 상기 공중합체 100 중량부 대비 0.2 중량부 내지 5 중량부 포함하는 것이며, 구체적으로 0.25 중량부 내지 3 중량부 포함할 수 있다.
상기 알칼리금속 이온은 상기 바인더 조성물이 포함하는 공중합체에 포함됨으로써 추가적인 전기 전도도를 제공할 수 있으므로, 본 발명의 바인더 조성물이 포함하는 상기 공중합체는 낮은 저항을 가질 수 있으며, 이에 따라 상기 바인더 조성물을 포함하는 이차전지용 전극은 우수한 성능을 발휘할 수 있다.
상기 바인더 조성물이 포함하는 공중합체가 알칼리금속 이온을 상기 공중합체 100 중량부에 대하여 0.2 중량부 미만 포함할 경우, 상기 알칼리금속 이온의 포함에 따른 전기 저항 감소 효과가 미미하며, 5 중량부를 초과할 경우 바인더의 접착력이 감소하여 전극의 수명특성이 저하되는 문제점이 있다.
상기 알칼리금속 이온은 리튬 이온, 소듐 이온, 칼륨 이온, 루비듐 이온, 세슘 이온 및 프란슘 이온으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적으로 리튬 이온, 소듐 이온, 또는 칼륨 이온일 수 있다.
상기 알칼리금속 이온은 상기 바인더가 포함하는 공중합체의 중합과정에서 상기 공중합체에 포함되도록 할 수 있으며, 예컨대 상기 공중합체의 중합시 알칼리금속염을 포함하고 있는 단량체를 이용하거나, 또는 알칼리금속염을 포함하고 있는 물질을 상기 공중합체의 중합 초기부터 첨가하는 방법이 사용될 수 있다. 다르게는 상기 공중합체를 제조한 후, 상기 공중합체를 상기 알칼리금속의 수화물과 반응시키는 방법을 통해 상기 알칼리금속 이온을 상기 바인더가 포함하는 공중합체에 포함시킬 수 있다.
상기 공중합체가 포함하는 알칼리금속 이온은 상기 공중합체의 관능기와 결합하고 있거나, 또는 상기 공중합체의 관능기의 수소 등의 원소가 상기 알칼리금속 이온으로 치환되어 있는 것일 수 있다.
상기 공중합체는 구체적으로, 3종 이상의 단량체 유래 반복 단위 또는 중합체 유래 단위를 포함할 수 있다. 상기 단량체 유래 반복 단위 또는 중합체 유래 단위는 (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위, (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위, (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위, 및 (라) 불포화 카르본산계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 3종 이상일 수 있다.
상기 단량체 유래 반복 단위 또는 중합체 유래 단위는 상기 바인더는 총 중량 100 중량부를 기준으로, (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위 10 중량부 내지 97 중량부, (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위 1 중량부 내지 49 중량부, (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 단량체 1 중량부 내지 60 중량부, 및 (라) 불포화 카르본산계 단량체 유래 반복 단위 1 중량부 내지 20 중량부와 같은 함량 범위로 포함될 수 있다.
한편, 상기 바인더 조성물이 포함하는 상기 공중합체는 공액 디엔(conjugated dienes)계 공중합체(A) 및 아크릴계 공중합체(B)와 같이 2종이 포함될 수 있다.
상기 바인더 조성물이 포함하는 공중합체가 공액 디엔계 공중합체(A) 및 아크릴계 공중합체(B)를 함께 포함할 경우, 향상된 접착력을 발휘할 수 있으며, 이에 따라 전극 물질의 전극 집전체에의 접착력 및 활물질 상호간의 접착력 등이 향상되어, 이차전지가 더욱 안정적인 전기 화학적 성능을 유지할 수 있어서 향상된 성능을 발휘할 수 있다.
상기 공중합체가 상기 공액 디엔계 공중합체(A) 및 아크릴계 공중합체(B)를 포함할 경우, 상기 공액 디엔계 공중합체(A) 및 아크릴계 공중합체(B)는 서로 독립적인 상으로 존재할 수 있다.
상기 독립적인 상은 각각의 공중합체가 다른 공중합체와 응집(agglomeration)하거나 화학적으로 반응하여 변형되지 않은 상태를 의미한다.
상기 공액 디엔계 공중합체(A) 및 아크릴계 공중합체(B)는 라텍스와 같은 탄력성을 가질 수 있고, 입자 형상으로 이루어져 있을 수 있다. 따라서, 본 발명의 일례에 따른 이차전지용 바인더 조성물이 포함하는 바인더는 공중합체로서 공액 디엔계 공중합체(A) 입자 및 아크릴계 공중합체(B) 입자를 포함하는 것일 수 있다.
상기 공액 디엔계 공중합체(A)가 입자 형상으로 이루어진 것일 때, 상기 공액 디엔계 공중합체(A) 입자는 50 nm 내지 300 nm의 평균 입경을 가질 수 있다. 상기 공액 디엔계 공중합체(A) 입자가 50 nm 내지 300 nm의 평균 입경을 가질 경우, 고온에서 전해액 스웰링 현상이 작고, 적절한 탄력성을 발휘하여 전극의 두께 변화를 수용하고 가스 발생 현상을 감소시킬 수 있으며, 상기 범위를 벗어날 경우에는 접착력이 저하될 수 있다.
상기 아크릴계 공중합체(B)가 입자 형상으로 이루어진 것일 때, 상기 아크릴계 공중합체(B) 입자는 100 nm 내지 700 nm의 평균 입경을 가질 수 있다. 상기 아크릴계 공중합체(B) 입자가 100 nm 내지 700 nm의 평균 입경을 가질 경우, 바인더의 접착력이 향상될 수 있으며, 상기 아크릴계 공중합체(B) 입자의 크기가 적정 범위보다 작을 경우 접착력이 저하될 수 있고, 적정 범위보다 클 경우 상기 아크릴계 공중합체(B) 입자 자체가 저항으로 작용할 수 있다.
상기 바인더 조성물은 상기 공액 디엔계 공중합체(A) 및 아크릴계 공중합체(B)를 1:99 내지 99:1의 중량비로 포함할 수 있다.
상기 아크릴계 공중합체(B)가 상기 공액 디엔계 공중합체(A) 99 중량부에 대하여 1 중량부 이상 포함될 경우, 전지 저항을 개선시킬 수 있고, 상기 아크릴계 공중합체(B)가 상기 공액 디엔계 공중합체(A) 1 중량부에 대하여 99 중량부 이하로 포함될 경우, 상기 아크릴계 공중합체(B)의 카보네이트계 전해액과의 친화성으로 인한 고온에서의 팽윤 문제가 발생하는 것을 적절히 억제하여 바인더 조성물이 전지의 고온 특성을 악화시키는 것을 방지할 수 있다.
상기 공액 디엔계 공중합체(A)는 (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위, (나) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 단량체, 및 (다) 불포화 카르본산계 단량체 유래 반복 단위를 포함할 수 있다.
상기 공액 디엔계 공중합체(A)는 상기 공액 디엔계 공중합체(A) 총 중량 100 중량부를 기준으로, 상기 (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위를 10 내지 97.9 중량부, 상기 (나) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 단량체를 1 내지 60 중량부, 상기 (다) 불포화 카르본산계 단량체 유래 반복 단위를 1 내지 20 중량부 포함할 수 있다.
상기 아크릴계 공중합체(B)는 (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위, (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 단량체, 및 (라) 불포화 카르본산계 단량체 유래 반복 단위를 포함할 수 있다.
상기 아크릴계 공중합체(B)는 상기 아크릴계 공중합체(B) 총 중량 100 중량부를 기준으로, 상기 (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위를 10 내지 97.9 중량부, 상기 (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 단량체를 1 내지 60 중량부, 상기 (라) 불포화 카르본산계 단량체 유래 반복 단위를 1 내지 20 중량부 포함할 수 있다.
상기 공액 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌, 또는 피레리덴일 수 있다.
상기 공액 디엔계 중합체는 1,3-부타디엔, 이소프렌, 클로로프렌, 및 피레리덴으로 이루어진 군에서 선택되는 2종 이상의 단량체들의 중합체, 스티렌-부타디엔 공중합체, 아크릴로니트릴-부타디엔 공중합체, 스티렌-이소프렌 공중합체, 아크릴레이트-부타디엔 고무, 아크릴로니트릴-부타디엔-스티렌 고무, 에틸렌-프로필렌-디엔계 중합체, 및 이들이 부분적으로 수소화, 에폭시화, 또는 브롬화된 중합체로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 (메타)아크릴산 에스테르계 단량체는 메틸아크릴레이트, 에틸아크릴레이트, 프로필아크릴레이트, 이소프로필아크릴레이트, n-부틸아크릴레이트, 이소부틸아크릴레이트, n-아밀아크릴레이트, 이소아밀아크릴레이트, n-에틸헥실아크릴레이트, 2-에틸헥실아크릴레이트, 2-히드록시에틸아크릴레이트, 메틸메타크릴레이트, 에틸메타크릴레이트, 프로필메크릴레이트, 이소프로필메크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, n-아밀메타크릴레이트, 이소아밀메타크릴레이트, n-헥실메타크릴레이트, n-에틸헥실 메타크릴레이트, 2-에틸헥실 메타크릴레이트, 히드록시에틸 메타크릴레이트, 및 히드록시프로필 메타크릴레이트, 메타아크릴록시 에틸에틸렌우레아, β-카르복시에틸아크릴레이트, 알리파틱 모노아크릴레이트, 디프로필렌 디아크릴레이트, 디트리메틸로프로판 테트라아크릴레이트, 디펜타에리트리올 헥사아크릴레이트, 펜타에리트리올 트리아크릴레이트, 펜타에리트리올 테트라아크릴레이트, 로릴 아크릴레이트, 세릴 아크릴레이트, 스테아릴 아크릴레이트, 로릴 메타 아크릴레이트, 세틸 메타 아크릴레이트 및 스테아릴 메타 아크릴레이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 공액 디엔계 공중합체(A) 또는 아크릴계 공중합체(B)에 있어서, 다른 성분들은 이하와 같다.
상기 비닐계 단량체는 스티렌, α-메틸스티렌, β-메틸스티렌, p-t-부틸스티렌 및 디비닐벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 (메타)아크릴 아미드계 단량체는 아크릴 아미드, n-메틸올 아크릴아미드, n-부톡시 메틸아크릴아미드, 메타크릴아미드, n-메틸올 메타크릴아미드, n-부톡시 메틸메타크릴아미드로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 니트릴계 단량체는 알케닐 시아나이드일 수 있고, 상기 알케닐 시아나이드는, 아크릴로니트릴, 메타크릴로니트릴, 및 알릴 시아나이드로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 불포화 카르본산계 단량체는 말레인산, 푸마르산, 메타크릴산, 아크릴산, 글루타르산, 이타콘산, 테트라하이드로프탈산, 크로톤산, 이소크로톤산 및 나딕산으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
한편, 상기 공액 디엔계 공중합체(A) 또는 아크릴계 공중합체(B)가 포함하는 공중합체는 알칼리금속 이온을 포함하고 있는 단량체의 중합물일 수 있으며, 상기 알칼리금속 이온을 포함하고 있는 단량체는 상기 단량체의 관능기에 알칼리금속 이온이 결합하거나, 상기 단량체의 관능기의 수소 등의 원소가 알칼리금속 이온으로 치환된 것일 수 있다.
상기 알칼리금속 이온을 포함하고 있는 단량체는 상기 (메타)아크릴산 에스테르계 단량체의 알칼리 금속염, 상기 불포화 카르본산계 단량체의 알칼리 금속염일 수 있고, 특별히 제한되지 않지만, 구체적인 예로서 리튬 메타아크릴레이트, 리튬 아크릴레이트, 소듐 메타아크릴레이트, 소듐 아크릴레이트, 칼륨 메타아크릴레이트, 칼륨 아크릴레이트, 소듐 메틸 아릴 설포네이트, 3-설포 프로필 아크릴레이트 칼륨염, 3-설포 프로필 메타아크릴레이트 칼륨염 등을 들 수 있다.
상기 공액 디엔계 공중합체(A) 또는 아크릴계 공중합체(B)의 제조방법은 특별히 제한되지 않지만, 예컨대 현탁 중합법, 유화 중합법, 또는 시드 중합법 등에 따라 제조될 수 있다.
한편, 상기 공액 디엔계 공중합체(A) 또는 아크릴계 공중합체(B)는 필요에 따라 알칼리금속염, 중합개시제, 가교제, 버퍼, 분자량 조절제, 유화제 등의 기타의 성분들을 하나 이상 포함할 수 있다.
상기 공액 디엔계 공중합체(A) 또는 아크릴계 공중합체(B)의 제조시 상기 알칼리금속염 성분을 별도로 포함하지 않을 경우에는, 알칼리금속 이온의 포함을 위하여, 알칼리 금속염 형태의 유화제, 개시제 등을 사용할 수 있고, 다르게는 상기 공액 디엔계 공중합체(A) 또는 아크릴계 공중합체(B)가 포함하는 공중합체의 중합을 위한 단량체로서 상기 알칼리금속 이온을 포함하고 있는 단량체를 함께 사용할 수 있다. 상기 알칼리금속염을 포함하고 있는 단량체를 사용할 경우, 최종 중합체의 알칼리 금속 함량을 고려하여 알칼리금속염을 포함하지 않는 단량체와 별도로 추가적으로 사용할 수 있으며 상기 중합체의 총 중량 100대비 0.01 내지 20 중량% 포함될 수 있다.
본 발명의 일례에 따른 바인더 조성물을 제조하는 방법에 있어서, 예컨대 상기 공액 디엔계 공중합체(A) 및/또는 아크릴계 공중합체(B)를 유화 중합법에 의해 제조할 경우를 들어 설명하면, 상기 공액 디엔계 공중합체(A) 및 아크릴계 공중합체(B), 또는 이들이 포함하는 바인더가 유화 중합법에 의해 제조되고, 상기 바인더가 입자 형상을 가질 경우에는, 상기 바인더의 입자 크기를 유화제의 함량에 따라 조절할 수 있으며, 구체적으로 유화제의 포함량이 증가할 경우 입자의 평균 입경을 작게할 수 있고, 유화제의 포함량이 감소할 경우 입자의 평균 입경을 크게할 수 있다.
중합 온도 및 중합 시간은 중합 방법 중합 개시제의 종류 등에 따라 적절히 결정할 수 있으며, 예컨대 중합 온도는 50℃ 내지 300℃일 수 있고, 중합 시간은 1 시간 내지 20 시간일 수 있지만, 특별히 제한되지 않는다.
상기 중합 개시제로는 무기 또는 유기 과산화물이 사용될 수 있으며, 예컨대 포타슘 퍼설페이트, 소듐 퍼설페이트, 암모늄 퍼설페이트 등을 포함하는 수용성 개시제, 또는 큐멘 하이드로 퍼옥사이드, 벤조일 퍼옥사이드 등을 포함하는 유용성 개시제를 들 수 있다. 한편, 상기 중합개시제의 개시 반응을 촉진시키기 위해 활성화제가 함께 사용될 수 있으며, 상기 활성화제로는 소듐 포름알데히드 설폭실레이트, 소듐 에틸렌디아민 테트라아세테이트, 황산 제1철 및 덱스트로오스로 이루어진 군으로부터 선택되는 1종 이상을 들 수 있다.
상기 가교제는 상기 바인더의 가교를 촉진시키기 위해 사용될 수 있으며, 예컨대 디에틸렌트리아민, 트리에틸렌 테트라아민, 디에틸아미노 프로필아민, 자일렌 디아민, 이소포론 디아민 등의 아민류, 도데실 석시닉 언하이드리드(dodecyl succinic anhydride), 프탈릭 언하이드리드 등의 산무수물, 폴리아미드 수지, 폴리설파이드 수지, 페놀수지, 에틸렌 글리콜 디메타크릴레이트, 디에틸렌 글리콜 디메타크릴레이트, 트리에틸렌 글리콜 디메타크릴레이트, 1,3-부탄디올 디메타크릴레이트, 1,6-헥산디올 디메타크릴레이트, 네오펜틸 글리콜 디메타크릴레이트, 트리 메틸롤 프로판 트리메타크릴레이트, 트리 메틸롤 메탄 트리아크릴레이트, 글리시딜 메타 아크릴레이트 등을 들 수 있다. 한편, 그라프팅제가 함께 사용될 수 있으며, 예컨대 아릴 메타크릴레이트(AMA), 트리아릴 이소시아누레이트(TAIC), 트리아릴 아민(TAA), 또는 디아릴 아민(DAA) 등을 들 수 있다.
상기 버퍼로는, 예컨대 NaHCO3, NaOH, 또는 NH4OH를 들 수 있다.
상기 분자량 조절제로는, 예컨대 머캅탄류 또는 터비놀렌, 디펜텐, t-테르피엔 등의 테르핀류나 클로로포름, 사염화탄소 등의 할로겐화 탄화수소를 들 수 있다.
상기 유화제는 음이온성 유화제, 비이온성 유화제 또는 이들 모두일 수 있으며, 음이온성 유화제에 비이온성 유화제를 함께 사용할 경우 음이온성 유화제의 정전기적 안정화에 더하여 고분자 입자의 반데르발스 힘을 통한 콜로이드 형태의 추가적인 안정화를 제공할 수 있다.
상기 음이온성 유화제로는, 예컨대 포스페이트계, 카르복실레이트계, 설페이트계, 석시네이트계, 설포석시네이트계, 설포네이트계, 또는 디설포네이트계 유화제를 들 수 있고, 특별히 제한되지 않지만 구체적으로 소듐 알킬 설페이트, 소듐 폴리옥시에틸렌 설페이트, 소듐 로릴 에테르 설페이트(Sodium lauryl ether sulfate), 소듐 폴리옥시에틸렌 로릴 에테르 설페이트, 소듐 로릴 설페이트, 소듐 알킬 설포네이트, 소듐 알킬 에테르 설포네이트, 소듐 알킬벤젠 설포네이트, 소듐 리니어 알킬벤젠 설포네이트, 소듐 알파-올레핀 설포네이트, 소듐 알코올 폴리옥시에틸렌 에테르 설포네이트, 소듐 디옥틸설포석시네이트, 소듐 퍼플루오로옥탄설포네이트, 소듐 퍼플루오로부탄설포네이트, 알킬디페닐옥사이드 디설포네이트, 소듐 디옥틸 설포석시네이트, 소듐 알킬-아릴 포스페이트, 소듐 알킬 에테르 포스테이트, 또는 소듐 라우오릴 사르코시네이트를 들 수 있다.
상기 비이온성 유화제로는, 예컨대 에스테르형, 에테르형, 에스테르-에테르형 유화제를 들 수 있고, 특별히 제한되지 않지만 구체적으로 폴리옥시에틸렌글리콜, 폴리옥시에틸렌글리콜메틸에테르, 폴리옥시에틸렌모노알릴에테르, 폴리옥시에틸렌비스페놀-A 에테르, 폴리프로필렌글 리콜, 폴리옥시에틸렌네오펜틸에테르, 폴리옥시에틸렌세틸에테르, 폴리옥시에틸렌로릴에테르, 폴리옥시에틸올레일에테르, 폴리옥시에틸렌스테아릴 에테르, 폴리옥시에틸렌데실에테르, 폴리옥시에틸렌옥틸에테르를 들 수 있다.
상기 바인더 조성물은 이차전지용 전극의 제조에 있어서 바인더로 사용될 수 있으며, 따라서 본 발명은 상기 바인더 조성물을 포함하는 이차전지용 전극을 제공한다.
상기 이차전지용 전극은 리튬 이차전지용 전극으로 사용될 수 있으며, 상기 리튬 이차전지는 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 것일 수 있다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 전술한 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
상기 금속 재료의 집전체는 전도성이 높은 금속으로서, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예컨대 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 집전체 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용 가능하며, 3 내지 500 ㎛의 두께를 갖는 것일 수 있다.
상기 양극 활물질은, 예컨대 리튬 코발트 산화물(LiCoO2); 리튬 니켈 산화물(LiNiO2); Li[NiaCobMncM1 d]O2(상기 식에서, M1은 Al, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고, 0.3≤a<1.0, 0≤b≤0.5, 0≤c≤0.5, 0≤d≤0.1, a+b+c+d=1이다); Li(LieM2 f-e-f'M3 f')O2-gAg(상기 식에서, 0≤e≤0.2, 0.6≤f≤1, 0≤f'≤0.2, 0≤g≤0.2이고, M2는 Mn과, Ni, Co, Fe, Cr, V, Cu, Zn 및 Ti로 이루어진 군에서 선택되는 1종 이상을 포함하며, M3은 Al, Mg 및 B로 이루어진 군에서 선택되는 1종 이상이고, A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이다) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; Li1+hMn2-hO4(상기 식에서 0≤h≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-iM4 iO2(상기 식에서, M4 = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고, 0.01≤i≤0.3)로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-jM5 jO2 (상기 식에서, M5 = Co, Ni, Fe, Cr, Zn 또는 Ta이고, 0.01≤j≤0.1) 또는 Li2Mn3M6O8(상기 식에서, M6 = Fe, Co, Ni, Cu 또는 Zn)로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; LiFe3O4, Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 도전재는 양극 슬러리 전체 중량에 대해 1 중량% 내지 20 중량%의 양으로 사용될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.
상기 음극은 당 분야에 알려져 있는 통상적인 방법으로 제조될 수 있으며, 예컨대 상기 음극 활물질 및 전술한 바인더, 및 도전재 등의 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 음극 집전체에 도포하고 건조한 후 압축하여 제조할 수 있다.
상기 음극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 음극 활물질, 바인더, 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더는 음극 활물질용 슬러리 전체 중량 중에 10 중량% 이하로 포함될 수 있으며, 구체적으로 0.1 중량% 내지 10 중량%로 포함될 수 있다. 상기 바인더의 함량이 0.1 중량% 미만이면 바인더의 사용에 따른 효과가 미미하여 바람직하지 않고, 10 중량%를 초과하면 바인더의 함량 증가에 따른 활물질의 상대적인 함량 감소로 인해 체적당 용량이 저하될 우려가 있어 바람직하지 않다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 상기 도전재의 예로서는 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 도전성 소재 등을 들 수 있다. 상기 도전재는 음극 활물질용 슬러리 전체 중량에 대해 1 중량% 내지 9 중량%의 양으로 사용될 수 있다.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 집전체는 3 ㎛ 내지 500 ㎛의 두께를 갖는 것일 수 있다. 상기 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대 구리, 금, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 활물질 슬러리에는 필요에 따라 점도 조절제 및/또는 충진제가 포함될 수 있다.
상기 점도 조절제는 카르복시메틸셀룰로우즈, 또는 폴리아크릴산 등일 수 있으며, 첨가에 의해 상기 활물질 슬러리의 제조와 상기 전극 집전체 상의 도포 공정이 용이하도록 활물질 슬러리의 점도가 조절될 수 있다.
상기 충진제는 전극의 팽창을 억제하는 보조성분으로서, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예컨대 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체, 유리섬유, 탄소섬유 등의 섬유상 물질일 수 있다.
한편, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예컨대 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예컨대 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예컨대 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해액에 포함되는 유기 용매로는 이차 전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸 설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 구체적으로, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 본 발명에 따라 저장되는 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
압력 교반기에 증류수 250 g, 1,3-부타디엔 50 g, 스티렌 34 g, 메틸메타크릴레이트 10 g, 아크릴산 4 g, 소듐 아크릴레이트 2 g, 유화제로서 소듐 로릴 설페이트 0.4 g, 및 중합 개시제로서 포타슘 퍼설페이트 0.5 g을 넣어 반응을 개시한 후 충분히 교반하면서, 10 시간 동안 70를 유지하면서 반응시켜 고형분 양이 40%인 바인더를 얻었다.
실시예 2
상기 실시예 1에서 스티렌을 대신하여 아크릴로 니트릴을 동일 중량으로 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
실시예 3
상기 실시예 1에서 아크릴산을 대신하여 푸마르산을 동일 중량으로 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
실시예 4
상기 실시예 1에서 소듐 아크릴레이트를 대신하여 아크릴산을 동일 중량으로 사용하고, 반응이 완료된 후 추가로 포타슘 하이드록사이드 0.2 g을 투입하여 1시간 동안 교반시킨 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
실시예 5
상기 실시예 4에서 포타슘 하이드록사이드를 대신하여 소듐 하이드록사이드 0.5 g을 투입한 것을 제외하고는, 실시예 4와 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
실시예 6
상기 실시예 1에서 소듐 아크릴레이트를 대신하여 리튬 메타크릴레이트를 동일 중량으로 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
실시예 7
상기 실시예 1에서 소듐 아크릴레이트의 양을 10 g으로 달리한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
실시예 8
상기 실시예 5에서 소듐 하이드록사이드의 양을 2 g으로 달리한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
실시예 9
압력 교반기에 증류수 250 g, 1,3-부타디엔 50 g, 스티렌 34 g, 아크릴산 4 g, 소듐 아크릴레이트 2 g, 유화제로서 소듐 로릴 설페이트 0.4 g, 및 중합 개시제로서 포타슘 퍼설페이트 0.5 g을 넣어 반응을 개시한 후 충분히 교반하면서, 10 시간 동안 70를 유지하면서 반응시켜 고형분 양이 40%인 공중합체(A)를 얻었다.
다른 압력 교반기에 증류수 250 g, 메틸메타크릴레이트 40 g, 스티렌 10 g, 아크릴산 4 g, 소듐 아크릴레이트 2 g, 유화제로서 소듐 로릴 설페이트 0.4 g, 및 중합 개시제로서 포타슘 퍼설페이트 0.5 g을 넣어 반응을 개시한 후 충분히 교반하면서, 10 시간 동안 70를 유지하면서 반응시켜 고형분 양이 40%인 공중합체(B)를 얻었다.
상기 공중합체(A) 80 중량부와 공중합체(B) 20 중량부를 혼합하여 바인더를 제조하였다.
실시예 10
압력 교반기에 증류수 250 g, 1,3-부타디엔 50 g, 스티렌 34 g, 아크릴산 4 g, 유화제로서 소듐 로릴 설페이트 0.4 g, 및 중합 개시제로서 암모늄 퍼설페이트 0.5 g을 넣어 반응을 개시한 후 충분히 교반하면서, 10 시간 동안 70를 유지하면서 반응시켜 고형분 양이 40%인 공중합체(A)를 얻었다.
다른 압력 교반기에 증류수 250 g, 메틸메타크릴레이트 40 g, 스티렌 10 g, 아크릴산 4 g, 유화제로서 소듐 로릴 설페이트 0.4 g, 및 중합 개시제로서 암모늄 퍼설페이트 0.5 g을 넣어 반응을 개시한 후 충분히 교반하면서, 10 시간 동안 70를 유지하면서 반응시켜 고형분 양이 40%인 공중합체(B)를 얻었다.
상기 공중합체(A) 80 중량부와 공중합체(B) 20 중량부를 혼합한 후, 추가로 포타슘 하이드록사이드 0.2 g을 투입하여 1시간 동안 교반시켜 바인더를 제조하였다.
비교예 1
상기 실시예 1에서 소듐 아크릴레이트를 사용하지 않고 중합한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
비교예 2
상기 실시예 1에서 소듐 아크릴레이트의 양을 25 g으로 달리한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
비교예 3
상기 실시예 3에서 포타슘 하이드록사이드의 양을 8 g으로 달리한 것을 제외하고는, 실시예 4와 마찬가지의 방법으로 고형분 양이 40%인 바인더를 얻었다.
비교예 4
폴리 아크릴산 5 g과 LiOH 0.42 g을 탈이온수(deionized water) 127.5 g에 넣고 혼합한 후, 상온에서 24시간 동안 교반하여 고형분 양이 5 %인 폴리아크릴산 리튬염(중량평균분자량: 450×103)을 바인더로서 얻었다.
비교예 5
압력 교반기에 증류수 250 g, 1,3-부타디엔 50 g, 스티렌 34 g, 메틸메타크릴레이트 10 g, 아크릴산 4 g, 유화제로서 소듐 로릴 설페이트 0.4 g, 및 중합 개시제로서 암모늄 퍼설페이트 0.5 g을 넣어 반응을 개시한 후 충분히 교반하면서, 10 시간 동안 70를 유지하면서 반응시켜 고형분 양이 40%인 바인더를 얻었다.
폴리 아크릴산 5 g과 LiOH 0.42 g을 탈이온수(deionized water) 127.5 g에 넣고 혼합한 후, 상온에서 24시간 동안 교반하여 고형분 양이 5%인 폴리아크릴산 리튬염(중량평균분자량: 450×103)을 얻었다.
상기 바인더와 폴리아크릴산 리튬염을 혼합하여 최종 바인더를 제조하였다.
실시예 1-1 : 리튬 이차전지의 제조
(음극의 제조)
상기 실시예 1 에서 제조된 바인더 0.63 g, 천연흑연 8 g, 1.2% solution 증점재(카르복시 메틸셀룰로오즈) 8.3g, 카본블랙 도전재 0.1 g을 혼합하여 음극용 슬러리를 제조하였다. 여기서 전체 고형분 함량이 45 중량%가 되도록 물을 후첨하였다. 상기 조성물을 닥터 블레이드를 이용하여 구리 호일에 250 ㎛ 두께로 코팅한 후, 80℃의 드라이 오븐에 넣고 30분간 건조한 뒤, 적당한 두께로 압연하여 음극을 제조하였다.
(양극의 제조)
양극 활물질로서 LiCoO2 96 g, 아세틸렌 블랙 2 g, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 2 g을 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극용 슬러리를 제조한 후, 상기 양극용 슬러리를 알루미늄(Al) 박막에 350 ㎛ 두께로 코팅하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
<리튬 이차전지의 제조>
상기에서 제조된 음극을 표면적 13.33 cm2가 되도록 펀칭하고, 상기에서 제조된 양극을 표면적 12.60 cm2가 되도록 펀칭하여 단일셀(mono-cell)을 제작하였다. 탭(tap)을 상기 양극 및 음극의 상부에 부착하고, 음극과 양극 사이에 폴리올레핀 미세 다공막으로 만들어진 분리막을 개재시켜 상기 결과물을 알루미늄 파우치에 적재한 후 전해액 500 mg을 파우치 내부에 주입하였다. 전해액은 EC(에틸렌 카보네이트):DEC(디에틸 카보네이트):EMC(에틸 메틸 카보네이트) = 4:3:3(체적비) 혼합 용매를 사용하여 NaPF6 전해질을 1 M의 농도로 용해시켜 제조하였다.
이후, 진공포장기를 이용하여 상기 파우치를 밀봉하고 상온에서 12시간 동안 유지시킨 후, 약 0.05 C 비율로 정전류 충전하고 전류의 약 1/6이 될 때까지 전압을 유지시켜주는 정접압 충전 과정을 거쳤다. 이 때, 셀 내부에 가스가 발생하므로 탈가스(degassing)와 재실링(resealing) 과정을 수행하여 소듐 이차전지를 완성하였다.
실시예 2-1 내지 10-1, 및 비교예 1-1 내지 5-1: 리튬 이차전지의 제조
상기 실시예 1-1에서 음극의 제조시 바인더로서 상기 실시예 1에서 제조된 바인더를 대신하여, 각각 실시예 2 내지 10, 및 비교예 1 내지 5에서 제조된 바인더를 사용한 것을 제외하고는, 실시예 1-1의 음극의 제조와 마찬가지의 방법으로 각각 음극을 제조하고, 이와 같이 제조된 음극 각각을 이용하여 역시 실시예 1-1에 기재된 방법과 마찬가지의 방법으로 리튬 이차전지를 제조하였다. 이때 양극으로는 실시예 1-1의 양극의 제조에 따라 제조된 양극을 사용하였다.
실험예 1 : 알칼리금속 함유량 측정
상기 실시예 1 내지 10, 및 비교예 1 내지 5에서 제조된 바인더에 대하여 알칼리금속의 함유량을 측정하여 하기 표 1에 나타내었다. 하기 표 1에 나타낸 알칼리금속 이온의 함유량은 모든 알칼리금속 이온의 총량이며, ICP 분석법을 사용하여 측정하였다.
알칼리금속 함량 (중량%)
실시예 1 0.67
실시예 2 0.67
실시예 3 0.67
실시예 4 0.32
실시예 5 0.47
실시예 6 0.32
실시예 7 2.41
실시예 8 1.31
실시예 9 0.79
실시예 10 0.21
비교예 1 0.18
비교예 2 5.08
비교예 3 5.38
비교예 4 2.36
비교예 5 1.2
실험예 2 : 2C 방전용량 측정
우선 충방전 전류 밀도를 0.2 C로 하고, 충전 종지 전압을 4.2 V(Li/Li+), 방전 종지 전압을 3 V(Li/Li+)로 한 충방전 시험을 2회 시행하였다. 뒤이어, 충전 전류 밀도를 0.2 C, 방전 전류 밀도를 2 C로 하여 방전 용량을 측정한 뒤 두번째 방전용량으로 나누어 용량비를 구한 다음 2 C 방전 용량(%)으로 간주 하였다. 그 결과를 하기 표 2에 나타내었다.
실험예 3 : 용량 유지율 측정
45℃ 오븐에서 충방전 전류 밀도를 1 C로 하고 충전 종지 전압을 4.2 V(Li/Li+), 방전 종지 전압을 3 V(Li/Li+)로 한 충방전 시험을 300회 시행하였다.
모든 충전은 정전류/정전압으로 행하고, 정전압 충전의 종지 전류는 0.05 C로 하였다. 총 300 사이클의 시험을 완료한 후 300번째 사이클의 방전 용량을 첫번째 사이클의 방전 용량으로 나누는 용량비(300th/1ST))를 구하여 300 사이클의 용량 유지율로 간주하였다. 그 결과를 하기 표 2에 함께 나타내었다.
바인더의 종류 2C 방전 용량(%) 300 사이클 용량 유지율(%)
실시예 1-1 실시예 1 75 86
실시예 2-1 실시예 2 73 86
실시예 3-1 실시예 3 76 88
실시예 4-1 실시예 4 76 89
실시예 5-1 실시예 5 74 87
실시예 6-1 실시예 6 74 88
실시예 7-1 실시예 7 78 86
실시예 8-1 실시예 8 75 87
실시예 9-1 실시예 9 80 92
실시예 10-1 실시예 10 79 90
비교예 1-1 비교예 1 70 83
비교예 2-1 비교예 2 77 72
비교예 3-1 비교예 3 75 71
비교예 4-1 비교예 4 62 74
비교예 5-1 비교예 5 65 75
상기 표 2를 통하여 확인할 수 있는 바와 같이, 실시예 1 내지 10에서 제조된 바인더를 사용하여 제조된 음극을 각각 포함하는 실시예 1-1 내지 10-1의 리튬 이차전지는 우수한 방전 특성 및 수명 특성을 나타냄을 확인할 수 있었다.
반면, 알칼리금속 이온의 함량이 상대적으로 적은 비교예 1의 바인더를 사용하여 제조된 음극을 포함하는 비교예 1-1의 리튬 이차전지는 2C 방전 용량이 실시예 1-1 내지 10-1의 리튬 이차전지에 비해 뒤떨어졌으며, 이를 통해 알칼리금속 이온의 함량이 상대적으로 많을 경우 저항 특성이 우수하여 전지의 방전 특성이 향상됨을 확인할 수 있었다. 그러나, 알칼리금속 이온의 함량이 적정 수준을 초과하는 비교예 2 및 3의 바인더를 각각 사용하여 제조된 음극을 포함하는 비교예 2-1 및 3-1의 리튬 이차전지는 실시예 1-1 내지 10-1의 리튬 이차전지에 비해 방전 특성은 우수하였으나 300 사이클 용량 유지율이 낮았는데, 이를 통해 알칼리금속 이온의 함량이 일정 범위를 넘어설 경우 바인더의 접착력이 낮아져 전극에 대한 접착력이 낮아지므로, 특히 수명 특성이 악화된다는 점을 확인할 수 있었다.
한편, 비교예 4 및 5의 바인더를 사용하여 제조된 음극을 포함하는 비교예 4-1 및 5-1의 리튬 이차전지는 2C 방전 용량 및 300 사이클 용량 유지율이 실시예 1-1 내지 10-1의 리튬 이차전지에 비해 뒤떨어졌으며, 이를 통해 알칼리 금속 이온의 함량이 적정 범위에 포함되어도 바인더에 포함된 공중합체의 구성에 따라 저항 특성 및 전극에 대한 접착력이 영향을 받음을 확인할 수 있었다.

Claims (13)

  1. 관능기를 포함하는 공중합체; 및
    상기 공중합체의 관능기에 결합 또는 관능기 구성 원소에 치환된 알칼리금속 이온을 포함하고,
    상기 알칼리금속 이온은 공중합체 100 중량부 대비 0.2 내지 5 중량부의 양으로 포함되며,
    상기 공중합체는
    (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위;
    (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위;
    (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위; 및
    (라) 불포화 카르본산계 단량체 유래 반복 단위;
    로 이루어진 군에서 선택되는 3종 이상을 포함하는, 이차전지용 바인더 조성물.
  2. 제 1 항에 있어서,
    상기 알칼리금속 이온은 리튬 이온, 소듐 이온, 칼륨 이온, 루비듐 이온, 세슘 이온 및 프란슘 이온으로 이루어진 군으로부터 선택된 1종 이상인 이차전지용 바인더 조성물.
  3. 제 1 항에 있어서,
    상기 공중합체는 총 중량 100 중량부를 기준으로,
    (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위 10 내지 97 중량부;
    (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위 1 내지 49 중량부;
    (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위 1 내지 60 중량부; 및
    (라) 불포화 카르본산계 단량체 유래 반복 단위 1 내지 20 중량부;
    를 포함하는, 이차전지용 바인더 조성물.
  4. 제 1 항에 있어서,
    상기 바인더가 공액 디엔(conjugated dienes)계 공중합체(A) 및 아크릴계 공중합체(B)를 함께 포함하는, 이차전지용 바인더 조성물.
  5. 제 4 항에 있어서,
    상기 이차전지용 바인더 조성물은 상기 이차전지용 바인더 조성물 전체 고형분 중량 100 중량부를 기준으로 상기 아크릴계 공중합체(B)를 1 내지 30 중량부 포함하는, 이차전지용 바인더 조성물.
  6. 제 4 항에 있어서,
    상기 공액 디엔계 공중합체(A)는
    (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위;
    (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위; 및
    (라) 불포화 카르본산계 단량체 유래 반복 단위;
    를 포함하는, 이차전지용 바인더 조성물.
  7. 제 6 항에 있어서,
    상기 공액 디엔계 공중합체(A)는 상기 공액 디엔계 공중합체(A) 총 중량 100 중량부를 기준으로,
    상기 (가) 공액 디엔계 단량체 유래 반복 단위 또는 공액 디엔계 중합체 유래 단위를 10 내지 97.9 중량부;
    상기 (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위를 1 내지 60 중량부; 및
    상기 (라) 불포화 카르본산계 단량체 유래 반복 단위를 1 내지 20 중량부;를 포함하는, 이차전지용 바인더 조성물.
  8. 제 4 항에 있어서,
    상기 아크릴계 공중합체(B)는
    (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위;
    (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위; 및
    (라) 불포화 카르본산계 단량체 유래 반복 단위를 포함하는, 이차전지용 바인더 조성물.
  9. 제 8 항에 있어서,
    상기 아크릴계 공중합체(B)가 상기 아크릴계 공중합체(B) 총 중량 100 중량부를 기준으로,
    상기 (나) (메타)아크릴산 에스테르계 단량체 유래 반복 단위를 10 내지 97.9 중량부;
    상기 (다) 비닐계 단량체 유래 반복 단위, (메타)아크릴 아미드계 단량체 유래 반복 단위 및 니트릴계 단량체 유래 반복 단위로 이루어진 군에서 선택되는 1종 이상의 반복 단위를 1 내지 60 중량부; 및
    상기 (라) 불포화 카르본산계 단량체 유래 반복 단위;를 1 내지 20 중량부 포함하는, 이차전지용 바인더 조성물.
  10. 제 1 항에 있어서,
    상기 니트릴계 단량체는 알케닐 시아나이드인, 이차전지용 바인더 조성물.
  11. 제 10 항에 있어서,
    상기 알케닐 시아나이드는, 아크릴로니트릴, 메타크릴로니트릴, 및 알릴 시아나이드로 이루어진 군으로부터 선택되는 1종 이상인, 이차전지용 바인더 조성물.
  12. 제 1 항에 따른 이차전지용 바인더 조성물을 포함하는 이차전지용 전극.
  13. 제 12 항에 따른 이차전지용 전극을 포함하는 리튬 이차전지.
PCT/KR2016/015132 2015-12-24 2016-12-22 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지 WO2017111514A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16879381.8A EP3396750B1 (en) 2015-12-24 2016-12-22 Binder composition for secondary battery, and electrode for secondary battery and lithium secondary battery comprising the same
CN201680060322.2A CN108140840B (zh) 2015-12-24 2016-12-22 用于二次电池的粘合剂组合物、用于二次电池的电极和包括该电极的锂二次电池
US15/761,600 US10862126B2 (en) 2015-12-24 2016-12-22 Binder composition for secondary battery, and electrode for secondary battery and lithium secondary battery comprising the same
PL16879381T PL3396750T3 (pl) 2015-12-24 2016-12-22 Kompozycja środka wiążącego dla akumulatora, i elektroda dla akumulatora i obejmujący ją akumulator litowy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0186395 2015-12-24
KR20150186395 2015-12-24
KR1020160176434A KR101952673B1 (ko) 2015-12-24 2016-12-22 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지
KR10-2016-0176434 2016-12-22

Publications (1)

Publication Number Publication Date
WO2017111514A1 true WO2017111514A1 (ko) 2017-06-29

Family

ID=59089600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015132 WO2017111514A1 (ko) 2015-12-24 2016-12-22 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2017111514A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210313582A1 (en) * 2018-10-23 2021-10-07 Lg Chem, Ltd. Electrode Binder Composition for Rechargeable Battery and Electrode Mixture Including the Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582518B1 (ko) * 1997-03-04 2006-05-24 제온 코포레이션 전지용 바인더조성물, 전지 전극용 슬러리, 리튬 2차전지용 전극 및 리튬 2차전지
KR20140116190A (ko) * 2012-01-11 2014-10-01 미쯔비시 레이온 가부시끼가이샤 이차 전지 전극용 바인더 수지 조성물, 이차 전지 전극용 슬러리, 이차 전지용 전극, 및 리튬 이온 이차 전지
KR20150006327A (ko) * 2013-07-08 2015-01-16 삼성에스디아이 주식회사 리튬 이차 전지용 바인더 조성물, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2015026102A1 (ko) * 2013-08-19 2015-02-26 주식회사 엘지화학 이차전지용 바인더 조성물, 이를 사용한 전극 및 리튬 이차전지
KR20150068371A (ko) * 2012-10-12 2015-06-19 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬이온 이차전지 양극용 바인더, 이 바인더를 포함하는 리튬이온 이차전지용 양극, 이 양극을 이용한 리튬이온 이차전지 및 전기기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582518B1 (ko) * 1997-03-04 2006-05-24 제온 코포레이션 전지용 바인더조성물, 전지 전극용 슬러리, 리튬 2차전지용 전극 및 리튬 2차전지
KR20140116190A (ko) * 2012-01-11 2014-10-01 미쯔비시 레이온 가부시끼가이샤 이차 전지 전극용 바인더 수지 조성물, 이차 전지 전극용 슬러리, 이차 전지용 전극, 및 리튬 이온 이차 전지
KR20150068371A (ko) * 2012-10-12 2015-06-19 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬이온 이차전지 양극용 바인더, 이 바인더를 포함하는 리튬이온 이차전지용 양극, 이 양극을 이용한 리튬이온 이차전지 및 전기기기
KR20150006327A (ko) * 2013-07-08 2015-01-16 삼성에스디아이 주식회사 리튬 이차 전지용 바인더 조성물, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2015026102A1 (ko) * 2013-08-19 2015-02-26 주식회사 엘지화학 이차전지용 바인더 조성물, 이를 사용한 전극 및 리튬 이차전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210313582A1 (en) * 2018-10-23 2021-10-07 Lg Chem, Ltd. Electrode Binder Composition for Rechargeable Battery and Electrode Mixture Including the Same
US12068483B2 (en) * 2018-10-23 2024-08-20 Lg Chem, Ltd. Electrode binder composition for rechargeable battery and electrode mixture including the same

Similar Documents

Publication Publication Date Title
WO2018182343A1 (ko) 이차전지용 바인더 조성물, 이를 포함하는 이차전지용 전극 및 리튬 이차전지
WO2015026102A1 (ko) 이차전지용 바인더 조성물, 이를 사용한 전극 및 리튬 이차전지
EP3396750B1 (en) Binder composition for secondary battery, and electrode for secondary battery and lithium secondary battery comprising the same
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
EP3483964B1 (en) Binder composition for secondary battery, and electrode for secondary battery and lithium secondary battery which include the same
WO2021060737A1 (ko) 리튬이차전지 음극용 바인더 및 이를 포함하는 리튬이차전지용 음극
WO2019135496A1 (ko) 이차 전지용 바인더 조성물, 이를 포함하는 전극 슬러리 조성물, 전극 및 이차 전지
WO2020050661A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019013557A2 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2021060811A1 (ko) 이차전지의 제조방법
WO2021096313A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
KR102102983B1 (ko) 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 소듐 이차전지
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2017171372A1 (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019203455A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020085739A1 (ko) 이차 전지 전극용 바인더 조성물 및 전극 합제
WO2017111514A1 (ko) 이차전지용 바인더 조성물, 및 이를 포함하는 이차전지용 전극 및 리튬 이차전지
WO2023113330A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023113464A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2017082680A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2023038337A1 (ko) 실리콘계 음극 활물질, 상기 실리콘계 음극 활물질의 제조 방법, 상기 실리콘계 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지
WO2021015488A1 (ko) 이차전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE