WO2017110460A1 - 低背インダクタ - Google Patents

低背インダクタ Download PDF

Info

Publication number
WO2017110460A1
WO2017110460A1 PCT/JP2016/086296 JP2016086296W WO2017110460A1 WO 2017110460 A1 WO2017110460 A1 WO 2017110460A1 JP 2016086296 W JP2016086296 W JP 2016086296W WO 2017110460 A1 WO2017110460 A1 WO 2017110460A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
low
surface electrodes
coil conductor
element body
Prior art date
Application number
PCT/JP2016/086296
Other languages
English (en)
French (fr)
Inventor
正貴 中庭
浩和 矢崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017557852A priority Critical patent/JPWO2017110460A1/ja
Priority to CN201690001243.XU priority patent/CN208722717U/zh
Publication of WO2017110460A1 publication Critical patent/WO2017110460A1/ja
Priority to US15/933,515 priority patent/US20180211765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/004Printed inductances with the coil helically wound around an axis without a core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present invention relates to a surface mount type ultra low profile inductor (Ultra Thin Inductor), and more particularly to a low profile inductor having a thickness of 0.5 mm or less in which obstruction of magnetic field formation by a surface electrode is suppressed.
  • Ultra Thin Inductor Ultra Thin Inductor
  • Inductors in which a coil conductor is incorporated in an element body in which a plurality of base material layers are laminated are used in various electronic devices.
  • Patent Document 1 WO2013-128702
  • FIG. 7 shows an inductor (multilayer inductor) 500 disclosed in Patent Document 1.
  • the inductor 500 includes an element body 101 on which base material layers (magnetic material layers) 101a to 101h made of a plurality of magnetic materials are stacked. As can be seen from FIG. 7, the base material layers 101b and 101g are thicker than the other base material layers 101a, 101c to 101f and 101h.
  • loop conductor patterns (linear conductors) 102a to 102e and wiring conductors 103a and 103b are arranged.
  • via conductors (interlayer connection conductors) 104 are formed in the base material layers 101a to 101g so as to penetrate between both main surfaces.
  • a pair of surface electrodes (external connection conductors) 105 a and 105 b are formed on one main surface (lower main surface) of the element body 101.
  • the inductor 500 has a coil formed by connecting the loop-shaped conductor patterns 102a to 102e and the wiring conductors 103b and 103a in this order by the via conductor 104, starting from the surface electrode 105a and ending at the surface electrode 105. Yes.
  • a low profile inductor having a thickness of 0.5 mm or less is required.
  • the distance between the loop-shaped conductor pattern 102a and the surface electrodes 105a and 105b is reduced.
  • the surface electrodes 105a and 105b prevent magnetic field formation by the loop-shaped conductor patterns 102a to 102e, and the inductor 500 obtains a high Q value. Will not be able to.
  • the surface electrodes 105a and 105b each have a large area, when the distance between the loop-shaped conductor pattern 102a and the surface electrodes 105a and 105b decreases, the surface electrodes 105a and 105b form a magnetic field. The disturbing effect was great.
  • the surface electrodes 105a and 105b greatly overlap with the opening portions of the coil (regions inside the regions where the loop conductor patterns 102a to 102e are formed). Therefore, when the distance between the loop-shaped conductor pattern 102a and the surface electrodes 105a and 105b is reduced, the influence of the surface electrodes 105a and 105b preventing magnetic field formation is extremely large. That is, the opening of the coil is an area where the magnetic flux formed by the loop-shaped conductor patterns 102a to 102e is most concentrated, and the surface electrodes 105a and 105b block this area, thereby greatly preventing the formation of the magnetic field. There was a problem that the value was greatly reduced.
  • the inductor having the conventional structure has a problem that when the thickness is reduced (less than 0.5 mm), a sufficiently large inductance value and Q value cannot be obtained.
  • the present invention has been made to solve the above-described conventional problems.
  • a means for the low-profile inductor according to the present invention a plurality of base material layers are laminated and a thickness of 0.5 mm or less.
  • a thin plate-like element body, a coil conductor incorporated in the element body and having a winding axis in the stacking direction of the base material layer, and four surface electrodes formed in one main surface of the element body A surface mount type low profile inductor in which one end of the coil conductor is connected to at least one of the surface electrodes and the other end of the coil conductor is connected to at least one other of the surface electrodes, When seen through in the direction, the centers of the four surface electrodes are arranged in the region where the coil conductor is formed.
  • region in which the coil conductor was formed means the area
  • the coil conductor may be configured by one loop-shaped conductor pattern, but may be configured by connecting a plurality of loop-shaped conductor patterns by interlayer connection conductors such as via conductors.
  • the low profile inductor only needs to have at least four surface electrodes. That is, the number of surface electrodes of the low-profile inductor is not limited to four, and may be five, six, or even more. *
  • the four surface electrodes are respectively arranged in four corners of one main surface of the element body. In this case, when the low-profile inductor is mounted, one main surface of the element body is stabilized.
  • the overlapping area is the area of the surface electrode. Is preferably 10% or less. In this case, the influence which a surface electrode prevents magnetic field formation can further be suppressed, and the fall of Q value can be made smaller.
  • one end of the coil conductor is connected to two of the surface electrodes, and the other end of the coil conductor is connected to the remaining two of the surface electrodes.
  • both ends of the coil conductor are respectively connected to the external (substrate, etc.) land electrodes by the two surface electrodes, so that the electrical connection is ensured and the resistance component can be reduced.
  • a first distribution electrode and a second distribution electrode are provided between the base material layers near one main surface of the element body, one end of the coil conductor is connected to the first distribution electrode, and the first distribution electrode is Preferably, the other end of the coil conductor is connected to the second distribution electrode, and the second distribution electrode is connected to the remaining two of the surface electrodes.
  • one end of the coil conductor can be easily connected to the two surface electrodes, and the other end of the coil conductor can be connected to the remaining two surface electrodes.
  • the first distribution electrode and the second distribution electrode are respectively disposed mainly in the region where the coil conductor is formed when seen through in the stacking direction of the base material layer. In this case, the influence which the 1st distribution electrode and the 2nd distribution electrode prevent magnetic field formation can be suppressed.
  • One end of the coil conductor is connected to one of the surface electrodes, the other end of the coil conductor is connected to the other one of the surface electrodes, and the remaining two surface electrodes to which the coil conductor is not connected are respectively It is good also as a 1st dummy surface electrode which does not perform electrical connection. In this case, the mounting strength can be increased by the first dummy surface electrode.
  • another low-profile inductor includes a rectangular thin plate-like element body in which a plurality of base material layers are stacked and a thickness of 0.5 mm or less, and a built-in element body.
  • a coil conductor having a winding axis in the stacking direction of the base material layer, and four surface electrodes formed in one main surface of the element body, and one end of the coil conductor is formed of four surface electrodes. Connected to two of them, the other end of the coil conductor is connected to the other two of the four surface electrodes, and the four surface electrodes are arranged in four corners on one main surface of the element body, respectively. It was assumed.
  • the second dummy surface electrode that does not perform electrical connection and enhances mounting strength in the vicinity of the center of one main surface of the element body.
  • the mounting strength to the printed wiring board can be increased by the second dummy surface electrode. Since the second dummy surface electrode is not electrically connected and is not connected to the signal line or ground even after being mounted on the substrate, even if it is provided near the center of one main surface of the element body, the magnetic field formation Will not greatly disturb.
  • the second dummy surface electrode is divided into a plurality of parts.
  • the solder film thickness becomes too large when the second dummy surface electrode is soldered to the land electrode or the like of the substrate, resulting in a low-profile inductor. There is a risk of causing mounting failure.
  • the second dummy surface electrode is divided into a plurality of parts as described above, the area of each divided second dummy surface electrode is reduced, so that the solder film thickness when soldering is reduced is reduced. The occurrence of defects can be suppressed.
  • the element body is made of ceramics and a third dummy surface electrode that does not perform electrical connection is formed on the other main surface of the element body.
  • a firing step is required during the manufacturing process, but electrodes (surface electrodes, etc.) are formed only on one main surface of the element body, and electrodes are formed on the other main surface of the element body. If not, the heat shrinkage rate and the firing behavior differ between the two main surfaces. In particular, in the case of extremely thin ceramics, warping is likely to occur in the fired body (sintered body). However, if the third dummy surface electrode is formed on the other main surface of the element body in this way, it is possible to suppress the warpage of the element body in the firing step.
  • the third dummy surface electrode when the third dummy surface electrode is composed of a plurality and is seen through in the stacking direction of the base material layer, the third dummy surface electrode is formed at a position overlapping with the surface electrode, respectively, or the surface electrode And the first dummy surface electrode, or the first dummy surface electrode, or the second dummy surface electrode, or the first dummy surface electrode and the second dummy surface electrode. It is preferable that it is formed in a position overlapping with. In this case, the hindrance of magnetic field formation by these electrodes can be minimized.
  • the third dummy surface electrode when the third dummy surface electrode is formed at a position that does not overlap with the surface electrode or the like, a part of the magnetic flux formed by the coil conductor is obstructed by the surface electrode or the like on one main surface of the element body, and the coil The other part of the magnetic flux formed by the conductor is obstructed by the third dummy surface electrode on the other main surface of the element body, thereby greatly hindering magnetic field formation by these electrodes.
  • the third dummy surface electrode when the third dummy surface electrode is formed at a position overlapping with the surface electrode or the like, the magnetic flux hindered by the surface electrode or the like on one main surface of the element body causes the third dummy surface on the other main surface of the element body.
  • the magnetic flux that is not disturbed by the surface electrode or the like on one main surface of the element body is also not obstructed by the third dummy surface electrode on the other main surface of the element body. That is, the surface on one main surface of the element body is made common by the magnetic flux disturbed by the surface electrode or the like on one main surface of the element body and the magnetic flux obstructed by the third dummy surface electrode on the other main surface of the element body.
  • a sufficient amount of magnetic flux that is not obstructed by the electrode or the like and that is not obstructed by the third dummy surface electrode on the other principal surface of the element body can be secured, and the obstruction of magnetic field formation by these electrodes is minimized. be able to.
  • the base material layer is composed of a plurality of magnetic base material layers and at least one nonmagnetic base material layer, and in the element body, the nonmagnetic base material layer includes two magnetic base material layers. It is preferable to be sandwiched between layers.
  • the element body is entirely formed of a magnetic base material layer, magnetic saturation is likely to occur when a large direct current flows, and the inductance value may be rapidly decreased.
  • the DC superposition characteristics are improved, and even when a large DC current flows, magnetic saturation is unlikely to occur. Therefore, it is possible to suppress the inductance value from rapidly decreasing.
  • the element body is made of ceramics
  • at least one layer is formed in the element body
  • the void extending in the direction perpendicular to the stacking direction of the base material layer is formed. It is preferable that the air gap overlaps with the region where the coil conductor is formed.
  • a firing process is required during the manufacturing process.
  • stress is generated between the base material layer and the coil conductor due to the difference in thermal shrinkage.
  • stress distortion occurs in the fired element body, resulting in a decrease in magnetic properties (such as a decrease in magnetic permeability).
  • by forming at least one layer of voids inside the base material layer in this way, the stress generated between the base material layer and the coil conductor can be relieved by the air gap, and the magnetic properties can be reduced. The decrease can be suppressed.
  • the centers of the four surface electrodes are arranged in the region where the coil conductor is formed, and thus the thickness is 0. Even when the thickness is 5 mm or less, the obstruction of the magnetic field formation by the surface electrode is minimized.
  • one end of the coil conductor is connected to two of the four surface electrodes, and the other end of the coil conductor is connected to the other two of the four surface electrodes. Since the four surface electrodes are divided and arranged at the four corners of one main surface of the element body, even if the thickness is 0.5 mm or less, the obstruction of magnetic field formation by the surface electrodes is minimized. Has been.
  • FIG. 1A and 1B are perspective views showing a low-profile inductor 100 according to the first embodiment, respectively.
  • the low-profile inductor 100 is viewed from the upper main surface side (the other main surface side).
  • the low-profile inductor 100 is viewed from the lower main surface side (one main surface side).
  • 2 is an exploded perspective view showing a low-profile inductor 100.
  • FIG. 3A and 3B are perspective views of the low-profile inductor 100 viewed from the lower main surface side (one main surface side), respectively. It is a principal part disassembled perspective view which shows the low profile inductor 200 concerning 2nd Embodiment.
  • FIG. 1 It is a disassembled perspective view which shows the low profile inductor 300 concerning 3rd Embodiment. It is a perspective view which shows the low profile inductor 400 concerning 4th Embodiment.
  • the low-profile inductor 400 is viewed from the lower main surface side (one main surface side).
  • 6 is an exploded perspective view showing an inductor 500 disclosed in Patent Document 1.
  • each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, components described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIG. 1A), (B), FIG. 2, FIG. 3 (A), and (B) show a low-profile inductor 100 according to the first embodiment.
  • 1A and 1B are perspective views showing the low-profile inductor 100, respectively.
  • FIG. 2 is an exploded perspective view of the low-profile inductor 100.
  • 3A and 3B are perspective views of the low-profile inductor 100 viewed from the lower main surface side (one main surface side), respectively.
  • the low-profile inductor 100 includes a base body 1.
  • the outer dimensions of the element body 1 shown in FIG. 1 are extremely thin (low profile) with a width W of 3.5 mm, a depth D of 3.2 mm, and a thickness T of 0.35 mm.
  • the low-profile inductor of the present invention is intended for an extremely thin inductor having a thickness T of 0.5 mm or less and a width W and a depth D of about 2.0 mm to 10.0 mm, respectively.
  • the element body 1 has a structure in which magnetic base material layers 1a to 1d, a non-magnetic base material layer 1e, and magnetic base material layers 1f to 1j are laminated in order from the bottom.
  • the nonmagnetic base material layer 1e is formed of low magnetic permeability or nonmagnetic ceramics.
  • the magnetic base layers 1a to 1d and 1f to 1j are made of magnetic ceramics such as ferrite having a higher magnetic permeability than the nonmagnetic base layer 1e.
  • a first distribution electrode 2a and a second distribution electrode 2b are formed between the magnetic substrate layer 1a and the magnetic substrate layer 1b.
  • a 3-turn loop conductor pattern 3a is formed between the magnetic base layer 1b and the magnetic base layer 1c.
  • a 3-turn loop conductor pattern 3b is formed between the magnetic base layer 1c and the magnetic base layer 1d.
  • a 3-turn loop conductor pattern 3c is formed between the magnetic base layer 1d and the non-magnetic base layer 1e.
  • a three-turn loop conductor pattern 3d is formed.
  • a loop-shaped conductor pattern is not formed between the magnetic base material layer 1f and the magnetic base material layer 1g. Instead, an annular gap 4 is formed between the magnetic substrate layer 1f and the magnetic substrate layer 1g.
  • a 3-turn loop conductor pattern 3e is formed between the magnetic base layer 1g and the magnetic base layer 1h.
  • a three-turn loop conductor pattern 3f is formed.
  • a loop-shaped conductor pattern 3e having a little less than 3 turns is formed.
  • an electronic component in which mounting electrodes are formed only on the lower main surface of the element body may be referred to as an LGA (Land grid array) type.
  • second dummy surface electrodes 6a to 6d are formed in the vicinity of the center of the one main surface of the element body 1 so as to prevent electrical connection and increase mounting strength.
  • the second dummy surface electrode is mechanically bonded to the printed wiring board, it is not electrically connected and is not connected to the signal line or ground even after being mounted on the substrate or the like. Despite being provided on one main surface, the magnetic field formation is not greatly hindered.
  • the second dummy surface electrodes 6a to 6d are not essential in the present invention, and can be omitted.
  • via conductors 7 are formed so as to penetrate between both main surfaces.
  • the surface electrodes 5 a and 5 b are connected to the first distribution electrode 2 a by via conductors 7. Similarly, the surface electrodes 5 c and 5 d are connected to the second distribution electrode 2 b by via conductors 7.
  • the first distribution electrode 2a, the loop-shaped conductor patterns 3a to 3g, and the second distribution electrode 2b are sequentially connected by the via conductor 7.
  • the loop conductor patterns 3a to 3g are connected by the via conductor 7 to form a coil conductor.
  • a coil is formed between the surface electrodes 5a and 5b and the surface electrodes 5c and 5d.
  • the first distribution electrode 2a, the second distribution electrode 2b, the loop-shaped conductor patterns 3a to 3g, and the via conductor 7 are mainly composed of silver, for example.
  • these materials are arbitrary, and copper or other metals may be the main component.
  • a plurality of types of metals may be included, and these metals may be alloys.
  • the low-profile inductor 100 according to the first embodiment having the above structure has the following characteristics.
  • each center P of the surface electrodes 5a to 5d is an area E in which the coil conductors (loop-shaped conductor patterns 3a to 3g) are formed. Is placed inside.
  • one surface electrode is divided into two surface electrodes 5a and 5b, and the other surface electrode is divided into two surface electrodes 5c and 5d. Is getting smaller. The larger the area of the surface electrode, the greater the influence of the surface electrode that hinders the magnetic field formation of the coil. However, in the low-profile inductor 100, the area of the surface electrodes 5a to 5d is reduced so The hindrance is made small.
  • the coil conductors (loop-shaped conductor patterns 3a to 3a) are more suitable when the surface electrodes 5a to 5d are located in the coil opening F.
  • the effect of preventing magnetic field formation is greater than in the case of being in the formation region E of 3g).
  • the low-profile inductor 100 by disposing the centers P of the surface electrodes 5a to 5d in the region E, the obstruction of magnetic field formation by the surface electrodes 5a to 5d is reduced.
  • the surface electrodes 5a to 5d each overlap the opening F of the coil only slightly.
  • the overlapping area of the surface electrodes 5a to 5d and the opening F of the coil is 3% or less of the area of the surface electrodes 5a to 5d. It is best that the surface electrodes 5a to 5d and the coil opening F do not overlap. Even when the surface electrodes 5a to 5d overlap the coil opening F, the area should be as small as possible, and considering the hindrance to magnetic field formation, it should be 10% or less of the area of the surface electrodes 5a to 5d. Is preferred.
  • the low profile inductor 100 reduces the hindrance to magnetic field formation by the surface electrodes 5a to 5d by reducing the overlap between the surface electrodes 5a to 5d and the opening F of the coil.
  • the low-profile inductor 100 has a thickness as small as 0.35 mm, and the coil conductor (loop shape) is formed by the surface electrodes 5a to 5d, although the distance between the loop-shaped conductor pattern 3a and the surface electrodes 5a to 5d is small. The obstruction of the magnetic field formation by the conductor patterns 3a to 3g) is minimized.
  • the low-profile inductor 100 has a small area of the surface electrodes 5a to 5d, but has four surface electrodes 5a to 5d, so that the low-profile inductor 100 is firmly fixed to an external electrode (such as a land electrode on the substrate) and is sufficiently Mounting strength can be maintained.
  • the first distribution electrode 2a and the second distribution electrode 2b are respectively disposed in the region E in which the coil conductors (loop-like conductor patterns 3a to 3g) are mainly formed.
  • the first distribution electrode 2a and the second distribution electrode 2b are in the opening F of the coil, the magnetic field formation is prevented more than when the first distribution electrode 2a and the second distribution electrode 2b are in the formation region E of the coil conductors (loop-like conductor patterns 3a to 3g).
  • the first distribution electrode 2a and the second distribution electrode 2b by arranging the first distribution electrode 2a and the second distribution electrode 2b mainly in the region E, the hindrance to magnetic field formation by the first distribution electrode 2a and the second distribution electrode 2b is reduced. .
  • the element body 1 is composed of magnetic base material layers 1a to 1d, 1f to 1j, and a nonmagnetic base material layer 1e.
  • the element body 1 is entirely formed of a magnetic base material layer, magnetic saturation is likely to occur when a large direct current flows, and the inductance value may be drastically reduced.
  • the DC superposition characteristics are improved, and even when a large DC current flows, magnetic saturation is unlikely to occur, and the inductance is reduced. The value does not drop rapidly.
  • an annular gap 4 is formed between the magnetic base material layer 1f and the magnetic base material layer 1g.
  • the gap 4 is formed so as to substantially overlap the region E where the coil conductors (looped conductor patterns 3a to 3g) are formed.
  • the element body 1 is formed of ceramics as in the present embodiment, a firing step is required during the manufacturing process. However, during cooling after firing, the substrate layer (magnetic substrate layer 1a) is required.
  • the second dummy surface electrodes 6a to 6d are divided into four.
  • the solder film thickness becomes too large when the second dummy surface electrode is soldered to the land electrode of the substrate, There is a risk of mounting failure.
  • the low-profile inductor 100 divides the second dummy surface electrode into four second dummy surface electrodes 6a to 6d and reduces the respective areas so that the solder film thickness does not become too large during soldering. The occurrence of mounting defects is suppressed.
  • the low-profile inductor 100 is an existing, general method for manufacturing an inductor in which a coil conductor is built in an element body in which a plurality of base material layers are laminated. Can be manufactured.
  • the low-profile inductor 100 can be manufactured, for example, by the following method.
  • ceramic green sheets made of magnetic ferrite or the like for forming the magnetic base layers 1a to 1d and 1f to 1j are prepared.
  • a ceramic green sheet made of nonmagnetic ferrite or the like for forming the nonmagnetic base material layer 1e is prepared.
  • holes for forming the via conductors 7 are formed in these ceramic green sheets as necessary. Subsequently, the formed hole is filled with a conductive paste.
  • conductive paste for forming the loop-shaped conductor patterns 3a to 3g, the surface electrodes 5a to 5d, and the second dummy surface electrodes 6a to 6d is formed in a predetermined shape on the main surface of the ceramic green sheet as necessary. Apply.
  • a material that disappears by firing is applied in a predetermined shape to the main surface (upper main surface) of the ceramic green sheet for forming the magnetic substrate layer 1f.
  • a material that disappears upon firing for example, a carbon paste can be used.
  • Ceramic green sheets are laminated in a predetermined order, and are pressed and integrated to obtain an unfired body. Subsequently, the unfired element body is fired with a predetermined profile to complete the low-profile inductor 100 according to the first embodiment. Further, the surfaces of the surface electrodes 5a to 5d and the second dummy surface electrodes 6a to 6d may be plated.
  • FIG. 4 shows a low-profile inductor 200 according to the second embodiment.
  • FIG. 4 is an exploded perspective view of a main part of the low-profile inductor 200.
  • the low-profile inductor 200 is a part of the low-profile inductor 100 according to the first embodiment.
  • the two surface electrodes 5a and 5b are connected to the first distribution electrode 2a, and the two surface electrodes 5c and 5d are connected to the second distribution electrode 2b.
  • the first distribution electrode 2a of the first embodiment is replaced with a first wiring electrode 12a having a different shape
  • the second distribution electrode 2b of the first embodiment is replaced with a second wiring electrode 12b having a different shape.
  • only the surface electrode 5 a was connected to the first wiring electrode 12 a by the via conductor 7
  • only the surface electrode 5 c was connected to the second wiring electrode 12 b by the via conductor 7.
  • the surface electrode 5b of the first embodiment is a first dummy surface electrode 16a that is not connected to the first wiring electrode 12a and is not electrically connected.
  • the surface electrode 5d of the first embodiment is a first dummy surface electrode 16b that is not connected to the second wiring electrode 12b and is not electrically connected.
  • FIG. 5 shows a low-profile inductor 300 according to the third embodiment. However, FIG. 5 is an exploded perspective view of the low-profile inductor 300.
  • the low-profile inductor 300 has a configuration added to the low-profile inductor 100 according to the first embodiment.
  • third dummy surface electrodes 26a to 26h that are not electrically connected are added to the other main surface (upper main surface) of the element body 1 (magnetic base material layer 1j).
  • the third dummy surface electrodes 26a to 26h are provided so that the element body 1 is not warped in the firing step. That is, when the element body 1 is made of ceramics, a firing step is required during the manufacturing process, but electrodes (surface electrodes 5a to 5d, second dummy surface electrodes 6a to 6d) are formed only on one main surface of the element body 1. ) Is formed, and no electrode is formed on the other main surface of the element body 1, the thermal contraction rate differs between the two main surfaces of the element body 1, and warping occurs in the element body 1 after firing. There is a risk of it.
  • the third dummy surface electrodes 26a to 26h are formed on the other main surface of the element body 1, thereby making the thermal contraction rate between both main surfaces of the element body 1 uniform, and the element body 1 in the firing step. The occurrence of warpage is suppressed.
  • the third dummy surface electrodes 26a to 26h are formed at positions overlapping the surface electrodes 5a to 5d and the second dummy surface electrodes 6a to 6d when the element body 1 is seen through in the laminating direction (the laminating direction of the base body). Yes. This is for minimizing the hindrance of magnetic field formation. That is, when the third dummy surface electrodes 26a to 26h are formed at positions where they do not overlap with the surface electrodes 5a to 5d and the second dummy surface electrodes 6a to 6d, a part of the magnetic flux is one main part of the element body 1.
  • the surface is blocked by the surface electrodes 5a to 5d and the second dummy surface electrodes 6a to 6d, and the other part of the magnetic flux is blocked by the third dummy surface electrodes 26a to 26h on the other main surface of the element body 1.
  • the formation of a magnetic field is greatly hindered by these electrodes.
  • the third dummy surface electrodes 26a to 26h are formed at positions overlapping the surface electrodes 5a to 5d and the second dummy surface electrodes 6a to 6d, the surface electrodes 5a to 5d and the second electrodes on one main surface of the element body 1 are formed.
  • the magnetic flux blocked by the dummy surface electrodes 6a to 6d is also blocked by the third dummy surface electrodes 26a to 26h on the other main surface of the element body 1, but the surface electrodes 5a to 5d on the one main surface of the element body 1.
  • the magnetic flux not disturbed by the second dummy surface electrodes 6a to 6d is not disturbed by the third dummy surface electrodes 26a to 26h on the other main surface of the element body. That is, the low-profile inductor 300 includes the magnetic flux hindered by the surface electrodes 5a to 5d and the second dummy surface electrodes 6a to 6d on one main surface of the element body 1, and the third dummy surface electrodes 26a to 26a on the other main surface of the element body.
  • the first main surface of the element body is not obstructed by the surface electrodes 5a to 5d and the second dummy surface electrodes 6a to 6d, and the third main surface of the element body is third.
  • the surface electrodes 5a to 5d, the second dummy surface electrodes 6a to 6d, and the third dummy surface electrodes 26a to 26h are prevented from forming a magnetic field. Minimized.
  • FIG. 6 shows a low-profile inductor 400 according to the fourth embodiment.
  • FIG. 6 is a perspective view of the low-profile inductor 400 as viewed from the lower main surface side (one main surface side).
  • the low profile inductor 400 is a part of the low profile inductor 100 according to the first embodiment.
  • the four surface electrodes 5a to 5d are arranged separately at the four corners of the lower main surface (one main surface) of the element body 1, respectively.
  • the four surface electrodes 5a 'to 5d' are arranged along the middle portions of the four sides of the lower main surface (one main surface) of the element body 1, respectively.
  • the formation position of the surface electrode can be adjusted as appropriate.
  • the low-profile inductors 100 to 400 have a thickness of 0.35 mm, the thickness is not limited to this size, and can be arbitrarily set from a size of 0.5 mm or less.
  • the element body 1 is formed of ceramics, but the material of the element body 1 is arbitrary, and may be formed of, for example, resin.
  • the loop-shaped conductor patterns 3a to 3g are formed with 3 turns or less than 3 turns, respectively, but the number of turns and the shape of the loop-shaped conductor patterns 3a to 3g are arbitrary. For example, the number of turns may be one turn, two turns, or four turns or more. Further, the shape of the loop-shaped conductor patterns 3a to 3g may be changed.
  • the number of base layers (magnetic base layers 1a to 1d, 1f to 1j, nonmagnetic base layer 1e) forming the element body 1 and the number of loop conductor patterns 3a to 3g are arbitrary. However, it is not limited to the above-described contents, and each can be increased or decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

表面電極による磁界形成の妨げが抑制された厚み0.5mm以下の低背インダクタを提供する。 矩形薄板状の素体1と、素体1に内蔵された基材層の積層方向に巻回軸を有するループ状導体パターン3a~3gと、素体1の一方主面に形成された4つの表面電極5a~5dと、を備え、表面実装型であり、積層方向に透視した場合に、4つの表面電極5a~5dの各中心が、それぞれ、ループ状導体パターン3a~3gが形成された領域内に配置されるようにした。4つの表面電極5a~5dは、たとえば、素体1の一方主面の4隅に分けて配置される。

Description

低背インダクタ
 本発明は、表面実装型の超低背インダクタ(Ultra Thin Inductor)に関し、さらに詳しくは、表面電極による磁界形成の妨げが抑制された厚み0.5mm以下の低背インダクタに関する。
 複数の基材層が積層された素体に、コイル導体が内蔵されたインダクタが、種々の電子機器に使用されている。
 そのようなインダクタが、特許文献1(WO2013-128702号公報)に開示されている。
 図7に、特許文献1に開示されたインダクタ(積層型インダクタ)500を示す。
 インダクタ500は、複数の磁性体からなる基材層(磁性体層)101a~101hが積層された素体101を備える。基材層101b、101gは、図7から分かるように、他の基材層101a、101c~101f、101hよりも厚みが大きい。
 基材層101a~101hの層間には、ループ状導体パターン(線状導体)102a~102eや、配線導体103a、103bが配置されている。
 また、基材層101a~101gには、それぞれ、両主面間を貫通して、ビア導体(層間接続導体)104が形成されている。
 素体101の一方主面(下側主面)には、1対の表面電極(外部接続導体)105a、105bが形成されている。
 インダクタ500は、表面電極105aを起点にし、表面電極105を終点にして、ループ状導体パターン102a~102e、配線導体103b、103aを、順に、ビア導体104により接続することにより、コイルが形成されている。
WO2013-128702号公報
 電子機器の小型化にともない、インダクタを含む電子部品においても、小型化が極めて重要な課題の1つになっている。
 たとえば、ICカード型デバイスでは、0.5mm以下の厚みの低背インダクタが求められている。
 しかしながら、0.5mm以下の厚みのインダクタを、従来のインダクタの構造、たとえば特許文献1に開示されたインダクタ500の構造で作製すると、大きなインダクタンス値や高いQを有するインダクタを得ることが難しいという問題があった。
 すなわち、特許文献1に開示されたインダクタ500において、厚みを0.5mm以下にしようとした場合には、図7に示す、基材層101b、101gの厚みを小さくすることが必要になる。すなわち、基材層101b、101gの厚みを、少なくとも、他の基材層101a、101c~101f、101hと同じ程度に小さくするか、あるいは、ループ状導体パターン102a~102eの層数を減らさなければ、厚みが0.5mm以下のインダクタの作製は難しい。
 しかしながら、ループ状導体パターン102a~102eの層数を減らすと、大きなインダクタンス値を得ることが難しくなってしまう。
 また、コイル開口に面した基材層101b、101gの厚みを小さくすると、ループ状導体パターン102aと、表面電極105a、105bとの距離が小さくなってしまう。そして、ループ状導体パターン102aと、表面電極105a、105bとの距離が小さくなると、表面電極105a、105bが、ループ状導体パターン102a~102eによる磁界形成を妨げ、インダクタ500が高いQ値を得ることができなくなってしまう。
 特に、インダクタ500は、表面電極105a、105bが、それぞれ、大きな面積を備えているため、ループ状導体パターン102aと表面電極105a、105bとの距離が小さくなると、表面電極105a、105bが磁界形成を妨げる影響が大きかった。
 また、インダクタ500は、素体1の積層方向に透視した場合、表面電極105a、105bが、コイルの開口部(ループ状導体パターン102a~102eが形成された領域の内側の領域)と大きく重なっているため、ループ状導体パターン102aと表面電極105a、105bとの距離が小さくなると、表面電極105a、105bが磁界形成を妨げる影響が極めて大きかった。すなわち、コイルの開口部は、ループ状導体パターン102a~102eが形成する磁束が最も集中する領域であり、この領域を表面電極105a、105bが塞いでしまうことにより、磁界形成が大きく妨げられ、Q値が大きく低下してしまうという問題があった。
 以上のように、従来の構造のインダクタにおいて、厚みを小さく(0.5mm以下に)すると、十分に大きなインダクタンス値やQ値を得ることができないという問題があった。
 本発明は、上述した従来の問題を解決するためになされたものであり、その手段として、本発明の低背インダクタは、複数の基材層が積層され、厚みが0.5mm以下である矩形薄板状の素体と、素体に内蔵され、基材層の積層方向に巻回軸を有するコイル導体と、素体の一方主面の面内に形成された4つの表面電極と、を備え、コイル導体の一端が表面電極の少なくとも1つに接続され、コイル導体の他端が表面電極の他の少なくとも1つに接続された表面実装型の低背インダクタであって、基材層の積層方向に透視した場合に、4つの表面電極の各中心が、それぞれ、コイル導体が形成された領域内に配置されたものとした。
 なお、コイル導体が形成された領域とは、平面視した場合(基材層の積層方向に透視した場合)に、コイル導体の内周端と外周端との間の幅により形成される領域をいう。
 なお、コイル導体は、1つのループ状導体パターンで構成される場合もあるが、複数のループ状導体パターンがビア導体などの層間接続導体により接続されて構成される場合もある。
 また、低背インダクタは、少なくとも4つの表面電極を備えていれば良い。すなわち、低背インダクタの表面電極の個数は、4つには限られず、5つ、6つであっても良く、さらに多くであっても良い。 
 4つの表面電極が、素体の一方主面の4隅に分けてそれぞれ配置されることが好ましい。この場合には、低背インダクタを実装した場合に、素体の一方主面が安定する。
 基材層の積層方向に透視した場合に、4つの表面電極が、それぞれ、コイル導体の開口と重なっていない、あるいは、コイル導体の開口と重なっているとしても、重なり面積が、表面電極の面積の10%以下であることが好ましい。この場合には、表面電極が磁界形成を妨げる影響をさらに抑制することができ、Q値の低下をより小さくすることができる。
 また、コイル導体の一端が、表面電極の2つに接続され、コイル導体の他端が、表面電極の残りの2つに接続されたものとすることが好ましい。この場合には、コイル導体の両端が、それぞれ、2つの表面電極により外部(基板等)のランド電極に接続されるため電気的接続が確実になり、抵抗成分も小さくできる。
 また、素体の一方主面近傍の、基材層の層間に、第1分配電極と第2分配電極とが設けられ、コイル導体の一端が第1分配電極に接続され、第1分配電極が表面電極の2つに接続され、コイル導体の他端が第2分配電極に接続され、第2分配電極が表面電極の残りの2つに接続されることが好ましい。この場合には、容易に、コイル導体の一端を2つの表面電極に接続し、コイル導体の他端を残りの2つの表面電極に接続することができる。
 この場合において、第1分配電極および第2分配電極は、それぞれ、基材層の積層方向に透視した場合に、主にコイル導体が形成された領域内に配置されていることが好ましい。この場合には、第1分配電極および第2分配電極が磁界形成を妨げる影響を抑制することができる。
 コイル導体の一端を、表面電極の1つに接続し、コイル導体の他端を、表面電極の他の1つに接続し、コイル導体が接続されなかった残りの2つの表面電極を、それぞれ、電気的接続をおこなわない、第1ダミー表面電極としても良い。この場合には、第1ダミー表面電極により、実装強度を高めることができる。
 また、本発明の別の低背インダクタは、上述した課題を解決するために、複数の基材層が積層され、厚みが0.5mm以下である矩形薄板状の素体と、素体に内蔵され、基材層の積層方向に巻回軸を有するコイル導体と、素体の一方主面の面内に形成された4つの表面電極と、を備え、コイル導体の一端が4つの表面電極のうちの2つに接続され、コイル導体の他端が4つの表面電極のうちの他の2つに接続されており、4つの表面電極が素体の一方主面の4隅に分けてそれぞれ配置されたものとした。
 さらに、素体の一方主面の中央近傍に、電気的接続をおこなわない、実装強度を高めるための、第2ダミー表面電極を形成することが好ましい。この場合には、第2ダミー表面電極により、プリント配線板への実装強度を高めることができる。なお、第2ダミー表面電極は、電気的接続をおこなわず、基板に実装した後も、信号ラインやグランドに接続されないため、素体の一方主面の中央近傍に設けられていても、磁界形成を大きく妨げない。
 また、第2ダミー表面電極が、複数に分割されていることが好ましい。第2ダミー表面電極を分割せずに大面積で形成した場合には、第2ダミー表面電極を基板のランド電極等にはんだ付けをした際に、はんだ膜厚が大きくなり過ぎて、低背インダクタの実装不良の原因となる虞がある。しかしながら、このように、第2ダミー表面電極を複数に分割した場合には、分割された各第2ダミー表面電極の面積が小さくなるため、はんだ付けをした際のはんだ膜厚が小さくなり、実装不良の発生を抑制することができる。また、第2ダミー表面電極を複数に分割することで、磁界形成の妨げにもなりにくくなる。
 また、素体がセラミックスからなり、素体の他方主面に、電気的接続をおこなわない、第3ダミー表面電極が形成されることが好ましい。素体がセラミックスからなる場合には、製造工程中に焼成工程が必要になるが、素体の一方主面にのみ電極(表面電極等)が形成され、素体の他方主面に電極が形成されていない場合には、両主面間で熱収縮率や焼成挙動が異なってしまい、特に極薄のセラミックスの場合、焼成後の素体(焼結体)に反りが発生しやすい。しかしながら、このように、素体の他方主面に第3ダミー表面電極を形成すれば、焼成工程において素体に反りが発生することを抑制することができる。
 この場合において、第3ダミー表面電極が複数からなり、基材層の積層方向に透視した場合に、第3ダミー表面電極が、それぞれ、表面電極と重なる位置に形成されているか、または、表面電極および第1ダミー表面電極と重なる位置に形成されているか、または、表面電極および第2ダミー表面電極と重なる位置に形成されているか、または、表面電極、第1ダミー表面電極および第2ダミー表面電極と重なる位置に形成されていることが好ましい。この場合には、これらの電極による磁界形成の妨げを最小限にとどめることができる。すなわち、第3ダミー表面電極が、表面電極等と重ならない位置に形成されていると、コイル導体により形成された磁束の一部が、素体の一方主面において表面電極等により妨げられ、コイル導体により形成された磁束の他の一部が、素体の他方主面において第3ダミー表面電極により妨げられることにより、これらの電極による磁界形成の妨げが大きくなる。しかしながら、第3ダミー表面電極が、表面電極等と重なる位置に形成されていると、素体の一方主面において表面電極等により妨げられた磁束は、素体の他方主面において第3ダミー表面電極によっても妨げられてしまうが、素体の一方主面において表面電極等により妨げられなかった磁束は、素体の他方主面において第3ダミー表面電極によっても妨げられない。すなわち、素体の一方主面において表面電極等により妨げられる磁束と、素体の他方主面において第3ダミー表面電極により妨げられる磁束とを共通化することにより、素体の一方主面において表面電極等により妨げられず、かつ、素体の他方主面において第3ダミー表面電極に妨げられない磁束の量を十分に確保することができ、これらの電極による磁界形成の妨げを最小限にとどめることができる。
 また、基材層が、複数の磁性体基材層と、少なくとも1層の非磁性体基材層とで構成され、素体において、非磁性基材層が、2層の磁性体基材層に挟まれて積層されていることが好ましい。素体が、全て磁性体基材層で形成されていると、大きな直流電流が流れた場合に磁気飽和が発生しやすく、インダクタンス値が急激に低下してしまう虞がある。しかしながら、このように、コイル導体間に、少なくとも1層の非磁性体基材層を積層しておくことにより、直流重畳特性が改善され、大きな直流電流が流れても、磁気飽和が発生しにくくなり、インダクタンス値が急激に低下してしまうことを抑制することができる。
 また、素体がセラミックスからなり、素体の内部に、少なくとも1層の、基材層の積層方向に対して垂直方向に広がる空隙が形成され、基材層の積層方向に透視した場合に、空隙が、コイル導体が形成された領域と重なっていることが好ましい。素体がセラミックスからなる場合には、製造工程中に焼成工程が必要になるが、焼成した後の冷却時に、基材層とコイル導体との間に、熱収縮率の違いから応力が発生し、焼成後の素体に応力歪が生じて、磁気特性が低下(透磁率の低下等)してしまうという問題があった。しかしながら、このように、基材層の内部に少なくとも1層の空隙を形成しておくことにより、基材層とコイル導体との間に発生する応力を空隙によって緩和することができ、磁気特性の低下を抑制することができる。
 本発明の低背インダクタは、基材層の積層方向に透視した場合に、4つの表面電極の各中心が、それぞれ、コイル導体が形成された領域内に配置されたものとしたため、厚みが0.5mm以下であっても、表面電極による磁界形成の妨げが最小限に抑制されている。
 また、本発明のもう1つの低背インダクタは、コイル導体の一端が4つの表面電極のうちの2つに接続され、コイル導体の他端が4つの表面電極のうちの他の2つに接続され、4つの表面電極が、素体の一方主面の4隅に分けて配置されたものとしたため、厚みが0.5mm以下であっても、表面電極による磁界形成の妨げが最小限に抑制されている。
 これらの本発明の低背インダクタは、個々の表面電極の面積が小さくなったとしても、4つの表面電極によりしっかりと外部の電極(基板のランド電極等)に固定されるため、実装強度の低下を最小限に抑制できる。
図1(A)、(B)は、それぞれ、第1実施形態にかかる低背インダクタ100を示す斜視図である。図1(A)は、低背インダクタ100を上側主面側(他方主面側)からみている。図1(B)は、低背インダクタ100を下側主面側(一方主面側)からみている。 低背インダクタ100を示す分解斜視図である。 図3(A)、(B)は、それぞれ、低背インダクタ100を下側主面側(一方主面側)からみた透視図である。 第2実施形態にかかる低背インダクタ200を示す要部分解斜視図である。 第3実施形態にかかる低背インダクタ300を示す分解斜視図である。 第4実施形態にかかる低背インダクタ400を示す斜視図である。低背インダクタ400を下側主面側(一方主面側)からみている。 特許文献1に開示されたインダクタ500を示す分解斜視図である。
 以下、図面とともに、本発明を実施するための形態について説明する。
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合等がある。
 [第1実施形態]
 図1(A)、(B)、図2、図3(A)、(B)に、第1実施形態にかかる低背インダクタ100を示す。ただし、図1(A)、(B)は、それぞれ、低背インダクタ100を示す斜視図である。図2は、低背インダクタ100の分解斜視図である。図3(A)、(B)は、それぞれ、低背インダクタ100を下側主面側(一方主面側)からみた透視図である。
 低背インダクタ100は、素体1を備える。本実施形態においては、図1に示す素体1の外形寸法を、幅W3.5mm、奥行D3.2mm、厚みT0.35mmとし、極めて薄型(低背)に構成した。本発明の低背インダクタは、厚みTが0.5mm以下であるのに対し、幅Wおよび奥行Dが、それぞれ、2.0mm~10.0mm程度からなる、極めて薄型のインダクタを対象としている。
 素体1は、下から順に、磁性体基材層1a~1d、非磁性体基材層1e、磁性体基材層1f~1jが積層された構造からなる。非磁性体基材層1eは、低透磁率または非磁性のセラミックスにより形成されている。磁性体基材層1a~1d、1f~1jは、非磁性体基材層1eよりも透磁率が大きいフェライトなどの磁性セラミックスにより形成されている。
 磁性体基材層1aと磁性体基材層1bの層間には、第1分配電極2aと、第2分配電極2bとが形成されている。
 磁性体基材層1bと磁性体基材層1cの層間には、3ターンのループ状導体パターン3aが形成されている。
 磁性体基材層1cと磁性体基材層1dの層間には、3ターンのループ状導体パターン3bが形成されている。
 磁性体基材層1dと非磁性体基材層1eの層間には、3ターンのループ状導体パターン3cが形成されている。
 非磁性体基材層1eと磁性体基材層1fの層間には、3ターンのループ状導体パターン3dが形成されている。
 磁性体基材層1fと磁性体基材層1gの層間には、ループ状導体パターンは形成されていない。代わりに、磁性体基材層1fと磁性体基材層1gの層間には、環状の空隙4が形成されている。
 磁性体基材層1gと磁性体基材層1hの層間には、3ターンのループ状導体パターン3eが形成されている。
 磁性体基材層1hと磁性体基材層1iの層間には、3ターンのループ状導体パターン3fが形成されている。
 磁性体基材層1iと磁性体基材層1jの層間には、3ターン弱のループ状導体パターン3eが形成されている。
 素体1の一方主面(下側主面)には、4隅に分散させて、4つの表面電極5a~5dが形成されている。なお、素体の下側主面のみに実装用の電極が形成された電子部品を、LGA(Land grid array)型と呼ぶ場合がある。
 また、素体1の一方主面の中央近傍には、電気的接続をおこなわない、実装強度を高めるための、4つの第2ダミー表面電極6a~6dが形成されている。第2ダミー表面電極は、プリント配線板に機械的には接合されるが、電気的接続をおこなわず、基板等に実装した後も、信号ラインやグランドに接続されないものであるため、素体1の一方主面に設けられているにもかかわらず、磁界形成を大きく妨げない。なお、第2ダミー表面電極6a~6dは、本発明において必須の構成ではなく、省略することも可能である。
 磁性体基材層1a~1d、非磁性体基材層1e、磁性体基材層1f~1iには、それぞれ、両主面間を貫通して、ビア導体7が形成されている。
 表面電極5a、5bが、ビア導体7により、第1分配電極2aに接続されている。同様に、表面電極5c、5dが、ビア導体7により、第2分配電極2bに接続されている。
 そして、第1分配電極2a、ループ状導体パターン3a~3g、第2分配電極2bが、順に、ビア導体7により接続されている。なお、本実施形態においては、ループ状導体パターン3a~3gがビア導体7により接続されて、コイル導体が構成されている。
 この結果、低背インダクタ100は、表面電極5a、5bと、表面電極5c、5dとの間に、コイルが形成されている。
 第1分配電極2a、第2分配電極2b、ループ状導体パターン3a~3g、ビア導体7は、たとえば、銀を主成分としている。ただし、これらの材質は任意であり、銅や、その他の金属を主成分としても良い。また、複数の種類の金属が含まれていても良く、それらの金属が合金であっても良い。
 以上の構造からなる、第1実施形態にかかる低背インダクタ100は、次のような特徴を備える。
 低背インダクタ100は、図3(A)に示すように、4つの表面電極5a~5dが、素体1の一方主面(下側主面)の4隅に分散されて配置されている。そして、素体1の積層方向(基材層の積層方向)に透視した場合に、表面電極5a~5dの各中心Pが、コイル導体(ループ状導体パターン3a~3g)が形成された領域E内に配置されている。
 低背インダクタ100は、一方の表面電極が2つの表面電極5a、5bに分割され、他方の表面電極が2つの表面電極5c、5dに分割されたことにより、個々の表面電極5a~5dの面積が小さくなっている。表面電極の面積が大きいほど、表面電極がコイルの磁界形成を妨げる影響は大きくなるが、低背インダクタ100では、表面電極5a~5dの面積を小さくすることにより、表面電極5a~5dよる磁界形成の妨げを小さくしている。
 また、素体1の積層方向(基材層の積層方向)に透視した場合に、表面電極5a~5dが、コイルの開口F内にある場合の方が、コイル導体(ループ状導体パターン3a~3g)の形成領域E内にある場合よりも磁界形成を妨げる影響が大きい。低背インダクタ100は、表面電極5a~5dの各中心Pを領域E内に配置することにより、表面電極5a~5dよる磁界形成の妨げを小さくしている。
 さらに、低背インダクタ100は、表面電極5a~5dが、それぞれ、コイルの開口Fと僅かにしか重なっていない。本実施形態においては、表面電極5a~5dとコイルの開口Fとの重なり面積は、表面電極5a~5dの面積の3%以下である。表面電極5a~5dとコイルの開口Fとは、重ならないことが最も良い。表面電極5a~5dとコイルの開口Fとが重なる場合であっても、その面積はできるだけ小さい方が良く、磁界形成の妨げを考慮すると、表面電極5a~5dの面積の10%以下であることが好ましい。低背インダクタ100は、表面電極5a~5dとコイルの開口Fとの重なりを小さくすることにより、表面電極5a~5dよる磁界形成の妨げを小さくしている。
 以上により、低背インダクタ100は、厚みが0.35mmと小さく、ループ状導体パターン3aと表面電極5a~5dとの距離が小さいにもかかわらず、表面電極5a~5dによる、コイル導体(ループ状導体パターン3a~3g)による磁界形成の妨げが最小限に抑制されている。
 なお、低背インダクタ100は、表面電極5a~5dの面積が小さいが、4つの表面電極5a~5dを備えているため、外部の電極(基板のランド電極等)にしっかりと固定され、十分な実装強度を保つことができる。
 また、低背インダクタ100は、図3(B)に示すように、素体1の積層方向(基材層の積層方向)に透視した場合に、第1分配電極2a、第2分配電極2bが、それぞれ、主にコイル導体(ループ状導体パターン3a~3g)が形成された領域E内に配置されている。第1分配電極2a、第2分配電極2bが、コイルの開口F内にある場合の方が、コイル導体(ループ状導体パターン3a~3g)の形成領域E内にある場合よりも磁界形成を妨げる影響が大きい。低背インダクタ100では、第1分配電極2a、第2分配電極2bを主に領域E内に配置することにより、第1分配電極2a、第2分配電極2bよる磁界形成の妨げを小さくしている。
 また、低背インダクタ100は、素体1が、磁性体基材層1a~1d、1f~1jと、非磁性体基材層1eとで構成されている。素体1が、全て磁性体基材層で形成されていると、大きな直流電流が流れた場合に磁気飽和が発生しやすく、インダクタンス値が急激に低下してしまう虞がある。しかしながら、低背インダクタ100は、素体1が非磁性体基材層1eを備えているため、直流重畳特性が改善されており、大きな直流電流が流れても、磁気飽和が発生しにくく、インダクタンス値が急激に低下してしまうことがない。
 また、低背インダクタ100は、磁性体基材層1fと磁性体基材層1gの層間に、環状の空隙4が形成されている。素体1の積層方向(基材層の積層方向)に透視した場合に、空隙4は、コイル導体(ループ状導体パターン3a~3g)が形成された領域Eとほぼ重なって形成されている。本実施形態のように、素体1がセラミックスにより形成されている場合には、製造工程中に焼成工程が必要になるが、焼成した後の冷却時に、基材層(磁性体基材層1a~1d、1f~1j、非磁性体基材層1e)とループ状導体パターン3a~3gとの間に、熱収縮率の違いから応力が発生し、焼成後の素体1に応力歪が生じて透磁率が低下するなど磁気特性が低下してしまう虞がある。しかしながら、素体1の内部に空隙を形成すれば、その空隙によって、基材層とループ状導体パターンとの間に発生する応力を緩和することができる。低背インダクタ100は、空隙4を形成したことにより、基材層とループ状導体パターンとの間に発生する応力が緩和され、磁気特性の低下が抑制されている。
 さらに、低背インダクタ100は、第2ダミー表面電極6a~6dが4つに分割されている。第2ダミー表面電極を分割せずに1つの大きな面積の電極とした場合には、第2ダミー表面電極を基板のランド電極等にはんだ付けをした際に、はんだ膜厚が大きくなり過ぎて、実装不良の原因となる虞がある。低背インダクタ100は、第2ダミー表面電極を4つの第2ダミー表面電極6a~6dに分割し、それぞれの面積を小さくすることにより、はんだ付けの際にはんだ膜厚が大きくなり過ぎないようにし、実装不良の発生を抑制している。
 以上のような構造および特徴を備えた本実施形態にかかる低背インダクタ100は、既存の、一般的な、複数の基材層が積層された素体にコイル導体が内蔵されたインダクタの製造方法により製造することができる。低背インダクタ100は、たとえば、次の方法により製造することができる。
 まず、磁性体基材層1a~1d、1f~1jを形成するための、磁性フェライト等からなるセラミックグリーンシートを準備する。また、非磁性体基材層1eを形成するための、非磁性フェライト等からなるセラミックグリーンシートを準備する。
 次に、これらのセラミックグリーンシートに、必要に応じて、ビア導体7を形成するための孔を形成する。続いて、形成した孔に導電性ペーストを充填する。また、セラミックグリーンシートの主面に、必要に応じて、ループ状導体パターン3a~3g、表面電極5a~5d、第2ダミー表面電極6a~6dを形成するための導電性ペーストを所定の形状に塗布する。
 また、空隙4を形成するために、磁性体基材層1fを形成するためのセラミックグリーンシートの主面(上側主面)に、焼成により消失する材料を所定の形状に塗布する。焼成により消失する材料としては、たとえば、カーボンペーストを用いることができる。
 セラミックグリーンシートを所定の順番に積層し、加圧して一体化させ、未焼成の素体を得る。続いて、未焼成の素体を、所定のプロファイルで焼成して、第1実施形態にかかる低背インダクタ100を完成させる。なお、さらに、表面電極5a~5d、第2ダミー表面電極6a~6dの表面に、めっきを施しても良い。
 [第2実施形態]
 図4に、第2実施形態にかかる低背インダクタ200を示す。ただし、図4は、低背インダクタ200の要部分解斜視図である。
 低背インダクタ200は、第1実施形態にかかる低背インダクタ100の一部に変更を加えた。
 低背インダクタ100では、2つの表面電極5a、5bを第1分配電極2aに接続し、2つの表面電極5c、5dを第2分配電極2bに接続していた。
 低背インダクタ200では、第1実施形態の第1分配電極2aを形状の異なる第1配線電極12aに置換え、第1実施形態の第2分配電極2bを形状の異なる第2配線電極12bに置換えた。そして、表面電極5aのみをビア導体7により第1配線電極12aに接続し、表面電極5cのみをビア導体7により第2配線電極12bに接続した。
 第1実施形態の表面電極5bは、第1配線電極12aには接続せず、電気的接続をおこなわない第1ダミー表面電極16aとした。第1実施形態の表面電極5dは、第2配線電極12bには接続せず、電気的接続をおこなわない第1ダミー表面電極16bとした。
 低背インダクタ200の他の構成については、第1実施形態にかかる低背インダクタ100と同じにした。
 [第3実施形態]
 図5に、第3実施形態にかかる低背インダクタ300を示す。ただし、図5は、低背インダクタ300の分解斜視図である。
 低背インダクタ300は、第1実施形態にかかる低背インダクタ100に構成を追加した。
 低背インダクタ300は、素体1(磁性体基材層1j)の他方主面(上側主面)に、電気的接続をおこなわない8つの第3ダミー表面電極26a~26hが追加されている。
 第3ダミー表面電極26a~26hは、焼成工程において、素体1に反りが発生しないように設けられたものである。すなわち、素体1がセラミックスからなる場合には、製造工程中に焼成工程が必要になるが、素体1の一方主面にのみ電極(表面電極5a~5d、第2ダミー表面電極6a~6d)が形成され、素体1の他方主面に電極が形成されない場合には、素体1の両主面間で熱収縮率が異なってしまい、焼成後の素体1に反りが発生してしまう虞がある。低背インダクタ300は、素体1の他方主面に第3ダミー表面電極26a~26hを形成することにより、素体1の両主面間の熱収縮率を均等にし、焼成工程において素体1に反りが発生することを抑制している。
 なお、第3ダミー表面電極26a~26hは、素体1を積層方向(基体の積層方向)に透視した場合、表面電極5a~5d、第2ダミー表面電極6a~6dと重なる位置に形成されている。これは、磁界形成の妨げを最小限にとどめるためである。すなわち、第3ダミー表面電極26a~26hが、表面電極5a~5d、第2ダミー表面電極6a~6dと重ならない位置に形成された場合には、磁束の一部が、素体1の一方主面において表面電極5a~5d、第2ダミー表面電極6a~6dにより妨げられ、磁束の他の一部が、素体1の他方主面において第3ダミー表面電極26a~26hにより妨げられる。この結果、これらの電極により、磁界形成が大きく妨げられる。しかしながら、第3ダミー表面電極26a~26hを、表面電極5a~5d、第2ダミー表面電極6a~6dと重なる位置に形成すれば、素体1の一方主面において表面電極5a~5d、第2ダミー表面電極6a~6dにより妨げられた磁束は、素体1の他方主面において第3ダミー表面電極26a~26hによっても妨げられてしまうが、素体1の一方主面において表面電極5a~5d、第2ダミー表面電極6a~6dより妨げられなかった磁束は、素体の他方主面において第3ダミー表面電極26a~26hによっても妨げられない。すなわち、低背インダクタ300は、素体1の一方主面において表面電極5a~5d、第2ダミー表面電極6a~6dにより妨げられる磁束と、素体の他方主面において第3ダミー表面電極26a~26hによって妨げられる磁束とを共通化することにより、素体の一方主面において表面電極5a~5d、第2ダミー表面電極6a~6dにより妨げられず、かつ、素体の他方主面において第3ダミー表面電極26a~26hによって妨げられない磁束の量を十分に確保することにより、表面電極5a~5d、第2ダミー表面電極6a~6d、第3ダミー表面電極26a~26hによる磁界形成の妨げを最小限に抑制している。
 低背インダクタ300の他の構成については、第1実施形態にかかる低背インダクタ100と同じにした。
 [第4実施形態]
 図6に、第4実施形態にかかる低背インダクタ400を示す。ただし、図6は、低背インダクタ400を下側主面側(一方主面側)からみた斜視図である。
 低背インダクタ400は、第1実施形態にかかる低背インダクタ100の一部に変更を加えた。
 すなわち、低背インダクタ100では、4つの表面電極5a~5dを、それぞれ、素体1の下側主面(一方主面)の4隅に分けて配置していた。
 これに対し、低背インダクタ400では、4つの表面電極5a’~5d’を、それぞれ、素体1の下側主面(一方主面)の4つの辺の中間部分に沿わせて配置した。
 低背インダクタ400の他の構成については、第1実施形態にかかる低背インダクタ100と同じにした。
 このように、表面電極の形成位置は、適宜、調整することができる。
 以上、第1実施形態~第4実施形態にかかる低背インダクタ100~400について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って、種々の変更をなすことがきる。
 たとえば、低背インダクタ100~400は、厚みを0.35mmとしたが、厚みはこの大きさには限定されず、0.5mm以下の大きさから任意に設定することができる。
 また、低背インダクタ100~400では、素体1をセラミックスにより形成したが、素体1の材質は任意であり、たとえば、樹脂等により形成しても良い。
 また、低背インダクタ100~400では、ループ状導体パターン3a~3gを、それぞれ3ターンまたは3ターン弱に形成したが、ループ状導体パターン3a~3gのターン数や形状は任意である。たとえば、ターン数を、1ターンとしても良いし、2ターン、あるいは、4ターン以上としても良い。また、ループ状導体パターン3a~3gの形状を変更させても良い。
 さらに、素体1を形成する基材層(磁性体基材層1a~1d、1f~1j、非磁性体基材層1e)の層数や、ループ状導体パターン3a~3gの層数は任意であり、上述した内容には限定されず、それぞれ、増減することができる。
1・・・素体
1a~1d、1f~1j・・・磁性体基材層
1e・・・非磁性体基材層
2a・・・第1分配電極
2b・・・第2分配電極
3a~3g・・・ループ状導体パターン
4・・・空隙
5a~5d、5a’~5d’・・・表面電極
6a~6d・・・第2ダミー表面電極
7・・・ビア導体
16a、16b・・・第1ダミー表面電極
26a~26h・・・第3ダミー表面電極
E・・・コイル導体(ループ状導体パターン3a~3g)が形成された領域
F・・・コイルの開口

Claims (17)

  1.  複数の基材層が積層され、厚みが0.5mm以下である矩形薄板状の素体と、
     前記素体に内蔵され、前記基材層の積層方向に巻回軸を有するコイル導体と、
     前記素体の一方主面の面内に形成された4つの表面電極と、を備え、
     前記コイル導体の一端が前記表面電極の少なくとも1つに接続され、前記コイル導体の他端が前記表面電極の他の少なくとも1つに接続された表面実装型の低背インダクタであって、
     前記基材層の積層方向に透視した場合に、4つの前記表面電極の各中心が、それぞれ、前記コイル導体が形成された領域内に配置されている、低背インダクタ。
  2.  4つの前記表面電極が、前記素体の前記一方主面の4隅に分けてそれぞれ配置された、請求項1に記載された低背インダクタ。
  3.  前記基材層の積層方向に透視した場合に、4つの前記表面電極が、それぞれ、前記コイル導体の開口と重なっていない、あるいは、前記コイル導体の開口と重なっているとしても、重なり面積が、前記表面電極の面積の10%以下である、請求項1または2に記載された低背インダクタ。
  4.  前記コイル導体の一端が、前記表面電極の2つに接続され、前記コイル導体の他端が、前記表面電極の残りの2つに接続された、請求項1ないし3のいずれか1項に記載された低背インダクタ。
  5.  前記素体の前記一方主面近傍の、前記基材層の層間に、第1分配電極と第2分配電極とが設けられ、前記コイル導体の一端が前記第1分配電極に接続され、前記第1分配電極が前記表面電極の2つに接続され、前記コイル導体の他端が前記第2分配電極に接続され、前記第2分配電極が前記表面電極の残りの2つに接続された、請求項4に記載された低背インダクタ。
  6.  前記基材層の積層方向に透視した場合に、前記第1分配電極および前記第2分配電極が、それぞれ、主に前記コイル導体が形成された領域内に配置されている、請求項5に記載された低背インダクタ。
  7.  前記コイル導体の一端が、前記表面電極の1つに接続され、前記コイル導体の他端が、前記表面電極の他の1つに接続され、
     前記コイル導体が接続されなかった残りの2つの前記表面電極が、それぞれ、電気的接続をおこなわない、実装強度を高めるための第1ダミー表面電極である、請求項1ないし3のいずれか1項に記載された低背インダクタ。
  8.  複数の基材層が積層され、厚みが0.5mm以下である矩形薄板状の素体と、
     前記素体に内蔵され、前記基材層の積層方向に巻回軸を有するコイル導体と、
     前記素体の一方主面の面内に形成された4つの表面電極と、を備え、
     前記コイル導体の一端が4つの前記表面電極のうちの2つに接続され、前記コイル導体の他端が4つの前記表面電極のうちの他の2つに接続されており、
     4つの前記表面電極が前記素体の前記一方主面の4隅に分けてそれぞれ配置されている、低背インダクタ。
  9.  前記基材層の積層方向に透視した場合に、4つの前記表面電極が、それぞれ、前記コイル導体の開口と重なっていない、あるいは、前記コイル導体の開口と重なっているとしても、重なり面積が、前記表面電極の面積の10%以下である、請求項8に記載された低背インダクタ。
  10.  前記素体の前記一方主面近傍の、前記基材層の層間に、第1分配電極と第2分配電極とが設けられ、前記コイル導体の一端が前記第1分配電極に接続され、前記第1分配電極が前記表面電極の2つに接続され、前記コイル導体の他端が前記第2分配電極に接続され、前記第2分配電極が前記表面電極の残りの2つに接続された、請求項8または9に記載された低背インダクタ。
  11.  前記基材層の積層方向に透視した場合に、前記第1分配電極および前記第2分配電極が、それぞれ、主に前記コイル導体が形成された領域内に配置されている、請求項10に記載された低背インダクタ。
  12.  さらに、前記素体の前記一方主面の中央近傍に、電気的接続をおこなわない、実装強度を高めるための、第2ダミー表面電極が形成された、請求項1ないし11のいずれか1項に記載された低背インダクタ。
  13.  前記第2ダミー表面電極が、複数に分割されている、請求項12に記載された低背インダクタ。
  14.  前記素体がセラミックスからなり、
     前記素体の他方主面に、電気的接続をおこなわない、第3ダミー表面電極が形成された、請求項1ないし13のいずれか1項に記載された低背インダクタ。
  15.  前記第3ダミー表面電極が複数からなり、
     前記基材層の積層方向に透視した場合に、前記第3ダミー表面電極が、それぞれ、
     前記表面電極と重なる位置に形成されているか、
     または、前記表面電極および前記第1ダミー表面電極と重なる位置に形成されているか、または、前記表面電極および前記第2ダミー表面電極と重なる位置に形成されているか、または、前記表面電極、前記第1ダミー表面電極および前記第2ダミー表面電極と重なる位置に形成されている、請求項14に記載された低背インダクタ。
  16.  前記基材層が、複数の磁性体基材層と、少なくとも1層の非磁性体基材層とで構成され、前記素体において、前記非磁性基材層が、2層の前記磁性体基材層に挟まれて積層されている、請求項1ないし15のいずれか1項に記載された低背インダクタ。
  17.  前記素体がセラミックスからなり、
     前記素体の内部に、少なくとも1層の、前記基材層の積層方向に対して垂直方向に広がる空隙が形成され、
     前記基材層の積層方向に透視した場合に、前記空隙が、前記コイル導体が形成された領域と重なっている、請求項1ないし16のいずれか1項に記載された低背インダクタ。
PCT/JP2016/086296 2015-12-25 2016-12-07 低背インダクタ WO2017110460A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017557852A JPWO2017110460A1 (ja) 2015-12-25 2016-12-07 低背インダクタ
CN201690001243.XU CN208722717U (zh) 2015-12-25 2016-12-07 低矮电感器
US15/933,515 US20180211765A1 (en) 2015-12-25 2018-03-23 Thin inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255167 2015-12-25
JP2015-255167 2015-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/933,515 Continuation US20180211765A1 (en) 2015-12-25 2018-03-23 Thin inductor

Publications (1)

Publication Number Publication Date
WO2017110460A1 true WO2017110460A1 (ja) 2017-06-29

Family

ID=59090128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086296 WO2017110460A1 (ja) 2015-12-25 2016-12-07 低背インダクタ

Country Status (4)

Country Link
US (1) US20180211765A1 (ja)
JP (1) JPWO2017110460A1 (ja)
CN (1) CN208722717U (ja)
WO (1) WO2017110460A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047015A (ja) * 2017-09-05 2019-03-22 株式会社村田製作所 コイル部品
WO2019107131A1 (ja) * 2017-11-30 2019-06-06 株式会社村田製作所 多層基板、多層基板の実装構造、多層基板の製造方法、および電子機器の製造方法
WO2022163298A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 配線基板
WO2022163299A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 配線基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371327B2 (ja) * 2019-01-23 2023-10-31 Tdk株式会社 積層コイル部品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138120A (ja) * 1998-11-02 2000-05-16 Murata Mfg Co Ltd 積層型インダクタ
JP2002270428A (ja) * 2001-03-09 2002-09-20 Fdk Corp 積層チップインダクタ
JP2012138534A (ja) * 2010-12-28 2012-07-19 Kyocera Corp 積層型電子部品
JP2012169407A (ja) * 2011-02-14 2012-09-06 Murata Mfg Co Ltd 積層型インダクタ部品
JP2013089640A (ja) * 2011-10-13 2013-05-13 Tdk Corp 積層コイル部品
JP2014207432A (ja) * 2013-03-18 2014-10-30 株式会社村田製作所 積層型インダクタ素子および通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221250B2 (ja) * 2013-02-13 2017-11-01 Tdk株式会社 積層コイル部品
JP5741615B2 (ja) * 2013-03-14 2015-07-01 Tdk株式会社 電子部品及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138120A (ja) * 1998-11-02 2000-05-16 Murata Mfg Co Ltd 積層型インダクタ
JP2002270428A (ja) * 2001-03-09 2002-09-20 Fdk Corp 積層チップインダクタ
JP2012138534A (ja) * 2010-12-28 2012-07-19 Kyocera Corp 積層型電子部品
JP2012169407A (ja) * 2011-02-14 2012-09-06 Murata Mfg Co Ltd 積層型インダクタ部品
JP2013089640A (ja) * 2011-10-13 2013-05-13 Tdk Corp 積層コイル部品
JP2014207432A (ja) * 2013-03-18 2014-10-30 株式会社村田製作所 積層型インダクタ素子および通信装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047015A (ja) * 2017-09-05 2019-03-22 株式会社村田製作所 コイル部品
WO2019107131A1 (ja) * 2017-11-30 2019-06-06 株式会社村田製作所 多層基板、多層基板の実装構造、多層基板の製造方法、および電子機器の製造方法
JPWO2019107131A1 (ja) * 2017-11-30 2020-06-25 株式会社村田製作所 多層基板、多層基板の実装構造、多層基板の製造方法、および電子機器の製造方法
US11540393B2 (en) 2017-11-30 2022-12-27 Murata Manufacturing Co., Ltd. Multilayer substrate, multilayer substrate mounting structure, method of manufacturing multilayer substrate, and method of manufacturing electronic device
WO2022163298A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 配線基板
WO2022163299A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 配線基板

Also Published As

Publication number Publication date
CN208722717U (zh) 2019-04-09
US20180211765A1 (en) 2018-07-26
JPWO2017110460A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2017110460A1 (ja) 低背インダクタ
KR101670184B1 (ko) 적층 전자부품 및 그 제조방법
US10147529B2 (en) Electromagnet, camera lens driving device, and production method of electromagnet
US6515568B1 (en) Multilayer component having inductive impedance
TWI603352B (zh) 晶片電子組件及用於安裝該晶片電子組件的板件
KR102105389B1 (ko) 적층 전자부품
TWI321327B (en) Embedded toroidal inductor
JP4247518B2 (ja) 小型インダクタ/変圧器及びその製造方法
JP6447751B2 (ja) コイル内蔵部品
JP2018056505A (ja) 表面実装型のコイル部品
US20150002256A1 (en) Devices and methods related to laminated polymeric planar magnetics
JP7240813B2 (ja) コイル部品
KR20140011693A (ko) 파워 인덕터용 자성체 모듈, 파워 인덕터 및 그 제조 방법
US20170110234A1 (en) Coil component, manufacturing method thereof, and circuit board on which coil component are mounted
JP6344521B2 (ja) 積層コイル部品及びその製造方法、並びに、当該積層コイル部品を備えるdc−dcコンバータモジュール
TW201707022A (zh) 模組基板
KR20180006246A (ko) 코일 부품
KR20160019265A (ko) 칩형 코일 부품 및 그 제조방법
JP6477913B2 (ja) コイルアンテナ、コイル実装基板、記録媒体および電子機器
JP2017017140A (ja) コイル部品
KR20150089279A (ko) 칩형 코일 부품
WO2012144103A1 (ja) 積層型インダクタ素子及び製造方法
JP2005045103A (ja) チップインダクタ
JP5716391B2 (ja) コイル内蔵基板
JP5617614B2 (ja) コイル内蔵基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878353

Country of ref document: EP

Kind code of ref document: A1