WO2017107772A1 - 用于对多种速率的数据进行处理的方法及装置 - Google Patents

用于对多种速率的数据进行处理的方法及装置 Download PDF

Info

Publication number
WO2017107772A1
WO2017107772A1 PCT/CN2016/108904 CN2016108904W WO2017107772A1 WO 2017107772 A1 WO2017107772 A1 WO 2017107772A1 CN 2016108904 W CN2016108904 W CN 2016108904W WO 2017107772 A1 WO2017107772 A1 WO 2017107772A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
rate
way
unit
processing device
Prior art date
Application number
PCT/CN2016/108904
Other languages
English (en)
French (fr)
Inventor
陈国导
李春荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187020735A priority Critical patent/KR102096295B1/ko
Priority to JP2018533625A priority patent/JP6998876B2/ja
Priority to EP16877583.1A priority patent/EP3382908B1/en
Publication of WO2017107772A1 publication Critical patent/WO2017107772A1/zh
Priority to US16/018,982 priority patent/US10382237B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for processing data at multiple rates.
  • LC line card
  • the Ethernet optical interface transmits optical signals.
  • network equipment using optical fiber communication needs to install a matching line card according to the transmission rate of the optical signal, and the development and maintenance cost is high.
  • the present application provides a method and apparatus for processing data of various rates, which can obtain signals of various transmission rates without replacing a line card, which helps to reduce development and maintenance costs.
  • a method for processing data at multiple rates including:
  • the data processing apparatus receives the first data and the second data, the transmission rate of the first data is a first rate, the transmission rate of the second data is a second rate, and the first rate is different from the second rate ;
  • the data processing device obtains a third number of N1 channels according to the first rate and the first data According to the fourth data of the N2 way, the N1 is an integer greater than or equal to 1, and the N2 is an integer greater than or equal to 0;
  • the data processing apparatus obtains M1 way fifth data and M2 way sixth data according to the second rate and the second data, where M1 is an integer greater than or equal to 1, and the M2 is greater than or equal to 0.
  • M1 is an integer greater than or equal to 1
  • M2 is greater than or equal to 0.
  • the data processing device obtains seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode, where the seventh data is serially transmitted data, and the seventh data is The transmission rate is the first rate;
  • the data processing device obtains eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode, where the eighth data is serially transmitted data, and the eighth data is The transmission rate is the second rate;
  • the data processing device outputs the seventh data and the eighth data.
  • the data processing apparatus can split the first data transmitted at the first rate into multiple channels of data, such as N1 way third data and N2 way fourth data, and modulate the multiple channels of data. Obtaining the seventh data transmitted at the first rate.
  • the data processing device splits the second data transmitted at the second rate into the M1 way fifth data and the M2 way sixth data without replacing the hardware or the interface, and the M1 way fifth data and the The sixth data of the M2 way is modulated into the eighth data transmitted at the second rate.
  • the data processing device can obtain signals of various transmission rates without replacing the line card, which helps to reduce development and maintenance costs.
  • the data processing apparatus obtains the seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode.
  • the data processing apparatus uses the third data as the seventh data, and the first modulation mode is transparent transmission of the third data.
  • the data processing apparatus obtains the eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode.
  • the eighth data include:
  • the data processing device uses the fifth data as the eighth data, and the second modulation mode is transparent transmission of the fifth data.
  • the data processing apparatus obtains the seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode, including:
  • the data processing device modulates the N1 way third data and the N2 way fourth data into ninth data according to the first modulation mode, and the rate of the ninth data is the first rate;
  • the data processing device photoelectrically converts the ninth data to obtain the seventh data, and the seventh data is an optical signal.
  • the data processing apparatus obtains the eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode, including:
  • the data processing device modulates the M1 way fifth data and the M2 way sixth data into tenth data according to the second modulation mode, and the rate of the tenth data is the second rate;
  • the data processing device photoelectrically converts the tenth data to obtain the eighth data, and the eighth data is an optical signal.
  • the data processing apparatus may directly input the seventh data and the eighth data into an optical interface, thereby causing the seventh data and the eighth data to be transmitted into the optical fiber.
  • the data processing apparatus determines the first rate according to a port that receives the first data, and determines the second rate according to a port that receives the second data, where the receiving A port of data corresponds to the first rate, and a port that receives the second data corresponds to the second rate.
  • the data processing apparatus can receive the first data and the second data of different rates by using different ports respectively, and the data processing apparatus can directly determine the first by using the port information when receiving data.
  • the first rate of data, and the second rate of the second data helps to reduce implementation difficulties.
  • the data processing apparatus determines the first rate according to a bandwidth required for transmitting the first optical signal, where the first optical signal is photoelectrically converted into the seventh data. a signal obtained after the data processing means determines the second rate according to a bandwidth required for transmitting the second optical signal, the second optical signal being a signal obtained by photoelectrically converting the eighth data.
  • the data processing device may predetermine the first rate of the first data and the second rate of the second data according to an optical signal bandwidth requirement, and may be pre-in the data processing device Configuring instructions for processing the first data or processing the second data helps to improve processing efficiency of the data.
  • an apparatus for processing data of a plurality of rates comprising a receiving unit, a first processing unit, a second processing unit, a first modulating unit, a second modulating unit, and Output unit,
  • the receiving unit is configured to receive first data and second data, where a transmission rate of the first data is a first rate, a transmission rate of the second data is a second rate, and the first rate and the first The second rate is different;
  • the first processing unit is configured to obtain N1 way third data and N2 way fourth data according to the first data and the first rate received by the receiving unit, where the N1 is an integer greater than or equal to , the N2 is an integer greater than or equal to 0;
  • the second processing unit is configured to obtain M1 way fifth data and M2 way sixth data according to the second data and the second rate received by the receiving unit, where the M1 is an integer greater than or equal to , the M2 is an integer greater than or equal to 0;
  • the first modulating unit is configured to obtain seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode obtained by the first processing unit, where the seventh data is a string Data transmitted by the line, the transmission rate of the seventh data is the first rate;
  • the second modulating unit is configured to obtain eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode obtained by the second processing unit, where the eighth data is a string Data transmitted by the line, the transmission rate of the eighth data is the second rate;
  • the output unit is configured to output the seventh data obtained by the first modulation unit and the eighth data obtained by the second modulation unit.
  • the data processing device provided by the above technical solution splits the first data transmitted at the first rate into multiple channels of data, such as N1 way third data and N2 way fourth data, and modulates the multiplexed data to obtain The seventh data transmitted at the first rate.
  • the data processing device does not need to replace hardware or interface
  • the second data transmitted at the second rate is split into the M1 way fifth data and the M2 way sixth data, and the M1 way fifth data and the M2 way sixth data are modulated into the second The eighth data of the rate transmission. In this way, the data processing device can obtain signals of various transmission rates without replacing the line card, which helps to reduce development and maintenance costs.
  • the first modulating unit is specifically configured to use the third data as the seventh data, where the first modulation mode is transparent transmission.
  • the third data is specifically configured to use the third data as the seventh data, where the first modulation mode is transparent transmission.
  • the second modulation unit is specifically configured to use the fifth data as the eighth data, and the second modulation mode is transparent transmission.
  • the fifth data is transparent transmission.
  • the first modulating unit is configured to: modulate the N1 way third data and the N2 way fourth data obtained by the first processing unit into a ninth according to the first modulation mode Data, the rate of the ninth data is the first rate; and photoelectrically converting the ninth data to obtain the seventh data, the seventh data being an optical signal.
  • the second modulating unit is configured to: modulate the M1 way fifth data and the M2 way sixth data obtained by the second processing unit into a tenth according to the second modulation mode Data, the rate of the tenth data is the second rate; and photoelectrically converting the tenth data to obtain the eighth data, the eighth data being an optical signal.
  • the data processing apparatus may directly input the seventh data and the eighth data into an optical interface, thereby causing the seventh data and the eighth data to be transmitted into the optical fiber.
  • the device further includes: a first determining unit, configured to determine, according to the port that receives the first data, the first rate, the port that receives the first data, and the And a second determining unit, configured to determine the second rate according to the port that receives the second data, where the port that receives the second data corresponds to the second rate.
  • the data processing apparatus can receive the first data and the second data of different rates by using different ports respectively, and the data processing apparatus can directly determine the first by using the port information when receiving data.
  • the first rate of data, and the second rate of the second data helps To reduce the difficulty of implementation.
  • the apparatus further includes: a first determining unit, configured to determine the first rate, the first optical signal according to a bandwidth required for transmitting the first optical signal a signal obtained by photoelectrically converting the seventh data; a second determining unit, configured to determine the second rate according to a bandwidth required for transmitting the second optical signal, where the second optical signal is The signal obtained after photoelectric conversion of the eighth data.
  • the data processing device may predetermine the first rate of the first data and the second rate of the second data according to an optical signal bandwidth requirement, and may be pre-in the data processing device Configuring instructions for processing the first data or processing the second data helps to improve processing efficiency of the data.
  • FIG. 1 is a schematic structural view of a line card.
  • FIG. 2 is a flowchart of a method for processing data of multiple rates according to Embodiment 1 of the present application.
  • FIG. 2b is a flowchart of a method for processing data of multiple rates according to Embodiment 1 of the present application.
  • FIG. 3 is a flowchart of a method for processing data of multiple rates according to Embodiment 2 of the present application.
  • FIG. 3b is a flowchart of a method for processing data of multiple rates according to Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a data processing apparatus according to Embodiment 3 of the present application.
  • FIG. 5 is a schematic structural diagram of a data processing apparatus according to Embodiment 4 of the present application.
  • FIG. 6 is a schematic structural diagram of a data processing apparatus according to Embodiment 5 of the present application.
  • FIG. 7 is a schematic structural diagram of a data processing apparatus according to Embodiment 6 of the present application.
  • a general line card 100 includes a data processing unit 101 and a photoelectric conversion unit 102.
  • the data processing unit 101 includes a medium access control (English name: media access control, MAC abbreviation: MAC) module 101, and a serial/deserializer (English full name serializer/deserializer, abbreviated as SerDes) interface 1012.
  • medium access control English name: media access control, MAC abbreviation: MAC
  • SerDes serial/deserializer
  • the MAC module 1011 receives data that is transmitted in parallel.
  • the MAC module 1011 performs MAC encapsulation on the data transmitted in parallel to obtain encapsulated data.
  • the MAC module 1011 outputs the encapsulated data to the SerDes interface 1012.
  • the SerDes interface 1012 splits the received encapsulated data into N-channel electrical signals that are transmitted in parallel.
  • the N-channel electrical signal transmission rate is a standard rate.
  • the standard rate may be a transmission rate defined in the standard of Ethernet (English: Ethernet).
  • the SerDes interface 1012 splits the received 40 Gbit/s data into 4 10 Gbit/s data, and the SerDes interface 1012 receives the data.
  • the 100 Gbit/s data is split into 4 channels of 25 Gbit/s data, and the SerDes interface 1012 splits the received 100 Gbit/s data into 10 10 Gbit/s data, or the SerDes interface 1012 receives 10 Gbit/s.
  • the data continues to use 1 channel 10Gbit/s transmission.
  • the SerDes interface 1012 outputs the N electrical signals to the photoelectric conversion unit 102.
  • the photoelectric conversion unit 102 is configured to perform photoelectric conversion on the N-channel transmitted electrical signals to obtain N parallel optical signals.
  • the photoelectric conversion unit 102 can output the optical signal to be transmitted through the optical fiber to which it is connected.
  • the transmission rate of the data of one parallel transmission received by the MAC module 1011 is 10 Gbit/s
  • the SerDes interface 1012 converts one parallel data encapsulated by the MAC module 1011 into one serial data.
  • the transmission rate of the encapsulated one-way parallel data is 10 Gbit/s.
  • the transmission rate of the one-way serial data is 10 Gbit/s.
  • the SerDes interface 1012 outputs the 1-way serial data to the photoelectric conversion unit 102.
  • the photoelectric conversion unit 102 can convert the one-way serial data into an optical signal having a transmission rate of 10 Gbit/s and output it through an optical fiber.
  • the photoelectric conversion module 102 can adopt an enhanced small form-factor pluggable plus (SFP+) optical module, and the input interface of the SFP+ optical module receiving the electrical signal is a single serial interface.
  • SFP+ enhanced small form-factor pluggable plus
  • the processing unit 101 needs to add three SerDes interfaces 1012 as shown in FIG. 1, that is, the processing unit 101 includes the MAC module 1011 and four SerDes interfaces. 1012. Each of the four SerDes interfaces 1012 outputs one 10 Gbit/s data.
  • the photoelectric conversion unit 102 is a four-channel enhanced small-sized pluggable (English name: quad small form-factor pluggable plus, English abbreviation: QSFP+) optical module, and the QSFP+ optical module outputs four channels of 10 Gbit/s to the processing unit 101.
  • the data is photoelectrically converted and the optical signal after photoelectric conversion is output through the optical fiber.
  • the line card 100 needs to design corresponding hardware, such as four SerDes interfaces 1012 and QSFP+ optical modules to support different transmission rates.
  • a typical line card can only handle a specific transmission rate, and the cost of development and maintenance is high.
  • the embodiments of the present application propose a technical solution capable of obtaining signals of multiple transmission rates without replacing a line card, and a solution for reducing development and maintenance costs.
  • the solution includes: the data processing device receives the first data and the second data, the transmission rate of the first data is a first rate, and the transmission rate of the second data is a second rate, the first rate The second rate is different; the data processing device obtains N1 way third data and N2 way fourth data according to the first rate and the first data, where N1 is an integer greater than or equal to 1, N2 is an integer greater than or equal to 0; the data processing apparatus obtains M1 way fifth data and M2 way sixth data according to the second rate and the second data, and the M1 is an integer greater than or equal to 1.
  • the M2 is an integer greater than or equal to 0; the data processing apparatus obtains seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode, where the seventh data is Serially transmitted data, the transmission rate of the seventh data is the first rate; the data processing device obtains the first according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode Eight data, the eighth data is serial transmission Data transmitted, the transmission rate of the eighth data is the second rate; the data processing device outputs the seventh data and the eighth data.
  • the data processing device in the embodiment of the present application may be installed in a packet transport network (English full name: packet transport network, English abbreviation: PTN) device, optical transport network (English full name: optical transport network, English abbreviation: OTN) device, adopted Optical transmission router or optical transmission In the switch such as the switch.
  • the data processing device can be mounted on a line card of the above device.
  • Figure 2a shows the flow of processing of the first data by the data processing apparatus.
  • Figure 2b shows the flow of processing of the second data by the data processing apparatus.
  • the data processing device may process the first data and the second data at the same time, or may process the first data and the second data in sequence, where the first The processing order of one data and the second data is defined.
  • the method for processing data of multiple rates provided in Embodiment 1 of the present application includes S201 to 204.
  • the method flow for processing data of multiple rates provided in Embodiment 1 of the present application includes S205 to S208.
  • the data processing apparatus receives the first data, where the transmission rate of the first data is a first rate.
  • the data processing apparatus obtains N1 way third data and N2 way fourth data according to the first rate and the first data, where N1 is an integer greater than or equal to 1, and the N2 is greater than or An integer equal to 0.
  • the data processing apparatus obtains seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode, where the seventh data is serially transmitted data, and the seventh The transmission rate of the data is the first rate.
  • the data processing device outputs the seventh data.
  • the data processing apparatus receives the second data, where the transmission rate of the second data is a second rate.
  • the data processing apparatus obtains M1 way fifth data and M2 way sixth data according to the second rate and the second data, where M1 is an integer greater than or equal to 1, and the M2 is greater than or An integer equal to 0.
  • the data processing apparatus obtains eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode, where the eighth data is serially transmitted data, and the eighth The transmission rate of the data is the second rate.
  • the data processing device outputs the eighth data.
  • the second of the first and second data in the first data in the embodiment of the present application does not represent the sequence of the data, and the “first” and the “second” are used to distinguish the first data from the second data. Is different data. That is, the S201 may be performed before or after S205, and S201 may also be performed simultaneously with S205.
  • the data processing device may receive the first data and the second data simultaneously, and may also receive the first data and the second data in sequence.
  • the port that the data processing device receives the first data and the port that the data processing device receives the second data may be the same port, or may be different ports. And if the data processing device receives the first data and the second data at the same time, the data processing device receives the port of the first data and the data processing device receives the second data The port is different.
  • the data processing device may store a port and Corresponding relationship between the rates, for example, the first correspondence includes the first rate and a port that receives the first data, and the second correspondence includes the second rate and a port that receives the second data.
  • the method provided in Embodiment 1 of the present application further includes: the data processing apparatus determining the first rate according to the port that receives the first data.
  • the data processing apparatus may obtain the first rate according to the first correspondence and a port that receives the first data.
  • the method provided in Embodiment 1 of the present application further includes: the data processing apparatus determining the second rate according to the port that receives the second data.
  • the data processing apparatus may obtain the second rate according to the second correspondence and the port that receives the second data.
  • the data processing apparatus includes a first receiving port and a second receiving port, the first receiving port and the second receiving port having different bus bandwidths.
  • the bus bandwidth of the first receiving port is 10 Gbit/s
  • the bus bandwidth of the second receiving port is 40 Gbit/s. If the data processing device receives the first data from the first receiving port, the data processing device determines The transmission rate of the first data is 10 Gbit/s. If the data processing apparatus receives the second data from the second receiving port, the data processing apparatus determines that the transmission rate of the second data is 40 Gbit/s.
  • the data processing device can determine the received data according to a bandwidth required by the optical signal transmitted by the optical fiber. s speed.
  • the method provided in Embodiment 1 of the present application further includes: the data processing apparatus determining the first rate according to a bandwidth required for transmitting the first optical signal, where the first optical signal is the first The optical signal obtained after photoelectric conversion of seven data.
  • the seventh data in the first embodiment of the present application is an electrical signal.
  • the data processing device may determine the first rate by performing the S201 simultaneous, before executing S201, or after performing S201 and before executing S202, by reading a bandwidth required by the first optical signal.
  • the data processing apparatus determines the first rate by reading bandwidth information required by the first optical signal stored in a register in the first photoelectric conversion device.
  • the first photoelectric conversion device is configured to perform photoelectric conversion on the seventh data output by the data processing device to obtain the first optical signal.
  • the method provided in Embodiment 1 of the present application further includes: the data processing apparatus determining, according to a bandwidth required for transmitting the second optical signal, the second rate, where the second optical signal is the The optical signal obtained after photoelectric conversion of eight data.
  • the eighth data in the first embodiment of the present application is an electrical signal.
  • the data processing apparatus may determine the second rate by performing the S205 simultaneous, before executing S205, or after performing S205 and before executing S206, by reading a bandwidth required by the second optical signal.
  • the data processing apparatus determines the second rate by reading bandwidth information required by the second optical signal stored in a register in the second photoelectric conversion device.
  • the second photoelectric conversion device is configured to perform photoelectric conversion on the eighth data output by the data processing device to obtain the second optical signal.
  • S202 includes: the first data is N-bit parallel transmitted data, and the data processing apparatus may split the first data into the third data and the N1 way according to N1 and N2.
  • the fourth data of N2 road is described.
  • the sum of the N1 and the N2 is less than or equal to the N.
  • the first The data is N-bit data transmitted in parallel.
  • the transmission rate of the third data is different from the transmission rate of the fourth data.
  • Each of the third data of the N1 way third data contains different contents. For example, if N1 is 2, N2 is 0, and the first data includes 16-bit data, one of the two third data includes the first 8 bits of the first data, and the third data is the third data. The other third data in the middle includes the last 8 bits of the first data. If the N2 is greater than zero, the content of the fourth data in each of the fourth data of the N2 way is different, and is not illustrated herein.
  • the data processing apparatus obtains a specific implementation manner of the M1 way fifth data and the M2 way sixth data according to the second rate and the second data, which is the same as the implementation principle in S202, and details are not described herein again.
  • the transmission rate of the fifth data is different from the transmission rate of the sixth data.
  • Each of the fifth data of the M1 way fifth data includes different contents
  • each of the sixth data of the M2 way sixth data includes different contents, which is not illustrated herein.
  • the data processing apparatus obtains the seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode.
  • the data processing device uses the third data as the seventh data, and the first modulation mode is transparent transmission of the third data.
  • the data processing device transparently transmits the third data to the seventh data, and does not change the transmission rate of the third data.
  • the data processing apparatus may perform line coding processing such as forward error correction (FEC) on the third data, and use the third data after the coding process as the first Seven data.
  • FEC forward error correction
  • the data processing apparatus obtains the seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode.
  • the data processing device includes: modulating the N1 way third data and the N2 way fourth data into one serial data, wherein the one serial data is the seventh data.
  • the first modulation mode may be multi-level modulation (English full name: multilevel pulse-amplitude modulation, English abbreviation: multilevel PAM), discrete multi-tone modulation (English full name: discrete multi-tone modulation, English abbreviation: DMT) Or direct inspection of the Nyquist modulation (English full name: direct detection faster than Nyquist modulation, English abbreviation: DD-FTN) and so on.
  • the modulation method is only an example.
  • the first modulation mode provided by the embodiment of the present application may be a modulation mode for converting a multi-channel signal into a single-channel signal, which is not illustrated herein.
  • the N1 is 2, that is, the two third data, and the third data of the two third data may be referred to as the first third data, and the other third data of the two third data. It can be called the second way third data.
  • the N2 is 3, that is, the third data of the third channel, and the fourth data of the third channel of the third channel may be referred to as the fourth data of the first channel, and the fourth data of the fourth channel of the third channel may be referred to as the fourth data.
  • the second data of the second channel and the fourth data of the third channel of the third data may be referred to as the third data of the third channel.
  • the data processing device modulates the first third data and the second third data into four paths by four-level modulation (pulse-amplitude-modulation with four amplitude levels, PAM-4)
  • PAM-4 pulse-amplitude-modulation with four amplitude levels
  • the ninth data can represent 00, 01, 10, and 11 using four different pulse amplitudes, respectively.
  • the ninth data transmits two bits in one clock cycle, and the amplitude of the ninth data is one bit of the first third data transmission and the second third data in the same clock cycle The amplitude of the pulse corresponding to the bit value of one bit transmitted.
  • the bit value of the first third data transmission is 0, and the bit value of the second third data transmission is 1, the ninth data is in the clock cycle.
  • the bit value of the transmitted two bits is 01, and the amplitude of the ninth data in the clock cycle is a bit value, such as 01, corresponding pulse amplitude.
  • the data processing device passes the first path fourth data, the second path fourth data, and the The fourth data of the third way is modulated into a tenth data.
  • the tenth data 000, 001, 010, 011, 100, 101, 110, and 111 are represented by eight pulse amplitudes, respectively.
  • the tenth data transmits three bits in one clock cycle, and the amplitude of the tenth data is one bit of the fourth data transmission of the first channel and the fourth data of the second channel in the same clock cycle
  • the data processing device modulates the ninth data and the tenth data into one way of seventh data.
  • the data processing apparatus modulates the ninth data and the tenth data into one way of the seventh data by speeding up the clock frequency.
  • One clock cycle of the seventh data includes a first subclock cycle and a second subclock cycle.
  • the duration of the first sub-clock cycle is one-half of the duration of the clock cycle of the ninth data
  • the duration of the second sub-clock cycle is one-half of the duration of the clock cycle of the tenth data.
  • the bit transmitted in the first subclock cycle is the same as the bit transmitted in the clock cycle of the ninth data; the bit transmitted in the second subclock cycle and the bit transmitted in the clock cycle of the tenth data the same.
  • the process of obtaining the seventh data by using the N1 way third data and the N2 way fourth data performing FEC and other line coding processing on the third data and the fourth data.
  • the data modulated by the first modulation method and subjected to the encoding process is used as the seventh data.
  • the data processing apparatus obtains the eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode, including:
  • the data processing device uses the fifth data as the eighth data, and the second modulation mode is transparent transmission of the fifth data.
  • the data processing apparatus transparently transmits the fifth data to the eighth data, and does not change the transmission rate of the fifth data and the fifth data transmission mode.
  • the data processing apparatus may perform line coding processing such as FEC on the fifth data, and use the encoded data as the eighth data.
  • line coding processing such as FEC
  • the data processing apparatus obtains the eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode.
  • the data processing device modulates the M1 way fifth data and the M2 way sixth data into one serial data, and the one serial data is the eighth data.
  • the specific implementation manner of the second modulation mode is similar to the specific implementation manner of the first modulation mode in S203.
  • the M1 is 4, that is, four-way fifth data, and one of the four-way fifth data may be referred to as a first way fifth data, and the other of the four-way fifth data
  • the fifth data of one way may be referred to as the second data of the second way, and the other fifth data of the four pieces of the fifth data may be referred to as
  • the third way fifth data, the other way fifth data in the four way fifth data may be referred to as the fourth way fifth data.
  • the M2 is zero.
  • the fifth data of the road may adopt a low level to indicate 0, and the first fifth data and the second fifth data may each adopt a high level to indicate 1.
  • the eleventh data can represent 00, 01, 10, and 11 using four different pulse amplitudes, respectively. Transmitting two bits in one clock period in the eleventh data, the amplitude of the eleventh data being one bit and the first of the first fifth data transmission in the same clock cycle The pulse amplitude corresponding to the bit value composed of one bit of the second data transmission of the second channel.
  • the bit value of the fifth data transmission of the first way is 0, and the bit value of the fifth data transmission of the second way is 1, the eleventh in the clock cycle.
  • the bit value of the two bits of data transmission is 01.
  • the data processing device modulates the third way fifth data and the fourth way fifth data into one way twelfth data through the PAM-4.
  • the data processing device modulates the eleventh data and the twelfth data into one way of eighth data.
  • the data processing apparatus modulates the eleventh data and the twelfth data into one way of eighth data by speeding up the clock frequency.
  • One clock cycle of the eighth data includes a first subclock cycle and a second subclock cycle.
  • the duration of the first sub-clock cycle and the duration of the second sub-clock cycle are both one-half of the duration of the clock cycle.
  • the bit transmitted in the first subclock cycle is the same as the bit transmitted in the clock cycle of the eleventh data; the bit transmitted in the second subclock cycle and the twelfth data are transmitted in the clock cycle
  • the bits are the same.
  • the first modulation mode in S203 and the second modulation mode in S207 may both be transparent transmission, or both may be combined into one channel of data, or the first modulation mode may be transparent.
  • the second modulation method is to combine the multiplexed data into one channel of data.
  • the data processing device in S204 outputs the seventh data.
  • the seventh data is an electrical signal.
  • the data processing device outputs the seventh data to the first photoelectric conversion device, and converts to the first optical signal, and outputs the first optical signal by the first photoelectric conversion device. Transfer to the fiber.
  • the data processing device in S208 outputs the eighth data.
  • the eighth data is an electrical signal.
  • the data processing device outputs the eighth data to a second photoelectric conversion device and converts to the second optical signal, and the second optical signal is output by the second photoelectric conversion device Transfer to the fiber.
  • the data processing apparatus can split the first data transmitted at the first rate into multiple channels of data, such as N1 way third data and N2 way fourth data, and perform the multiple data Modulation, obtaining the seventh data transmitted at the first rate.
  • the data processing device splits the second data transmitted at the second rate into the M1 way fifth data and the M2 way sixth data without replacing the hardware or the interface, and the M1 way fifth data and the The sixth data of the M2 way is modulated into the eighth data transmitted at the second rate.
  • the data processing device can obtain signals of various transmission rates without replacing the line card, which helps to reduce development and maintenance costs.
  • Figure 3a shows the flow of processing of the first data by the data processing apparatus.
  • Figure 3b shows the flow of processing of the second data by the data processing apparatus.
  • the data processing device may process the first data and the second data at the same time, or may process the first data and the second data in sequence, where the first The processing order of one data and the second data is defined.
  • the method for processing data of multiple rates provided in Embodiment 1 of the present application includes S301 to 305.
  • the method flow for processing data of multiple rates provided in Embodiment 1 of the present application includes S306 to S310.
  • the data processing apparatus receives the first data, where the transmission rate of the first data is a first rate.
  • the data processing apparatus obtains N1 way third data and N2 way fourth data according to the first rate and the first data, where N1 is an integer greater than or equal to 1, and the N2 is greater than or An integer equal to 0.
  • the data processing device obtains ninth data according to the N1 way third data, the N2 way fourth data, and the first modulation mode, where the transmission rate of the ninth data is the first rate.
  • the data processing apparatus photoelectrically converts the ninth data to obtain the seventh data, the seventh data is serial data, and the seventh data is an optical signal.
  • the data processing device outputs the seventh data.
  • the data processing apparatus receives the second data, where the transmission rate of the second data is a second rate.
  • the data processing apparatus obtains M1 way fifth data and M2 way sixth data according to the second rate and the second data, where M1 is an integer greater than or equal to 1, and the M2 is greater than or An integer equal to 0.
  • the data processing device obtains tenth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode, where the transmission rate of the tenth data is the second rate.
  • the data processing apparatus photoelectrically converts the tenth data to obtain the eighth data, the eighth data is serial data, and the eighth data is an optical signal.
  • the data processing device outputs the eighth data.
  • the second of the first and second data in the first data in the embodiment of the present application does not represent the sequence of the data, and the “first” and the “second” are used to distinguish the first data from the second data. Is different data. That is, the S301 may be performed before or after S306, and S301 may also be performed simultaneously with S306.
  • the data processing device may receive the first data and the second data simultaneously, and may also receive the first data and the second data in sequence.
  • the port that the data processing device receives the first data and the port that the data processing device receives the second data may be the same port, or may be different ports. And if the data processing device receives the first data and the second data at the same time, the data processing device receives the port of the first data and the data processing device receives the second data The port is different.
  • the data processing device may store a port and Corresponding relationship between the rates, for example, the first correspondence includes the first rate and a port that receives the first data, and the second correspondence includes the second rate and a port that receives the second data.
  • the method provided in Embodiment 2 of the present application further includes: the data processing apparatus determining, according to the port that receives the first data, the first rate.
  • the data processing apparatus may obtain the first rate according to the first correspondence and a port that receives the first data.
  • the method provided in Embodiment 2 of the present application further includes: the data processing apparatus determining the second rate according to the port that receives the second data.
  • the data processing apparatus may obtain the second rate according to the second correspondence and the port that receives the second data.
  • the data processing apparatus can determine the rate of the received data according to the bandwidth required by the optical signal transmitted by the optical fiber.
  • the method provided in Embodiment 2 of the present application further includes: the data processing apparatus determining the first rate according to a bandwidth required by the seventh data.
  • the data processing apparatus may determine the first rate by performing the S301 simultaneous, before performing S301, or after performing S301 and before executing S302, by reading the bandwidth required by the seventh data.
  • the method provided in Embodiment 2 of the present application further includes: the data processing apparatus determining the second rate according to a bandwidth required by the eighth data.
  • the data processing apparatus may determine the second rate by performing the S306 simultaneous, before executing S306, or after performing S306 and before executing S307, by reading the bandwidth required by the eighth data.
  • a specific implementation manner of the S202 in the first embodiment may be used in the specific implementation manner of the S302, and is not illustrated herein.
  • a specific implementation manner of S206 in Embodiment 1 may be used in the specific implementation manner of S307, and is not illustrated herein.
  • the specific implementation manner of obtaining the ninth data in S303 may be implemented in the specific implementation manner of the seventh data in the first embodiment in S203 in the first embodiment, and is not illustrated herein.
  • the specific implementation manner of obtaining the tenth data in S308 may be implemented in the specific implementation manner of the eighth data in the first embodiment in S207 in the first embodiment, and is not illustrated herein.
  • the data processing apparatus in S304 loads the ninth data onto an optical carrier to obtain the seventh data.
  • the data processing apparatus in S309 loads the tenth data onto an optical carrier to obtain the eighth data.
  • the data processing device in S305 outputs the seventh data to the optical fiber.
  • the data processing device in S310 outputs the eighth data to the optical fiber.
  • the data processing apparatus can split the first data transmitted at the first rate into multiple channels of data, such as N1 way third data and N2 way fourth data, and perform the multiple data Modulation and photoelectric conversion to obtain the seventh data transmitted at the first rate.
  • the data processing device splits the second data transmitted at the second rate into the M1 way fifth data and the M2 way sixth data without replacing the hardware or the interface, and the M1 way fifth data and the The sixth data of the M2 way is modulated and photoelectrically converted to obtain the eighth data transmitted at the second rate.
  • the data processing device can obtain signals of various transmission rates without replacing the line card, which helps to reduce development and maintenance costs.
  • FIG. 4 is a schematic structural diagram of a data processing apparatus according to Embodiment 3 of the present application.
  • the data processing apparatus 400 includes a receiving unit 401, a first processing unit 402, a second processing unit 403, a first modulating unit 404, a second modulating unit 405, and an output unit 406.
  • Data processing apparatus 400 may perform the methods provided by the embodiments corresponding to Figures 2a, 2b, 3a, or 3b.
  • the receiving unit 401 is configured to receive the first data and the second data, where the transmission rate of the first data is a first rate, the transmission rate of the second data is a second rate, the first rate and the second The rate is different.
  • the first processing unit 402 is configured to obtain N1 way third data and N2 way fourth data according to the first data and the first rate received by the receiving unit 401, where the N1 is an integer greater than or equal to 1, N2 is an integer greater than or equal to zero.
  • the second processing unit 403 is configured to obtain M1 way fifth data and M2 way sixth data according to the second data and the second rate received by the receiving unit 401, where the M1 is an integer greater than or equal to 1, M2 is an integer greater than or equal to zero.
  • the first modulating unit 404 is configured to use the third number of the N1 roads obtained by the first processing unit 402. According to the fourth data of the N2 way and the first modulation mode, the seventh data is obtained, the seventh data is serially transmitted data, and the transmission rate of the seventh data is the first rate.
  • the second modulating unit 405 is configured to obtain eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode obtained by the second processing unit 403, where the eighth data is serial transmission Data, the transmission rate of the eighth data is the second rate.
  • the output unit 406 is configured to output the seventh data obtained by the first modulation unit 404 and the eighth data obtained by the second modulation unit 405.
  • the first modulation unit 404 is specifically configured to use the third data as the seventh data, and the first modulation mode is transparent transmission.
  • the third data is specifically configured to use the third data as the seventh data, and the first modulation mode is transparent transmission.
  • the second modulation unit 405 is specifically configured to use the fifth data as the eighth data, and the second modulation mode is transparent transmission.
  • the fifth data is specifically configured to use the fifth data as the eighth data, and the second modulation mode is transparent transmission.
  • the first modulating unit 404 is specifically configured to: modulate the N1 way third data and the N2 way fourth data obtained by the first processing unit 402 into a first according to the first modulation mode.
  • the rate of the ninth data is the first rate; and photoelectrically converting the ninth data to obtain the seventh data, the seventh data being an optical signal.
  • the second modulating unit 405 is configured to: modulate the M1 way fifth data and the M2 way sixth data obtained by the second processing unit 403 into a second according to the second modulation mode.
  • Ten data, the rate of the tenth data is the second rate; and photoelectrically converting the tenth data to obtain the eighth data, the eighth data being an optical signal.
  • the data processing apparatus 400 further includes a first determining unit 407 and a second determining unit 408.
  • the first determining unit 407 is configured to determine, according to the port that receives the first data, the first rate, where the port that receives the first data corresponds to the first rate.
  • the second determining unit 408 is configured to determine the second rate according to the port that receives the second data, where the port that receives the second data corresponds to the second rate.
  • the first determining unit 407 is configured to determine the first rate according to a bandwidth required for transmitting the first optical signal, where the first optical signal is the seventh a signal obtained by photoelectrically converting the data; a second determining unit 408, configured to determine the second rate according to a bandwidth required for transmitting the second optical signal, where the second optical signal is the eighth data The signal obtained after photoelectric conversion.
  • the first processing unit is capable of splitting the first data transmitted at the first rate into multiple channels of data, such as N1 way third data and N2 way fourth data.
  • the first modulation unit modulates the multiplexed data to obtain seventh data transmitted at the first rate.
  • the data processing apparatus processes the second data transmitted at the second rate without replacing hardware or interfaces. That is, the second processing unit splits the second data transmitted at the second rate into the M1 way fifth data and the M2 way sixth data.
  • the second modulation unit modulates the M1 way fifth data and the M2 way sixth data into eighth data transmitted at a second rate. In this way, the data processing device can obtain signals of various transmission rates without replacing the line card, which helps to reduce development and maintenance costs.
  • FIG. 5 is a schematic structural diagram of a data processing apparatus according to Embodiment 4 of the present application.
  • the data processing apparatus 500 includes a processor 501, a memory 502, and a communication interface 503.
  • the processor 501, the memory 502, and the communication interface 503 are connected by a communication bus 504.
  • the memory 502 is used to store programs.
  • the processor 501 performs the following operations in accordance with executable instructions included in the program read from the memory 502.
  • the processor 501 receives the first data and the second data through the communication interface 503, where the transmission rate of the first data is a first rate, the transmission rate of the second data is a second rate, the first rate and the The second rate is different.
  • the processor 501 obtains N1 way third data and N2 way fourth data according to the first rate and the first data, where N1 is an integer greater than or equal to 1, and the N2 is an integer greater than or equal to 0. .
  • the processor 501 obtains, according to the second rate and the second data, M1 way fifth data and M2 way sixth data, where M1 is an integer greater than or equal to 1, and the M2 is an integer greater than or equal to 0. .
  • the processor 501 obtains seventh data according to the N1 way third data, the N2 way fourth data, and the first modulation mode, where the seventh data is serially transmitted data, and the seventh data transmission rate For the first rate.
  • the data processing device of the processor 501 obtains eighth data according to the M1 way fifth data, the M2 way sixth data, and the second modulation mode, where the eighth data is serially transmitted data, where the The transmission rate of the eight data is the second rate.
  • the processor 501 outputs the seventh data and the eighth data through the communication interface 503.
  • the processor 501 cooperates with the communication interface 503 according to the executable instructions in the memory 502, so that the data processing apparatus 500 shown in FIG. 5 performs the operations performed by the data processing apparatus in the first embodiment or the second embodiment.
  • the data processing device 500 shown in FIG. 5 and the data processing device 400 shown in FIG. 4 may be the same device, for example, the data processing device described in the first embodiment or the second embodiment. It can be considered that FIG. 5 shows the contents included in one data processing apparatus from a physical point of view, and FIG. 4 shows the contents included in one data processing apparatus from a logical point of view.
  • the receiving unit 401 and the output unit 407 shown in FIG. 4 may be implemented by the communication interface 503 in FIG. 5, and the communication interface 503 may include at least one physical interface.
  • the first processing unit 402, the second processing unit 403, the first modulation unit 404, the second modulation unit 405, the first determining unit 407, and the second determining unit 408 shown in FIG. 4 may be processed by the processor 501 shown in FIG.
  • processor 501 can include at least one physical processor.
  • the processor can split the first data transmitted at the first rate into multiple channels of data, such as N1 way third data and N2 way fourth data.
  • the processor modulates the multiplexed data to obtain seventh data transmitted at a first rate.
  • the data processing apparatus processes the second data transmitted at the second rate without replacing hardware or interfaces. That is, the processor splits the second data transmitted at the second rate into the fifth data of the M1 road and The sixth data of M2 road.
  • the processor modulates the M1 way fifth data and the M2 way sixth data into eighth data transmitted at a second rate. In this way, the data processing device can obtain signals of various transmission rates without replacing the line card, which helps to reduce development and maintenance costs.
  • FIG. 6 is a schematic structural diagram of a data processing apparatus according to Embodiment 5 of the present application.
  • the data processing apparatus 600 includes an interface circuit 601, a first selector 604, an output interface 605, a controller 606, an input interface 607, a second selector 608, a first modulation module 609, a second modulation module 610, and a third selector 611. .
  • the data processing apparatus 600 further includes a first MAC module 602 and a second MAC module 603.
  • the interface circuit 601, the first MAC module 602, the second MAC module 603, the first selector 604, the output interface 605, and the controller 606 can be integrated in the first chip (not shown in FIG. 6).
  • the input interface 607, the second selector 608, the first modulation module 609, the second modulation module 610, and the third selector 611 may be integrated in a second chip (not shown in FIG. 6).
  • the data processing device 600 may be the data processing device in the first embodiment or the third embodiment.
  • the interface circuit 601 can implement the function of the receiving unit 401.
  • the first selector 604 and the output interface 605 can implement the functions of the first processing unit 402, and can also implement the functions of the second processing unit 403.
  • the input interface 607, the second selector 608, and the first modulation module 609 can implement the functions of the first modulation unit 404.
  • the input interface 607, the second selector 608 and the second modulation module 610 can implement the functions of the second modulation unit.
  • the third selector 611 can implement the function of the output unit 406.
  • the controller 606 may implement the functions of the first determining unit 407, and may also implement the functions of the second determining unit 408.
  • the first data is received by the data processing device 600, where the first rate of the first data is 10 Gbit/s, the data processing device 600 receives the second data, and the second rate of the second data is 40 Gbit/s.
  • the operation of the data processing device 600 will be described.
  • the output of the interface circuit 601 includes different ports, for example, including a first port and a second port.
  • the first port is for receiving first data
  • the second port is for receiving second data.
  • the first port can transmit data to the first selector 604.
  • the second port can transmit data to the first selector 604.
  • the first chip further includes the first MAC module 602 and the second MAC module 603, the first port and the first selector 604 are connected by the first MAC module 602, the first MAC The module 602 is configured to perform MAC encapsulation on the first data; the second port and the first selector 604 are connected by a second MAC module 603, and the second MAC module 603 is configured to perform MAC on the second data.
  • the first MAC module 602 is configured to perform MAC encapsulation on the first data
  • the second port and the first selector 604 are connected by a second MAC module 603
  • the second MAC module 603 is configured to perform MAC on the second data.
  • the output interface 605 can be implemented by a serial/deserializer (English name: serializer/deserializer, abbreviated as SerDes) interface, and the first selector 604 can transmit data to the parallel input interface of the output interface 605.
  • the output interface 605 has four serial output interfaces, namely OUT1 to OUT4 shown in FIG.
  • the input interface 607 can be implemented by a SerDes interface, and the SerDes interface has four serial input interfaces, that is, IN1 to IN4.
  • OUT1 to OUT4 of the output interface 605 can respectively transfer data to IN1 to IN4 of the input interface 607.
  • the output interface 605 and the input interface 607 are for transmitting data from the first chip to the second chip.
  • the four parallel output interfaces of the input interface 607 are used to transfer data to the four inputs of the second selector 608, respectively.
  • the output of the second selector 608 can transmit data to the first modulation module 609 and the second modulation module 610, respectively.
  • the first modulation module 609 is configured to transparently transmit data of one channel of 10 Gbit/s
  • the second modulation module 610 is configured to combine four channels of 10 Gbit/s data into one channel of 40 Gbit/s.
  • the controller 606 can communicate with the first selector 604, the second selector 608, and the third selector 611, respectively, via a communication bus.
  • the controller 606 can be integrated in the first chip, or integrated in the second chip, or integrated into other chips of the data processing device 600.
  • the controller 606 can also be comprised of a plurality of control units that are respectively integrated in the first chip, the second chip, or other chips of the data processing device 600.
  • the interface circuit 601 receives the first data, and the controller 606 determines that the first rate is 10 Gbit/s.
  • the first data is one way of parallel data.
  • the controller 606 can determine the first rate by using any implementation that determines the first rate in the first embodiment.
  • the interface circuit 601 outputs the first data to the first A selector 604.
  • the interface circuit 601 first outputs the first data to the first MAC module 602, and performs MAC encapsulation on the first data, where the first MAC module 602 outputs the encapsulated first data. To the first selector 604.
  • the controller 606 acquires a port that the interface circuit 601 receives the first data, and determines the first rate according to the port that receives the first data.
  • controller 606 determines the rate of received data by acquiring the bandwidth required for the optical signal transmitted by the fiber. For example, the controller 606 reads the bandwidth of the first photoelectric conversion device to obtain the first rate.
  • the first photoelectric conversion device is configured to perform photoelectric conversion on the seventh data output by the data processing device 600 to obtain a first optical signal.
  • the controller 606 reads the bandwidth stored in the register (English full name: register) of the first photoelectric conversion device through a peripheral component interconnect (English: interconnected: PCI) bus. information.
  • the first selector 604 outputs the first data to the output interface 605.
  • the output interface 605 converts the first data from one way parallel data to one way serial third data according to the first instruction.
  • the first instruction is used to instruct the output interface 605 to convert the first data from one way parallel data to one way serial third data.
  • the first instruction is an instruction sent by controller 606 to output interface 605.
  • the output interface 605 outputs the one-way serial third data from the OUT1 to the second chip.
  • the output interface 605 inputs the one-way third data from the IN1 of the input interface 607 to the second chip.
  • the second selector 608 outputs the one-way third data to the first modulation module 609 according to the second instruction.
  • the second instruction is used to instruct the second selector 608 to output the one-way third data to the first modulation module 609.
  • the second instruction is sent by controller 606 to second selector 608.
  • the first modulation module 609 transparently transmits the third data into the seventh data.
  • the third selector 611 outputs the seventh data.
  • the data outputted by the output of the first modulation module 609 is parallel data, and the output of the third selector 611 can be connected to a SerDes interface as an output interface of the data processing device to convert the parallel data.
  • the seventh data output for the serial.
  • the data output by the first modulation module 609 As the seventh data of the serial the seventh data can be directly output by the third selector 611.
  • the interface circuit 601 receives the second data.
  • the second data is one way of parallel data.
  • the controller 606 determines, by using any implementation manner of determining the second rate in the first embodiment, that the second rate is 40 Gbit/s.
  • the controller 606 acquires a port that the interface circuit 601 receives the second data, and determines the second rate according to the port that receives the second data.
  • controller 606 determines the rate of received data by acquiring the bandwidth required for the optical signal transmitted by the fiber. For example, the controller 606 reads the bandwidth of the second photoelectric conversion device to obtain the second rate.
  • the second photoelectric conversion device is configured to perform photoelectric conversion on the eighth data output by the data processing device 600 to obtain a second optical signal.
  • the controller 606 reads information of the bandwidth stored in a register of the second photoelectric conversion device through a PCI bus.
  • the data processing device 600 may be connected to the first photoelectric conversion device and the second photoelectric conversion device in a manner that the output ends of the data processing device 600 are different from the The first photoelectric conversion device is connected to the second photoelectric conversion device.
  • the controller 606 acquires the first photoelectric conversion device or the second during initialization. The bandwidth of the photoelectric conversion device.
  • the data processing device 600 is connected to the first photoelectric conversion device, and the controller 606 determines that the rate of the first data received by the interface circuit 601 is the first rate; the data processing device 500 and The second photoelectric conversion device is connected, and the controller 606 determines that the rate of the second data received by the interface circuit 601 is the second rate.
  • the output end of the data processing device 600 is connected to the first photoelectric conversion device, and may include an implementation manner in which the output end of the data processing device 600 is directly connected to the first photoelectric conversion device. Included may further include other components between the output of the data processing device 600 and the input of the first optoelectronic device, the data processing device 600 outputting data to the other components, and by the other a component outputs the data to the first light Electric conversion device.
  • the output of the data processing device 600 is connected to the second optoelectronic device and is implemented in the same manner.
  • the interface circuit 601 outputs the second data to the first selector 604.
  • the interface circuit 601 first outputs the second data to the second MAC module 603, where the second MAC module 603 performs MAC encapsulation on the second data, and encapsulates the second The data is output to the first selector 604.
  • the first selector 604 outputs the second data to the output interface 605.
  • the output interface 605 converts the second data from 1 parallel 40 Gbit/s data to 4 serial 10 Gbit/s fifth data according to the third instruction, and the 4 channels
  • the fifth data is output from OUT1 to OUT4 of the output interface 605, respectively.
  • the second data is 32-bit parallel data
  • the output interface 605 sets the 32-bit parallel data from the most significant bit (English full name: MSB) from the first bit to the eighth bit.
  • MSB most significant bit
  • the bit is converted into one channel of fifth data, which is output by OUT1
  • the ninth bit to the 16th bit are converted into another channel of fifth data, which is output by OUT2, and the 17th bit to the 24th bit are converted into another channel of the fifth data.
  • Output from OUT3, the 25th bit to the 32nd bit are converted into another fifth data, which is output by OUT4.
  • the third instruction is sent by controller 606 to output interface 605.
  • the second selector 608 outputs the 4-way fifth data to the second modulation module 610 according to the fourth instruction.
  • the second modulation module 610 combines the four channels of fifth data into one channel of eighth data.
  • the second modulation module 610 can obtain the one-way eighth data by using any one of the modulation methods described in the first embodiment.
  • the third selector 611 outputs the eighth data.
  • the data outputted by the output of the second modulation module 610 is parallel data, and the output of the third selector 611 can be connected to a SerDes interface as an output interface of the data processing device 600, and the parallel data is Converted to serial eighth data output.
  • the data output by the second modulation module 610 is serial eighth data, and the eighth data may be directly output by the third selector 611.
  • the first data and the second data are received through different ports in the interface circuit 601.
  • the interface circuit 601 transmits data to the first MAC module 602 or the second MAC module 603 through the fourth selector (not shown in FIG. 6).
  • the controller 606 determines that the rate of the first data is 10 Gbit/s, and configures a first instruction to the fourth selector, so that the fourth selector transmits the first data to the first MAC module 602;
  • the processor 606 determines that the rate of the second data is 40 Gbit/s, and configures a fourth instruction to the fourth selector, so that the fourth selector transmits the second data to the second MAC module 603.
  • the data processing device 600 further includes a photoelectric conversion module.
  • the third selector 611 may transmit data to the photoelectric conversion module, and output the seventh data and the eighth data by an output end of the photoelectric conversion module.
  • the first photoelectric conversion module loads the ninth data onto the optical carrier to obtain the seventh data; and the second photoelectric conversion module loads the tenth data onto the optical carrier to obtain the eighth data.
  • the optical carrier may be generated by a light source of the photoelectric conversion module, and the light source may be a semiconductor illuminator (LD) or a light emitting diode (LED).
  • the photoelectric conversion module is a device that can be hot plugged (hot plugging).
  • the first MAC module 602, the second MAC module 603, the controller 606, the first modulation module 609, and the second modulation module 610 in the data processing device 600 may be configured by a central processing unit (English name: central processing unit, English abbreviation) :CPU) implementation, can also be completed by field programmable gate array (English name: field-programmable gate array, English abbreviation: FPGA) or coprocessor and other programmable devices. Obviously, the above functional modules can also be implemented by a combination of software and hardware.
  • the data processing apparatus can split the first data transmitted at the first rate into multiple channels of data, such as N1 way third data and N2 way fourth data.
  • the data processing apparatus modulates the multiplexed data to obtain seventh data transmitted at a first rate.
  • the data processing apparatus processes the second data transmitted at the second rate without replacing hardware or interfaces. That is, the data processing device splits the second data transmitted at the second rate into the fifth data of the M1 road. And the sixth data of the M2 road.
  • the data processing apparatus modulates the M1 way fifth data and the M2 way sixth data into eighth data transmitted at a second rate. In this way, the data processing device can obtain signals of various transmission rates without replacing the line card, which helps to reduce development and maintenance costs.
  • FIG. 7 is a schematic structural diagram of a data processing apparatus according to Embodiment 6 of the present application.
  • the data processing device 700 includes a first chip 701, a second chip 702, a third chip 703, a first photoelectric conversion module 704, and a second photoelectric conversion module 705.
  • the first chip 701 may include the interface circuit 601 shown in FIG. 6, a first selector 604, an output interface 605, and a controller 606.
  • the first chip 701 and the second MAC module 603 shown in FIG. 6 are further included in the first chip 701.
  • the first chip 701 in FIG. 7 is different from the first chip described in the fifth embodiment only in that the first chip 701 in FIG. 7 includes two output interfaces 605, such as a first output interface 605 and a second output interface 605. (Not shown in Figure 7).
  • the first output interface 605 is configured to transmit data to the second chip 702, and the second output interface 605 is configured to transmit data to the third chip 703.
  • there are two outputs of the first selector 604 in the first chip 701 for transmitting data to the first output interface 605 and the second output interface 605, respectively.
  • the second chip 702 includes an input interface 607, a second selector 608, a first modulation module 609, a second modulation module 610, and a third selector 611 in FIG.
  • the connection manner of the input interface 607, the second selector 608, the first modulation module 609, the second modulation module 610, and the third selector 611 is the same as that shown in FIG. the same.
  • the third chip 703 includes an input interface 607, a second selector 608, a first modulation module 609, a second modulation module 610, and a third selector 611 in FIG.
  • the connection manner of the input interface 607, the second selector 608, the first modulation module 609, the second modulation module 610, and the third selector 611 is the same as that shown in FIG. 6.
  • the interface circuit 601 in the first chip 701 includes different ports, such as a first port and a second port.
  • the first chip 701 receives first data from a first port and second data from a second port.
  • the first data and the second data may be received simultaneously or sequentially Received.
  • the first chip 701 outputs the first data to the first output interface 605 by the first selector 604 according to the first instruction of the configuration, and then is transmitted to the second chip 702 for processing.
  • the second chip 702 obtains one serial electrical signal according to the data and the configured second instruction, and outputs the one serial electrical signal to the first photoelectric conversion module 704.
  • the first photoelectric conversion module 704 performs photoelectric conversion on the one serial electrical signal to obtain a serial seventh data, and the seventh data is an optical signal.
  • the first chip 701 outputs the second data to the second output interface 605 by the first selector 604 according to the configured third instruction, and then transmits the data to the third chip 703 for processing.
  • the third chip 703 obtains one serial electrical signal according to the data and the configured fourth instruction, and outputs the one serial electrical signal to the second photoelectric conversion module 705.
  • the second photoelectric conversion module 705 performs photoelectric conversion on the one serial serial electrical signal to obtain a serial serial eighth data, and the eighth data is an optical signal.
  • a specific implementation manner in the sixth embodiment may be adopted in the specific implementation manner of processing the data in the first chip 701, the second chip 702, and the third chip 703.
  • the specific implementation manner in the second embodiment can be adopted in the specific implementation manner in which the first photoelectric conversion module 704 and the second photoelectric conversion module 705 convert a serial serial electrical signal into a serial optical signal.
  • the second chip 702 and the first photoelectric conversion module can be shortened by integrating functions of the first chip 701, the second chip 702, and the third chip 703 in three different chips, respectively. a distance between 704, thereby improving the quality of data transmission between the second chip 702 and the first photoelectric conversion module 704; and shortening between the third chip 703 and the second photoelectric conversion module 705 The distance, thereby improving the quality of data transmission between the second chip 702 and the first photoelectric conversion module 704.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the detector, the transmitter, the receiver, and the acquisition unit can all be implemented by a general-purpose CPU or an Application Specific Integrated Circuit (ASIC) or a Field-Programmable Gate Array (FPGA). .
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Optical Communication System (AREA)
  • Communication Control (AREA)

Abstract

本申请涉提供了一种用于对多种速率的数据进行处理的方法及装置,能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。本申请提供的方法,数据处理装置接收传输速率为第一速率的第一数据和传输速率为第二速率的第二数据。所述数据处理装置根据所述第一数据,获得N1路第三数据和N2路第四数据。所述数据处理装置根据所述第二数据,获得M1路第五数据和M2路第六数据。所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得串行的第七数据。所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得串行的第八数据。

Description

用于对多种速率的数据进行处理的方法及装置
本申请要求于2015年12月26日提交中国专利局、申请号为CN201511000383.3、发明名称为“用于对多种速率的数据进行处理的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种用于对多种速率的数据进行处理的方法及装置。
背景技术
目前,通过光纤通信的两个网络设备均需要设置线卡(英文:line card,简称:LC),将待传输的数据由电信号转换成特定传输速率的光信号,并通过支持特定传输速率的以太网光接口传输光信号。对于不同传输速率的光信号,采用光纤通信的网络设备需要根据光信号的传输速率装设与之匹配的线卡,开发和维护的成本较高。
发明内容
本申请提供了一种用于对多种速率的数据进行处理的方法及装置,能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
本申请实施例提供的技术方案如下。
第一方面,提供了一种用于对多种速率的数据进行处理方法,包括:
数据处理装置接收第一数据和第二数据,所述第一数据的传输速率为第一速率,所述第二数据的传输速率为第二速率,所述第一速率与所述第二速率不同;
所述数据处理装置根据所述第一速率和所述第一数据,获得N1路第三数 据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数;
所述数据处理装置根据所述第二速率和所述第二数据,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数;
所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率;
所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率;
所述数据处理装置输出所述第七数据和所述第八数据。
上述技术方案提供的方法中,数据处理装置能够将以第一速率传输的第一数据拆分成多路数据,比如N1路第三数据和N2路第四数据,将所述多路数据进行调制,获得以第一速率传输的第七数据。所述数据处理装置在无需更换硬件或接口的情况下,将以第二速率传输的第二数据拆分成M1路第五数据和M2路第六数据,将所述M1路第五数据和所述M2路第六数据调制成以第二速率传输的第八数据。这样,所述数据处理装置能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
可选的,若所述N1等于1,且所述N2等于0,则所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据包括:
所述数据处理装置将所述第三数据作为所述第七数据,所述第一调制方式为透传所述第三数据。
可选的,若所述M1等于1,且所述M2等于0,则所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据包括:
所述数据处理装置将所述第五数据作为所述第八数据,所述第二调制方式为透传所述第五数据。
可选的,所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据包括:
所述数据处理装置根据所述第一调制方式,将所述N1路第三数据和所述N2路第四数据调制成第九数据,所述第九数据的速率为所述第一速率;
所述数据处理装置对所述第九数据进行光电转换,获得所述第七数据,所述第七数据为光信号。
可选的,所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据包括:
所述数据处理装置根据所述第二调制方式,将所述M1路第五数据和所述M2路第六数据调制成第十数据,所述第十数据的速率为所述第二速率;
所述数据处理装置对所述第十数据进行光电转换,获得所述第八数据,所述第八数据为光信号。
通过上述光电转换,所述数据处理装置可以直接将所述第七数据和所述第八数据输入光接口,进而使所述第七数据和所述第八数据进入光纤中传输。
可选的,在一个示例中,所述数据处理装置根据接收所述第一数据的端口确定所述第一速率,根据接收所述第二数据的端口确定所述第二速率,所述接收第一数据的端口与所述第一速率对应,所述接收第二数据的端口与所述第二速率对应。
所述数据处理装置通过将不同速率的所述第一数据和所述第二数据分别用不同的端口接收,所述数据处理装置可以在接收数据时,通过所述端口信息直接确定所述第一数据的第一速率,以及所述第二数据的第二速率,有助于降低实现难度。
可选的,在另一个示例中,所述数据处理装置根据用于传输第一光信号所需的带宽,确定所述第一速率,所述第一光信号为所述第七数据经光电转换后获得的信号;所述数据处理装置根据用于传输第二光信号所需的带宽,确定所述第二速率,所述第二光信号为所述第八数据经光电转换后获得的信号。
所述数据处理装置通过可以根据光信号带宽需求,预先确定所述第一数据的所述第一速率,以及所述第二数据的所述第二速率,并可以预先在所述数据处理装置内部配置用于处理所述第一数据或处理所述第二数据的指令,有助于提高所述数据的处理效率。
第二方面,提供了一种对多种速率的数据进行处理的装置,其特征在于,所述装置包括接收单元,第一处理单元,第二处理单元,第一调制单元,第二调制单元和输出单元,
所述接收单元用于接收第一数据和第二数据,所述第一数据的传输速率为第一速率,所述第二数据的传输速率为第二速率,所述第一速率与所述第二速率不同;
所述第一处理单元用于根据所述接收单元接收的所述第一数据和所述第一速率,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数;
所述第二处理单元用于根据所述接收单元接收的所述第二数据和所述第二速率,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数;
所述第一调制单元用于根据所述第一处理单元获得的所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率;
所述第二调制单元用于根据所述第二处理单元获得的所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率;
所述输出单元用于输出所述第一调制单元获得的所述第七数据和所述第二调制单元获得的所述第八数据。
上述技术方案提供的数据处理装置,将以第一速率传输的第一数据拆分成多路数据,比如N1路第三数据和N2路第四数据,将所述多路数据进行调制,获得以第一速率传输的第七数据。所述数据处理装置在无需更换硬件或接口 的情况下,将以第二速率传输的第二数据拆分成M1路第五数据和M2路第六数据,将所述M1路第五数据和所述M2路第六数据调制成以第二速率传输的第八数据。这样,所述数据处理装置能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
可选的,若所述N1等于1,且所述N2等于0,则所述第一调制单元具体用于将所述第三数据作为所述第七数据,所述第一调制方式为透传所述第三数据。
可选的,若所述M1等于1,且所述M2等于0,则所述第二调制单元具体用于将所述第五数据作为所述第八数据,所述第二调制方式为透传所述第五数据。
可选的,所述第一调制单元具体用于:根据所述第一调制方式,将所述第一处理单元获得的所述N1路第三数据和所述N2路第四数据调制成第九数据,所述第九数据的速率为所述第一速率;以及对所述第九数据进行光电转换,获得所述第七数据,所述第七数据为光信号。
可选的,所述第二调制单元具体用于:根据所述第二调制方式,将所述第二处理单元获得的所述M1路第五数据和所述M2路第六数据调制成第十数据,所述第十数据的速率为所述第二速率;以及对所述第十数据进行光电转换,获得所述第八数据,所述第八数据为光信号。
通过上述光电转换,所述数据处理装置可以直接将所述第七数据和所述第八数据输入光接口,进而使所述第七数据和所述第八数据进入光纤中传输。
可选的,在一种示例中,所述装置还包括:第一确定单元,用于根据接收所述第一数据的端口确定所述第一速率,所述接收第一数据的端口与所述第一速率对应;第二确定单元,用于根据接收所述第二数据的端口确定所述第二速率,所述接收第二数据的端口与所述第二速率对应。
所述数据处理装置通过将不同速率的所述第一数据和所述第二数据分别用不同的端口接收,所述数据处理装置可以在接收数据时,通过所述端口信息直接确定所述第一数据的第一速率,以及所述第二数据的第二速率,有助 于降低实现难度。
可选的,在另一种示例中,所述装置还包括:第一确定单元,用于根据用于传输第一光信号所需的带宽,确定所述第一速率,所述第一光信号为所述第七数据经光电转换后获得的信号;第二确定单元,用于根据用于传输第二光信号所需的带宽,确定所述第二速率,所述第二光信号为所述第八数据经光电转换后获得的信号。
所述数据处理装置通过可以根据光信号带宽需求,预先确定所述第一数据的所述第一速率,以及所述第二数据的所述第二速率,并可以预先在所述数据处理装置内部配置用于处理所述第一数据或处理所述第二数据的指令,有助于提高所述数据的处理效率。
附图说明
图1为一种线卡的结构示意图。
图2a为本申请实施例一提供的一种用于对多种速率的数据进行处理的方法流程图。
图2b为本申请实施例一提供的一种用于对多种速率的数据进行处理的方法流程图。
图3a为本申请实施例二提供的一种用于对多种速率的数据进行处理的方法流程图。
图3b为本申请实施例二提供的一种用于对多种速率的数据进行处理的方法流程图。
图4为本申请实施例三提供的一种数据处理装置的结构示意图。
图5为本申请实施例四提供的一种数据处理装置的结构示意图。
图6为本申请实施例五提供的一种数据处理装置的结构示意图。
图7为本申请实施例六提供的一种数据处理装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
如图1所示,通常的线卡100包括:数据处理单元101和光电转换单元102。数据处理单元101包括媒体接入控制(英文全称:media access control,英文简称:MAC)模块101,串行/解串行(英文全称serializer/deserializer,英文简称SerDes)接口1012。
MAC模块1011接收一路并行传输的数据。MAC模块1011对所述并行传输的数据进行MAC封装,获得封装后的数据。MAC模块1011输出所述封装后的数据至SerDes接口1012。SerDes接口1012将接收到的所述封装后的数据,拆分成并行传输的N路电信号。所述N路电信号传输速率为标准速率。所述标准速率可以是以太网(英文:Ethernet)的标准中定义的传输速率,比如:SerDes接口1012将接收的40Gbit/s的数据拆分成4路10Gbit/s的数据,SerDes接口1012将接收的100Gbit/s的数据拆分成4路25Gbit/s的数据,SerDes接口1012将接收的100Gbit/s的数据拆分成10路10Gbit/s的数据,或SerDes接口1012对于接收的10Gbit/s的数据继续采用1路10Gbit/s传输等。SerDes接口1012输出所述N路电信号至光电转换单元102。光电转换单元102用于对所述N路传输的电信号进行光电转换,获得N路并行的光信号。光电转换单元102可通过其连接的光纤输出所述待传输的光信号。
以MAC模块1011接收的1路并行传输的数据的传输速率为10Gbit/s为例,所述SerDes接口1012将所述MAC模块1011封装后的1路并行数据,转换为1路串行数据。所述封装后的1路并行数据的传输速率为10Gbit/s。所述1路串行数据的传输速率为10Gbit/s。SerDes接口1012输出所述1路串行数据至光电转换单元102。光电转换单元102可将所述1路串行数据转换为传输速率为10Gbit/s的光信号,并通过光纤输出。所述光电转换模块102可采用增强型小型可插拔(英文全称:small form-factor pluggable plus,英文简称SFP+)光模块,所述SFP+光模块接收电信号的输入接口为单路串行接口。
如果MAC模块1011接收的1路并行传输的数据的传输速率为40Gbit/s,则处理单元101需要增加3个如图1中的SerDes接口1012,即处理单元101包括MAC模块1011和4个SerDes接口1012。4个SerDes接口1012中的每个SerDes接口1012输出1路10Gbit/s的数据。相应地,光电转换单元102为四通道增强型小型可插拔(英文全称:quad small form-factor pluggable plus,英文简称:QSFP+)光模块,QSFP+光模块对处理单元101输出的4路10Gbit/s的数据进行光电转换,并通过光纤输出光电转换后的光信号。这样,线卡100需要设计相应的硬件,比如4个SerDes接口1012和QSFP+光模块,以支持不同的传输速率。通常的线卡只能对特定的传输速率进行处理,开发和维护的成本较高。
针对上述问题,本申请实施例提出了能够在不更换线卡的情况下获得多种传输速率的信号的技术方案,有助于降低开发和维护成本的解决方法。该解决方法包括:数据处理装置接收第一数据和第二数据,所述第一数据的传输速率为第一速率,所述第二数据的传输速率为第二速率,所述第一速率与所述第二速率不同;所述数据处理装置根据所述第一速率和所述第一数据,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数;所述数据处理装置根据所述第二速率和所述第二数据,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数;所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率;所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率;所述数据处理装置输出所述第七数据和所述第八数据。
本申请实施例中的数据处理装置可以装设于分组传送网(英文全称:packet transport network,英文简称:PTN)设备、光传送网(英文全称:optical transport network,英文简称:OTN)设备、采用光传输的路由器或者采用光传 输的交换机等设备中。举例来说,所述数据处理装置可以装设于上述设备的线卡上。
实施例一
图2a示出了数据处理装置对所述第一数据进行处理的流程。图2b示出了数据处理装置对所述第二数据进行处理的流程。所述数据处理装置可同时对所述第一数据和所述第二数据进行处理,也可以是按顺序对所述第一数据和所述第二数据进行处理,在此不再对所述第一数据和所述第二数据的处理顺序进行限定。
如图2a所示,本申请实施例一提供的用于对多种速率的数据进行处理的方法包括S201至204。如图2b所示,本申请实施例一提供的用于对多种速率的数据进行处理的方法流包括S205至S208。S201,数据处理装置接收第一数据,所述第一数据的传输速率为第一速率。
S202,所述数据处理装置根据所述第一速率和所述第一数据,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数。
S203,所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率。
S204,所述数据处理装置输出所述第七数据。
S205,数据处理装置接收第二数据,所述第二数据的传输速率为第二速率。
S206,所述数据处理装置根据所述第二速率和所述第二数据,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数。
S207,所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率。
S208,所述数据处理装置输出所述第八数据。
本申请实施例中第一数据中的第一和第二数据中的第二不代表数据的先后顺序,“第一”和“第二”用于区分所述第一数据和所述第二数据是不同的数据。即所述S201可在S205之前或之后执行,S201还可与S205同时执行。
举例说明,所述数据处理装置可同时接收到所述第一数据和所述第二数据,也可先后接收到所述第一数据和所述第二数据。所述数据处理装置接收到所述第一数据的端口和所述数据处理装置接收到所述第二数据的端口可以是相同的端口,也可以是不同的端口。如果所述数据处理装置同时接收到所述第一数据和所述第二数据,则所述数据处理装置接收到所述第一数据的端口和所述数据处理装置接收到所述第二数据的端口不同。
在一种可能的实现方式中,如果所述数据处理装置接收所述第一数据的端口和所述数据处理装置接收所述第二数据的端口不同,则所述数据处理装置可存储有端口和速率间的对应关系,比如第一对应关系包括所述第一速率和接收所述第一数据的端口,第二对应关系包括所述第二速率和接收所述第二数据的端口。
可选地,S201和S202之间,本申请实施例一提供的方法还包括:所述数据处理装置可根据接收所述第一数据的端口,确定所述第一速率。比如:所述数据处理装置可根据所述第一对应关系和接收所述第一数据的端口,获得所述第一速率。
可选地,S205和S206之间,本申请实施例一提供的方法还包括:所述数据处理装置可根据接收所述第二数据的端口,确定所述第二速率。比如:所述数据处理装置可根据所述第二对应关系和接收所述第二数据的端口,获得所述第二速率。
举例来说,所述数据处理装置包括第一接收端口和第二接收端口,所述第一接收端口和所述第二接收端口的总线带宽不同。所述第一接收端口的总线带宽为10Gbit/s,所述第二接收端口的总线带宽为40Gbit/s。如果所述数据处理装置从所述第一接收端口接收所述第一数据,则所述数据处理装置确定 所述第一数据的传输速率为10Gbit/s。如果所述数据处理装置从所述第二接收端口接收所述第二数据,则所述数据处理装置确定所述第二数据的传输速率为40Gbit/s。
在另一种可能的实现方式中,由于所述数据处理装置接收到的数据需要通过光纤进行传输,因此,所述数据处理装置可根据光纤传输的光信号所需的带宽来确定接收到的数据的速率。
可选地,本申请实施例一提供的方法还包括:所述数据处理装置根据用于传输第一光信号所需的带宽,确定所述第一速率,所述第一光信号为所述第七数据经光电转换后获得的光信号。本申请实施例一中的所述第七数据为电信号。举例说明,所述数据处理装置可以是在执行S201之前,执行S201同时,或执行S201之后且执行S202之前,通过读取所述第一光信号所需的带宽,确定所述第一速率。举例来说,所述数据处理装置通过读取第一光电转换装置中的寄存器存储的所述第一光信号所需的带宽信息,确定所述第一速率。所述第一光电转换装置用于对所述数据处理装置输出的所述第七数据进行光电转换,获得所述第一光信号。
可选地,本申请实施例一提供的方法还包括:所述数据处理装置根据用于传输第二光信号所需的带宽,确定所述第二速率,所述第二光信号为所述第八数据经光电转换后获得的光信号。本申请实施例一中的所述第八数据为电信号。举例说明,所述数据处理装置可以是在执行S205之前,执行S205同时,或执行S205之后且执行S206之前,通过读取所述第二光信号所需的带宽,确定所述第二速率。举例来说,所述数据处理装置通过读取第二光电转换装置中的寄存器存储的所述第二光信号所需的带宽信息,确定所述第二速率。所述第二光电转换装置用于对所述数据处理装置输出的所述第八数据进行光电转换,获得所述第二光信号。
举例来说,S202包括:所述第一数据为N位并行传输的数据,所述数据处理装置可根据N1和N2,将所述第一数据拆分成所述N1路的第三数据和所述N2路第四数据。所述N1与所述N2之和小于或等于所述N。所述第一 数据为N位并行传输的数据。
举例说明,所述第三数据的传输速率和所述第四数据的传输速率不同。所述N1路第三数据中的每一路第三数据包含内容不同。例如,如果N1为2,N2为0,且所述第一数据包括16位数据,则两路第三数据中的一路第三数据包括所述第一数据的前8位,两路第三数据中的另一路第三数据包括的是所述第一数据的后8位数据。如果所述N2大于零,则所述N2路第四数据中每一路第四数据包含的内容不同,在此不再举例说明。
S206中,所述数据处理装置根据所述第二速率和所述第二数据,获得M1路第五数据和M2路第六数据的具体实现方式,与S202中的实现原理相同,不再赘述。举例说明,所述第五数据的传输速率和所述第六数据的传输速率不同。所述M1路第五数据中的每一路第五数据包含内容不同,所述M2路第六数据中的每一路第六数据包含内容不同,在此不再举例说明。
S203中,若所述N1等于1,且所述N2等于0,则所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据包括:所述数据处理装置将所述第三数据作为所述第七数据,所述第一调制方式为透传所述第三数据。举例说明,所述数据处理装置透传第三数据为所述第七数据,不对所述第三数据的传输速率进行改变。可选地,所述数据处理装置还可对所述第三数据进行前向纠错(英文:forward error correction,简称:FEC)等线路编码处理,将编码处理后的第三数据作为所述第七数据。
S203中,若所述N1与所述N2之和大于或等于2,则所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据包括:所述数据处理装置将所述N1路第三数据和所述N2路第四数据进行调制,合并为1路串行数据,所述1路串行数据为所述第七数据。其中,所述第一调制方式可以是多电平调制(英文全称:multilevel pulse-amplitude modulation,英文简称:multilevel PAM)、离散多音频调制(英文全称:discrete multi-tone modulation,英文简称:DMT)或直检超奈奎斯特调制(英文全称:direct detection faster than Nyquist modulation,英文简称:DD-FTN)等。上述 调制方式仅仅是示例的。本申请实施例提供的第一调制方式可以为将多路信号转换成单路信号的调制方式,在此不再举例说明。
举例来说,所述N1为2,即两路第三数据,两路第三数据中的一路第三数据可以称为第一路第三数据,两路第三数据中的另一路第三数据可以称为第二路第三数据。所述N2为3,即三路第四数据,三路第四数据中的一路第四数据可以称为第一路第四数据,三路第四数据中的另一路第四数据可以称为第二路第四数据,三路第四数据中剩余的一路第四数据可以称为第三路第四数据。
所述数据处理装置通过四电平调制(英文全称:pulse-amplitude-modulation with four amplitude levels,英文简称PAM-4),将第一路第三数据和第二路第三数据,调制成一路第九数据,所述第一路第三数据和所述第二路第三数据均可采用低电平表示0,所述第一路第三数据和所述第二路第三数据均可采用高电平表示1。所述第九数据可采用四种不同的脉冲幅度分别表示00,01,10和11。所述第九数据在一个时钟周期内传输两个比特,所述第九数据的幅值是同一个时钟周期内所述第一路第三数据传输的一个比特和所述第二路第三数据传输的一个比特组成的比特值对应的脉冲幅度。例如:在某一个时钟周期内,所述第一路第三数据传输的比特值为0,所述第二路第三数据传输的比特值为1,则在该时钟周期内所述第九数据传输的两个比特的比特值为01,在该时钟周期内所述第九数据的幅值为比特值,如01,对应的脉冲幅度。
所述数据处理装置通过八电平调制(英文:pulse-amplitude-modulation with four amplitude levels,简称PAM-8),将所述第一路第四数据、所述第二路第四数据和所述第三路第四数据,调制成一路第十数据。所述第十数据的000、001、010、011、100、101、110和111分别采用八种脉冲幅度进行表示。所述第十数据在一个时钟周期内传输三个比特,所述第十数据的幅值是同一个时钟周期内所述第一路第四数据传输的一个比特、所述第二路第四数据中传输的一个比特和所述第三路第四数据中传输的一个比特组成的比特值对应的脉冲幅度。
所述数据处理装置将所述第九数据和所述第十数据调制成一路第七数据。例如,所述数据处理装置通过加快时钟频率,将所述第九数据和所述第十数据调制成一路第七数据。所述第七数据的一个时钟周期包括第一子时钟周期和第二子时钟周期。所述第一子时钟周期的时长是所述第九数据的时钟周期时长的二分之一,所述第二子时钟周期的时长是所述第十数据的时钟周期时长的二分之一。所述第一子时钟周期传输的比特与所述第九数据在该时钟周期中传输的比特相同;所述第二子时钟周期传输的比特与所述第十数据在该时钟周期中传输的比特相同。可选地,在由所述N1路第三数据和所述N2路第四数据获得所述第七数据的过程中,可以对所述第三数据和所述第四数据进行FEC等线路编码处理,将经过第一调制方式调制并经过编码处理后的数据作为所述第七数据。
S207,若所述M1等于1,且所述M2等于0,则所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据包括:所述数据处理装置将所述第五数据作为所述第八数据,所述第二调制方式为透传所述第五数据。举例说明,所述数据处理装置透传第五数据为所述第八数据,不对所述第五数据的传输速率和所述第五数据传输方式进行改变。
可选地,所述数据处理装置可以对所述第五数据进行FEC等线路编码处理,将编码处理后的数据作为所述第八数据。
S207中,若所述M1与所述M2之和大于或等于2,则所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据包括:所述数据处理装置将所述M1路第五数据和所述M2路第六数据进行调制,合并为1路串行数据,所述1路串行数据为所述第八数据。
第二调制方式的具体实现方式,与S203中所述第一调制方式的具体实现方式类似。
举例来说,所述M1为4,即四路第五数据,所述四路第五数据中的一路第五数据可以称为第一路第五数据,所述四路第五数据中的另一路第五数据可以称为第二路第五数据,所述四路第五数据中的又一路第五数据可以称为 第三路第五数据,所述四路第五数据中的又一路第五数据可以称为第四路第五数据。所述M2为0。
所述数据处理装置通过PAM-4,将所述第一路第五数据和所述第二路第五数据,调制成一路第十一数据,所述第一路第五数据和所述第二路第五数据均可采用低电平表示0,所述第一路第五数据和所述第二路第五数据均可采用高电平表示1。所述第十一数据可采用四种不同的脉冲幅度分别表示00,01,10和11。所述第十一数据中在一个时钟周期内传输两个比特,所述第十一数据的幅值是同一个时钟周期内所述所述第一路第五数据传输的一个比特和所述第二路第五数据传输的一个比特组成的比特值对应的脉冲幅度。例如:在某一个时钟周期内,所述第一路第五数据传输的比特值为0,所述第二路第五数据传输的比特值为1,则在该时钟周期内所述第十一数据传输的两个比特的比特值为01。同理,所述数据处理装置通过PAM-4,将所述第三路第五数据和所述第四路第五数据,调制成一路第十二数据。
所述数据处理装置将所述第十一数据和所述第十二数据调制成一路第八数据。例如,所述数据处理装置通过加快时钟频率,将所述第十一数据和所述第十二数据调制成一路第八数据。所述第八数据的一个时钟周期包括第一子时钟周期和第二子时钟周期。所述第一子时钟周期的时长,以及所述第二子时钟周期的时长均为所述时钟周期的时长的二分之一。所述第一子时钟周期传输的比特与所述第十一数据在该时钟周期中传输的比特相同;所述第二子时钟周期传输的比特与所述第十二数据在该时钟周期中传输的比特相同。
S203中的所述第一调制方式和S207中的所述第二调制方式,可以均是透传,也可以均是将多路数据合并为1路数据,还可以所述第一调制方式是透传,所述第二调制方式是将多路数据合并为1路数据。
S204中所述数据处理装置输出所述第七数据。所述第七数据是电信号。举例来说,所述数据处理装置将所述第七数据输出至第一光电转换器件,并转换为所述第一光信号,并由所述第一光电转换器件将所述第一光信号输出至光纤中传输。
S208中所述数据处理装置输出所述第八数据。所述第八数据是电信号。举例来说,所述数据处理装置将所述第八数据输出至第二光电转换器件,并转换为所述第二光信号,并由所述第二光电转换器件将所述第二光信号输出至光纤中传输。
本申请实施例提供的方法中,数据处理装置能够将以第一速率传输的第一数据拆分成多路数据,比如N1路第三数据和N2路第四数据,将所述多路数据进行调制,获得以第一速率传输的第七数据。所述数据处理装置在无需更换硬件或接口的情况下,将以第二速率传输的第二数据拆分成M1路第五数据和M2路第六数据,将所述M1路第五数据和所述M2路第六数据调制成以第二速率传输的第八数据。这样,所述数据处理装置能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
实施例二
图3a示出了数据处理装置对所述第一数据进行处理的流程。图3b示出了数据处理装置对所述第二数据进行处理的流程。所述数据处理装置可同时对所述第一数据和所述第二数据进行处理,也可以是按顺序对所述第一数据和所述第二数据进行处理,在此不再对所述第一数据和所述第二数据的处理顺序进行限定。
如图3a所示,本申请实施例一提供的用于对多种速率的数据进行处理的方法包括S301至305。如图3b所示,本申请实施例一提供的用于对多种速率的数据进行处理的方法流包括S306至S310。
S301,数据处理装置接收第一数据,所述第一数据的传输速率为第一速率。
S302,所述数据处理装置根据所述第一速率和所述第一数据,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数。
S303,所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第九数据,所述第九数据的传输速率为所述第一速率。
S304,所述数据处理装置对所述第九数据进行光电转换,获得所述第七数据,所述第七数据是串行数据并且所述第七数据为光信号。
S305,所述数据处理装置输出所述第七数据。
S306,数据处理装置接收第二数据,所述第二数据的传输速率为第二速率。
S307,所述数据处理装置根据所述第二速率和所述第二数据,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数。
S308,所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第十数据,所述第十数据的传输速率为所述第二速率。
S309,所述数据处理装置对所述第十数据进行光电转换,获得所述第八数据,所述第八数据是串行数据并且所述第八数据为光信号。
S310,所述数据处理装置输出所述第八数据。
本申请实施例中第一数据中的第一和第二数据中的第二不代表数据的先后顺序,“第一”和“第二”用于区分所述第一数据和所述第二数据是不同的数据。即所述S301可在S306之前或之后执行,S301还可与S306同时执行。
举例说明,所述数据处理装置可同时接收到所述第一数据和所述第二数据,也可先后接收到所述第一数据和所述第二数据。所述数据处理装置接收到所述第一数据的端口和所述数据处理装置接收到所述第二数据的端口可以是相同的端口,也可以是不同的端口。如果所述数据处理装置同时接收到所述第一数据和所述第二数据,则所述数据处理装置接收到所述第一数据的端口和所述数据处理装置接收到所述第二数据的端口不同。
在一种可能的实现方式中,如果所述数据处理装置接收所述第一数据的端口和所述数据处理装置接收所述第二数据的端口不同,则所述数据处理装置可存储有端口和速率间的对应关系,比如第一对应关系包括所述第一速率和接收所述第一数据的端口,第二对应关系包括所述第二速率和接收所述第二数据的端口。
可选地,S301和S302之间,本申请实施例二提供的方法还包括:所述数据处理装置可根据接收所述第一数据的端口,确定所述第一速率。比如:所述数据处理装置可根据所述第一对应关系和接收所述第一数据的端口,获得所述第一速率。
可选地,S306和S307之间,本申请实施例二提供的方法还包括:所述数据处理装置可根据接收所述第二数据的端口,确定所述第二速率。比如:所述数据处理装置可根据所述第二对应关系和接收所述第二数据的端口,获得所述第二速率。
在另一种可能的实现方式中,所述数据处理装置可根据光纤传输的光信号所需的带宽来确定接收到的数据的速率。
可选地,本申请实施例二提供的方法还包括:所述数据处理装置根据所述第七数据所需的带宽,确定所述第一速率。举例说明,所述数据处理装置可以是在执行S301之前,执行S301同时,或执行S301之后且执行S302之前,通过读取所述第七数据所需的带宽,确定所述第一速率。
可选地,本申请实施例二提供的方法还包括:所述数据处理装置根据所述第八数据所需的带宽,确定所述第二速率。举例说明,所述数据处理装置可以是在执行S306之前,执行S306同时,或执行S306之后且执行S307之前,通过读取所述第八数据所需的带宽,确定所述第二速率。
S302的具体实现方式可以采用实施例一中S202的具体实现方式,在此不再举例说明。S307的具体实现方式可以采用实施例一中S206的具体实现方式,在此不再举例说明。
S303中获得所述第九数据的具体实现方式可以采用实施例一中S203中获得实施例一中所述的第七数据的具体实现方式,在此不再举例说明。S308中获得所述第十数据的具体实现方式可以采用实施例一中S207中获得实施例一中所述的第八数据的具体实现方式,在此不再举例说明。
举例来说,S304中所述数据处理装置将所述第九数据加载到光载波上,获得所述第七数据。
举例来说,S309中所述数据处理装置将所述第十数据加载到光载波上,获得所述第八数据。
举例来说,S305中所述数据处理装置将所述第七数据输出到光纤上。
举例来说,S310中所述数据处理装置将所述第八数据输出到光纤上。
本申请实施例提供的方法中,数据处理装置能够将以第一速率传输的第一数据拆分成多路数据,比如N1路第三数据和N2路第四数据,将所述多路数据进行调制和光电转换,获得以第一速率传输的第七数据。所述数据处理装置在无需更换硬件或接口的情况下,将以第二速率传输的第二数据拆分成M1路第五数据和M2路第六数据,对所述M1路第五数据和所述M2路第六数据进行调制和光电转换,获得以第二速率传输的第八数据。这样,所述数据处理装置能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
实施例三
图4示出了本申请实施例三提供的数据处理装置的结构示意图。如图4所示,数据处理装置400包括接收单元401,第一处理单元402,第二处理单元403,第一调制单元404,第二调制单元405和输出单元406。数据处理装置400可执行图2a、图2b、图3a或图3b对应的实施例提供的方法。
接收单元401用于接收第一数据和第二数据,所述第一数据的传输速率为第一速率,所述第二数据的传输速率为第二速率,所述第一速率与所述第二速率不同。
第一处理单元402用于根据接收单元401接收的所述第一数据和所述第一速率,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数。
第二处理单元403用于根据接收单元401接收的所述第二数据和所述第二速率,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数。
第一调制单元404用于根据第一处理单元402获得的所述N1路第三数 据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率。
第二调制单元405用于根据第二处理单元403获得的所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率。
输出单元406用于输出第一调制单元404获得的所述第七数据和第二调制单元405获得的所述第八数据。
举例说明,若所述N1等于1,且所述N2等于0,则所述第一调制单元404具体用于将所述第三数据作为所述第七数据,所述第一调制方式为透传所述第三数据。
举例说明,若所述M1等于1,且所述M2等于0,则所述第二调制单元405具体用于将所述第五数据作为所述第八数据,所述第二调制方式为透传所述第五数据。
举例说明,所述第一调制单元404具体用于:根据所述第一调制方式,将所述第一处理单元402获得的所述N1路第三数据和所述N2路第四数据调制成第九数据,所述第九数据的速率为所述第一速率;以及对所述第九数据进行光电转换,获得所述第七数据,所述第七数据为光信号。
举例说明,所述第二调制单元405具体用于:根据所述第二调制方式,将所述第二处理单元403获得的所述M1路第五数据和所述M2路第六数据调制成第十数据,所述第十数据的速率为所述第二速率;以及对所述第十数据进行光电转换,获得所述第八数据,所述第八数据为光信号。
可选的,所述数据处理装置400还包括第一确定单元407和第二确定单元408。
举例说明,在一种实现方式中,第一确定单元407,用于根据接收所述第一数据的端口确定所述第一速率,所述接收第一数据的端口与所述第一速率对应。第二确定单元408,用于根据接收所述第二数据的端口确定所述第二速率,所述接收第二数据的端口与所述第二速率对应。
举例说明,在另一种实现方式中,第一确定单元407,用于根据用于传输第一光信号所需的带宽,确定所述第一速率,所述第一光信号为所述第七数据经光电转换后获得的信号;第二确定单元408,用于根据用于传输第二光信号所需的带宽,确定所述第二速率,所述第二光信号为所述第八数据经光电转换后获得的信号。
本申请实施例提供的数据处理装置中,第一处理单元能够将以第一速率传输的第一数据拆分成多路数据,比如N1路第三数据和N2路第四数据。第一调制单元将所述多路数据进行调制,获得以第一速率传输的第七数据。所述数据处理装置在无需更换硬件或接口的情况下,对以第二速率传输的第二数据进行处理。即第二处理单元将以第二速率传输的第二数据拆分成M1路第五数据和M2路第六数据。第二调制单元将所述M1路第五数据和所述M2路第六数据调制成以第二速率传输的第八数据。这样,所述数据处理装置能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
实施例四
图5示出了本申请实施例四提供的数据处理装置的结构示意图。如图5所示,数据处理装置500包括:处理器501,存储器502以及通信接口503。处理器501,存储器502以及通信接口503通过通信总线504连接。
存储器502用于存储程序。
处理器501根据从存储器502中读取的程序所包括的可执行指令,执行如下操作。
处理器501通过通信接口503接收第一数据和第二数据,所述第一数据的传输速率为第一速率,所述第二数据的传输速率为第二速率,所述第一速率与所述第二速率不同。
处理器501根据所述第一速率和所述第一数据,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数。
处理器501根据所述第二速率和所述第二数据,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数。
处理器501根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率。
处理器501所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率。
处理器501通过通信接口503输出所述第七数据和所述第八数据。
进一步地,处理器501根据存储器502中的可执行指令,与通信接口503配合,使图5所示的数据处理装置500执行了实施例一或者实施例二中的数据处理装置所执行的操作。
图5所示的数据处理装置500与图4所示的数据处理装置400可以是同一个装置,例如均为实施例一或实施例二中所述的数据处理装置。可以认为,图5从物理的角度显示了一个数据处理装置包括的内容,而图4从逻辑的角度显示了一个数据处理装置包括的内容。可选地,图4所示的接收单元401,以及输出单元407可以由图5中的通信接口503来实现,通信接口503可以包括至少一个物理接口。图4所示的第一处理单元402,第二处理单元403,第一调制单元404,第二调制单元405,第一确定单元407以及第二确定单元408可以由图5所示的处理器501根据存储器502存储的可执行指令来实现,处理器501可以包括至少一个物理处理器。
本申请实施例提供的数据处理装置中,处理器能够将以第一速率传输的第一数据拆分成多路数据,比如N1路第三数据和N2路第四数据。所述处理器将所述多路数据进行调制,获得以第一速率传输的第七数据。所述数据处理装置在无需更换硬件或接口的情况下,对以第二速率传输的第二数据进行处理。即所述处理器将以第二速率传输的第二数据拆分成M1路第五数据和 M2路第六数据。所述处理器将所述M1路第五数据和所述M2路第六数据调制成以第二速率传输的第八数据。这样,所述数据处理装置能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
实施例五
图6示出了本申请实施例五提供的数据处理装置的结构示意图。
数据处理装置600包括接口电路601,第一选择器604,输出接口605,控制器606,输入接口607,第二选择器608,第一调制模块609,第二调制模块610和第三选择器611。可选的,所述数据处理装置600还包括第一MAC模块602和第二MAC模块603。
其中,接口电路601,第一MAC模块602、第二MAC模块603、第一选择器604、输出接口605和控制器606可集成在第一芯片(图6中未示出)。输入接口607、第二选择器608、第一调制模块609、第二调制模块610和第三选择器611可集成在第二芯片(图6中未示出)。
数据处理装置600可以为实施例一或实施例三中的数据处理装置。其中,接口电路601可实现接收单元401的功能。第一选择器604和输出接口605可实现第一处理单元402的功能,还可实现第二处理单元403的功能。输入接口607、第二选择器608和第一调制模块609可实现第一调制单元404的功能。输入接口607,第二选择器608和第二调制模块610可实现第二调制单元的功能。第三选择器611可以实现输出单元406的功能。可选地,控制器606可实现第一确定单元407的功能,还可以实现第二确定单元408的功能。
下面将以数据处理装置600接收第一数据,所述第一数据的第一速率为10Gbit/s,数据处理装置600接收第二数据,所述第二数据的第二速率40Gbit/s为例,对于所述数据处理装置600的工作原理进行说明。
所述数据处理装置600中,接口电路601的输出端包括不同的端口,例如包括第一端口和第二端口。所述第一端口用于接收第一数据,所述第二端口用于接收第二数据。所述第一端口可以向所述第一选择器604传输数据。所述第二端口可以向所述第一选择器604传输数据。
可选的,如果所述第一芯片中还包括第一MAC模块602和第二MAC模块603,则所述第一端口和第一选择器604通过第一MAC模块602相连,所述第一MAC模块602用于对所述第一数据进行MAC封装;所述第二端口和第一选择器604通过第二MAC模块603相连,所述第二MAC模块603用于对所述第二数据进行MAC封装。
输出接口605可以由串行/解串行(英文全称:serializer/deserializer,英文简称:SerDes)接口实现,所述第一选择器604可以向所述输出接口605的并行输入接口传输数据。输出接口605有4个串行的输出接口,即图6中所示的OUT1至OUT4。
所述第二芯片中,输入接口607可以由SerDes接口实现,所述SerDes接口有4个串行的输入接口,即IN1至IN4实现。输出接口605的OUT1至OUT4,分别可以向所述输入接口607的IN1至IN4传输数据。所述输出接口605和所述输入接口607用于将数据由所述第一芯片传输至所述第二芯片。所述输入接口607的四个并行的输出接口,分别用于向第二选择器608的4个输入端传输数据。第二选择器608的输出端,分别可以向第一调制模块609和第二调制模块610传输数据。其中,第一调制模块609用于将1路10Gbit/s的数据透传,第二调制模块610用于将4路10Gbit/s的数据通过调制合并为1路40Gbit/s的数据。
控制器606可以通过通信总线分别与第一选择器604,第二选择器608以及第三选择器611通信。控制器606可以集成在所述第一芯片中,或者集成在所述第二芯片中,或者集成在数据处理装置600的其他芯片。控制器606还可以由多个控制单元组成,所述多个控制单元分别集成在所述第一芯片、所述第二芯片或者所述数据处理装置600的其他芯片。
接口电路601接收第一数据,控制器606确定所述所述第一速率为10Gbit/s。举例来说,所述第一数据为1路并行数据。
举例来说,所述控制器606可以采用实施例一中确定所述第一速率的任一实现方式,确定所述第一速率。接口电路601将所述第一数据输出至第一 选择器604。可选的,所述接口电路601先将所述第一数据输出到第一MAC模块602对所述第一数据进行MAC封装,所述第一MAC模块602将封装后的所述第一数据输出至第一选择器604。
举例说明,在一种示例中,控制器606获取所述接口电路601接收所述第一数据的端口,并根据所述接收所述第一数据的端口确定所述第一速率。
举例说明,在另一种示例中,控制器606通过获取光纤传输的光信号所需的带宽来确定接收到的数据的速率。例如,控制器606读取第一光电转换装置的带宽,获得所述第一速率。所述第一光电转换装置用于对所述数据处理装置600输出的第七数据进行光电转换,获得第一光信号。例如,所述控制器606通过外围部件互连(英文全称:peripheral component interconnect,英文简称:PCI)总线读取所述第一光电转换装置的寄存器(英文全称:register)中存储的所述带宽的信息。
举例来说,所述第一选择器604将所述第一数据输出到所述输出接口605。
举例来说,所述输出接口605根据第一指令,将所述第一数据由1路并行数据转换为1路串行的第三数据。所述第一指令用于指示所述输出接口605将所述第一数据由1路并行数据转换为1路串行的第三数据。例如,所述第一指令是由控制器606向输出接口605发送的指令。输出接口605将所述1路串行的第三数据从所述OUT1输出至所述第二芯片。具体来说,输出接口605将所述1路第三数据由输入接口607的IN1输入所述第二芯片。
举例来说,第二选择器608根据第二指令,将所述1路第三数据输出到第一调制模块609。所述第二指令用于指示所述第二选择器608将所述1路第三数据输出到第一调制模块609。例如,所述第二指令是由控制器606向第二选择器608发送的。所述第一调制模块609将第三数据透传为第七数据。
举例来说,第三选择器611输出所述第七数据。在一种示例中,第一调制模块609输出端输出的数据为并行数据,则第三选择器611的输出端可以连接一个SerDes接口作为所述数据处理装置的输出接口,将所述并行数据转换为串行的第七数据输出。在另一种示例中,第一调制模块609输出的数据 为串行的第七数据,则可以由第三选择器611直接输出所述第七数据。
接口电路601接收第二数据。举例来说,所述第二数据为1路并行数据。控制器606采用实施例一中确定所述第二速率的任一实现方式,确定所述第二速率为40Gbit/s。
举例说明,在一种示例中,控制器606获取所述接口电路601接收所述第二数据的端口,并根据所述接收所述第二数据的端口确定所述第二速率。
举例说明,在另一种示例中,控制器606通过获取光纤传输的光信号所需的带宽来确定接收到的数据的速率。例如,控制器606读取第二光电转换装置的带宽,获得所述第二速率。所述第二光电转换装置用于对所述数据处理装置600输出的第八数据进行光电转换,获得第二光信号。例如,所述控制器606通过PCI总线读取所述第二光电转换装置的寄存器中存储的所述带宽的信息。
进一步地,所述数据处理装置600与所述第一光电转换装置和所述第二光电转换装置的连接方式可以是,所述数据处理装置600的输出端在不同的时间段,分别与所述第一光电转换装置和所述第二光电转换装置相连。所述数据处理装置600在与所述第一光电转换装置或与所述第二光电转换装置连接后,在进行初始化的过程中,控制器606获取所述第一光电转换装置或所述第二光电转换装置的带宽。所述数据处理装置600与所述第一光电转换装置相连,所述控制器606确定所述接口电路601接收的所述第一数据的速率为所述第一速率;所述数据处理装置500与所述第二光电转换装置相连,所述控制器606确定所述接口电路601接收的所述第二数据的速率为所述第二速率。
需要说明的是,所述数据处理装置600的输出端与所述第一光电转换装置相连,可以包括所述数据处理装置600的输出端直接与所述第一光电转换装置相连的实现方式,也可以包括所述数据处理装置600的输出端和所述第一光电装置的输入端之间还包括其他元器件,所述数据处理装置600将数据输出至所述其他元器件,并由所述其他元器件将所述数据输出至所述第一光 电转换装置。所述数据处理装置600的输出端与所述第二光电装换装置相连包括的实现方式相同。
举例来说,接口电路601将所述第二数据输出至第一选择器604。可选的,所述接口电路601先将所述第二数据输出至第二MAC模块603,所述第二MAC模块603对所述第二数据进行MAC封装,并将封装后的所述第二数据输出至第一选择器604。
举例来说,所述第一选择器604将所述第二数据输出到所述输出接口605。
举例来说,所述输出接口605根据第三指令,将所述第二数据由1路并行的40Gbit/s的数据转换为4路串行的10Gbit/s的第五数据,将所述4路第五数据分别从输出接口605的OUT1至OUT4输出。例如,所述第二数据为32位并行数据,所述输出接口605将所述32位并行数据从最高有效位(英文全称:most significant bit,英文简称:MSB)起的第1比特至第8比特转换成1路第五数据,由OUT1输出,,第9比特至第16比特转换成另1路第五数据,由OUT2输出,第17比特至第24比特转换成另1路第五数据,由OUT3输出,第25比特至第32比特转换成另一路第五数据,由OUT4输出。举例来说,所述第三指令是由控制器606向输出接口605发送的。
举例来说,第二选择器608根据第四指令,将所述4路第五数据输出到第二调制模块610。所述第二调制模块610将所述4路第五数据合并为1路第八数据。举例来说,所述第二调制模块610可以采用实施例一中所述的任一调制方式获得所述1路第八数据。
举例来说,第三选择器611输出所述第八数据。在一种示例中,第二调制模块610输出端输出的数据为并行数据,则第三选择器611的输出端可以连接一个SerDes接口作为所述数据处理装置600的输出接口,将所述并行数据转换为串行的第八数据输出。在另一种示例中,第二调制模块610输出的数据为串行的第八数据,则可以由第三选择器611直接输出所述第八数据。
举例来说,图6提供的数据处理装置600中,所述第一数据和所述第二数据是通过接口电路601中不同的端口接收的。在所述第一数据和所述第二 数据是通过同一端口接收的情况下,接口电路601通过第四选择器(图6中没有示出)向第一MAC模块602或第二MAC模块603传输数据。控制器606确定所述第一数据的速率是10Gbit/s,对所述第四选择器配置第一指令,使所述第四选择器将所述第一数据传输至第一MAC模块602;控制器606确定所述第二数据的速率是40Gbit/s,对所述第四选择器配置第二指令,使所述第四选择器将所述第二数据传输至第二MAC模块603。
举例来说,在图6提供的数据处理装置600为实施例二的数据处理装置,即所述第七数据是光信号,并且所述第八数据是光信号的情况下,所述数据处理装置600进一步包括光电转换模块。所述第三选择器611可以向所述光电转换模块传输数据,并由所述光电转换模块的输出端输出所述第七数据以及所述第八数据。例如,第一光电转换模块将所述第九数据加载到光载波上,获得所述第七数据;第二光电转换模块将所述第十数据加载到光载波上,获得所述第八数据。例如,所述光载波可以是所述光电转换模块的光源产生的,所述光源可以是半导体发光器(laser diode,简称LD),也可以是发光二极管(light emitting diode,简称LED)。举例来说,所述光电转换模块是可以热插拔(英文全称:hot plugging)的器件。
上述数据处理装置600中的第一MAC模块602,第二MAC模块603,控制器606,第一调制模块609,第二调制模块610,可以由中央处理器(英文全称:central processing unit,英文简称:CPU)实现,也可以由现场可编程门阵列(英文全称:field-programmable gate array,英文简称:FPGA)或协处理器等可编程器件来完成。显然上述功能模块也可以采用软件硬件相结合的方式来实现。
本申请实施例提供的数据处理装置,能够将以第一速率传输的第一数据拆分成多路数据,比如N1路第三数据和N2路第四数据。所述数据处理装置将所述多路数据进行调制,获得以第一速率传输的第七数据。所述数据处理装置在无需更换硬件或接口的情况下,对以第二速率传输的第二数据进行处理。即所述数据处理装置将以第二速率传输的第二数据拆分成M1路第五数据 和M2路第六数据。所述数据处理装置将所述M1路第五数据和所述M2路第六数据调制成以第二速率传输的第八数据。这样,所述数据处理装置能够在不更换线卡的情况下获得多种传输速率的信号,有助于降低开发和维护成本。
实施例六
图7示出了本申请实施例六提供的数据处理装置的结构示意图。
数据处理装置700包括第一芯片701,第二芯片702,第三芯片703,第一光电转换模块704以及第二光电转换模块705。
第一芯片701可以包括图6所示的接口电路601,第一选择器604,输出接口605以及控制器606。可选的,第一芯片701中还包括图6所示的第一MAC模块602以及第二MAC模块603。图7中的第一芯片701与实施例五中所述的第一芯片区别仅在于,图7中的第一芯片701包括两个输出接口605,例如第一输出接口605和第二输出接口605(图7中未示出)。所述第一输出接口605用于向所述第二芯片702传输数据,所述第二输出接口605用于向所述第三芯片703传输数据。相应的,第一芯片701中第一选择器604的输出端有两个,分别用于向所述第一输出接口605和第二输出接口605传输数据。
第二芯片702包括图6中的输入接口607、第二选择器608、第一调制模块609、第二调制模块610和第三选择器611。在所述第二芯片702中,所述输入接口607、第二选择器608、第一调制模块609、第二调制模块610和第三选择器611的连接方式与图6中所示的连接方式相同。
第三芯片703包括图6中的输入接口607、第二选择器608、第一调制模块609、第二调制模块610和第三选择器611。在所述第三芯片703中,输入接口607、第二选择器608、第一调制模块609、第二调制模块610和第三选择器611的连接方式与图6中所示的连接方式相同。
所述第一芯片701中的接口电路601包括不同的端口,例如第一端口和第二端口。所述第一芯片701从第一端口接收第一数据,从第二端口接收第二数据。所述第一数据和所述第二数据可以是同时接收的,也可以是先后接 收的。
举例来说,所述第一芯片701根据配置的第一指令,将所述第一数据由第一选择器604输出至所述第一输出接口605,进而传输至所述第二芯片702进行处理。所述第二芯片702根据所述数据以及配置的第二指令,获得一路串行的电信号,并将所述一路串行的电信号输出至第一光电转换模块704。所述第一光电转换模块704对所述一路串行电信号进行光电转换,获得一路串行的第七数据,所述第七数据为光信号。
举例来说,所述第一芯片701根据配置的第三指令,将所述第二数据由第一选择器604输出至所述第二输出接口605,进而传输至所述第三芯片703进行处理。所述第三芯片703根据所述数据以及配置的第四指令,获得一路串行的电信号,并将所述一路串行的电信号输出至第二光电转换模块705。所述第二光电转换模块705对所述一路串行电信号进行光电转换,获得一路串行的第八数据,所述第八数据为光信号。
所述第一芯片701,所述第二芯片702以及所述第三芯片703内部对所述数据进行处理的具体实现方式,可以采用实施例六中的具体实现方式。所述第一光电转换模块704以及所述第二光电转换模块705将一路串行的电信号转换成一路串行的光信号的具体实现方式,可以采用实施例二中的具体实现方式。
通过将所述第一芯片701,所述第二芯片702以及所述第三芯片703的功能分别集成在三个不同的芯片中,可以缩短所述第二芯片702与所述第一光电转换模块704之间的距离,从而提高所述第二芯片702与所述第一光电转换模块704之间数据传输的质量;以及缩短所述第三芯片703与所述第二光电转换模块705之间的距离,从而提高所述第二芯片702与所述第一光电转换模块704之间数据传输的质量。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。比如,检测器、发送器、接收器、获得单元都可以通过通用中央处理器CPU或专用集成电路(Application Specific Integrated Circuit,ASIC)或现场可编程门阵列(Field-Programmable Gate Array,FPGA)来实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以示例性说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明及本发明带来的有益效果进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求的范围。

Claims (14)

  1. 一种用于对多种速率的数据进行处理的方法,其特征在于,所述方法包括:
    数据处理装置接收第一数据和第二数据,所述第一数据的传输速率为第一速率,所述第二数据的传输速率为第二速率,所述第一速率与所述第二速率不同;
    所述数据处理装置根据所述第一速率和所述第一数据,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数;
    所述数据处理装置根据所述第二速率和所述第二数据,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数;
    所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率;
    所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率;
    所述数据处理装置输出所述第七数据和所述第八数据。
  2. 根据权利要求1所述的方法,其特征在于,若所述N1等于1,且所述N2等于0,则所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据包括:
    所述数据处理装置将所述第三数据作为所述第七数据,所述第一调制方式为透传所述第三数据。
  3. 根据权利要求1或2所述的方法,其特征在于,若所述M1等于1,且所述M2等于0,则所述数据处理装置根据所述M1路第五数据、所述M2 路第六数据和第二调制方式,获得第八数据包括:
    所述数据处理装置将所述第五数据作为所述第八数据,所述第二调制方式为透传所述第五数据。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述数据处理装置根据所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据包括:
    所述数据处理装置根据所述第一调制方式,将所述N1路第三数据和所述N2路第四数据调制成第九数据,所述第九数据的速率为所述第一速率;
    所述数据处理装置对所述第九数据进行光电转换,获得所述第七数据,所述第七数据为光信号。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述数据处理装置根据所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据包括:
    所述数据处理装置根据所述第二调制方式,将所述M1路第五数据和所述M2路第六数据调制成第十数据,所述第十数据的速率为所述第二速率;
    所述数据处理装置对所述第十数据进行光电转换,获得所述第八数据,所述第八数据为光信号。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述方法还包括:
    所述数据处理装置根据接收所述第一数据的端口确定所述第一速率,根据接收所述第二数据的端口确定所述第二速率,所述接收第一数据的端口与所述第一速率对应,所述接收第二数据的端口与所述第二速率对应。
  7. 根据权利要求1至3任意一项所述的方法,其特征在于,所述方法还包括:
    所述数据处理装置根据用于传输第一光信号所需的带宽,确定所述第一速率,所述第一光信号为所述第七数据经光电转换后获得的信号;
    所述数据处理装置根据用于传输第二光信号所需的带宽,确定所述第二 速率,所述第二光信号为所述第八数据经光电转换后获得的信号。
  8. 一种数据处理装置,其特征在于,所述装置包括接收单元,第一处理单元,第二处理单元,第一调制单元,第二调制单元和输出单元,
    所述接收单元用于接收第一数据和第二数据,所述第一数据的传输速率为第一速率,所述第二数据的传输速率为第二速率,所述第一速率与所述第二速率不同;
    所述第一处理单元用于根据所述接收单元接收的所述第一数据和所述第一速率,获得N1路第三数据和N2路第四数据,所述N1为大于或等于1的整数,所述N2为大于或等于0的整数;
    所述第二处理单元用于根据所述接收单元接收的所述第二数据和所述第二速率,获得M1路第五数据和M2路第六数据,所述M1为大于或等于1的整数,所述M2为大于或等于0的整数;
    所述第一调制单元用于根据所述第一处理单元获得的所述N1路第三数据、所述N2路第四数据和第一调制方式,获得第七数据,所述第七数据是串行传输的数据,所述第七数据的传输速率为所述第一速率;
    所述第二调制单元用于根据所述第二处理单元获得的所述M1路第五数据、所述M2路第六数据和第二调制方式,获得第八数据,所述第八数据是串行传输的数据,所述第八数据的传输速率为所述第二速率;
    所述输出单元用于输出所述第一调制单元获得的所述第七数据和所述第二调制单元获得的所述第八数据。
  9. 根据权利要求8所述的装置,其特征在于,若所述N1等于1,且所述N2等于0,则所述第一调制单元具体用于将所述第三数据作为所述第七数据,所述第一调制方式为透传所述第三数据。
  10. 根据权利要求8或9所述的装置,其特征在于,若所述M1等于1,且所述M2等于0,则所述第二调制单元具体用于将所述第五数据作为所述第八数据,所述第二调制方式为透传所述第五数据。
  11. 根据权利要求8至10任意一项所述的装置,其特征在于,所述第一 调制单元具体用于:
    根据所述第一调制方式,将所述第一处理单元获得的所述N1路第三数据和所述N2路第四数据调制成第九数据,所述第九数据的速率为所述第一速率;以及
    对所述第九数据进行光电转换,获得所述第七数据,所述第七数据为光信号。
  12. 根据权利要求8至11任意一项所述的装置,其特征在于,所述第二调制单元具体用于:
    根据所述第二调制方式,将所述第二处理单元获得的所述M1路第五数据和所述M2路第六数据调制成第十数据,所述第十数据的速率为所述第二速率;以及
    对所述第十数据进行光电转换,获得所述第八数据,所述第八数据为光信号。
  13. 根据权利要求8至12任意一项所述的装置,其特征在于,所述装置还包括:
    第一确定单元,用于根据接收所述第一数据的端口确定所述第一速率,所述接收第一数据的端口与所述第一速率对应;
    第二确定单元,用于根据接收所述第二数据的端口确定所述第二速率,所述接收第二数据的端口与所述第二速率对应。
  14. 根据权利要求8至10任意一项所述的装置,其特征在于,所述装置还包括:
    第一确定单元,用于根据用于传输第一光信号所需的带宽,确定所述第一速率,所述第一光信号为所述第七数据经光电转换后获得的信号;
    第二确定单元,用于根据用于传输第二光信号所需的带宽,确定所述第二速率,所述第二光信号为所述第八数据经光电转换后获得的信号。
PCT/CN2016/108904 2015-12-26 2016-12-07 用于对多种速率的数据进行处理的方法及装置 WO2017107772A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187020735A KR102096295B1 (ko) 2015-12-26 2016-12-07 다중 레이트 데이터 처리 방법 및 장치
JP2018533625A JP6998876B2 (ja) 2015-12-26 2016-12-07 複数速度のデータを処理する方法および装置
EP16877583.1A EP3382908B1 (en) 2015-12-26 2016-12-07 Method and apparatus for processing data with multiple rates
US16/018,982 US10382237B2 (en) 2015-12-26 2018-06-26 Method and apparatus for processing data of multiple rates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511000383.3 2015-12-26
CN201511000383.3A CN106921436B (zh) 2015-12-26 2015-12-26 用于对多种速率的数据进行处理的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/018,982 Continuation US10382237B2 (en) 2015-12-26 2018-06-26 Method and apparatus for processing data of multiple rates

Publications (1)

Publication Number Publication Date
WO2017107772A1 true WO2017107772A1 (zh) 2017-06-29

Family

ID=59089058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108904 WO2017107772A1 (zh) 2015-12-26 2016-12-07 用于对多种速率的数据进行处理的方法及装置

Country Status (6)

Country Link
US (1) US10382237B2 (zh)
EP (1) EP3382908B1 (zh)
JP (1) JP6998876B2 (zh)
KR (1) KR102096295B1 (zh)
CN (1) CN106921436B (zh)
WO (1) WO2017107772A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12068783B2 (en) 2020-11-02 2024-08-20 Cisco Technology, Inc. Dispersing data rate to mitigate electromagnetic interference
US11271656B1 (en) * 2020-11-02 2022-03-08 Cisco Technology, Inc. Dispersing data rate to mitigate electromagnetic interference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471793A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 速率适配的方法和设备、交换板与线卡
CN102547491A (zh) * 2010-12-29 2012-07-04 中兴通讯股份有限公司 光线路终端、光网络单元和无源光网络系统
CN102780639A (zh) * 2012-08-16 2012-11-14 迈普通信技术股份有限公司 一种路由器线卡及数据处理方法
US20140286346A1 (en) * 2013-03-21 2014-09-25 Broadcom Corporation System and Method for 10/40 Gigabit Ethernet Multi-Lane Gearbox

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324759A (ja) * 2002-04-30 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> 光通信ネットワークにおけるプロビジョンニング方法及びプログラム、プロビジョンニング光通信ネットワークシステム並びに該プログラムを記録した記録媒体
US7308058B2 (en) * 2003-10-27 2007-12-11 Rambus Inc. Transparent multi-mode PAM interface
JP4339345B2 (ja) * 2006-10-04 2009-10-07 日本電信電話株式会社 光伝送システム集積回路
US8194548B2 (en) * 2007-12-17 2012-06-05 Broadcom Corporation Method and system for duty cycling portions of a network device based on aggregate throughput of the device
JP5271830B2 (ja) * 2009-06-25 2013-08-21 株式会社日立製作所 光トランスポンダおよび光伝送システム
JP5593840B2 (ja) * 2010-05-28 2014-09-24 富士通株式会社 光送信機および光受信機
US8903250B2 (en) * 2010-08-20 2014-12-02 Broadcom Corporation Cost-effective multi-rate upstream for 10GEPON based on high efficiency coding
JP2012060302A (ja) * 2010-09-07 2012-03-22 Yokogawa Electric Corp 光伝送装置
US8750722B2 (en) * 2010-12-24 2014-06-10 Infinera Corporation Upgradable WDM system
CA2847094A1 (en) * 2011-09-12 2013-03-21 Schlumberger Canada Limited Multi-scheme downhole tool bus system and methods
US9363039B1 (en) * 2012-11-07 2016-06-07 Aquantia Corp. Flexible data transmission scheme adaptive to communication channel quality
CN103997388B (zh) 2013-02-18 2019-04-23 中兴通讯股份有限公司 数据的映射、解映射方法及装置
CN203761399U (zh) * 2014-03-07 2014-08-06 北京兆维电子(集团)有限责任公司 单纤双向对称速率的光通信设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471793A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 速率适配的方法和设备、交换板与线卡
CN102547491A (zh) * 2010-12-29 2012-07-04 中兴通讯股份有限公司 光线路终端、光网络单元和无源光网络系统
CN102780639A (zh) * 2012-08-16 2012-11-14 迈普通信技术股份有限公司 一种路由器线卡及数据处理方法
US20140286346A1 (en) * 2013-03-21 2014-09-25 Broadcom Corporation System and Method for 10/40 Gigabit Ethernet Multi-Lane Gearbox

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382908A4 *

Also Published As

Publication number Publication date
KR102096295B1 (ko) 2020-04-02
JP2019507517A (ja) 2019-03-14
US10382237B2 (en) 2019-08-13
CN106921436A (zh) 2017-07-04
JP6998876B2 (ja) 2022-01-18
CN106921436B (zh) 2019-11-05
KR20180096721A (ko) 2018-08-29
EP3382908B1 (en) 2021-11-24
US20180309603A1 (en) 2018-10-25
EP3382908A1 (en) 2018-10-03
EP3382908A4 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
US10560209B2 (en) Optical signal transmission method, apparatus, and system
CN106257852A (zh) 用于可变前向纠错的技术
WO2012125825A2 (en) Methods and apparatus for communicating scrambling seed information
JP5203153B2 (ja) パラレル伝送方法及びパラレル伝送装置
CN102510322A (zh) Io接口板卡和利用io接口板卡进行数据传输的方法
CN107683592A (zh) 数据处理方法、装置和系统
WO2017012517A1 (zh) 混合物理编码子层以及数据发送、接收方法、存储介质
WO2019090696A1 (zh) 光传输单元信号的传输方法和装置
WO2017107772A1 (zh) 用于对多种速率的数据进行处理的方法及装置
US20050015426A1 (en) Communicating data over a communication link
US9503230B2 (en) Method and system for implementing synchronous parallel transmission over multiple channels
CN116416919A (zh) 显示控制芯片和显示控制系统
US20230133314A1 (en) Interface, electronic device, and communication system
US20210367710A1 (en) Apparatus and method for sending side-channel bits on an ethernet cable
CN104717440B (zh) Led发送卡级联接口
CN110830152A (zh) 接收码块流的方法、发送码块流的方法和通信装置
US8472482B2 (en) Multiple infiniband ports within a higher data rate port using multiplexing
CN109660516B (zh) Mipi c-phy信号发生方法、装置及系统
US20240223215A1 (en) Encoding method, decoding method, and related apparatus
US20150244547A1 (en) Circuitry and Method for Multi-Level Signals
KR20000040531A (ko) 아이 트리플 이 1394 직렬 버스 인터페이스를 위한 고속 피지컬칩 시스템 및 그의 데이타 송/수신 방법
CN106301568A (zh) 信号编码方法、装置、ht端口及处理器
EP3108628B1 (en) Method and apparatus for aggregating and encoding received symbols including generation of a pointer for a control code
Kono et al. A Novel 400-Gb/s (100-Gb/s< cd0215f. gif> 4) Physical-Layer Architecture Using Low-Power Technology
JP2014229996A (ja) 送信装置、伝送システム、受信装置、及び送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016877583

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016877583

Country of ref document: EP

Effective date: 20180629

ENP Entry into the national phase

Ref document number: 20187020735

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020735

Country of ref document: KR