WO2017107741A1 - 一种复杂截面中空构件低压镦胀成形方法 - Google Patents
一种复杂截面中空构件低压镦胀成形方法 Download PDFInfo
- Publication number
- WO2017107741A1 WO2017107741A1 PCT/CN2016/107389 CN2016107389W WO2017107741A1 WO 2017107741 A1 WO2017107741 A1 WO 2017107741A1 CN 2016107389 W CN2016107389 W CN 2016107389W WO 2017107741 A1 WO2017107741 A1 WO 2017107741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- tube blank
- section
- initial tube
- pressure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D15/00—Corrugating tubes
- B21D15/02—Corrugating tubes longitudinally
- B21D15/03—Corrugating tubes longitudinally by applying fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D19/00—Flanging or other edge treatment, e.g. of tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/039—Means for controlling the clamping or opening of the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/041—Means for controlling fluid parameters, e.g. pressure or temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/045—Closing or sealing means
Definitions
- the invention relates to a forming method, in particular to a low-pressure bulging forming method for a hollow member with a complicated section, which belongs to the technical field of industrial manufacturing.
- the internal high pressure forming technology is proposed in this context and is widely used in the forming of complex cross-section hollow members of the vehicle body.
- the internal high pressure forming technology is to form a hollow member with a complicated section by applying a high pressure inside the tube blank to cause expansion and sticking of the tube blank in the mold cavity.
- drawbacks still exist, resulting in high production costs: 1. heavily dependent on ultra-high pressure generators; 2. forming pressures up to hundreds of megapascals, for some sharp-edged parts, the forming pressure can even be as high as several hundred Megapascal, because of the long feedback time of ultra-high pressure, greatly reduces the production efficiency; 3. Due to the high forming pressure, the equipment required is also very large.
- the present technology proposes a low-pressure inflation forming technology for pipes, and overcomes excessive dependence on ultra-high pressure by changing the deformation mode, thereby achieving the purpose of improving production efficiency and reducing costs.
- the present invention provides a low pressure inflation forming method for a hollow member having a complicated section.
- a low-pressure bulging forming method for a hollow member with a complicated section the specific steps of which are:
- the initial tube blank 2 is selected; the cross-sectional circumference of the initial tube blank 2 is L, and L should not be greater than the cross-sectional circumference at the part B of the part.
- the initial tube blank 2 is placed in the mold D, the sealing punch 5 seals the end of the initial tube blank 2, and the cavity of the initial tube blank 2 is filled with a fluid medium.
- the mold C is moved toward the mold D to be in contact with the initial tube blank 2.
- the mold C continues to move to the mold D, and the initial tube blank 2 acts in combination with the mold support force F and the internal pressure.
- a bending moment M is formed, and the bending moment M causes the cross section of the initial tube blank 2 to be bent and gradually conforms to the inner surface of the mold C and the mold D.
- the internal pressure of the initial tube blank 2 is adjusted to p2; p2 should be higher than the wrinkle pressure required for deformation and lower than the shaping
- the calculation methods of the pressure, the wrinkle pressure and the shaping pressure are the same as those in the prior art, and will not be described here.
- the mold C continues to move toward the mold D, and the mold C stops moving when the initial tube blank 2 at the section B and the inner molds of the upper mold 3 and the lower mold 4 are completely fitted; two types of deformation occur in the process, and the section A
- the side walls LL and RR undergo compression deformation under the support of the internal pressure p2.
- the initial tube blank first undergoes bending deformation under the joint action of the mold supporting force and the internal pressure. When the degree of the fitting reaches 80%-100%, the compressive deformation occurs along with the downward direction of the upper mold.
- the mold C is retracted and retracted to not affect the removal of the formed parts.
- Embodiment 2 The fluid medium in step 4 is a liquid or a gas. Others are the same as the specific embodiment 1.
- p1 in step 6 is 0.1-10 MPa
- P2 in step 8 is 0.5-100 MPa, and the others are the same as in the first embodiment.
- Embodiment 4 The initial tube blank in the step 2 is a metal tube blank, and the others are the same as in the first embodiment.
- Embodiment 5 The initial tube blank in the step 2 is one of an aluminum alloy, a low carbon steel, and a high strength steel, a magnesium alloy, a cemented carbide, and a high temperature alloy.
- the invention utilizes the internal pressure and the bending moment formed by the rolling of the upper mold to cause the tube blank section to be firstly bent and deformed, and then compression-formed under the support of the internal pressure.
- the high pressure generator is not required to raise the internal pressure for shaping, and the low pressure forming of the hollow member with complex section is realized, which solves the technical bottleneck of the ultrahigh pressure generator which is traditionally formed during the forming of the member.
- the invention has reasonable design, simple process, high production efficiency, good performance and shape precision of the formed parts, and has strong promotion value.
- FIG. 3 Schematic diagram of the initial tube blank sealed and filled with fluid medium
- Figure 4 The upper mold is lowered to the position of the initial tube blank.
- Figure 5 is a schematic diagram of the upper mold down to the initial tube blanking degree of 80%-100%
- Figure 6 is a schematic view of the initial tube blank and the inner profile of the upper and lower molds.
- the initial tube blank 2 is selected; the cross-sectional circumference of the initial tube blank 2 is L, and L should not be greater than the cross-sectional circumference at the part B of the part.
- the initial tube blank 2 is placed in the mold D, the sealing punch 5 seals the end of the initial tube blank 2, and the cavity of the initial tube blank 2 is filled with a fluid medium.
- the mold C is moved toward the mold D to be in contact with the initial tube blank 2.
- the mold C continues to move toward the mold D, and the initial tube blank 2 forms a bending moment M under the joint action of the mold supporting force F and the internal pressure, and the bending moment M causes the initial tube blank 2 to be bent and deformed gradually with the mold.
- C fits the inner surface of the mold D.
- the internal pressure of the initial tube blank 2 is adjusted to p2.
- P2 should be higher than the wrinkle pressure required for deformation and lower than the shaping pressure, and the calculation method of the wrinkle pressure and the shaping pressure is the same as the prior art, and will not be described herein.
- the mold C continues to move toward the mold D, and the mold C stops moving when the initial tube blank 2 at the section B and the inner molds of the upper mold 3 and the lower mold 4 are completely fitted; two types of deformation occur in the process, and the section A
- the side walls LL and RR undergo compression deformation under the support of the internal pressure p2.
- the initial tube blank first undergoes bending deformation under the joint action of the mold supporting force and the internal pressure. When the degree of the fitting reaches 80%-100%, the compressive deformation occurs along with the downward direction of the upper mold.
- the mold C is retracted and retracted to not affect the removal of the formed parts.
- Embodiment 2 The fluid medium in step 4 is a liquid or a gas. Others with the specific implementation with.
- p1 in step 6 is 0.1-10 MPa
- P2 in step 8 is 1-100 MPa, and the others are the same as in the first embodiment.
- Embodiment 4 The initial tube blank in the step 2 is a metal tube blank, and the others are the same as in the first embodiment.
- Embodiment 5 The initial tube blank in the step 2 is one of an aluminum alloy, a low carbon steel, and a high strength steel, a magnesium alloy, a cemented carbide, and a high temperature alloy.
- the beneficial effects of the invention are as follows: 1.
- the technology does not require supercharging and shaping, and the part forming is completed in the mold clamping process, and the production efficiency is high.
- the liquid pressure required for swell formation is low, and the technology is free of dependence on the supercharger compared to the internal high pressure forming.
- the tube blank mainly undergoes bending and compression deformation during the expansion molding.
- the deformation mode has good wall thickness uniformity and compact structure, and even a low plastic material can form a complex cross-section part.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Forging (AREA)
Abstract
Description
Claims (4)
- 一种复杂截面中空构件低压镦胀成形方法,其特征在于:具体步骤为:步骤一:分析零件1的截面周长,找到零件1的最小和最大截面周长,标记周长最小的截面为截面A,标记周长最大的截面为截面B;步骤二:选择初始管坯2,初始管坯2的截面周长为L,L应不大于零件截面B处的截面周长;步骤三:设计模具及密封冲头,根据零件形状设计模具C、模具D和密封冲头5,与现有技术相同,此不赘述;步骤四:将初始管坯2放入模具D中,密封冲头5对初始管坯2的端部进行密封,并将初始管坯2的腔内充满流体介质;步骤五:模具C向模具D移动,至与初始管坯2接触;步骤六:调整初始管坯2的内部压力至p1;步骤七:模具C继续向模具D移动,则初始管坯2在模具支反力F和内部压力的共同作用下形成弯矩M,弯矩M使初始管坯2的截面发生弯曲变形并逐渐与模具C和模具D的内型面贴合;步骤八:当截面A处的初始管坯2的贴模度达到80%-100%时,将初始管坯2的内部压力调整至p2;p2应高于变形所需的抑皱压力而低于整形压力,抑皱压力和整形压力的计算方法与现有技术相同,此不赘述;步骤九:模具C继续向模具D移动,当截面B处的初始管坯2与上模3和下模4的内型面完全贴合时模具C停止运动;此过程中发生两类变形,截面A处初始管坯在内部压力p2的支撑作用下,侧壁LL和RR发生压缩变形;其他截面处初始管坯先在模具支反力和内部压力的共同作用下发生弯曲变形,当贴模度达到80%-100%之后,也随着上模的下行发生压缩变形;步骤十:解除密封冲头5对初始管坯2的密封;步骤十一:模具C后退,后退至不影响成形件取出;步骤十二:取出成形件,清理内部流体介质,成形结束。
- 根据权利要求1所述的一种复杂截面中空构件低压镦胀成形方法,其特征在于步骤四中的流体介质为液体或气体。
- 根据权利要求1所述的一种复杂截面中空构件低压镦胀成形方法,其特征在于步骤六中的p1为0.1-10MPa,步骤8中的P2为0.5-100MPa。
- 根据权利要求1所述的一种复杂截面中空构件低压镦胀成形方法,其特征在于步骤二中 所述初始管坯为金属管坯。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1806559.9A GB2560831A (en) | 2015-12-21 | 2016-11-27 | Low-pressure upsetting-bulging method for forming hollow member having complex cross-section |
DE112016000224.6T DE112016000224B4 (de) | 2015-12-21 | 2016-11-27 | Verfahren zum Formen von Hohlteilen mit kompliziertem Querschnitt |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510999744.3 | 2015-12-21 | ||
CN201510999744.3A CN106311857B (zh) | 2015-12-21 | 2015-12-21 | 一种复杂截面中空构件低压镦胀成形方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017107741A1 true WO2017107741A1 (zh) | 2017-06-29 |
Family
ID=57726268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/107389 WO2017107741A1 (zh) | 2015-12-21 | 2016-11-27 | 一种复杂截面中空构件低压镦胀成形方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9808850B2 (zh) |
CN (1) | CN106311857B (zh) |
DE (2) | DE112016000224B4 (zh) |
GB (1) | GB2560831A (zh) |
WO (1) | WO2017107741A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108296332A (zh) * | 2018-01-23 | 2018-07-20 | 福建欧仕儿童用品股份有限公司 | 一种异形管加工成形工艺方法 |
CN111451351B (zh) * | 2020-04-30 | 2022-08-09 | 初冠南 | 一种管状件成形成性一体化方法 |
CN111633079B (zh) * | 2020-06-02 | 2022-11-29 | 碳元科技股份有限公司 | 导热管的处理方法 |
CN111974865B (zh) * | 2020-07-27 | 2024-05-10 | 佛山市永恒液压机械有限公司 | 一种卡压管成型设备 |
CN111774468B (zh) * | 2020-07-27 | 2024-05-10 | 佛山市永恒液压机械有限公司 | 一种用于单卡卡压管成型的模具 |
CN113878016B (zh) * | 2021-09-28 | 2024-03-08 | 上海孚庭科技有限公司 | 一种复杂截面管件成形方法 |
CN114789217A (zh) * | 2022-04-27 | 2022-07-26 | 广东轻量科技发展有限责任公司 | 一种汽车桥壳、汽车桥壳模具、及成形方法 |
CN114700388B (zh) * | 2022-04-28 | 2023-09-08 | 太原理工大学 | 一种用于薄壁多通复合管件的成形方法 |
CN115301835B (zh) * | 2022-08-24 | 2023-08-29 | 凌云吉恩斯科技有限公司 | 一种管状零件的热冲压制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1590150A1 (ru) * | 1988-05-11 | 1990-09-07 | Ленинградский Политехнический Институт Им.М.И.Калинина | Способ изготовлени полых деталей |
CN1134124A (zh) * | 1993-11-03 | 1996-10-23 | 费里德里希·克拉斯 | 可冷成型金属制空心阶梯轴内高压成型的方法 |
CN101198426A (zh) * | 2005-05-25 | 2008-06-11 | 形状连接技术有限公司及两合公司 | 中空体元件的制造方法、中空体元件、部件组件、用于制造中空体元件的行进工具以及滚压机构 |
CN103317005A (zh) * | 2013-05-28 | 2013-09-25 | 浙江大学宁波理工学院 | 变径管非变薄镦胀成形方法及其装置 |
CN103736811A (zh) * | 2014-01-23 | 2014-04-23 | 哈尔滨工业大学 | 采用轴向不等壁厚管坯成形等壁厚变直径管件的方法 |
CN104981305A (zh) * | 2013-02-12 | 2015-10-14 | 卡特彼勒公司 | 多级管件液压成形工艺 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57165134A (en) * | 1981-04-03 | 1982-10-12 | Hitachi Ltd | Hydraulic bulge working device |
USRE33990E (en) * | 1987-05-06 | 1992-07-14 | Ti Corporate Services Limited | Method of forming box-like frame members |
US5644829A (en) * | 1993-08-16 | 1997-07-08 | T I Corporate Services Limited | Method for expansion forming of tubing |
US5431326A (en) * | 1994-09-07 | 1995-07-11 | General Motors Corporation | Method of forming a tubular member with separate flange |
US6016603A (en) * | 1997-05-12 | 2000-01-25 | Dana Corporation | Method of hydroforming a vehicle frame component |
CN1081099C (zh) * | 1997-07-18 | 2002-03-20 | 科西马国际公司 | 具有椭圆形横截面的管状毛坯的液压成形方法及液压成形设备 |
US6237382B1 (en) | 1997-08-06 | 2001-05-29 | Sumitomo Metal Industries, Ltd. | Method and apparatus for hydroforming metallic tube |
UY25199A1 (es) * | 1997-10-07 | 1999-04-07 | Cosma Int Inc | Metodo y aparato para hidroformacion sin arrugas de componentes tubulares oblicuos |
JP3688921B2 (ja) * | 1999-01-14 | 2005-08-31 | 日産自動車株式会社 | 液圧成形ノズルおよび液圧成形装置 |
US6415638B1 (en) | 1999-03-26 | 2002-07-09 | Nissan Motor Co., Ltd. | Method and device for forming tubular work into shaped hollow product by using tubular hydroforming |
EP1401596B1 (en) * | 2001-07-05 | 2007-04-11 | Magna Structural Systems Inc. | Method for expanding a tubular blank |
US6584821B1 (en) * | 2002-04-16 | 2003-07-01 | General Motors Company | Self-aligning non-pinching hydroforming dies |
US7827839B2 (en) * | 2002-11-08 | 2010-11-09 | Sumitomo Metal Industries, Ltd. | Profile element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulically bulged product |
US6739166B1 (en) * | 2002-12-17 | 2004-05-25 | General Motors Corporation | Method of forming tubular member with flange |
SE528938C2 (sv) * | 2005-02-08 | 2007-03-20 | Ortic Ab | Hydroformningsenhet |
KR101239927B1 (ko) | 2007-07-20 | 2013-03-06 | 신닛테츠스미킨 카부시키카이샤 | 하이드로폼 가공 방법 및 하이드로폼 가공 부품 |
WO2010035883A1 (ja) * | 2008-09-25 | 2010-04-01 | Jfeスチール株式会社 | 異形断面への成形方法およびスポット溶接性に優れた四辺形断面成形品 |
US9302307B2 (en) * | 2009-02-16 | 2016-04-05 | Vari-Form, Inc. | Method of forming hollow body with flange |
US8826712B1 (en) | 2013-03-15 | 2014-09-09 | Ford Global Technologies, Llc | Pressure sequence process for hydro-forming an extruded structural tube |
CN103464562B (zh) * | 2013-09-14 | 2016-03-30 | 中国第一汽车股份有限公司 | 腔体件低内压成形方法 |
CN103658294B (zh) | 2013-12-31 | 2015-10-28 | 一重集团大连设计研究院有限公司 | 一种管材内高压成形方法 |
CN106180347A (zh) * | 2014-07-11 | 2016-12-07 | 韩雨桐 | 一种空心构件低压热成形装置 |
CN104438540B (zh) * | 2014-11-26 | 2016-06-29 | 西安交通大学 | 一种扭力梁的低压内高压成形装置 |
-
2015
- 2015-12-21 CN CN201510999744.3A patent/CN106311857B/zh active Active
-
2016
- 2016-11-01 US US15/340,776 patent/US9808850B2/en active Active
- 2016-11-27 WO PCT/CN2016/107389 patent/WO2017107741A1/zh active Application Filing
- 2016-11-27 DE DE112016000224.6T patent/DE112016000224B4/de active Active
- 2016-11-27 DE DE202016008337.7U patent/DE202016008337U1/de not_active Expired - Lifetime
- 2016-11-27 GB GB1806559.9A patent/GB2560831A/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1590150A1 (ru) * | 1988-05-11 | 1990-09-07 | Ленинградский Политехнический Институт Им.М.И.Калинина | Способ изготовлени полых деталей |
CN1134124A (zh) * | 1993-11-03 | 1996-10-23 | 费里德里希·克拉斯 | 可冷成型金属制空心阶梯轴内高压成型的方法 |
CN101198426A (zh) * | 2005-05-25 | 2008-06-11 | 形状连接技术有限公司及两合公司 | 中空体元件的制造方法、中空体元件、部件组件、用于制造中空体元件的行进工具以及滚压机构 |
CN104981305A (zh) * | 2013-02-12 | 2015-10-14 | 卡特彼勒公司 | 多级管件液压成形工艺 |
CN103317005A (zh) * | 2013-05-28 | 2013-09-25 | 浙江大学宁波理工学院 | 变径管非变薄镦胀成形方法及其装置 |
CN103736811A (zh) * | 2014-01-23 | 2014-04-23 | 哈尔滨工业大学 | 采用轴向不等壁厚管坯成形等壁厚变直径管件的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106311857B (zh) | 2017-11-07 |
CN106311857A (zh) | 2017-01-11 |
US9808850B2 (en) | 2017-11-07 |
DE112016000224T5 (de) | 2018-04-26 |
US20170173655A1 (en) | 2017-06-22 |
DE202016008337U1 (de) | 2017-09-06 |
GB2560831A (en) | 2018-09-26 |
GB201806559D0 (en) | 2018-06-06 |
DE112016000224B4 (de) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017107741A1 (zh) | 一种复杂截面中空构件低压镦胀成形方法 | |
CN102962309A (zh) | 薄壁三通管成形方法及装置 | |
CN103464562B (zh) | 腔体件低内压成形方法 | |
CN102248058B (zh) | 一种提高管材内高压成形极限的工艺方法 | |
CN104162948A (zh) | 一种高强度或低塑性材料空心构件低压热成形装置及方法 | |
CN104607526B (zh) | 一种管件内高压成形系统 | |
CN105537360A (zh) | 一种金属板材软模正反拉深成形方法 | |
CN111451351B (zh) | 一种管状件成形成性一体化方法 | |
CN107876608A (zh) | 渐进式液胀成型设备及使用该设备的成型方法 | |
CN112570538A (zh) | 一种橡皮垫料辅助铝锂合金薄壁结构蠕变时效成形工装 | |
CN107350330A (zh) | 一种左右不对称式管材内高压成形设备 | |
CN204448967U (zh) | 一种管件内高压成形装置 | |
CN208628149U (zh) | 一种无缝大口径薄壁三通成型装置 | |
CN207204962U (zh) | 一种超塑成形模具 | |
CN109277445B (zh) | 一种金属波纹管流体压力成形装置和方法 | |
CN116140450A (zh) | 一种可进料的超塑气胀成形模具和方法 | |
CN105149411A (zh) | 一种钢管材的液压成型装置及方法 | |
CN214022876U (zh) | 一种汽车尾气排放管件柔性弯曲成形装置 | |
CN109079028A (zh) | 一种汽车消声器冷端异型双层壳体拉延工艺及拉延模具 | |
CN105081046B (zh) | 液压成形柔性密封装置 | |
CN207057369U (zh) | 用于带小圆角凸环的管件液压成形装备 | |
CN203484467U (zh) | 大管径钛金属波纹管制造设备及其波纹管 | |
CN111974866A (zh) | 一种用于双卡卡压管成型的模具 | |
CN112893595B (zh) | 一种弯曲轴线管件低压成形专用模具 | |
CN110918779B (zh) | 车辆废气再循环系统换热管生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 112016000224 Country of ref document: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16877552 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 201806559 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20161127 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1806559.9 Country of ref document: GB |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16877552 Country of ref document: EP Kind code of ref document: A1 |