WO2017107612A1 - 一种馈电结构和天线辐射系统 - Google Patents

一种馈电结构和天线辐射系统 Download PDF

Info

Publication number
WO2017107612A1
WO2017107612A1 PCT/CN2016/100941 CN2016100941W WO2017107612A1 WO 2017107612 A1 WO2017107612 A1 WO 2017107612A1 CN 2016100941 W CN2016100941 W CN 2016100941W WO 2017107612 A1 WO2017107612 A1 WO 2017107612A1
Authority
WO
WIPO (PCT)
Prior art keywords
balun structure
feed
balun
common signal
layer
Prior art date
Application number
PCT/CN2016/100941
Other languages
English (en)
French (fr)
Inventor
道坚丁九
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017107612A1 publication Critical patent/WO2017107612A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a feed structure and an antenna radiation system.
  • the multi-frequency multi-array antenna refers to a column of low-frequency antenna units disposed between adjacent column high-frequency antenna units for planar array array to achieve +/- 45 degree polarization, but since the low-frequency antenna unit is disposed between the high-frequency antenna units, Moreover, the volume of the low-frequency antenna unit is large, which not only increases the spacing between adjacent columns of high-frequency antenna elements in the multi-frequency multi-array antenna, but the spacing between adjacent columns of high-frequency antenna elements exceeds the corresponding wavelength of the operating frequency of 1.16. When it is doubled, it will seriously affect the electrical performance of the high-frequency antenna unit, and the low-frequency antenna unit will block the signal of the high-frequency antenna unit, which will seriously affect the electrical performance of the high-frequency antenna unit.
  • Embodiments of the present invention provide a feed structure and an antenna radiation system for providing a compact feed structure and an antenna radiation system, which effectively reduce mutual coupling between a high frequency unit and a low frequency unit, so that the antenna Electrical performance achieves a +/- 45 degree polarization effect.
  • an embodiment of the present invention provides a feed structure including a first balun structure and a second balun structure, wherein the first balun structure and the second balun structure are orthogonally arranged and form a cross type ;
  • each balun structure respectively comprises at least three layers, wherein the three layers are sequentially the first feeder layer, and the common signal layer is And a second feeder layer, wherein the common signal ground layer includes two common signal grounds disposed at intervals; the first feeder layer includes a first feed line spanning between the two common signal grounds; The second feed line layer includes a second feed line spanning between the two common signal grounds;
  • first balun structure and one of the second balun structures form a first feed port for providing a +45° direction a feed current
  • another feed line in the first balun structure and another feed line in the second balun structure forming a second feed port for providing a feed current in a -45° direction
  • a signal ground is disposed at the bottom of the first balun structure and the bottom of the second balun structure.
  • the first and second bales of the first and second feeders of the balun structure are the same, and the currents of the first and second feeders of the other balun structure are opposite in direction.
  • the method further includes a combining device, where the combining device includes a first signal line, a second signal line, and a signal ground, the first The signal line is configured to provide a current equal to the phase of the equal power for the first feed port, such that the first feed port provides a feed current in a +45° direction, and the second signal line is used for the first
  • the two feed ports provide currents of equal phase and the like, such that the second feed port provides a feed current in a -45° direction;
  • the combining device is disposed on the signal ground, and the signal ground is connected to a signal ground located at a bottom of the first balun structure and the second balun structure.
  • the common signal formation is between the first feeder layer and the second feeder layer Separately provided with a dielectric layer;
  • the first feed line and the second feed line are both a dove-shaped conductive feed piece, and the meander-shaped conductive feed piece includes a first side, a second side and a third side, wherein the first side Arranging in parallel with the third side, the first side and the third side are connected by the second side, and the second side is perpendicular to the first side and the third side;
  • first side and the third side of the meandering conductive feed piece are on the common signal ground layer
  • the projections are respectively located on different common signal grounds
  • a free end of a first side of a meandering conductive feed piece in the first balun structure and a free end of a first side of a meandering conductive feed piece in the second balun structure a first signal line connection of the combining device; a first side of the other meandering conductive feed piece in the first balun structure and a first side of the second conductive conductive feed piece in the second balun structure Connected to a second signal line of the combining device, wherein the first side and the third side each include a relatively disposed proximal end and a free end, the proximal end being connected to the second side At one end, the free end is an end that is not connected to the second side.
  • an embodiment of the present invention provides an antenna radiation system, including the feed structure of any of the first aspects, and four radiators; wherein the first balun structure and the second bus In the lenticular structure, the common signal ground in the common signal formation of each balun structure includes oppositely disposed free ends and proximal ends, and the free ends of each of the common signal grounds are connected to a radiator, the four radiations Each two adjacent radiators are orthogonally disposed; wherein the proximal end refers to one end of two common signals that are close to each other.
  • Embodiments of the present invention provide a feed structure in which a feed line in a first balun structure and a feed line in a second balun structure are formed by orthogonally disposed first balun structure and second balun structure a first feed port for providing a feed current in a +45° direction, and another feed line in the first balun structure and another feed line in the second balun structure form a second feed port, Used to provide a feed current in the -45° direction, since the first and second feeders in the first balun structure and the second balun structure are bridged between the two common signal grounds, forming a potential difference, The two common signals are grounded to produce a substantially large inverted current so that the feeder can be supplied with current in the +45° and -45° directions.
  • 1-1 is a schematic structural diagram of a power feeding structure according to an embodiment of the present invention.
  • 1-2 is a schematic diagram 1 of a feed current direction of a feed structure according to an embodiment of the present invention
  • 1-3 are schematic diagrams of a feed current direction of a feed structure according to an embodiment of the present invention.
  • FIGS. 1-4 are schematic diagrams 3 of a feed current direction of a feed structure according to an embodiment of the present invention.
  • 2-1 is a schematic structural diagram 1 of a first balun structure in a feed structure according to an embodiment of the present invention
  • FIG. 2-2 is a schematic structural diagram of a feeder layer in a first balun structure in a feed structure according to an embodiment of the present invention
  • 2-3 is a schematic structural diagram 1 of a second balun structure in a feed structure according to an embodiment of the present invention.
  • FIG. 3 is a top plan view of a first balun structure in a feed structure according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of a feed structure in which a first balun structure is a T-type structure according to an embodiment of the present invention.
  • FIG. 1-1 illustrates a feed structure including a first balun structure 10 and a second balun structure 30 according to an embodiment of the present invention, wherein the first balun structure 10 and the first The two balun structures 30 are orthogonally arranged and form a cross;
  • each balun structure respectively comprises at least three layers, wherein the three-layer structure is a first feeder layer 101, a common signal ground layer 102, and a second feeder layer 103, wherein the common signal ground layer 102 includes two common signal grounds 1021, 1022 arranged at intervals;
  • the first feed line 101 includes a bridge across the two common signal grounds 1021, 1022 a first feed line 1011;
  • the second feed line layer 103 includes a second feed line 1031 spanning between the two common signal grounds 1021, 1022;
  • first balun structure 10 and the second balun structures 30 form a first feed port for providing a feed current in the +45° direction
  • another feed line in the first balun structure 10 and another feed line in the second balun structure 30 forming a second feed port for providing a -45° direction Feed current
  • a signal ground is disposed at the bottom of the first balun structure 10 and at the bottom of the second balun structure 30.
  • first balun structure 10 and the second balun structure 30 each include a bottom portion and a top portion disposed opposite to each other in the longitudinal direction, and the top portion is used for connecting with four radiators, as shown in FIG. Radiators 201, 202, 203, and 204, the bottom portion being an end disposed opposite the top.
  • Embodiments of the present invention provide a feed structure in which a feed line in a first balun structure and a feed line in a second balun structure are formed by orthogonally disposed first balun structure and second balun structure a first feed port for providing a feed current in a +45° direction, and another feed line in the first balun structure and another feed line in the second balun structure form a second feed port, Used to provide a feed current in the -45° direction, since the first and second feeders in the first balun structure and the second balun structure are bridged between the two common signal grounds, forming a potential difference, The two common signals are grounded to produce a substantially large inverted current so that the feeder can be supplied with current in the +45° and -45° directions.
  • the first balun structure 10 includes at least a three-layer structure, that is, the first feeder.
  • the layer 101, the common signal ground layer 102, and the second feeder layer 103, the common signal ground layer includes a common signal ground 1021 and a common signal ground 1022 that are spaced apart.
  • a dielectric layer is disposed between the common signal ground layer 102 and the first feeder layer 101 and the second feeder layer 103, and the common signal ground layer 102 includes a front side and a back side, which can be understood as the common signal.
  • a dielectric layer is disposed between the back surface of the formation 102 and the first feeder layer 101, and a dielectric layer is disposed between the front surface of the common signal ground layer 102 and the second feeder layer 103; or the common signal ground layer A dielectric layer is disposed between the front surface of the first feeder layer 101 and the first feeder layer 101, and a dielectric layer is disposed between the back surface of the common signal ground layer 102 and the second feeder layer 103; wherein the dielectric layer can For the air, or the dielectric plate, the embodiment of the present invention does not limit this.
  • the projection of one side of the first feed line 1011 included on the common signal ground layer 102 of the first feeder layer 101 is located in the common
  • the projection of the other side of the first feed line 1011 on the common signal ground layer 102 is located on the back side of the common signal ground 1022; that is, the second feed line layer 103 includes A projection of one side of the two feed lines 1031 on the common signal formation 102 is located on the front side of the common signal ground 1021, and a projection of the other side of the second feed line 1031 on the common signal formation 102 is located The front side of the common signal ground 1022.
  • the projection of one side and the other side of the second feed line 1031 on the common signal ground layer 102 may be located in one signal ground of the common signal bottom layer 102 and the back side of another signal, the first feed
  • the projection of one side and the other side of the wire 1011 on the common signal formation 102 may be located on the front side of one signal ground and the other signal ground in the common signal bottom layer 102, or the second side of the second feed line 1031 and another
  • a projection of an edge on the common signal formation 102 may be located on the front side of one signal ground and the other signal ground in the common signal bottom layer 102, one side and the other side of the first feed line 1011 being in the common signal
  • the projection on the ground layer 102 may be located on the back of one signal ground and the other signal ground in the common signal bottom layer 102.
  • This embodiment of the present invention does not limit this.
  • the first feeder layer 101 is located The back side of the common signal bottom layer 102 bridges the first feed line 1011 on the back side of the common signal ground 1021, 1022, otherwise, across the common signal ground 102 1, the front of 1022.
  • the projection of one end of the first feed line 1011 included in the first feeder layer 101 is located on the front side of the common signal ground 1011, and the other end of the first feed line 1011 is located on the common signal ground 1022. positive.
  • the second balun structure 30 and the first feeder layer 101 of the first balun structure 10, the common signal ground layer 102 and the second feeder layer 103 are arranged in the same manner, and the embodiment of the present invention is no longer used herein. For details, see the first balun structure 10.
  • first feed line 1011 in the first balun structure 10 and the first feed line 1011 in the second balun structure can form a first feed port, and the second feed in the first balun structure 10
  • the electric wire 1031 and the second feed line 1031 in the second balun structure may form a second feed port; or the first feed line 1011 in the first balun structure 10 and the second feed line 1031 in the second balun structure Forming a first feed port, a second feed line 1031 in the first balun structure 10 and a first feed line 1011 in the second balun structure forming a second feed port as long as the first balun structure 10 is secured a current direction of one of the feed lines and one of the second balun structures 30 such that the first feed port can provide a feed current of +45° direction, the second feed port
  • the feed current in the -45° direction can be supplied.
  • the first balun structure 10 and the second balun structure 30 wherein the first feeder 1011 and the second feeder of a balun structure
  • the current direction of 1031 is the same, and the current directions of the first feed line 1011 and the second feed line 1031 of the other balun structure are opposite.
  • the current directions of the first feeder 1011 and the second feeder 1031 in the first balun structure 10 are the same (ie, the direction in which the radiator 202 is directed toward the radiator 204), the second bus.
  • the current directions of the first feed line 1011 and the second feed line 1031 in the structure 30 are opposite (ie, the direction of current flow of the first feed line 1011 in the second balun structure 30 is directed in the direction of the radiator 201 toward the radiator 203, second The current direction of the second feed line 1031 in the balun structure 30 is directed to the direction of the radiator 201 along the radiator 203; or as shown in Figures 1-3, the current direction of the second feed line 1031 in the second balun structure 30 is radiated
  • the direction of the current direction of the first feed line 1031 in the second balun structure 30 is directed in the direction of the radiator 201 by the radiator 203; or the first feed line 1011 in the first balun structure 10 and The current direction of the second feed line 1031 is opposite (ie, as shown in FIG.
  • the current direction of the first feed line 1011 in the first balun structure 10 is directed in the direction of the radiator 201 toward the radiator 203, the first balun structure
  • the current direction of the second feed line 1031 in 30 is directed to the direction of the radiator 201 along the radiator 203.
  • the current direction of the second feed line 1031 in the first balun structure 10 is directed toward the radiator 203 in the direction of the radiator 201, and the current direction of the first feed line 1011 in the first balun structure 30 is directed toward the radiation along the radiator 203.
  • the direction of the current of the first feeder 1011 and the second feeder 1031 in the second balun structure 30 is the same, that is, the first feeder 1011 and the second feeder 1031 in the second balun structure 30
  • the current direction is directed upwards in the direction of the radiator 204 toward the radiator 204, which is not limited by the embodiment of the present invention.
  • first feeder layer 1011 of the first balun structure 10 and the second feeder layer 1031 or the first feeder layer 1011 of the second balun structure 30 form a set of feed sheets
  • the second feed layer 1031 in the first balun structure 10 and the second feed layer 1031 in the second balun structure 30 form another set of feed sheets, wherein Figures 1-2 and 1-3 Common point is that the current flow between the first feed line 1011 and the second feed line 1031 in the second balun structure 30 is reversed, except that the current direction of the first feed line 1011 in FIG. 1-2 is
  • the two-barron structure radiator 201 is directed to the second balun structure radiator 203, and the current direction of the second feeder line 1031 is directed by the second balun structure radiator 203 to the second bar.
  • the current direction of the first feeder 1011 is directed by the radiator 203 of the second balun structure to the 201 of the second balun radiator, the current direction of the second feeder 1031 Oriented by the second balun structure radiator 201 to the radiator 203 of the second balun structure 30, as shown in Figures 1-4, the first feeder layer 1011 and the second balun structure in the first balun structure 10.
  • the second feeder layer 1031 in 30 forms a set of feed sheets, and the second feeder layer 1031 in the first balun structure 10 and the first feeder layer 1011 in the second balun structure 30 form another group Feed layer.
  • the first balun structure 10 is provided with a first snap portion
  • the second balun structure 30 is provided with a second snap portion; the first balun structure 10 passes the first card
  • the joint and the second engaging portion are engaged with the second balun structure 30, so that the first balun structure 10 and the second balun structure 30 can be effectively disposed in a cross shape.
  • the first snap portion is disposed in the middle of the first balun structure 10
  • the second snap portion is disposed in the middle of the second balun structure 30.
  • the first latching portion 104 is along the first balun structure. a first recess 1041 disposed from top to bottom in a length direction, the second latching portion 304 being a second recess 3041 disposed from the bottom to the top of the second balun structure, or It is understood that the sum of the length of the first groove 1041 and the length of the second groove is equal to the length of the first balun structure 10 or the second balun structure 30, or
  • the first engaging portion 104 is a first groove disposed from bottom to top along a length direction of the first balun structure, and the second engaging portion is from the length along the length of the second balun structure And the second groove is set below.
  • first balun structure 10 and the second balun structure 30 are not limited by the embodiment of the present invention, which is merely exemplary. In one aspect, the first balun structure 10 is optional. And forming the second balun structure 30 by three layers of PCB boards;
  • a first printed circuit board (Printed Circuit Board), a second PCB board, and a third PCB board, wherein the first PCB board and the second PCB board and the third PCB board comprise a dielectric board
  • a copper layer is disposed on the front and back sides of the dielectric board, and the first PCB board and the second PCB board include dielectric boards 1001 and 1003, and a copper layer is disposed on either side of the dielectric boards 1001 and 1003. It can be understood that a copper layer may be disposed on the back side of the dielectric board of the first PCB board, or a copper layer may be disposed on the front side.
  • the first PCB board and the second PCB board can be obtained by etching one side of the copper layer of the PCB board having the copper layer on both sides, and the PCB board having only one copper layer can be directly formed, which is not performed by the embodiment of the present invention. limit.
  • the first feed line 1011 of the first feeder layer 101 and the second feed line 1031 of the second feeder layer 103 are meander-shaped conductive feed sheets;
  • the dove-shaped conductive feed piece comprises a first side, a second side and a third side, wherein the first side Arranging in parallel with the third side, the first side and the third side are connected by the second side, and the second side is perpendicular to the first side and the third side;
  • the projections of the first side and the third side of the meandering conductive feed piece on the common signal ground layer are respectively located on different common signal grounds in the common signal ground layer; that is, the first shape of the meandering conductive feed piece a projection of an edge is located on the common signal ground 1021, and a projection of a third side of the dome-shaped conductive feed sheet is located in another of the common signal formations On the common signal ground, that is, the projection of the third side of the meandering conductive feed piece is located on the common signal ground 1022.
  • the first PBC board, the second PCB board, and the third PCB board may be sequentially pressed in the order of the second feeder layer 103, the common signal ground layer 102, and the first feeder layer 101, to obtain the first balun.
  • Structure 10 and the second balun structure 30 may be sequentially pressed in the order of the second feeder layer 103, the common signal ground layer 102, and the first feeder layer 101, to obtain the first balun.
  • Structure 10 and the second balun structure 30 may be sequentially pressed in the order of the second feeder layer 103, the common signal ground layer 102, and the first feeder layer 101, to obtain the first balun.
  • Structure 10 and the second balun structure 30 may be sequentially pressed in the order of the second feeder layer 103, the common signal ground layer 102, and the first feeder layer 101, to obtain the first balun.
  • Structure 10 and the second balun structure 30 may be sequentially pressed in the order of the second feeder layer 103, the common signal ground layer 102, and the first feeder layer 101, to obtain the first
  • each of the three layers of PCB boards is along the length direction of the second balun structure or the first bar
  • the length of the length of the structure is one quarter of the wavelength corresponding to the operating frequency band of the input signal.
  • the first balun structure 10 and the second balun structure 30 are respectively formed by pressing of a metal sheet metal member.
  • the process of pressing the first balun structure 10 and the second balun structure by the metal sheet metal member is the same as the pressing process of the above-mentioned PCB board, and the embodiment of the present invention does not limit this. Reference can be made to the pressing process of the PCB board.
  • first balun structure 10 and the second balun structure 30 are respectively formed by pressing a metal sheet metal member, the first balun structure 10 and the common signal ground layer 102 in the second balun structure 30
  • the length along the length of the first balun structure 10 and the second balun structure 30 is one quarter of the wavelength corresponding to the operating frequency band of the input signal.
  • a dielectric layer is disposed between each adjacent two-layer structure in the three-layer structure of the first balun structure 10 and the second balun structure 30 of the embodiment of the present invention.
  • the layer is an air or a dielectric plate, which is not limited in this embodiment of the present invention.
  • the feeding structure further includes a combining device 50.
  • the combining device 50 includes a first signal line, a second signal line, and a signal ground.
  • the first signal line is used.
  • the combining device is disposed on the signal ground, and the signal ground is connected to a signal ground located at a bottom of the first balun structure and the second balun structure.
  • first feeding line and the second feeding line are both a meandering conductive feeding piece;
  • the meandering conductive feeding piece comprises a first side, a second side and a third side, wherein The first side and the third side are disposed in parallel, the first side and the third side are connected by the second side, and the second side is opposite to the first side and the third side Side vertical
  • the projections of the first side and the third side of the meandering conductive feed piece on the common signal ground layer are respectively located on different common signal grounds in the common signal ground layer;
  • a free end of a first side of a meandering conductive feed piece in the first balun structure and a free end of a first side of a meandering conductive feed piece in the second balun structure a first signal line connection of the combining device; a first side of the other meandering conductive feed piece in the first balun structure and a first side of the second conductive conductive feed piece in the second balun structure Connected to a second signal line of the combining device, a free end of a third side of a meandering conductive feed piece in the first balun structure and one of the second balun structures a free end of the third side of the shaped conductive feed piece is suspended; a third side of the other meandering conductive feed piece in the first balun structure and another meandering conductive in the second balun structure The third side of the feed piece is suspended; wherein the first side and the third side each comprise oppositely disposed proximal ends and free ends, the proximal end being an end connected to the second side, the free
  • the first balun structure 10 and the second balun structure 30 each include a horizontal portion and a vertical portion, the horizontal portion and the vertical portion constitute a T-shape, the horizontal portion and the vertical portion.
  • the section includes two common signal grounds that are spaced apart.
  • the two common signal grounds of the horizontal portion and the vertical portion may be integrally formed, or two common signal grounds of the horizontal portion and two common signal grounds of the vertical portion may be respectively acquired, and then the horizontal portion and the vertical portion are butted to form
  • the T-type is such that the two common signals are connected in the horizontal portion and the vertical portion, which is not limited in the embodiment of the present invention.
  • the first balun structure 10 and the second balun structure 30 may also be set to a “work” type, wherein the “work” type includes a first horizontal portion and the first a second horizontal portion parallel to the horizontal portion, and a vertical portion, the first horizontal portion and the second horizontal portion being connected by a vertical portion, and the first horizontal portion, the second horizontal portion, and the vertical portion include an interval setting Two common signal grounds.
  • the “work” type includes a first horizontal portion and the first a second horizontal portion parallel to the horizontal portion, and a vertical portion, the first horizontal portion and the second horizontal portion being connected by a vertical portion, and the first horizontal portion, the second horizontal portion, and the vertical portion include an interval setting Two common signal grounds.
  • first horizontal portion, the second horizontal portion, and the vertical The two common signal grounds in the part may be integrally formed, or two common signal grounds of the first horizontal part, the second horizontal part and the vertical part may be respectively acquired, and then the first horizontal part and the second horizontal part and the vertical part are butted
  • the "work" type is formed such that the first horizontal portion and the second horizontal portion and the common portion of the vertical portion are connected to each other, which is not limited in the embodiment of the present invention.
  • an embodiment of the present invention provides an antenna radiation system, as shown in FIG. 1-1, the radiation system includes the feed structure described in the above embodiment, and four radiators; wherein the first In the balun structure 10 and the second balun structure 30, the common signal ground in the common signal formation of each balun structure includes oppositely disposed free ends and proximal ends, the free ends of each of the common signal grounds Connected to a radiator, each of the four adjacent radiators 201, 202, 203, and 204 is disposed orthogonally; for example, the radiator 202 and the radiator 201; wherein the proximal end refers to two The end of the common signal ground close to each other.
  • Embodiments of the present invention provide an antenna radiation system in which four radiators are connected by an orthogonally disposed first balun structure and a second balun structure, one feeder in the first balun structure and the second balun One of the feed lines in the structure forms a first feed port for providing a feed current in the +45° direction, another feed line in the first balun structure and another feed line in the second balun structure Forming a second feed port for providing a feed current in the -45° direction, since the first and second feed lines in the first balun structure and the second balun structure are bridged at two common signals Between the two, a potential difference is formed such that two common signal grounds generate equally large inverting currents, so that the feeder can be supplied with current in the +45° and -45° directions. At the same time, the miniaturization of the antenna radiation system is achieved.
  • one ends of the common signal grounds 1021, 1022 of the first balun structure 10 are respectively connected to the radiator 201 and the radiator 203, wherein the common signal grounds 1021, 1022 respectively include The proximal end and the free end, the proximal ends of the common signal grounds 1021 and 1022 refer to one end of the common signal ground 1021 and the common signal ground 1022, the free end refers to the common signal ground 1021 and the The common signal ground 1022 is away from the end of the proximal end, that is, the free ends of the common signal grounds 1021, 1022 of the first balun structure 10 are respectively connected to the radiator 201 and the radiator 203, wherein the common signal ground 1021 and the There is a gap 1023 between the proximal ends of the common signal ground 1022, as shown in FIG.
  • the free ends of the common signal grounds 1021, 1022 of the second balun structure 30 are respectively
  • the radiator 203 is connected to the radiator 204, that is, the free ends of the common signal grounds 1021, 1022 of the first balun structure 10 are respectively connected to the radiator 202 and the radiator 204, wherein the common signal ground 1021 and the There is a gap between the proximal ends of the common signal ground 1022, as shown in FIG. 1-1, four radiators 201, 202, 203, 204 and the first balun structure 10 and the second balun structure 30 disposed orthogonally.
  • each of two adjacent radiators of the four radiators 201, 202, 203, 204 is perpendicular, that is, the radiator 201 and the radiator 202 are perpendicular, the radiator 202 and the radiation
  • the device 203 is vertical.
  • each of the radiators is connected to the corresponding common signal ground by electrical coupling or by electrical direct connection, ie welding.
  • radiator 201, 202, 203, 204 on the same diagonal line form a dipole, and the four dipoles on the two diagonal lines are orthogonal to each other, for example,
  • the radiator 201 and the radiator 203 constitute a first dipole
  • the radiator 202 and the radiator 204 constitute a second dipole
  • the first dipole and the second dipole are perpendicular, as shown in FIG.
  • the length of each of the radiators is one quarter of the wavelength corresponding to the operating frequency band of the input signal, that is, the lengths of the radiators 201, 202, 203, and 204 are input signals.
  • the frequency band corresponds to a quarter of the wavelength.
  • the horizontal portion and the vertical portion constitute a T-shape
  • the horizontal portion and the vertical portion include two common signal grounds 1021, 1022 spaced apart, and each of the two common signal grounds located in the horizontal portion includes a free end and a proximal end, the four radiations
  • the free ends of each common signal ground of the horizontal portion of the first balun structure 10 and the second balun structure 30 are respectively extended by a predetermined length perpendicular to the vertical portion, wherein the preset The length is one quarter of the wavelength corresponding to the operating frequency band of the input signal.
  • the free end of the two common signal grounds in the horizontal portion of the first balun structure 10 and the second balun structure 30 can be obtained in the first position by extending the preset length in a direction perpendicular to the length of the balun structure.
  • the preset length is one quarter of the wavelength corresponding to the working frequency band of the input signal.
  • the "work" type includes a first horizontal portion and a second level parallel to the first horizontal portion And a vertical portion, the first horizontal portion and the second horizontal portion are connected by a vertical portion, and the first horizontal portion, the second horizontal portion, and the vertical portion include two common signal grounds disposed at intervals.
  • each of the two common signal grounds located in the first horizontal portion is extended by a predetermined length in a direction perpendicular to the length of the balun structure, the same strip at the top of the balun structure can be obtained.
  • the preset length is one quarter of the wavelength corresponding to the working frequency band of the input signal.
  • the horizontal portion, the first horizontal portion, and the second horizontal portion may include only a copper layer.
  • the length of each of the radiators is one quarter of a wavelength corresponding to an operating frequency band of the input signal, that is, the length of the radiators 201, 202, 203, and 204 is one quarter of a wavelength corresponding to an operating frequency band of the input signal.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明实施例提供一种馈电结构和天线辐射系统,涉及通信领域,用以提供一种结构紧凑的馈电结构和天线辐射系统。包括第一巴伦结构和第二巴伦结构,每个巴伦结构分别至少包含三层结构,所述三层结构依次为第一馈电线层,公共信号地层以及第二馈电线层,所述公共信号地层包括间隔设置的两个公共信号地;所述第一馈电线层包含第一馈电线;所述第二馈电线层包含第二馈电线;第一巴伦结构中的一个馈电线和第二巴伦结构中的一个馈电线形成第一馈电端口,第一巴伦结构中的另一个馈电线和第二巴伦结构中的另一个馈电线形成第二馈电端口,在第一巴伦结构的底部和第二巴伦结构的底部设置有信号地。本发明实施例应用于多频天线阵列中。

Description

一种馈电结构和天线辐射系统
本申请要求于2015年12月23日提交中国专利局、申请号为201510980451.0、发明名称为“一种馈电结构和天线辐射系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,尤其涉及一种馈电结构和天线辐射系统。
背景技术
多频多阵列天线是指在相邻列高频天线单元之间设置一列低频天线单元进行平面阵列组阵实现+/-45度极化,但是由于低频天线单元设置于高频天线单元之间,且低频天线单元的体积较大,不仅使得多频多阵列天线中相邻列高频天线单元之间的间距增大,而相邻列高频天线单元之间间距超过其工作频率对应波长的1.16倍时,会严重影响高频天线单元电气性能,而且低频天线单元还会遮挡高频天线单元的信号,也会严重影响高频天线单元电气性能。
发明内容
本发明的实施例提供一种馈电结构和天线辐射系统,用以提供一种结构紧凑的馈电结构和天线辐射系统,有效的减小高频单元和低频单元之间的互耦,使得天线电气性能实现+/-45度极化的效果。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种馈电结构,包括第一巴伦结构和第二巴伦结构,其中,所述第一巴伦结构和第二巴伦结构正交设置且构成十字型;
其中,所述第一巴伦结构和第二巴伦结构中,每个巴伦结构分别至少包含三层结构,所述三层结构依次为第一馈电线层,公共信号地层以 及第二馈电线层,其中,所述公共信号地层包括间隔设置的两个公共信号地;所述第一馈电线层包含跨接在所述两个公共信号地之间的第一馈电线;所述第二馈电线层包含跨接在所述两个公共信号地之间的第二馈电线;
所述第一馈电线和第二馈电线中,其中,第一巴伦结构中的一个馈电线和第二巴伦结构中的一个馈电线形成第一馈电端口,用于提供+45°方向的馈电电流,所述第一巴伦结构中的另一个馈电线和第二巴伦结构中的另一个馈电线形成第二馈电端口,用于提供-45°方向的馈电电流;
在所述第一巴伦结构的底部和所述第二巴伦结构的底部设置有信号地。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一巴伦结构和第二巴伦结构中,其中一个巴伦结构的第一馈电线和第二馈电线的电流方向相同,另一个巴伦结构的第一馈电线和第二馈电线的电流方向相反。
结合第一方面,在第一方面的第二种可能的实现方式中,还包括合路装置,所述合路装置包括第一信号线、第二信号线以及一号信号地,所述第一信号线用于为所述第一馈电端口提供等工分等相位的电流,使得所述第一馈电端口提供+45°方向的馈电电流,所述第二信号线用于为所述第二馈电端口提供等工分等相位的电流,使得所述第二馈电端口提供-45°方向的馈电电流;
所述合路装置设置在所述信号地上,所述一号信号地和位于所述第一巴伦结构和所述第二巴伦结构的底部的信号地连接。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述公共信号地层与所述第一馈电线层和所述第二馈电线层之间分别设置有介质层;
所述第一馈电线和所述第二馈电线均为Π形导电馈电片,所述Π形导电馈电片包含第一边,第二边和第三边,其中,所述第一边和所述第三边平行设置,所述第一边和所述第三边通过所述第二边相连,且所述第二边与所述第一边和所述第三边垂直;
其中,所述Π形导电馈电片第一边和第三边在所述公共信号地层上 的投影分别位于不同的公共信号地上;
所述第一巴伦结构中的一个Π形导电馈电片的第一边的自由端和所述第二巴伦结构中的一个Π形导电馈电片的第一边的自由端与所述合路装置的第一信号线连接;所述第一巴伦结构中的另一个Π形导电馈电片的第一边和所述第二巴伦结构中另一个Π形导电馈电片的第一边与所述合路装置的第二信号线连接,其中,所述第一边和第三边均包含相对设置的近端和自由端,所述近端为与所述第二边相连的一端,所述自由端为未与所述第二边相连的一端。
第二方面,本发明实施例提供一种天线辐射系统,包括第一方面任意一项所述的馈电结构,以及四个辐射器;其中,所述第一巴伦结构和所述第二巴伦结构中,每个巴伦结构的公共信号地层中的公共信号地包括相对设置的自由端和近端,所述每个公共信号地的自由端均与一个辐射器连接,所述四个辐射器中每两个相邻的辐射器正交设置;其中,近端是指两个公共信号地相互靠近的一端。
本发明实施例提供一种馈电结构,通过正交设置的第一巴伦结构和第二巴伦结构,第一巴伦结构中的一个馈电线和第二巴伦结构中的一个馈电线形成第一馈电端口,用于提供+45°方向的馈电电流,所述第一巴伦结构中的另一个馈电线和第二巴伦结构中的另一个馈电线形成第二馈电端口,用于提供-45°方向的馈电电流,由于第一巴伦结构和第二巴伦结构中的第一馈电线和第二馈电线跨接在两个公共信号地之间,形成了电势差,使得两个公共信号地上产生等大反相的电流,从而可以在+45°和-45°方向上向辐射器提供馈电电流。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1为本发明实施例提供的一种馈电结构的结构示意图;
图1-2为本发明实施例提供的一种馈电结构的馈电电流方向示意图一;
图1-3为本发明实施例提供的一种馈电结构的馈电电流方向示意图二;
图1-4为本发明实施例提供的一种馈电结构的馈电电流方向示意图三;
图2-1为本发明实施例提供的一种馈电结构中第一巴伦结构的结构示意图一;
图2-2为本发明实施例提供的一种馈电结构中第一巴伦结构中馈电线层的结构示意图;
图2-3为本发明实施例提供的一种馈电结构中第二巴伦结构的结构示意图一;
图3为本发明实施例提供的一种馈电结构中第一巴伦结构的俯视图;
图4为本发明实施例提供的一种馈电结构中第一巴伦结构为T型结构时的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的 限制。
参见图1-1,图1-1为本发明实施例提供的一种馈电结构,包括第一巴伦结构10和第二巴伦结构30,其中,所述第一巴伦结构10和第二巴伦结构30正交设置且构成十字型;
其中,所述第一巴伦结构10和第二巴伦结构30中,每个巴伦结构分别至少包含三层结构,所述三层结构依次为第一馈电线层101,公共信号地层102以及第二馈电线层103,其中,所述公共信号地层102包括间隔设置的两个公共信号地1021、1022;所述第一馈电线101包含跨接在所述两个公共信号地1021、1022之间的第一馈电线1011;所述第二馈电线层103包含跨接在所述两个公共信号地1021、1022之间的第二馈电线1031;
所述第一馈电线1011和第二馈电线1031中,其中,第一巴伦结构10中的一个馈电线和第二巴伦结构30中的一个馈电线形成第一馈电端口,用于提供+45°方向的馈电电流,所述第一巴伦结构10中的另一个馈电线和第二巴伦结构30中的另一个馈电线形成第二馈电端口,用于提供-45°方向的馈电电流;
在所述第一巴伦结构10的底部和所述第二巴伦结构30的底部设置有信号地。
其中,所述第一巴伦结构10和所述第二巴伦结构30均包括沿长度方向相对设置的底部和顶部,所述顶部用于与四个辐射器连接,如图1-1所示的辐射器201、202、203以及204,所述底部为与所述顶部相对设置的一端。
本发明实施例提供一种馈电结构,通过正交设置的第一巴伦结构和第二巴伦结构,第一巴伦结构中的一个馈电线和第二巴伦结构中的一个馈电线形成第一馈电端口,用于提供+45°方向的馈电电流,所述第一巴伦结构中的另一个馈电线和第二巴伦结构中的另一个馈电线形成第二馈电端口,用于提供-45°方向的馈电电流,由于第一巴伦结构和第二巴伦结构中的第一馈电线和第二馈电线跨接在两个公共信号地之间,形成了电势差,使得两个公共信号地上产生等大反相的电流,从而可以在+45°和-45°方向上向辐射器提供馈电电流。
可以理解的是,第一巴伦结构10至少包含三层结构,即第一馈电线 层101、公共信号地层102以及第二馈电线层103,所述公共信号地层包括间隔设置的公共信号地1021和公共信号地1022。所述公共信号地层102与所述第一馈电线层101和所述第二馈电线层103之间分别设置有介质层,所述公共信号地层102包含正面和背面,可以理解为所述公共信号地层102的背面与所述第一馈电线层101之间设置有介质层,所述公共信号地层102的正面和所述第二馈电线层103之间设置有介质层;或所述公共信号地层102的正面与所述第一馈电线层101之间设置有介质层,所述公共信号地层102的背面和所述第二馈电线层103之间设置有介质层;其中,所述介质层可以为空气,或者介质板,本发明实施例对此不进行限定。
当第一馈电线层101设置在所述公共信号地层102背面时,所述第一馈电线层101包含的第一馈电线1011的一个边在所述公共信号地层102上的投影位于所述公共信号地1021的背面,所述第一馈电线1011的另一个边的在所述公共信号地层102上的投影位于所述公共信号地1022的背面;即所述第二馈电线层103包含的第二馈电线1031的一个边在所述公共信号地层102上的投影位于所述公共信号地1021的正面,所述第二馈电线1031的另一个边在所述公共信号地层102上的投影位于所述公共信号地1022的正面。
其中,所述第二馈电线1031一个边和另一个边在所述公共信号地层102上的投影可以位于所述公共信号底层102的中一个信号地和另一个信号地背面,所述第一馈电线1011一个边和另一个边在所述公共信号地层102上的投影可以位于所述公共信号底层102中一个信号地和另一个信号地的正面,或所述第二馈电线1031一个边和另一个边在所述公共信号地层102上的投影可以位于所述公共信号底层102中一个信号地和另一个信号地的正面,所述第一馈电线1011一个边和另一个边在所述公共信号地层102上的投影可以位于所述公共信号底层102中一个信号地和另一个信号地的背面,本发明实施例对此不进行限制,在实际需要中,若所述第一馈电线层101位于所述公共信号底层102的背面,则将所述第一馈电线1011跨接在所述公共信号地1021、1022的背面,否则,跨接在所述公共信号地1021、1022的正面。
当然,当所述第一馈电线层101设置与所述公共信号地层102的正 面时,所述第一馈电线层101包含的第一馈电线1011的一端的投影位于所述公共信号地1021的正面,所述第一馈电线1011的另一端位于所述公共信号地1022的正面。
其中,所述第二巴伦结构30和所述第一巴伦结构10的第一馈电线层101,公共信号地层102以及第二馈电线层103布置方式相同,本发明实施例在此不再赘述,可以参见第一巴伦结构10。
可以理解的是,第一巴伦结构10中的第一馈电线1011和第二巴伦结构中的第一馈电线1011可以形成第一馈电端口,第一巴伦结构10中的第二馈电线1031和第二巴伦结构中的第二馈电线1031可以形成第二馈电端口;或第一巴伦结构10中的第一馈电线1011和第二巴伦结构中的第二馈电线1031形成第一馈电端口,第一巴伦结构10中的第二馈电线1031和第二巴伦结构中的第一馈电线1011形成第二馈电端口,只要保证所述第一巴伦结构10中的一个馈电线和所述第二巴伦结构30中的一个馈电线的电流方向,使得所述第一馈电端口可以提供的+45°方向的馈电电流,所述第二馈电端口可以提供的-45°方向的馈电电流即可。
可选的,如图1-2至1-4所示,所述第一巴伦结构10和第二巴伦结构30中,其中,一个巴伦结构的第一馈电线1011和第二馈电线1031的电流方向相同,另一个巴伦结构的第一馈电线1011和第二馈电线1031的电流方向相反。
如图1-2所示,第一巴伦结构10中第一馈电线1011和第二馈电线1031的电流方向相同(即沿辐射器202指向所述辐射器204的方向向上),第二巴伦结构30中的第一馈电线1011和第二馈电线1031的电流方向相反(即第二巴伦结构30中第一馈电线1011的电流方向沿辐射器201指向辐射器203的方向,第二巴伦结构30中第二馈电线1031的电流方向沿辐射器203指向辐射器201的方向;或如图1-3所示,第二巴伦结构30中第二馈电线1031的电流方向沿辐射器201指向辐射器203的方向,第二巴伦结构30中第一馈电线1031的电流方向沿辐射器203指向辐射器201的方向);或第一巴伦结构10中第一馈电线1011和第二馈电线1031的电流方向相反(即如图1-2所示,第一巴伦结构10中第一馈电线1011的电流方向沿辐射器201指向辐射器203的方向,第一巴伦结构30中第二馈电线1031的电流方向沿辐射器203指向辐射器201的方向或如图1-3 所示,第一巴伦结构10中第二馈电线1031的电流方向沿辐射器201指向辐射器203的方向,第一巴伦结构30中第一馈电线1011的电流方向沿辐射器203指向辐射器201的方向),第二巴伦结构30中的第一馈电线1011和第二馈电线1031的电流方向相同即所述第二巴伦结构30中第一馈电线1011和第二馈电线1031的电流方向沿辐射器202指向所述辐射器204的方向向上),本发明实施例对此不进行限制。
其中,虚线所示为第一巴伦结构10的第一馈电线层1011和第二巴伦结构30中第二馈电线层1031或第一馈电线层1011形成一组馈电片层,实线所示为第一巴伦结构10的第二馈电线层1031和第二巴伦结构中第一馈电线层1011或第二馈电线层形成的另一组馈电片层,可以理解的是,如图1-2和图1-3所示,第一巴伦结构10中的第一馈电线层1011和第二巴伦结构30中的第一馈电线层1011形成一组馈电片层,第一巴伦结构10中的第二馈电线层1031和第二巴伦结构30中的第二馈电线层1031形成另一组馈电片层,其中,图1-2和图1-3的共同点在于,第二巴伦结构30中第一馈电线1011和第二馈电线1031之间的电流流向相反,不同之处在于,图1-2中的第一馈电线1011的电流方向由第二巴伦结构的辐射器201指向第二巴伦结构辐射器的203,第二馈电线1031的电流方向由第二巴伦结构辐射器203指向第二巴伦结构30的辐射器201,图1-3中,第一馈电线1011的电流方向由第二巴伦结构的辐射器203指向第二巴伦结构辐射器的201,第二馈电线1031的电流方向由第二巴伦结构辐射器201指向第二巴伦结构30的辐射器203或,如图1-4所示,第一巴伦结构10中的第一馈电线层1011和第二巴伦结构30中的第二馈电线层1031形成一组馈电片层,第一巴伦结构10中的第二馈电线层1031和第二巴伦结构30中的第一馈电线层1011形成另一组馈电片层。
可选的,所述第一巴伦结构10设置有第一卡接部,所述第二巴伦结构30设置有第二卡接部;所述第一巴伦结构10通过所述第一卡接部和所述第二卡接部与所述第二巴伦结构30卡接,这样可以有效将第一巴伦结构10和第二巴伦结构30呈十字型设置在一起。优选的,所述第一卡接部设置在所述第一巴伦结构10的中间,所述第二卡接部设置在所述第二巴伦结构30的中间。
其中,如图2-1所示,所述第一卡接部104为沿所述第一巴伦结构 10长度方向自上而下设置的第一凹槽1041,所述第二卡接部304为沿与所述第二巴伦结构长度方向自下而上设置的第二凹槽3041,或;可以理解的是,所述第一凹槽1041的长度和第二凹槽的长度之和等于所述第一巴伦结构10或第二巴伦结构30的长度,或,
所述第一卡接部104为沿所述第一巴伦结构长度方向自下而上设置的第一凹槽,所述第二卡接部为沿所述第二巴伦结构长度方向自上而下设置的第二凹槽。
本发明实施例对所述第一巴伦结构10和所述第二巴伦结构30的具体材质不进行限定,仅是示例性的,一方面,可选的,所述第一巴伦结构10和所述第二巴伦结构30分别由三层PCB板压制形成;
1)、获取第一PCB板(Printed Circuit Board,印制电路板)、第二PCB板和第三PCB板,其中,所述第一PCB板和第二PCB板以及第三PCB板包含介质板,在所述介质板的正面和背面分别设置有铜层,且所述第一PCB板和第二PCB板包含介质板1001、1003,在所述介质板1001、1003的任意一面设置有铜层;可以理解的是,可以在所述第一PCB板的介质板的背面设置铜层,也可以是正面设置铜层。
其中,第一PCB板和第二PCB板的可以将两面具有铜层的PCB板的一面铜层蚀刻掉获取,也可以直接制作只具有一面铜层的PCB板,本发明实施例对此不进行限制。
2)、在所述第一PCB板和所述第二PBC板具有铜层的一面分别蚀刻第一馈电线层101和第二馈电线层103;
其中,优选的,所述第一馈电线层101的第一馈电线1011和所述第二馈电线层103的第二馈电线1031为Π形导电馈电片;
示例性的,如图2-1、图2-2或图2-3所示,所述Π形导电馈电片包含第一边,第二边和第三边,其中,所述第一边和所述第三边平行设置,所述第一边和所述第三边通过所述第二边相连,且所述第二边与所述第一边和所述第三边垂直;其中,所述Π形导电馈电片第一边和第三边在所述公共信号地层上的投影分别位于所述公共信号地层中不同的公共信号地上;即所述Π形导电馈电片的第一边的投影位于所述公共信号地1021上,所述Π形导电馈电片的第三边的投影位于所述公共信号地层中的另一 个公共信号地上,即所述Π形导电馈电片的第三边的投影位于所述公共信号地1022上。
3)、在所述第三PCB板上蚀刻公共信号地层102,所述公共信号地层包括间隔设置的两个公共信号地1021和1022;如图3所示;
4)、将所述第一PBC板、第二PCB板和第三PCB板依次按照第一馈电线层101,公共信号地层102以及第二馈电线层103的顺序进行压制,使得所述第一馈电线层101跨接在所述两个公共信号地1021和1022之间;所述第二馈电线层跨接在所述两个公共信号地之间;
也可以依次按照第二馈电线层103,公共信号地层102以及第一馈电线层101的顺序将所述第一PBC板、第二PCB板和第三PCB板压制,获取所述第一巴伦结构10和所述第二巴伦结构30。
当所述第一巴伦结构和所述第二巴伦结构分别由三层PCB板压制形成时,每个所述三层PCB板沿所述第二巴伦结构长度方向或所述第一巴伦结构长度方向的长度为输入信号工作频段对应波长的四分之一。
另一方面,示例性的,所述第一巴伦结构10和所述第二巴伦结构30分别由金属钣金件压制形成。
由金属钣金件压制所述第一巴伦结构10和所述第二巴伦结构30分的过程和上述PCB板的压制过程相同,本发明实施例对此不进行限制,具体实施过程中,可以参考所述PCB板的压制过程。
当所述第一巴伦结构10和所述第二巴伦结构30分别由金属钣金件压制形成时,所述第一巴伦结构10和所述第二巴伦结构30中公共信号地层102沿所述第一巴伦结构10和所述第二巴伦结构30长度方向的长度为输入信号工作频段对应波长的四分之一。
如图3所示,可以理解的是,本发明实施例的第一巴伦结构10和第二巴伦结构30的三层结构中每相邻两层结构之间设置有介质层,所述介质层为空气或介质板,本发明实施例对此不进行限制。
如图1-1所示,所述馈电结构,还包括合路装置50,所述合路装置50包括第一信号线、第二信号线以及一号信号地,所述第一信号线用于为所述第一馈电端口提供等工分等相位的电流,使得所述第一馈电端口提供+45°方向的馈电电流,所述第二信号线用于为所述第二馈电端口提 供等工分等相位的电流,使得所述第二馈电端口提供-45°方向的馈电电流;
所述合路装置设置在所述信号地上,所述一号信号地和位于所述第一巴伦结构和所述第二巴伦结构的底部的信号地连接。
进一步可选的,所述第一馈电线和所述第二馈电线均为Π形导电馈电片;所述Π形导电馈电片包含第一边,第二边和第三边,其中,所述第一边和所述第三边平行设置,所述第一边和所述第三边通过所述第二边相连,且所述第二边与所述第一边和所述第三边垂直;
其中,所述Π形导电馈电片第一边和第三边在所述公共信号地层上的投影分别位于所述公共信号地层中不同的公共信号地上;
所述第一巴伦结构中的一个Π形导电馈电片的第一边的自由端和所述第二巴伦结构中的一个Π形导电馈电片的第一边的自由端与所述合路装置的第一信号线连接;所述第一巴伦结构中的另一个Π形导电馈电片的第一边和所述第二巴伦结构中另一个Π形导电馈电片的第一边与所述合路装置的第二信号线连接,所述第一巴伦结构中的一个Π形导电馈电片的第三边的自由端和所述第二巴伦结构中的一个Π形导电馈电片的第三边的自由端均悬空;所述第一巴伦结构中的另一个Π形导电馈电片的第三边和所述第二巴伦结构中另一个Π形导电馈电片的第三边均悬空;其中,所述第一边和第三边均包含相对设置的近端和自由端,所述近端为与所述第二边相连的一端,所述自由端为未与所述第二边相连的一端。
如图4所示,所述第一巴伦结构10和所述第二巴伦结构30均包括水平部和垂直部,所述水平部和垂直部构成T型,所述水平部和所述垂直部包括间隔设置的两个公共信号地。其中,水平部和垂直部的两个公共信号地可以一体制作形成,也可以分别获取水平部的两个公共信号地和垂直部的两个公共信号地,然后将水平部和垂直部进行对接形成T型,使得水平部和垂直部内的两个公共信号地连接即可,本发明实施例对此不进行限定。
可选的,也可以将所述第一巴伦结构10和所述第二巴伦结构30设置为“工”型,其中,所述“工”型包含第一水平部和与所述第一水平部平行的第二水平部,以及垂直部,所述第一水平部和所述第二水平部通过垂直部连接,所述第一水平部、第二水平部内和所述垂直部内包括间隔设置的两个公共信号地。其中,第一水平部、第二水平部以及垂直 部内的两个公共信号地可以一体制作形成,也可以分别获取第一水平部、第二水平部以及垂直部的两个公共信号地,然后将第一水平部和第二水平部以及垂直部对接形成“工”型,使得第一水平部和第二水平部以及垂直部内的公共信号地连接,本发明实施例对此不进行限定。
另一方面,本发明实施例提供一种天线辐射系统,如图1-1所示,所述辐射系统包括上述实施例所述的馈电结构,以及四个辐射器;其中,所述第一巴伦结构10和所述第二巴伦结构30中,每个巴伦结构的公共信号地层中的公共信号地包括相对设置的自由端和近端,所述每个公共信号地的自由端均与一个辐射器连接,所述四个辐射器201、202、203以及204中每两个相邻的辐射器正交设置;例如,辐射器202和辐射器201;其中,近端是指两个公共信号地相互靠近的一端。
本发明实施例提供一种天线辐射系统,通过正交设置的第一巴伦结构和第二巴伦结构,将四个辐射器相连,第一巴伦结构中的一个馈电线和第二巴伦结构中的一个馈电线形成第一馈电端口,用于提供+45°方向的馈电电流,所述第一巴伦结构中的另一个馈电线和第二巴伦结构中的另一个馈电线形成第二馈电端口,用于提供-45°方向的馈电电流,由于第一巴伦结构和第二巴伦结构中的第一馈电线和第二馈电线跨接在两个公共信号地之间,形成了电势差,使得两个公共信号地上产生等大反相的电流,从而可以在+45°和-45°方向上向辐射器提供馈电电流。进而同时实现了天线辐射系统的小型化。
其中,示例性的,如图2-1所示,第一巴伦结构10的公共信号地1021、1022的一端分别与辐射器201和辐射器203连接,其中,公共信号地1021、1022分别包括近端和自由端,公共信号地1021和1022的近端是指所述公共信号地1021和所述公共信号地1022相互靠近的一端,所述自由端是指所述公共信号地1021和所述公共信号地1022远离所述近端的一端,即所述第一巴伦结构10的公共信号地1021、1022的自由端分别与辐射器201和辐射器203连接,其中,公共信号地1021和所述公共信号地1022的近端之间具有间隙1023,如图2-2所示,示例性的,参见图2-3,第二巴伦结构30的公共信号地1021、1022的自由端分别与辐射器203和辐射器204连接,即所述第一巴伦结构10的公共信号地1021、1022的自由端分别与辐射器202和辐射器204连接,其中,公共信号地1021和所 述公共信号地1022的近端之间具有间隙,如图1-1所示,四个辐射器201、202、203、204与正交设置的第一巴伦结构10和第二巴伦结构30构成一个四边形的两条对角线,且四个辐射器201、202、203、204中每两个相邻的辐射器之间垂直,即辐射器201和辐射器202垂直,辐射器202和辐射器203垂直。
其中,所述每个辐射器与相应的公共信号地之间通过电气耦合连接,或者通过电气直接连接,即焊接。
且四个辐射器201、202、203、204中位于同一条对角线上的两个辐射器构成一个偶极子,位于两条对角线上的四个偶极子相互正交,例如,辐射器201和辐射器203构成第一偶极子,辐射器202和辐射器204构成第二偶极子,且所述第一偶极子和所述第二偶极子垂直,如图1-2所示,当分别激励第一偶极子和第二偶极子的时候,可以分别在水平方向(沿第一偶极子的方向)和垂直方向(与第一偶极子垂直的方向)上产生两个极化分量,当第一偶极子和第二偶极子同时被等工分等相位的信号激励的时候就可以在+/-45°方向上产生合成矢量。例如,图1-2所示,第一偶极子和第二偶极子被等工分等相位的信号激励以后,在+/-45°方向上产生了合成信号。
可选的,为了提高天线辐射系统的工作频率,每个所述辐射器的长度为输入信号工作频段对应波长的四分之一,即辐射器201、202、203、204的长度为输入信号工作频段对应波长的四分之一。
可选的,如图4所示,当所述第一巴伦结构10和所述第二巴伦结构30均包括水平部和垂直部时,所述水平部和垂直部构成T型,所述水平部和所述垂直部包括间隔设置的两个公共信号地1021、1022,位于所述水平部内的两个公共信号地中的每个公共信号地包含自由端和近端,所述四个辐射器分别为第一巴伦结构10和所述第二巴伦结构30中水平部每个公共信号地的自由端沿与所述垂直部垂直方向按照预设长度的延伸,其中,所述预设长度为输入信号工作频段对应波长的四分之一。
即将所述第一巴伦结构10和所述第二巴伦结构30水平部中两个公共信号地的自由端沿与所述巴伦结构长度垂直的方向延长预设长度时可以获得位于第一巴伦结构10顶部的辐射器201和203,位于第二巴伦结 构30顶部的辐射器202和204(图中未示出)。其中,预设长度为输入信号工作频段对应波长的四分之一。
当所述第一巴伦结构10和所述第二巴伦结构设置为“工”型,其中,所述“工”型包含第一水平部和与所述第一水平部平行的第二水平部,以及垂直部,所述第一水平部和所述第二水平部通过垂直部连接,所述第一水平部、第二水平部内和所述垂直部内包括间隔设置的两个公共信号地。
将位于第一水平部内的两个公共信号地中的每个公共信号地的自由端沿与所述巴伦结构长度垂直的方向延长预设长度时,可以获得位于巴伦结构顶部的处于同一条对角线上的两个辐射器。其中,预设长度为输入信号工作频段对应波长的四分之一。
需要说明的是,当所述第一巴伦结构10和所述第二巴伦结构30由PCB板压制形成时,所述水平部、第一水平部、第二水平部可以只包括铜层。
可选的,每个所述辐射器的长度为输入信号工作频段对应波长的四分之一,即辐射器201、202、203、204的长度为输入信号工作频段对应波长的四分之一。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种馈电结构,其特征在于,包括第一巴伦结构和第二巴伦结构,其中,所述第一巴伦结构和第二巴伦结构正交设置且构成十字型;
    其中,所述第一巴伦结构和第二巴伦结构中,每个巴伦结构分别至少包含三层结构,所述三层结构依次为第一馈电线层,公共信号地层以及第二馈电线层,其中,所述公共信号地层包括间隔设置的两个公共信号地;所述第一馈电线层包含跨接在所述两个公共信号地之间的第一馈电线;所述第二馈电线层包含跨接在所述两个公共信号地之间的第二馈电线;
    所述第一馈电线和第二馈电线中,其中,所述第一巴伦结构中的一个馈电线和所述第二巴伦结构中的一个馈电线形成第一馈电端口,用于提供+45°方向的馈电电流,所述第一巴伦结构中的另一个馈电线和第二巴伦结构中的另一个馈电线形成第二馈电端口,用于提供-45°方向的馈电电流;
    在所述第一巴伦结构的底部和所述第二巴伦结构的底部设置有信号地。
  2. 根据权利要求1所述的馈电结构,其特征在于,所述第一巴伦结构和第二巴伦结构中,其中一个巴伦结构的第一馈电线和第二馈电线的电流方向相同,另一个巴伦结构的第一馈电线和第二馈电线的电流方向相反。
  3. 根据权利要求1所述的馈电结构,其特征在于,所述第一巴伦结构设置有第一卡接部,所述第二巴伦结构设置有第二卡接部;所述第一巴伦结构通过所述第一卡接部和所述第二卡接部与所述第二巴伦结构卡接。
  4. 根据权利要求3所述的馈电结构,其特征在于,所述第一卡接部为沿所述第一巴伦结构长度方向自上而下设置的第一凹槽,所述第二卡接部为沿所述第二巴伦结构长度方向自下而上设置的第二凹槽,或;
    所述第一卡接部为沿所述第一巴伦结构长度方向自下而上设置的第一凹槽,所述第二卡接部为沿所述第二巴伦结构长度方向自上而下设置的第二凹槽。
  5. 根据权利要求1所述的馈电结构,其特征在于,所述第一巴伦结构和所述第二巴伦结构分别由三层印制电路板PCB板压制形成,或;
    所述第一巴伦结构和所述第二巴伦结构分别由金属钣金件压制形成。
  6. 根据权利要求5所述的馈电结构,其特征在于,当所述第一巴伦结构和所述第二巴伦结构分别由三层PCB板压制形成时,每个所述三层PCB板沿所述第二巴伦结构长度方向或所述第一巴伦结构长度方向的长度为输入信号工作频段对应波长的四分之一;
    当所述第一巴伦结构和所述第二巴伦结构分别由金属钣金件压制形成时,所述第一巴伦结构和所述第二巴伦结构中公共信号地层沿所述第一巴伦结构和所述第二巴伦结构长度方向的长度为输入信号工作频段对应波长的四分之一。
  7. 根据权利要求1所述的馈电结构,其特征在于,还包括合路装置,所述合路装置包括第一信号线、第二信号线以及一号信号地,所述第一信号线用于为所述第一馈电端口提供等工分等相位的电流,使得所述第一馈电端口提供+45°方向的馈电电流,所述第二信号线用于为所述第二馈电端口提供等工分等相位的电流,使得所述第二馈电端口提供-45°方向的馈电电流;
    所述合路装置设置在所述信号地上,所述一号信号地和位于所述第一巴伦结构和所述第二巴伦结构的底部的信号地连接。
  8. 根据权利要求7所述的馈电结构,其特征在于,所述公共信号地层与所述第一馈电线层和所述第二馈电线层之间分别设置有介质层;
    所述第一馈电线和所述第二馈电线均为Π形导电馈电片,所述Π形导电馈电片包含第一边,第二边和第三边,其中,所述第一边和所述第三边平行设置,所述第一边和所述第三边通过所述第二边相连,且所述第二边与所述第一边和所述第三边垂直;
    其中,所述Π形导电馈电片第一边和第三边在所述公共信号地层上的投影分别位于不同的公共信号地上;
    所述第一巴伦结构中的一个Π形导电馈电片的第一边的自由端和所述第二巴伦结构中的一个Π形导电馈电片的第一边的自由端与所述合路装置的第一信号线连接;所述第一巴伦结构中的另一个Π形导电馈电片的第一边和所述第二巴伦结构中另一个Π形导电馈电片的第一边与所述合路装置的第二信号线连接,其中,所述第一边和第三边均包含相对设置的近端和自由端,所述近端为与所述第二边相连的一端,所述自由端为 未与所述第二边相连的一端。
  9. 根据权利要求1或8任意一项所述的馈电结构,其特征在于,所述第一巴伦结构和所述第二巴伦结构均包括水平部和垂直部,所述水平部和垂直部构成T型,所述水平部和垂直部包括间隔设置的两个公共信号地。
  10. 一种天线辐射系统,其特征在于,包括权利要求1-9任意一项所述的馈电结构,以及四个辐射器;
    其中,所述第一巴伦结构和所述第二巴伦结构中,每个巴伦结构的公共信号地层中的公共信号地包括相对设置的自由端和近端,所述每个公共信号地的自由端均与一个辐射器连接,所述四个辐射器中每两个相邻的辐射器正交设置;其中,近端是指两个公共信号地相互靠近的一端。
  11. 根据权利要求10所述的天线辐射系统,其特征在于,当所述第一巴伦结构和所述第二巴伦结构均包括水平部和垂直部时,所述水平部和垂直部构成T型,所述水平部和垂直部包括间隔设置的两个公共信号地,位于水平部内的两个公共信号地中,每个公共信号地包括相对设置的自由端和近端,所述四个辐射器分别为第一巴伦结构和所述第二巴伦结构中每个公共信号地的自由端沿与所述垂直部垂直方向按照预设长度的延伸,其中,所述预设长度为输入信号工作频段对应波长的四分之一。
  12. 根据权利要求10或11所述的天线辐射系统,其特征在于,每个所述辐射器的长度为输入信号工作频段对应波长的四分之一。
PCT/CN2016/100941 2015-12-23 2016-09-29 一种馈电结构和天线辐射系统 WO2017107612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510980451.0A CN105490006B (zh) 2015-12-23 2015-12-23 一种馈电结构和天线辐射系统
CN201510980451.0 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017107612A1 true WO2017107612A1 (zh) 2017-06-29

Family

ID=55676844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100941 WO2017107612A1 (zh) 2015-12-23 2016-09-29 一种馈电结构和天线辐射系统

Country Status (2)

Country Link
CN (1) CN105490006B (zh)
WO (1) WO2017107612A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490006B (zh) * 2015-12-23 2018-07-13 西安华为技术有限公司 一种馈电结构和天线辐射系统
CN108155473B (zh) * 2016-12-06 2024-05-14 普罗斯通信技术(苏州)有限公司 馈电结构及基站天线
CN110534924B (zh) 2019-08-16 2021-09-10 维沃移动通信有限公司 天线模组和电子设备
CN110444870B (zh) * 2019-10-09 2020-01-03 华南理工大学 基站、宽带双极化滤波磁电偶极子天线及其辐射单元
CN115706315A (zh) * 2021-08-10 2023-02-17 华为技术有限公司 天线装置及通信设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918502U (zh) * 2010-12-07 2011-08-03 南京恩瑞特实业有限公司 采用带状线结构的宽带高隔离双极化天线单元
CN102800965A (zh) * 2012-07-23 2012-11-28 电子科技大学 一种宽带宽波束双极化偶极子天线
JP5309193B2 (ja) * 2011-07-19 2013-10-09 電気興業株式会社 偏波ダイバーシチアレイアンテナ装置
CN204243186U (zh) * 2014-11-06 2015-04-01 南京澳博阳射频技术有限公司 一种基站天线超宽频辐射单元
US20150263435A1 (en) * 2014-03-17 2015-09-17 Quintel Technology Limited Compact antenna array using virtual rotation of radiating vectors
CN105490006A (zh) * 2015-12-23 2016-04-13 西安华为技术有限公司 一种馈电结构和天线辐射系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918502U (zh) * 2010-12-07 2011-08-03 南京恩瑞特实业有限公司 采用带状线结构的宽带高隔离双极化天线单元
JP5309193B2 (ja) * 2011-07-19 2013-10-09 電気興業株式会社 偏波ダイバーシチアレイアンテナ装置
CN102800965A (zh) * 2012-07-23 2012-11-28 电子科技大学 一种宽带宽波束双极化偶极子天线
US20150263435A1 (en) * 2014-03-17 2015-09-17 Quintel Technology Limited Compact antenna array using virtual rotation of radiating vectors
CN204243186U (zh) * 2014-11-06 2015-04-01 南京澳博阳射频技术有限公司 一种基站天线超宽频辐射单元
CN105490006A (zh) * 2015-12-23 2016-04-13 西安华为技术有限公司 一种馈电结构和天线辐射系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHEN QI KUAI: "Abstract, II. Antenna Configuration", MICROWAVE CONFERENCE PROCEEDINGS, 2005. APMC 2005.ASIA-PACIFIC CONFERENCE PROCEEDINGS, vol. 4, 31 December 2005 (2005-12-31) *

Also Published As

Publication number Publication date
CN105490006B (zh) 2018-07-13
CN105490006A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2017107612A1 (zh) 一种馈电结构和天线辐射系统
JP5309193B2 (ja) 偏波ダイバーシチアレイアンテナ装置
US20200321712A1 (en) Dual polarized antenna and dual polarized antenna assembly comprising same
JP6073713B2 (ja) アンテナ装置
CN108028460B (zh) 辐射装置
WO2014119141A1 (ja) アンテナ装置
US9515392B2 (en) High gain variable beam WI-FI antenna
US9923276B2 (en) Dipole type radiator arrangement
JP2005039754A (ja) アンテナ装置
WO2021000098A1 (zh) 天线和电子设备
CN109037919A (zh) 振子组件、振子单元及天线
BR112021016210A2 (pt) Aparelho de radiação e antena de matriz multibanda
TWI523325B (zh) 具高隔離度之天線系統
JP6027709B2 (ja) Mimoアンテナ及び電子装置
KR101591920B1 (ko) 편전 효과를 이용한 지향성 미모안테나
TWI625000B (zh) 天線結構及具有該天線結構的無線通訊裝置
JP5078732B2 (ja) アンテナ装置
TW201448350A (zh) 天線結構及具有該天線結構的無線通訊裝置
KR20210028709A (ko) 합 및 차 모드 안테나 및 통신 제품
TWI539675B (zh) Dual Directional Multiple Input Multiple Output Antenna Units and Their Arrays
KR102109621B1 (ko) 3차원 방송 안테나
JPS6369301A (ja) 偏波共用平面アンテナ
JP6086383B2 (ja) 間引き給電型アレイアンテナ装置
CN214153189U (zh) 双极化板状天线
JP2582964B2 (ja) 平面アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877423

Country of ref document: EP

Kind code of ref document: A1