WO2017107401A1 - 一种直流母线电压纹波补偿方法和光伏逆变器 - Google Patents

一种直流母线电压纹波补偿方法和光伏逆变器 Download PDF

Info

Publication number
WO2017107401A1
WO2017107401A1 PCT/CN2016/085414 CN2016085414W WO2017107401A1 WO 2017107401 A1 WO2017107401 A1 WO 2017107401A1 CN 2016085414 W CN2016085414 W CN 2016085414W WO 2017107401 A1 WO2017107401 A1 WO 2017107401A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus
battery
conversion module
mos switch
voltage signal
Prior art date
Application number
PCT/CN2016/085414
Other languages
English (en)
French (fr)
Inventor
卢雄伟
曾春保
陈聪鹏
陈启建
Original Assignee
厦门科华恒盛股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门科华恒盛股份有限公司 filed Critical 厦门科华恒盛股份有限公司
Publication of WO2017107401A1 publication Critical patent/WO2017107401A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a voltage ripple compensation method, in particular to a DC bus voltage ripple compensation method applied to a photovoltaic inverter, in particular to a DC bus voltage ripple compensation method and a photovoltaic inverter.
  • DC bus voltage ripple is an important indicator related to improving the THD of the inverter voltage and extending the life of the DC bus capacitor; however, since the DC bus voltage is boosted by PV, The indicators generated by the combination of the three modules of the transformer and the battery charge and discharge, therefore, the DC bus voltage ripple compensation has always been a difficult point of system control.
  • the DC bus voltage ripple is mainly caused by the fact that the DC input power and AC output power of the bus capacitor cannot be matched in real time. That is, when the inverter voltage is near the zero crossing point, the instantaneous output power of the AC side is far. Less than the input power on the DC side, the ripple voltage is at the peak position; when the inverter voltage is near the peak or valley position, the instantaneous output power of the AC side is much larger than the input power of the DC side, and the ripple voltage is at the valley position. .
  • DC bus voltage ripple compensation most of them focus on the optimization design of boost inductor and bus capacitor. This kind of method, although it can effectively solve this problem to some extent, is not very satisfactory considering the adaptability of the system.
  • the object of the present invention is to provide a DC bus voltage ripple compensation method and a photovoltaic inverter for the deficiencies of the prior art.
  • the technical solution of the present invention is: a DC bus voltage ripple compensation method, which provides a photovoltaic module, which in turn passes through a DC/DC conversion module, a bus capacitor, and a single-phase DC/AC.
  • the inverter module is connected, and further provides a DC/DC bidirectional conversion module connected to the DC/DC conversion module and a storage battery connected to the DC/DC bidirectional conversion module.
  • the method is specifically implemented as follows:
  • the DC/DC bidirectional conversion module is composed of an inductor, a first MOS switch tube S1, and a second MOS switch tube S2, one end of the inductor is connected to the battery positive pole, and the other end of the inductor is Connected to the collector of the first MOS switch S1 and the emitter of the second MOS switch S2, the emitters of the first MOS switch S1 are respectively connected to the battery negative, the negative DC bus, and the second MOS switch The collector of the tube S2 is connected to the positive DC bus.
  • the second MOS switch S2 when the DC bus low frequency ripple voltage signal is in the positive half cycle, the second MOS switch S2 is controlled to be in an off state, and the first MOS switch S1 is controlled to be turned on/off to charge the battery;
  • the first MOS switch S1 When the DC bus low frequency ripple voltage signal is in the negative half cycle, the first MOS switch S1 is controlled to be in an off state, the second MOS switch S2 is controlled to be turned on/off, and the battery is discharged.
  • the real-time sampling DC bus low frequency ripple voltage signal is implemented as follows:
  • the DC bus voltage signal is sampled in real time, and the DC bus voltage signal is passed through a low pass filter to subtract the reference voltage value.
  • the reference voltage value is an average of a bus voltage.
  • the low pass filter is configured to filter the high frequency ripple component of the DC bus voltage signal greater than or equal to 100 Hz to obtain a DC bus low frequency ripple voltage signal.
  • the current value i bat of the battery is sampled in real time, and the phase value ⁇ of the DC bus low frequency ripple voltage peak i amp and the DC bus low frequency ripple voltage is obtained;
  • the controller, the PI controller generates a PWM signal, and the PWM signal controls the operation of the first MOS switch tube via a driving circuit, so that the battery is in the charging mode.
  • the current value i bat of the battery is sampled in real time, and the phase value ⁇ of the DC bus low frequency ripple voltage peak i amp and the DC bus low frequency ripple voltage is obtained;
  • the PI controller generates a PWM signal, and the PWM signal controls the operation of the second MOS switch via a driving circuit to make the battery in the discharge mode.
  • the invention also provides a photovoltaic inverter, comprising a photovoltaic component, wherein the photovoltaic component is sequentially connected via a DC/DC conversion module, a bus capacitor and a single-phase DC/AC inverter module, and further comprises a a DC/DC bidirectional conversion module connected to the DC/DC conversion module, a battery connected to the DC/DC bidirectional conversion module, and a control module, wherein the control module adopts the DC bus voltage ripple compensation described above. method.
  • the present invention has the following beneficial effects:
  • the digital control method is used to compensate the bus voltage ripple, which reduces the capacitance of the bus capacitance, thereby saving system cost;
  • the digital control method can be used to adapt to different load levels to effectively compensate the DC bus voltage ripple, thereby improving the stability of the system.
  • FIG. 1 is a photovoltaic grid-connecting device for a DC bus voltage ripple compensation method in an embodiment.
  • FIG. 2 is a DC/DC bidirectional converter in a photovoltaic grid-connector in an embodiment.
  • FIG. 3 is a schematic diagram of a method in accordance with an embodiment of the present invention.
  • a DC bus voltage ripple compensation method of the present invention provides a photovoltaic module, which is sequentially connected to a single-phase DC/AC inverter module via a DC/DC conversion module and a bus capacitor.
  • a DC/DC bidirectional conversion module connected to the DC/DC conversion module and a storage battery connected to the DC/DC bidirectional conversion module are further provided. The method is specifically implemented as follows:
  • the DC/DC bidirectional conversion module comprises an inductor, a first MOS switch tube S1, and a second
  • the MOS switch tube S2 is configured to have one end of the inductor connected to the battery positive pole, and the other end of the inductor is respectively connected to the collector of the first MOS switch tube S1 and the emitter of the second MOS switch tube S2, the first MOS The emitter of the switch S1 is connected to the negative pole of the battery and the negative DC bus, and the collector of the second MOS switch S2 is connected to the positive DC bus.
  • the second MOS switch S2 when the DC bus low frequency ripple voltage signal is in the positive half cycle, the second MOS switch S2 is controlled to be in an off state, and the first MOS switch S1 is controlled to be turned on/off to the battery.
  • the first MOS switch S1 When the DC bus low frequency ripple voltage signal is in the negative half cycle, the first MOS switch S1 is controlled to be in an off state, the second MOS switch S2 is controlled to be turned on/off, and the battery is discharged.
  • the real-time sampling DC bus low frequency ripple voltage signal is implemented as follows:
  • the DC bus voltage signal is sampled in real time, and the DC bus voltage signal is passed through a low pass filter and subtracted from the reference voltage value (the reference voltage value is the average of the bus voltage).
  • the low-pass filter is configured to filter the high-frequency ripple component of the DC bus voltage signal greater than or equal to 100 Hz to obtain a DC bus low-frequency ripple voltage signal.
  • the current value i bat of the real-time sampling battery is obtained, and the phase value ⁇ of the DC bus low-frequency ripple voltage peak i amp and the DC bus low-frequency ripple voltage is obtained;
  • the controller, the PI controller generates a PWM signal, and the PWM signal controls the operation of the first MOS switch tube via a driving circuit, so that the battery is in the charging mode.
  • the current value i bat of the real-time sampling battery is obtained, and the phase value ⁇ of the DC bus low-frequency ripple voltage peak i amp and the DC bus low-frequency ripple voltage is obtained;
  • the PI controller generates a PWM signal, and the PWM signal controls the operation of the second MOS switch via a driving circuit to make the battery in the discharge mode.
  • the present invention further provides a photovoltaic inverter comprising a photovoltaic component, wherein the photovoltaic component is sequentially connected to a single-phase DC/AC inverter module via a DC/DC conversion module and a bus capacitor.
  • the method further includes a DC/DC bidirectional conversion module connected to the DC/DC conversion module, a battery connected to the DC/DC bidirectional conversion module, and a control module, wherein the control module adopts the DC as described above. Bus voltage ripple compensation method.
  • a DC bus voltage ripple compensation method is applied to a photovoltaic single-phase off-grid inverter, wherein a photovoltaic single-phase off-grid inverter includes a photovoltaic component, and the photovoltaic component is sequentially passed through a DC/DC conversion module,
  • the bus capacitor is connected to a single-phase inverter module, and further includes a DC/DC bidirectional conversion module and a battery.
  • FIG. 1 The specific block diagram is as shown in FIG. 1:
  • the DC bus voltage ripple compensation method is implemented as follows:
  • the DC bus voltage signal is sampled in real time, and the DC bus voltage signal is passed through a low pass filter to subtract the reference voltage value.
  • the reference voltage value may be a set value or may be an average value of the DC bus voltage.
  • the DC/DC bidirectional conversion module When the DC bus low frequency ripple voltage signal is in the positive half cycle, the DC/DC bidirectional conversion module is controlled to operate in the buck charging mode to charge the battery. When the DC bus low frequency ripple voltage signal is in the negative half cycle, the DC/DC bidirectional conversion module is controlled. It is operated in the boost discharge mode and the battery is discharged.
  • a DC bus voltage ripple compensation method is applied to a photovoltaic single-phase off-grid inverter, wherein a photovoltaic single-phase off-grid inverter includes a photovoltaic component, and the photovoltaic component is sequentially passed through a BOOST boosting module and a busbar
  • the capacitor is connected to a single-phase DC/AC inverter module, and further includes a DC/DC bidirectional conversion module and a battery. Further, as shown in FIG. 2, the DC/DC bidirectional conversion module is an inductor and a first MOS switch tube.
  • the inductor is connected to the battery positive pole, and the other end of the inductor is respectively connected to the collector of the first MOS switch tube S1 and the emitter of the second MOS switch tube S2.
  • the emitter of the first MOS switch S1 is connected to the battery and the negative DC bus, and the collector of the second MOS switch S2 is connected to the positive DC bus.
  • the DC bus voltage signal is sampled in real time, and the DC bus voltage signal is passed through a low pass filter to subtract the reference voltage value.
  • the reference voltage value may be a set value, or may be a value of a DC bus voltage. average value.
  • the low-pass filter is configured to filter the high-frequency ripple component of the DC bus voltage signal greater than or equal to 100 Hz, and obtain a DC bus low-frequency ripple voltage signal.
  • the second MOS switch S2 When the DC bus low frequency ripple voltage signal is in the positive half cycle, the second MOS switch S2 is controlled to be in an off state, and the first MOS switch S1 is controlled to be turned on/off to charge the battery;
  • the first MOS switch S1 When the DC bus low frequency ripple voltage signal is in the negative half cycle, the first MOS switch S1 is controlled to be in an off state, the second MOS switch S2 is controlled to be turned on/off, and the battery is discharged.
  • the first MOS switch tube S1 is controlled to be turned on/off to charge the battery, and the specific implementation manner is as follows:
  • the PI controller generates a PWM signal, and the PWM signal controls the operation of the first MOS switch via a driving circuit to make the battery in the charging mode.
  • the second MOS switch S2 is controlled to be turned on/off, and the battery is discharged.
  • the first MOS switch S1 When the DC bus low frequency ripple voltage signal is in the negative half cycle, the first MOS switch S1 is controlled to be in an off state, and the current is given.
  • i ref i amp ⁇ sin ⁇ is compared with the current value ibat of the battery and then passes through a PI controller.
  • the PI controller generates a PWM signal, and the PWM signal controls the second MOS switch tube to operate in a discharge mode. .
  • the DC/DC conversion module is not limited to the BOOST boost module, and may also be a BUCK buck module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种直流母线电压纹波补偿方法和光伏逆变器。该方法提供一光伏组件,光伏组件依次经DC/DC变换模块、母线电容与单相DC/AC逆变模块连接;还提供一与DC/DC变换模块连接的DC/DC双向变换模块、一与DC/DC双向变换模块连接的蓄电池;实时采样直流母线低频纹波电压信号;当直流母线低频纹波电压信号处于正半周,控制DC/DC双向变换模块使其工作于降压充电模式给蓄电池充电;当直流母线低频纹波电压信号处于负半周,控制DC/DC双向变换模块使其工作于升压放电模式,蓄电池放电。该方法解决了单相离网型光伏逆变器普遍存在的直流母线电压纹波较大的问题,减小了流过电容的纹波电流,降低了系统损耗,以及延长了电容的使用寿命。

Description

一种直流母线电压纹波补偿方法和光伏逆变器 技术领域
本发明涉及一种电压纹波补偿方法,特别是涉及应用于光伏逆变器直流母线电压纹波补偿方法,具体为一种直流母线电压纹波补偿方法和光伏逆变器。
背景技术
随着我国光伏发电系统的迅速发展,尤其是光伏屋顶计划的实施,国内对离网型光伏逆变器的需求将越来越大。对于离网型光伏发电系统而言,直流母线电压纹波是一个重要的指标,关系到改善逆变电压的THD和延长直流母线电容的寿命;然而,由于直流母线电压是由PV升压、逆变器和蓄电池充放电三个模块共同作用而产生的指标,因此,关于直流母线电压纹波补偿一直以来都是系统控制的难点。
单相光伏逆变器,其直流母线电压纹波主要是由于母线电容的直流输入功率和交流输出功率无法实时匹配造成的,即当逆变电压在过零点附近时,交流侧的瞬时输出功率远小于直流侧的输入功率,故纹波电压位于波峰位置;当逆变电压在波峰或波谷位置附近时,交流侧的瞬时输出功率远大于直流侧的输入功率,此时纹波电压则位于波谷位置。现有技术中在处理直流母线电压纹波补偿问题时,大多集中在boost电感和母线电容的优化设计上。这类方法,虽然在一定程度上可以有效的解决此问题,但是考虑到系统的自适应性时却不是很理想。
发明内容
本发明的目的在于针对现有技术的不足,提供一种直流母线电压纹波补偿方法和光伏逆变器。
为实现上述目的,本发明的技术方案是:一种直流母线电压纹波补偿方法,提供一光伏组件,所述光伏组件依次经一DC/DC变换模块、一母线电容与一单相DC/AC逆变模块连接,还提供一与所述DC/DC变换模块连接的DC/DC双向变换模块、一与所述DC/DC双向变换模块连接的蓄电池,所述方法,具体实现如下:
实时采样直流母线低频纹波电压信号;当直流母线低频纹波电压信号处于正半周,控制DC/DC双向变换模块使其工作于降压充电模式给蓄电池充电;当直流母线低频纹波电压信号处于负半周,控制DC/DC双向变换模块使其工作于升 压放电模式,蓄电池放电。
在本发明一实施例中,所述DC/DC双向变换模块由电感、第一MOS开关管S1、第二MOS开关管S2构成,所述电感的一端接至蓄电池正极,所述电感的另一端分别接至第一MOS开关管S1的集电极、第二MOS开关管S2的发射极,所述第一MOS开关管S1的发射极分别接至蓄电池负极、负直流母线,所述第二MOS开关管S2的集电极接至正直流母线。
在本发明一实施例中,当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,控制第一MOS开关管S1导通/关断给蓄电池充电;
当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,控制第二MOS开关管S2导通/关断,蓄电池放电。
在本发明一实施例中,所述实时采样直流母线低频纹波电压信号,具体实现方式为:
实时采样直流母线电压信号,将直流母线电压信号经过一低通滤波器后减去基准电压值。
在本发明一实施例中,所述基准电压值为母线电压平均值。
在本发明一实施例中,所述低通滤波器用于滤除直流母线电压信号大于等于100Hz的高频纹波成分,以获得直流母线低频纹波电压信号。
在本发明一实施例中,实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,将电流给定值iref=iamp·sinθ与蓄电池的电流值ibat取差值后经过一PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第一MOS开关管工作,使得蓄电池处于充电模式。
在本发明一实施例中,实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,将电流给定值iref=iamp·sinθ与蓄电池的电流值ibat取差值后经过一 PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第二MOS开关管工作,使得蓄电池处于放电模式。
本发明还提供了一种光伏逆变器,包括一光伏组件,所述光伏组件依次经一DC/DC变换模块、一母线电容与一单相DC/AC逆变模块连接,还包括一与所述DC/DC变换模块连接的DC/DC双向变换模块、一与所述DC/DC双向变换模块连接的蓄电池,还包括一控制模块,所述控制模块采用上述所述的直流母线电压纹波补偿方法。
相较于现有技术,本发明具有以下有益效果:
1)解决了单相离网型光伏逆变器普遍存在的直流母线电压纹波较大的问题,减小了流过电容的纹波电流,降低了系统损耗,以及延长了电容的使用寿命;
2)采用数字化控制方法来补偿母线电压纹波,减小了母线电容的容值,进而节约了系统成本;
3)采用数字化控制方法可以适应不同负载等级来有效地补偿直流母线电压纹波,进而提高了系统的稳定性。
附图说明
图1为实施例中一种直流母线电压纹波补偿方法的光伏并网器。
图2为实施例中光伏并网器中的DC/DC双向变换器。
图3为本发明一实施例的方法原理图。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
如图3所示,本发明一种直流母线电压纹波补偿方法,提供一光伏组件,所述光伏组件依次经一DC/DC变换模块、一母线电容与一单相DC/AC逆变模块连接,还提供一与所述DC/DC变换模块连接的DC/DC双向变换模块、一与所述DC/DC双向变换模块连接的蓄电池,所述方法,具体实现如下:
实时采样直流母线低频纹波电压信号;当直流母线低频纹波电压信号处于正半周,控制DC/DC双向变换模块使其工作于降压充电模式给蓄电池充电;当直流母线低频纹波电压信号处于负半周,控制DC/DC双向变换模块使其工作于升压放电模式,蓄电池放电。
优选的,所述DC/DC双向变换模块由电感、第一MOS开关管S1、第二 MOS开关管S2构成,所述电感的一端接至蓄电池正极,所述电感的另一端分别接至第一MOS开关管S1的集电极、第二MOS开关管S2的发射极,所述第一MOS开关管S1的发射极分别接至蓄电池负极、负直流母线,所述第二MOS开关管S2的集电极接至正直流母线。
鉴于上述DC/DC双向变换模块,优选的,当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,控制第一MOS开关管S1导通/关断给蓄电池充电;
当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,控制第二MOS开关管S2导通/关断,蓄电池放电。
优选的,所述实时采样直流母线低频纹波电压信号,具体实现方式为:
实时采样直流母线电压信号,将直流母线电压信号经过一低通滤波器后减去基准电压值(所述基准电压值为母线电压平均值)。所述低通滤波器用于滤除直流母线电压信号大于等于100Hz的高频纹波成分,以获得直流母线低频纹波电压信号。
优选的,实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,将电流给定值iref=iamp·sinθ与蓄电池的电流值ibat取差值后经过一PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第一MOS开关管工作,使得蓄电池处于充电模式。
优选的,实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,将电流给定值iref=iamp·sinθ与蓄电池的电流值ibat取差值后经过一PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第二MOS开关管工作,使得蓄电池处于放电模式。
如图1所示,本发明还提供了一种光伏逆变器,包括一光伏组件,所述光伏组件依次经一DC/DC变换模块、一母线电容与一单相DC/AC逆变模块连接, 还包括一与所述DC/DC变换模块连接的DC/DC双向变换模块、一与所述DC/DC双向变换模块连接的蓄电池,还包括一控制模块,所述控制模块采用上述所述的直流母线电压纹波补偿方法。
以下通过具体实施例讲述本发明的技术方案。
实施例1:
一种直流母线电压纹波补偿方法,应用于光伏单相离网逆变器,其中光伏单相离网逆变器,包括一光伏组件,所述光伏组件依次经一DC/DC变换模块、一母线电容与一单相逆变模块连接,还包括一DC/DC双向变换模块、蓄电池,具体框图如图1所示:
该直流母线电压纹波补偿方法,实现如下:
实时采样直流母线低频纹波电压信号:
实时采样直流母线电压信号,将直流母线电压信号经过一低通滤波器后减去基准电压值。其中,基准电压值可以为一设定值,也可以取值为直流母线电压的平均值。
当直流母线低频纹波电压信号处于正半周,控制DC/DC双向变换模块使其工作于降压充电模式给蓄电池充电,当直流母线低频纹波电压信号处于负半周,控制DC/DC双向变换模块使其工作于升压放电模式,蓄电池放电。
实施例2:
一种直流母线电压纹波补偿方法,应用于光伏单相离网逆变器,其中光伏单相离网逆变器,包括一光伏组件,所述光伏组件依次经一BOOST升压模块、一母线电容与一单相DC/AC逆变模块连接,还包括一DC/DC双向变换模块、蓄电池,进一步的,如图2所示所述DC/DC双向变换模块为一电感、第一MOS开关管S1、第二MOS开关管S2构成,所述电感的一端接至蓄电池正极,所述电感的另一端分别接至第一MOS开关管S1的集电极、第二MOS开关管S2的发射极,所述第一MOS开关管S1的发射极分别接至蓄电池、负直流母线,所述第二MOS开关管S2的集电极接至正直流母线,具体包括:
实时采样直流母线低频纹波电压信号:
实时采样直流母线电压信号,将直流母线电压信号经过一低通滤波器后减去基准电压值。其中,基准电压值可以为一设定值,也可以取值为直流母线电压的 平均值。其中,所述低通滤波器用于滤除直流母线电压信号大于等于100Hz的高频纹波成分,获得直流母线低频纹波电压信号。
当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,控制第一MOS开关管S1导通/关断给蓄电池充电;
当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,控制第二MOS开关管S2导通/关断,蓄电池放电。
其中,控制第一MOS开关管S1导通/关断给蓄电池充电,具体实现方式如下:
实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,将电流给定值iref=iamp·sinθ与蓄电池的电流值ibat取差值后经过一PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第一MOS开关管工作,使得蓄电池处于充电模式。
其中,控制第二MOS开关管S2导通/关断,蓄电池放电。
实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,将电流给定值
iref=iamp×sinθ与蓄电池的电流值ibat取差值后经过一PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第二MOS开关管工作,使得蓄电池处于放电模式。
需要说明的是DC/DC变换模块不限于BOOST升压模块,也可以是BUCK降压模块。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (9)

  1. 一种直流母线电压纹波补偿方法,提供一光伏组件,所述光伏组件依次经一DC/DC变换模块、一母线电容与一单相DC/AC逆变模块连接,还提供一与所述DC/DC变换模块连接的DC/DC双向变换模块、一与所述DC/DC双向变换模块连接的蓄电池,其特征在于:所述方法,具体实现如下:
    实时采样直流母线低频纹波电压信号;当直流母线低频纹波电压信号处于正半周,控制DC/DC双向变换模块使其工作于降压充电模式给蓄电池充电;当直流母线低频纹波电压信号处于负半周,控制DC/DC双向变换模块使其工作于升压放电模式,蓄电池放电。
  2. 根据权利要求1所述的一种直流母线电压纹波补偿方法,其特征在于:所述DC/DC双向变换模块由电感、第一MOS开关管S1、第二MOS开关管S2构成,所述电感的一端接至蓄电池正极,所述电感的另一端分别接至第一MOS开关管S1的集电极、第二MOS开关管S2的发射极,所述第一MOS开关管S1的发射极分别接至蓄电池负极、负直流母线,所述第二MOS开关管S2的集电极接至正直流母线。
  3. 根据权利要求2所述的一种直流母线电压纹波补偿方法,其特征在于:
    当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,控制第一MOS开关管S1导通/关断给蓄电池充电;
    当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,控制第二MOS开关管S2导通/关断,蓄电池放电。
  4. 根据权利要求1所述的一种直流母线电压纹波补偿方法,其特征在于:所述实时采样直流母线低频纹波电压信号,具体实现方式为:
    实时采样直流母线电压信号,将直流母线电压信号经过一低通滤波器后减去基准电压值。
  5. 根据权利要求4所述一种直流母线电压纹波补偿方法,其特征在于:所述基准电压值为母线电压平均值。
  6. 根据权利要求4或5所述一种直流母线电压纹波补偿方法,其特征在于:所述低通滤波器用于滤除直流母线电压信号大于等于100Hz的高频纹波成分,以获得直流母线低频纹波电压信号。
  7. 根据权利要求6所述一种直流母线电压纹波补偿方法,其特征在于:
    实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
    当直流母线低频纹波电压信号处于正半周,控制第二MOS开关管S2处于关断状态,将电流给定值iref=iamp·sinθ与蓄电池的电流值ibat取差值后经过一PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第一MOS开关管工作,使得蓄电池处于充电模式。
  8. 根据权利要求6所述一种直流母线电压纹波补偿方法,其特征在于,
    实时采样蓄电池的电流值ibat,获取直流母线低频纹波电压峰值iamp、直流母线低频纹波电压的相位值θ;
    当直流母线低频纹波电压信号处于负半周,控制第一MOS开关管S1处于关断状态,将电流给定值iref=iamp·sinθ与蓄电池的电流值ibat取差值后经过一PI控制器,PI控制器产生一PWM信号,PWM信号经一驱动电路控制第二MOS开关管工作,使得蓄电池处于放电模式。
  9. 一种光伏逆变器,包括一光伏组件,所述光伏组件依次经一DC/DC变换模块、一母线电容与一单相DC/AC逆变模块连接,还包括一与所述DC/DC变换模块连接的DC/DC双向变换模块、一与所述DC/DC双向变换模块连接的蓄电池,其特征在于:还包括一控制模块,所述控制模块采用权利要求1至8任一所述的直流母线电压纹波补偿方法。
PCT/CN2016/085414 2015-12-23 2016-06-12 一种直流母线电压纹波补偿方法和光伏逆变器 WO2017107401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510975737.XA CN105471238B (zh) 2015-12-23 2015-12-23 一种直流母线电压纹波补偿方法和光伏逆变器
CN201510975737.X 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017107401A1 true WO2017107401A1 (zh) 2017-06-29

Family

ID=55608652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085414 WO2017107401A1 (zh) 2015-12-23 2016-06-12 一种直流母线电压纹波补偿方法和光伏逆变器

Country Status (2)

Country Link
CN (1) CN105471238B (zh)
WO (1) WO2017107401A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546714A (zh) * 2018-12-29 2019-03-29 广州泓淮能源科技有限公司 一种户外供电基站蓄电池管理装置及方法
CN110011294A (zh) * 2019-05-05 2019-07-12 珠海格力电器股份有限公司 电压补偿电路及其控制方法和空调驱动系统
CN110571860A (zh) * 2019-11-03 2019-12-13 国网湖北省电力有限公司随州供电公司 一种维持并网光伏发电系统直流母线电压稳定的方法
CN111052582A (zh) * 2017-09-14 2020-04-21 西门子股份公司 变频器、变频器组件及其控制方法
CN111251941A (zh) * 2020-03-30 2020-06-09 科博达技术股份有限公司 一种新能源汽车的高压母线电容的预充电装置
CN111628653A (zh) * 2020-06-30 2020-09-04 德尔福科技(苏州)有限公司 双向三电平dc-dc转换器的升压、降压控制装置及方法
CN112003463A (zh) * 2020-07-30 2020-11-27 国网天津市电力公司电力科学研究院 一种单相pwm整流直流侧电压二次纹波抑制方法
CN112467770A (zh) * 2020-11-24 2021-03-09 珠海格力电器股份有限公司 光伏储能供电系统及其供电控制方法
CN112653331A (zh) * 2020-12-24 2021-04-13 漳州科华技术有限责任公司 Dcdc变换器的控制方法及终端设备
CN112865063A (zh) * 2021-01-12 2021-05-28 中铁电气化局集团有限公司 能量路由器和车辆运行控制方法、存储介质
CN113054289A (zh) * 2021-03-13 2021-06-29 山东大学 一种锂电池组内部交流加热电路、系统及加热方法
CN113162112A (zh) * 2021-04-01 2021-07-23 科华数据股份有限公司 光伏并离网系统的母线电压控制方法及光伏并离网系统
CN113193562A (zh) * 2021-04-28 2021-07-30 青岛鼎信通讯股份有限公司 一种末端低电压治理装置降压式母线补偿方法
CN113190788A (zh) * 2021-05-14 2021-07-30 浙江大学 一种自适应提取和降噪配电系统母线特征的方法和装置
CN113437892A (zh) * 2021-08-09 2021-09-24 上海弘正新能源科技有限公司 一种并机时保护直流母线电压不上冲的三电平逆变器
CN113629771A (zh) * 2021-09-06 2021-11-09 阳光电源股份有限公司 一种光伏系统和光伏关断方法
CN113726199A (zh) * 2021-09-03 2021-11-30 安徽工业大学 一种低输出纹波升压型整流器及其控制方法
CN113872209A (zh) * 2021-11-05 2021-12-31 湖州师范学院 一种消除直流母线电压采样纹波的单相光伏并网控制方法
CN114447993A (zh) * 2022-04-08 2022-05-06 深圳市首航新能源股份有限公司 一种功率控制方法、装置、控制器及光储系统
CN115051565A (zh) * 2022-07-12 2022-09-13 西安交通大学 双向半桥直流变换器并网逆变器及纹波控制方法
CN115333133A (zh) * 2022-10-14 2022-11-11 锦浪科技股份有限公司 一种储能系统控制方法、装置及储能系统
CN116505779A (zh) * 2023-05-17 2023-07-28 江苏科曜能源科技有限公司 一种单相储能装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105471238B (zh) * 2015-12-23 2018-04-24 厦门科华恒盛股份有限公司 一种直流母线电压纹波补偿方法和光伏逆变器
CN106788111B (zh) * 2016-11-28 2019-05-24 广东美芝制冷设备有限公司 电机控制系统及其的直流母线电压的补偿方法、装置
CN106899224B (zh) * 2017-05-03 2019-03-08 浙江埃菲生能源科技有限公司 一种逆变器Boost电流环矢量辅助控制方法
CN107884722B (zh) * 2017-11-29 2024-05-28 福州福光电子有限公司 一种在线分布式蓄电池组监测设备
US10404160B2 (en) * 2018-01-09 2019-09-03 AnApp Technologies Limited Auxiliary converter circuit and its method of operation
CN111162598B (zh) * 2018-11-08 2023-09-08 中车永济电机有限公司 大功率电力机车的辅助供电装置
CN114301296A (zh) * 2020-11-23 2022-04-08 华为数字能源技术有限公司 一种dc/dc变换器及纹波电压的补偿方法
CN112994105A (zh) * 2021-03-25 2021-06-18 华为技术有限公司 一种光伏发电系统、功率控制装置及储能系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071742A1 (en) * 2008-09-19 2010-03-25 General Electric Company Quasi-AC, photovoltaic module for unfolder photovoltaic inverter
CN202121514U (zh) * 2011-07-05 2012-01-18 浙江昱能光伏科技集成有限公司 消除直流输入端纹波的单相逆变器及太阳能光伏发电系统
CN102624030A (zh) * 2012-03-29 2012-08-01 东南大学 一种光伏/蓄电池混合式电流逆变型分布发电系统
CN105471238A (zh) * 2015-12-23 2016-04-06 厦门科华恒盛股份有限公司 一种直流母线电压纹波补偿方法和光伏逆变器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586762B2 (en) * 2006-12-12 2009-09-08 O2Micro International Limited Power supply circuit for LCD backlight and method thereof
BR112012006024A2 (pt) * 2009-09-18 2019-09-24 Univ Kingston controlador de circuito de energia elétrica, sistema micro-inversor, módulo fotovoltaico método para controlar um circuito de energia elétrica
CN102427293A (zh) * 2012-01-11 2012-04-25 西南交通大学 一种低输出纹波的并联功率因数校正变换控制方法及其装置
CN102437728A (zh) * 2012-01-11 2012-05-02 西南交通大学 一种利用削峰填谷消除工频纹波的功率因数校正变换方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071742A1 (en) * 2008-09-19 2010-03-25 General Electric Company Quasi-AC, photovoltaic module for unfolder photovoltaic inverter
CN202121514U (zh) * 2011-07-05 2012-01-18 浙江昱能光伏科技集成有限公司 消除直流输入端纹波的单相逆变器及太阳能光伏发电系统
CN102624030A (zh) * 2012-03-29 2012-08-01 东南大学 一种光伏/蓄电池混合式电流逆变型分布发电系统
CN105471238A (zh) * 2015-12-23 2016-04-06 厦门科华恒盛股份有限公司 一种直流母线电压纹波补偿方法和光伏逆变器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU, XIONGWEI ET AL.: "Research Inverter Bus Voltage Ripple Compensation", ELECTRONIC DESIGN ENGINEERING, vol. 23, no. 23, 5 December 2015 (2015-12-05), pages 1674 - 6236 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052582A (zh) * 2017-09-14 2020-04-21 西门子股份公司 变频器、变频器组件及其控制方法
CN111052582B (zh) * 2017-09-14 2023-08-29 西门子股份公司 变频器、变频器组件及其控制方法
CN109546714A (zh) * 2018-12-29 2019-03-29 广州泓淮能源科技有限公司 一种户外供电基站蓄电池管理装置及方法
CN110011294A (zh) * 2019-05-05 2019-07-12 珠海格力电器股份有限公司 电压补偿电路及其控制方法和空调驱动系统
CN110011294B (zh) * 2019-05-05 2024-05-24 珠海格力电器股份有限公司 电压补偿电路及其控制方法和空调驱动系统
CN110571860A (zh) * 2019-11-03 2019-12-13 国网湖北省电力有限公司随州供电公司 一种维持并网光伏发电系统直流母线电压稳定的方法
CN111251941A (zh) * 2020-03-30 2020-06-09 科博达技术股份有限公司 一种新能源汽车的高压母线电容的预充电装置
CN111251941B (zh) * 2020-03-30 2024-05-14 科博达技术股份有限公司 一种新能源汽车的高压母线电容的预充电装置
CN111628653A (zh) * 2020-06-30 2020-09-04 德尔福科技(苏州)有限公司 双向三电平dc-dc转换器的升压、降压控制装置及方法
CN112003463A (zh) * 2020-07-30 2020-11-27 国网天津市电力公司电力科学研究院 一种单相pwm整流直流侧电压二次纹波抑制方法
CN112003463B (zh) * 2020-07-30 2024-02-27 国网天津市电力公司电力科学研究院 一种单相pwm整流直流侧电压二次纹波抑制方法
CN112467770A (zh) * 2020-11-24 2021-03-09 珠海格力电器股份有限公司 光伏储能供电系统及其供电控制方法
CN112467770B (zh) * 2020-11-24 2022-12-20 珠海格力电器股份有限公司 光伏储能供电系统及其供电控制方法
CN112653331B (zh) * 2020-12-24 2022-05-10 漳州科华技术有限责任公司 Dcdc变换器的控制方法及终端设备
CN112653331A (zh) * 2020-12-24 2021-04-13 漳州科华技术有限责任公司 Dcdc变换器的控制方法及终端设备
CN112865063A (zh) * 2021-01-12 2021-05-28 中铁电气化局集团有限公司 能量路由器和车辆运行控制方法、存储介质
CN113054289A (zh) * 2021-03-13 2021-06-29 山东大学 一种锂电池组内部交流加热电路、系统及加热方法
CN113054289B (zh) * 2021-03-13 2022-11-08 山东大学 一种锂电池组内部交流加热电路、系统及加热方法
CN113162112A (zh) * 2021-04-01 2021-07-23 科华数据股份有限公司 光伏并离网系统的母线电压控制方法及光伏并离网系统
CN113193562A (zh) * 2021-04-28 2021-07-30 青岛鼎信通讯股份有限公司 一种末端低电压治理装置降压式母线补偿方法
CN113190788A (zh) * 2021-05-14 2021-07-30 浙江大学 一种自适应提取和降噪配电系统母线特征的方法和装置
CN113190788B (zh) * 2021-05-14 2023-08-18 浙江大学 一种自适应提取和降噪配电系统母线特征的方法和装置
CN113437892A (zh) * 2021-08-09 2021-09-24 上海弘正新能源科技有限公司 一种并机时保护直流母线电压不上冲的三电平逆变器
CN113437892B (zh) * 2021-08-09 2023-01-10 上海弘正新能源科技有限公司 一种并机时保护直流母线电压不上冲的三电平逆变器
CN113726199A (zh) * 2021-09-03 2021-11-30 安徽工业大学 一种低输出纹波升压型整流器及其控制方法
CN113726199B (zh) * 2021-09-03 2023-09-22 安徽工业大学 一种低输出纹波升压型整流器及其控制方法
CN113629771A (zh) * 2021-09-06 2021-11-09 阳光电源股份有限公司 一种光伏系统和光伏关断方法
CN113629771B (zh) * 2021-09-06 2024-05-14 阳光电源股份有限公司 一种光伏系统和光伏关断方法
CN113872209A (zh) * 2021-11-05 2021-12-31 湖州师范学院 一种消除直流母线电压采样纹波的单相光伏并网控制方法
CN113872209B (zh) * 2021-11-05 2023-08-15 湖州师范学院 一种消除直流母线电压采样纹波的单相光伏并网控制方法
CN114447993A (zh) * 2022-04-08 2022-05-06 深圳市首航新能源股份有限公司 一种功率控制方法、装置、控制器及光储系统
CN114447993B (zh) * 2022-04-08 2022-07-29 深圳市首航新能源股份有限公司 一种功率控制方法、装置、控制器及光储系统
CN115051565A (zh) * 2022-07-12 2022-09-13 西安交通大学 双向半桥直流变换器并网逆变器及纹波控制方法
CN115333133B (zh) * 2022-10-14 2023-02-28 锦浪科技股份有限公司 一种储能系统控制方法、装置及储能系统
CN115333133A (zh) * 2022-10-14 2022-11-11 锦浪科技股份有限公司 一种储能系统控制方法、装置及储能系统
CN116505779A (zh) * 2023-05-17 2023-07-28 江苏科曜能源科技有限公司 一种单相储能装置

Also Published As

Publication number Publication date
CN105471238A (zh) 2016-04-06
CN105471238B (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
WO2017107401A1 (zh) 一种直流母线电压纹波补偿方法和光伏逆变器
CN109194113B (zh) 具备有源功率解耦功能的功率因数校正器及其控制方法
TWI381619B (zh) 單相與三相雙重升降壓功率因數校正電路及其控制方法
CN107294389B (zh) 一种可自由换向双向dc/dc变换器及其控制方法
CN106533152B (zh) 一种提高Boost三电平变换器PF的装置及方法
US20120155141A1 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
CN110572069B (zh) 一种双向dc-ac变换器
CN105939107B (zh) 一种混合型准开关升压dc-dc变换器
CN109327158B (zh) 一种集成功率解耦和升降压功能的电流型并网逆变装置
CN111478573A (zh) 适用于单三相电网的功率因素调整架构及其控制方法
CN102447396A (zh) 高升压比变换器、太阳能逆变器与太阳能电池系统
CN211630095U (zh) 一种单相三电平Buck PFC整流器
CN115051565A (zh) 双向半桥直流变换器并网逆变器及纹波控制方法
CN102780409B (zh) 单位功率因数升降压电路
CN111431394A (zh) 一种新型降压式单相三电平无桥pfc变换器系统
CN109951098B (zh) 一种快速隔离断路器及其控制算法
CN104780692A (zh) 一种单级无桥双Boost与Flyback集成的LED驱动电路
Burlaka et al. Bidirectional single stage isolated DC-AC converter
CN207720041U (zh) 离并网市电光伏电池一体化逆变器
TWI551024B (zh) 交流-直流電力轉換裝置及其控制方法
CN100377481C (zh) 具有三相功率因数校正的集成变换装置
CN203911800U (zh) 一种高频隔离型光伏逆变器
CN211959064U (zh) 一种新型非隔离Buck PFC变换器系统
CN102769394B (zh) 单相可控整流电路
CN116317499A (zh) 基于飞跨电容型三电平boost的单相逆变器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877214

Country of ref document: EP

Kind code of ref document: A1