WO2017107303A1 - 一种新型一体化超级电容器防爆阀结构及其制作方法 - Google Patents
一种新型一体化超级电容器防爆阀结构及其制作方法 Download PDFInfo
- Publication number
- WO2017107303A1 WO2017107303A1 PCT/CN2016/074567 CN2016074567W WO2017107303A1 WO 2017107303 A1 WO2017107303 A1 WO 2017107303A1 CN 2016074567 W CN2016074567 W CN 2016074567W WO 2017107303 A1 WO2017107303 A1 WO 2017107303A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- explosion
- proof
- proof valve
- membrane
- supercapacitor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000004880 explosion Methods 0.000 title abstract description 14
- 239000003990 capacitor Substances 0.000 title abstract description 6
- 239000012528 membrane Substances 0.000 claims abstract description 34
- 238000002347 injection Methods 0.000 claims abstract description 30
- 239000007924 injection Substances 0.000 claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 230000006378 damage Effects 0.000 claims description 11
- 239000003792 electrolyte Substances 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 230000008595 infiltration Effects 0.000 claims description 4
- 238000001764 infiltration Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 241001671982 Pusa caspica Species 0.000 claims description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 2
- 238000003754 machining Methods 0.000 abstract 1
- 239000000178 monomer Substances 0.000 description 6
- 238000004146 energy storage Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/14—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
- H01G11/18—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention relates to the technical field of electronic components, in particular to a novel integrated supercapacitor explosion-proof valve structure and a manufacturing method thereof.
- Supercapacitors are new energy storage devices with high specific power, long life and relatively high energy density. It has important applications in the fields of electronic products, new energy vehicles, new energy (solar energy, wind energy) / smart grid energy storage. Cylindrical supercapacitors have a higher energy density and lower internal resistance and have unique advantages in transportation applications.
- the hard-shell package structure of most supercapacitors is designed to avoid excessive temperature during use, causing excessive internal pressure to cause monomer explosion, which is at a suitable position on the surface of the unit, such as a housing or a pole cover.
- the upper part is processed to a certain degree of weakness.
- the weak part cracks and swells, thereby avoiding a greater danger.
- the explosion-proof valve and the liquid inlet hole are integrated on one pole cover. It is still rare to share a liquid injection hole. It is possible to accurately control the structure of the explosion-proof valve, and it is still difficult to achieve different levels of explosion-proof pressure and explosion-proof consistency.
- the invention is directed to the structure of most cylindrical supercapacitors, avoiding the internal temperature being too high during use, causing the internal air pressure to be too large and exploding, posing a certain hidden danger to the safety of the product.
- the problem is to provide a new integrated supercapacitor explosion-proof valve structure and a manufacturing method thereof, which are convenient to process, convenient to use, and adjustable in explosion-proof pressure.
- a new integrated supercapacitor explosion-proof valve structure including a pole cover, a liquid injection hole, an explosion-proof valve, an explosion-proof membrane and a sealing ring, and a circular hole is processed on the pole cover, and the liquid injection hole and the explosion-proof valve are shared.
- the round hole and the round hole can be used for multiple actions of liquid injection and pressure relief, and the explosion-proof valve has an explosion-proof membrane on the valve cover.
- the explosion-proof valve can be used as a sealed bonnet and provides an explosion-proof effect.
- a seal ring is provided at the connection between the explosion-proof valve and the round hole.
- the outermost end of the bonnet of the explosion-proof valve is provided with a barbed structure to protect and protect the explosion-proof membrane.
- the integrated supercapacitor explosion-proof valve structure can be applied to cylindrical or square hard shells.
- the integrated supercapacitor explosion-proof valve structure adjusts the explosion-proof pressure of 5-20Kg by adjusting the thickness of the explosion-proof membrane by 10-50um.
- a novel integrated supercapacitor explosion-proof valve structure manufacturing method the specific steps of the manufacturing method are as follows:
- the invention has the advantages of:
- the injection hole and the explosion-proof valve share a circular hole, and the round hole can perform multiple functions of liquid injection and pressure relief.
- the integrated structure simplifies the design of the pole cover and saves manufacturing cost;
- the thickness of the explosion-proof membrane can be controlled. When the temperature inside the supercapacitor rises and the air pressure increases to a certain extent, the air pressure overcomes the explosion-proof membrane at the outer end of the valve cover, which acts as a pressure relief and temperature drop. This design makes the explosion-proof level Controllable and consistent;
- Figure 1 is a schematic view of the structure of the present invention
- the purpose of the present invention is mainly for the structure of most cylindrical supercapacitors.
- the internal air pressure is too large and there is a danger of explosion.
- Most of the current options are to make weak processing on the cylindrical structure. The part is such that it can relieve the pressure inside the capacitor, and reduce the damage and loss.
- the monomer may burst in advance or may not play the purpose of explosion-proof, which poses certain hidden dangers to the safety of the product.
- the invention simplifies the structure of the cylindrical outer casing, and the thickness of the explosion-proof valve can be precisely controlled (10-50 ⁇ m), thereby accurately controlling the explosion-proof pressure, and processing a circular hole of an appropriate size on the pole cover, which can be used for liquid injection And pressure relief multiple effects.
- the pole cover, the liquid injection hole and the explosion-proof valve of the explosion-proof valve are concentrated on one pole cover, and the injection hole and the explosion-proof valve share one hole, which is a structurally simple and simple structure design.
- the injection hole functions as a liquid injection, and then the injection hole is sealed with an explosion-proof valve and a sealing ring to prevent electrolyte leakage and water infiltration.
- the internal air pressure of the monomer will increase.
- the excessive pressure will break the explosion-proof valve film on the explosion-proof valve, and the internal pressure of the monomer will be released in time to relieve pressure. And the purpose of cooling.
- the thickness of the explosion-proof membrane can be made into explosion-proof membranes (10-50um) of different thickness according to different battery core design and working conditions, and the explosion-proof pressure of 5-20Kg can be accurately achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
本发明涉及电子元器件技术领域,具体来说是一种新型一体化超级电容器防爆阀结构及其制造方法,包括极盖、注液孔、防爆阀、防爆膜和密封圈。在极盖上加工一个圆孔,注液孔和防爆阀共用所述的圆孔,圆孔能做注液和泄压多重作用,所述防爆阀的阀盖上设有防爆膜。本实用新型同现有技术相比,其优点在于:1.注液孔和防爆阀共用圆孔,圆孔能做注液和泄压多重作用,该一体化的结构简化了极盖的设计,节省了制造成本;2.通过调节防爆膜厚度,使得防爆级别可控,一致性好;3.适用范围广,不仅仅适用于超级电容器,同时适用于动力锂离子电池,不仅仅适用于圆柱形,同时适用于方形等硬壳结构。
Description
本发明涉及电子元器件技术领域,具体来说是一种新型一体化超级电容器防爆阀结构及其制作方法。
超级电容器是一种具有高比功率、长寿命、相对较高能量密度的新型储能器件。在电子产品、新能源汽车、新能源(太阳能、风能)/智能电网储能等领域有重要的应用。圆柱形超级电容器具有更高的能量密度和更低的内阻,在交通应用领域具有独特的优势。
目前,大多数超级电容器的硬壳封装结构,为了避免在使用过程中温度过高,造成内部气压过大而引起单体爆炸,都在单体表面适当的位置上,如壳体上或者极盖上加工具有一定薄弱程度的部位。当电容器结构内部气压达到一定程度时,薄弱部位开裂而泻压,从而避免带来更大的危险。然而,在实际操作中,很难保证外壳薄弱部位加工的精度,很难确保电容器在合适的温度下爆裂,从而起不到防爆和减少危害的目的。同时,目前将防爆阀和入液孔整合在一个极盖上,共用一个注液孔仍然是少见的,能够精确控制防爆阀结构,达到不同级别的防爆压力及防爆的一致性仍然困难。
[发明内容]
本发明是针对大多数圆柱形超级电容器的结构,避免在使用过程中内部温度过高,造成内部气压太大而具有爆炸的危险,给产品的安全性造成一定隐患
的问题,提供一种加工方便、使用方便、防爆压力可调可控的新型一体化超级电容器防爆阀结构及其制作方法。
为了实现上述目的,设计一种新型一体化超级电容器防爆阀结构,包括极盖、注液孔、防爆阀、防爆膜和密封圈,在极盖上加工一个圆孔,注液孔和防爆阀共用所述的圆孔,圆孔能做注液和泄压多重作用,所述防爆阀的阀盖上设有防爆膜。
防爆阀能做密封的阀盖,又能提供防爆作用。
防爆阀与圆孔连接处设有密封圈。
防爆阀的阀盖最外端设有一个倒刺结构,对防爆膜进行保护及安全防护。
一体化超级电容器防爆阀结构能应用于圆柱形或方形硬壳。
一体化超级电容器防爆阀结构通过调整防爆膜的厚度10-50um,来调整5-20Kg的防爆压力。
一种新型一体化超级电容器防爆阀结构的制作方法,该制作方法具体步骤如下:
a.在超级电容器的极盖上加工一个圆孔,作为注液孔和泄压孔;
b.通过注液孔注入电解液;
c.用防爆阀和密封圈将注液孔封住,防止电解液漏出和水的渗入;
d.在防爆阀的阀盖上薄弱圆形防爆膜,根据PV=nRT方程、不同的电芯设计及使用工况,计算出超级电容器内部承受的压力,精确加工不同厚度的防爆膜;
e.在阀盖的最外端装设倒刺结构,防止在运输、使用过程中外力对防爆膜造成损坏以及减少防爆膜打开后对外界带来的伤害。
本发明同现有技术相比,其优点在于:
1.注液孔和防爆阀共用圆孔,圆孔能做注液和泄压多重作用,该一体化的结构简化了极盖的设计,节省了制造成本;
2.防爆膜厚度可控,当超级电容器内部的温度升高,气压增大到一定程度时,气压克服了阀盖外端的防爆膜,起到泄压、降温的作用,这一设计使得防爆级别可控,一致性好;
3.适用范围广,不仅仅适用于超级电容器,同时使用于锂离子电池,不仅仅适用于圆柱形,同时适用于方形等其他硬壳结构;
4.在阀盖最外端有一个倒刺结构,防止在运输、使用过程中外力对防爆膜造成损坏,同时可以减缓防爆膜在冲出时对外界的危害。
图1是本发明的结构示意图;
图中:1.极盖 2.注液孔 3.防爆阀 4.防爆膜 5.密封圈。
下面结合附图对本发明作进一步说明,这种结构和原理对本专业的人来说是非常清楚的。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的目的主要是针对大多数圆柱形超级电容器的结构,为了避免在使用过程中内部温度过高,造成内部气压太大而具有爆炸的危险,目前大多的选择是在圆柱结构上加工出薄弱部位,使得其能够在电容器内部能量不是太时泄压,减少危害及损失。然而,在实际过程中,很难做到精确泄压,单体或者提前爆裂或者不能起到防爆目的,给产品的安全性造成一定隐患。本发明简化了圆柱形外壳的结构,防爆阀的厚度可以精确控制(10-50μm),进而能够精确控制防爆压力,并在极盖上加工出适当大小的圆孔,这个圆孔可做注液和泄压多重作用。防爆阀既可做密封的阀盖,又能提供精确的防爆作用,特点是在阀盖上集成了一个凸起的薄弱圆形防爆膜。根据PV=nRT方程,根据不同的设计方案和使用工况,可以计算出整个单体内部可以承受的压力,可以精确加工不同厚度的防爆膜。这样可以起到不同的防爆作用,达到不同防爆级别,具有很好的防爆一致性,同时,在阀盖最外端有一个倒刺结构,可以防止在运输、使用过程中外力对防爆膜造成损坏,同时可以减缓防爆膜在冲出时对外界的危害。
参见图1,本防爆阀中极盖、注液孔、防爆阀集中在一个极盖上,注液孔和防爆阀共用一个孔,这是一种结构精简,简单易行的结构设计。在注入电解液时,注液孔起到注液作用,后来用防爆阀和密封圈将注液孔封住,防止电解液漏出和水的渗入。在使用过程中,由于单体温度升高,会导致单体内部气压提升,此时过高的压力会将防爆阀上的防爆阀膜冲破,将单体内部压力及时泄出,起到泄压和降温的目的。这种防爆膜厚度可以根据不同的电芯设计和使用工况,制作出不同厚度的防爆膜(10-50um),可以精确做到5-20Kg的防爆压力。
本超级电容器防爆阀结构的制作方法具体步骤如下:
a.在极盖上加工一个圆孔,作为注液孔和泄压孔;
b.通过注液孔注入电解液;
c.用防爆阀和密封圈将注液孔封住,防止电解液漏出和水的渗入;
d.在防爆阀的阀盖上薄弱圆形防爆膜,根据PV=nRT方程、不同的电芯设计及使用工况,计算出超级电容器内部承受的压力,精确加工不同厚度的防爆膜;
e.在阀盖的最外端装设倒刺结构,防止在运输、使用过程中外力对防爆膜造成损坏以及减少防爆膜打开后对外界带来的伤害。
Claims (7)
- 一种新型一体化超级电容器防爆阀结构,包括极盖、注液孔、防爆阀、防爆膜和密封圈,其特征在于在极盖上加工一个圆孔,注液孔和防爆阀共用所述的圆孔,圆孔能做注液和泄压多重作用,所述防爆阀的阀盖上设有防爆膜。
- 如权利要求1所述的一种新型一体化超级电容器防爆阀结构,其特征在于防爆阀能做密封的阀盖,又能提供防爆作用。
- 如权利要求1所述的一种新型一体化超级电容器防爆阀结构,其特征在于防爆阀与圆孔连接处设有密封圈。
- 如权利要求1所述的一种新型一体化超级电容器防爆阀结构,其特征在于防爆阀的阀盖最外端设有一个倒刺结构,对防爆膜进行保护及安全防护。
- 如权利要求1所述的一种新型一体化超级电容器防爆阀结构,其特征在于一体化超级电容器防爆阀结构能应用于圆柱形或方形硬壳。
- 如权利要求1所述的一种新型一体化超级电容器防爆阀结构,其特征在于一体化超级电容器防爆阀结构通过调整防爆膜的厚度10-50um,来调整5-20Kg的防爆压力。
- 一种如权利要求1所述的新型一体化超级电容器防爆阀结构的制作方法,其特征在于该制作方法具体步骤如下:a.在超级电容器的极盖上加工一个圆孔,作为注液孔和泄压孔;b.通过注液孔注入电解液;c.用防爆阀和密封圈将注液孔封住,防止电解液漏出和水的渗入;d.在防爆阀的阀盖上薄弱圆形防爆膜,根据PV=nRT方程、不同的电芯设计及使用工况,计算出超级电容器内部承受的压力,精确加工不同厚度的防爆膜;e.在阀盖最外端装设倒刺结构,防止在运输、使用过程中外力对防爆膜造成损坏以及减少防爆膜打开后对外界带来的伤害。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510969480.7A CN105428078A (zh) | 2015-12-21 | 2015-12-21 | 一种新型一体化超级电容器防爆阀结构及其制作方法 |
CN201510969480.7 | 2015-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017107303A1 true WO2017107303A1 (zh) | 2017-06-29 |
Family
ID=55506219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/074567 WO2017107303A1 (zh) | 2015-12-21 | 2016-02-25 | 一种新型一体化超级电容器防爆阀结构及其制作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105428078A (zh) |
WO (1) | WO2017107303A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109390504A (zh) * | 2018-12-13 | 2019-02-26 | 江西安驰新能源科技有限公司 | 一种锂离子电池用盖板 |
CN111128554A (zh) * | 2020-01-16 | 2020-05-08 | 丰宾电子(深圳)有限公司 | 防飞溅罩盖和防飞溅电容 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117691297B (zh) * | 2024-02-04 | 2024-04-19 | 蜂巢能源科技股份有限公司 | 电池防爆阀及电池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937979A (zh) * | 2010-04-02 | 2011-01-05 | 奇瑞汽车股份有限公司 | 一种锂离子动力电池防爆膜及其制造方法 |
CN102931432A (zh) * | 2012-12-06 | 2013-02-13 | 上海航天电源技术有限责任公司 | 一种自均衡锂离子电池 |
CN103606466A (zh) * | 2013-11-07 | 2014-02-26 | 宁波南车新能源科技有限公司 | 超级电容器及其制造工艺 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02260626A (ja) * | 1989-03-31 | 1990-10-23 | Hitachi Condenser Co Ltd | 電解コンデンサ |
CN201332025Y (zh) * | 2008-11-18 | 2009-10-21 | 中国船舶重工集团公司第七一二研究所 | 一种超级电容器 |
CN101964409B (zh) * | 2010-09-01 | 2013-03-27 | 朝阳立塬新能源有限公司 | 一种储能器件防爆结构 |
CN202134409U (zh) * | 2011-06-10 | 2012-02-01 | 北京集星联合电子科技有限公司 | 一种超级电容器封装的泻压防爆阀 |
JP6104535B2 (ja) * | 2012-08-09 | 2017-03-29 | Nok株式会社 | 防爆弁構造及びその製造方法 |
CN203644571U (zh) * | 2013-12-27 | 2014-06-11 | 亚欧益盟科技(北京)有限公司 | 一种超级电容器的封口装置 |
-
2015
- 2015-12-21 CN CN201510969480.7A patent/CN105428078A/zh active Pending
-
2016
- 2016-02-25 WO PCT/CN2016/074567 patent/WO2017107303A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937979A (zh) * | 2010-04-02 | 2011-01-05 | 奇瑞汽车股份有限公司 | 一种锂离子动力电池防爆膜及其制造方法 |
CN102931432A (zh) * | 2012-12-06 | 2013-02-13 | 上海航天电源技术有限责任公司 | 一种自均衡锂离子电池 |
CN103606466A (zh) * | 2013-11-07 | 2014-02-26 | 宁波南车新能源科技有限公司 | 超级电容器及其制造工艺 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109390504A (zh) * | 2018-12-13 | 2019-02-26 | 江西安驰新能源科技有限公司 | 一种锂离子电池用盖板 |
CN111128554A (zh) * | 2020-01-16 | 2020-05-08 | 丰宾电子(深圳)有限公司 | 防飞溅罩盖和防飞溅电容 |
Also Published As
Publication number | Publication date |
---|---|
CN105428078A (zh) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017107303A1 (zh) | 一种新型一体化超级电容器防爆阀结构及其制作方法 | |
CN106340600A (zh) | 一种动力型圆柱锂离子电池防爆盖帽 | |
US20130149568A1 (en) | Power battery and anti-explosion device thereof | |
CN202004055U (zh) | 一种新型高容量动力锂电池封口板 | |
CN202019008U (zh) | 锂电池防爆盖板 | |
CN102568862B (zh) | 一种圆柱形大容量超级电容器单体结构 | |
CN206558561U (zh) | 一种圆柱形电池防爆盖板 | |
CN104638314B (zh) | 相变电池组抽真空方法 | |
CN203553252U (zh) | 一种具有泄压、防爆功能的软包锂离子动力电池 | |
CN205645552U (zh) | 一种新型一体化超级电容器防爆阀结构 | |
CN205542912U (zh) | 一种内置灭火装置的蓄电池 | |
CN104218202A (zh) | 一种具有防火防爆装置的锂电池及应用该电池的电动车 | |
CN206098476U (zh) | 一种动力型圆柱锂离子电池防爆盖帽 | |
CN203589112U (zh) | 单体电池防爆阀装置 | |
CN205542403U (zh) | 一种防爆快接式电容器 | |
CN208767352U (zh) | 一种新型动力锂电池 | |
CN201804935U (zh) | 电池安全阀 | |
CN206040447U (zh) | 一种超级电容器防爆装置 | |
CN106505208A (zh) | 一种碱性电池集电体及使用该集电体的碱性电池 | |
CN201478362U (zh) | 锂离子电池的组合盖帽防爆装置 | |
CN202178303U (zh) | 一种防爆电池盖帽 | |
CN201204217Y (zh) | 锂离子动力电池盖子 | |
CN203826460U (zh) | 一种锂离子电池的防爆泄压结构 | |
CN206976413U (zh) | 一种电池密封圈 | |
CN201936958U (zh) | 高安全性柱式锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16877117 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16877117 Country of ref document: EP Kind code of ref document: A1 |