WO2017107284A1 - 基于毫米波全息三维成像的人体安检系统及方法 - Google Patents

基于毫米波全息三维成像的人体安检系统及方法 Download PDF

Info

Publication number
WO2017107284A1
WO2017107284A1 PCT/CN2016/072418 CN2016072418W WO2017107284A1 WO 2017107284 A1 WO2017107284 A1 WO 2017107284A1 CN 2016072418 W CN2016072418 W CN 2016072418W WO 2017107284 A1 WO2017107284 A1 WO 2017107284A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
human body
mixer
signal
holographic
Prior art date
Application number
PCT/CN2016/072418
Other languages
English (en)
French (fr)
Inventor
祁春超
赵术开
刘俊成
吴光胜
丁庆
贾成艳
刘贝贝
张艳东
刘艳丽
Original Assignee
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/065,953 priority Critical patent/US20190391531A1/en
Application filed by 深圳市太赫兹科技创新研究院 filed Critical 深圳市太赫兹科技创新研究院
Publication of WO2017107284A1 publication Critical patent/WO2017107284A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9011SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9088Circular SAR [CSAR, C-SAR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H1/0011Adaptation of holography to specific applications for security or authentication
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • G03H2001/0456Spatial heterodyne, i.e. filtering a Fourier transform of the off-axis record

Definitions

  • the invention relates to a human body security inspection system, in particular to a human body security inspection system and method based on millimeter wave holographic three-dimensional imaging.
  • Millimeter wave imaging systems generally have both active and passive modes of operation.
  • the basic principle of passive millimeter wave PMMW (Passive Millimeter Wave) imaging system is based on the constant emission of electromagnetic waves by any object in nature.
  • the electromagnetic waves are composed of uncorrelated waves of different frequencies, they are random and have a wide spectrum and Different polarization directions, different objects have different emissivity in different bands.
  • Passive millimeter wave imaging refers to the atmospheric propagation window of 35 GHz, 94 GHz, 140 GHz, 220 GHz millimeter wave, receiving small differences in target and background brightness temperature to distinguish different objects (Appleby.R., et al. IEEE Transactions on, 2007, 55(11): 2944-2956).
  • the brightness temperature of the target is mainly composed of three parts, namely its own radiation, reflection of environmental noise and transmission of background noise.
  • a material having a relatively high dielectric constant or a high conductivity has a small emissivity and a high reflectance.
  • the high conductive material has a lower radiant temperature than the low conductive material, ie, it is cooler.
  • a passive millimeter wave imaging system consists of a receiving antenna, a millimeter wave radiometer, a scanning mechanism, and a signal processing unit.
  • the temperature resolution and spatial resolution of the system are important parameters for measuring the imaging effect. Indoor imaging requires higher temperature resolution than outdoor imaging.
  • the Millivision detection door of Millivision Company of the United States adopts a line scanning structure.
  • the receiver has 4 rows of 64 rows, and the longitudinal intervals of two adjacent rows are 1/4 of the interval between two cells in each row.
  • the system has a field of view of 1.92m ⁇ 0.768m at a distance of 1m, a resolution of 3mm ⁇ 3mm, and a pixel of 640 ⁇ 256.
  • the imaging time per image is 10s (Huguenin G.Richard.SPIE, 1997, 2938: 152-159); commercial real-time hidden weapon detection camera developed by Brojot; TRW's FPA integrated by 1040 W-band receivers ( A focal plane array) 3mm outdoor imaging system and more.
  • TRW's FPA integrated by 1040 W-band receivers ( A focal plane array) 3mm outdoor imaging system and more.
  • the passive millimeter wave imaging system has a simple structure and low implementation cost, the imaging time is too long, the imaging resolution is low, and it cannot be practically applied and commercialized. Therefore, many research institutions have turned to the research of the active millimeter wave imaging system.
  • the best performing active millimeter wave imaging system is the rotating scanning 3D holographic millimeter wave imaging system of L-3 Company of the United States.
  • the research results are derived from PNNL ( Pacific Northwest National Laboratoty).
  • the system uses a vertical arrangement of antennas and a horizontal rotation of 120° to produce two images of the front and back of the human body (Douglas L. McMakin, et al. SPIE, 2007, 6538: 1-12), and the image algorithm is The obtained information is subjected to holographic inversion calculation to realize three-dimensional holographic imaging.
  • This technology has been licensed to L-3 Communications and Save View and commercialized for large airports, train stations and international terminals in developed countries.
  • the system's two rows of transceiver antenna arrays contain a total of 384 transceiver units, and each column has 192 transceiver units.
  • the structure is quite complicated and the cost is very high.
  • Nanjing Nanjing University of Science and Technology
  • Ka-band AC radiometer scanning imaging Xiao Zelong. Millimeter wave research on radiation imaging of human hidden objects [D].
  • Nanjing Nanjing University of Science and Technology, 2007
  • Scanning imaging of W-band DC radiometer for research on concealed prohibited items Qian Yusong. Research on key technologies of passive millimeter wave array detection imaging [D].
  • Nanjing Nanjing University of Science and Technology, 2006); Huazhong University of Science and Technology 3mm
  • the radiation characteristics of the band, the imaging mechanism and the method of improving the image resolution were analyzed.
  • the existing millimeter wave human body imaging has several major drawbacks: for the passive millimeter wave imaging system, the imaging rate is slow and the resolution is poor; for the active millimeter wave imaging system, the transceiver unit is very numerous, the structure is complicated, and the cost is high.
  • the object of the present invention is to solve the technical problem that the current human body security inspection system based on millimeter wave imaging has slow imaging rate, poor resolution, many transceiver units and complicated structure.
  • the present invention provides a human body security inspection system based on millimeter wave holographic three-dimensional imaging, comprising a mechanical scanning mechanism, a millimeter wave signal transceiving unit, and an image processing unit;
  • the mechanical scanning mechanism is configured to drive the millimeter wave signal transceiving unit to simultaneously move in a horizontal and vertical direction with respect to a person to be inspected;
  • the millimeter wave signal transceiver unit is configured to transmit a millimeter wave signal to a person to be inspected and receive a millimeter wave signal reflected from a person to be inspected;
  • the image processing unit is configured to perform holographic three-dimensional imaging on the human body of the security personnel according to the reflected millimeter wave signal to obtain a three-dimensional image of the human body.
  • the alarm unit is further configured to compare the three-dimensional image of the human body with the three-dimensional image of the safe human body pre-existing in the alarm unit, and if not, the alarm unit issues an alarm.
  • the millimeter wave signal transceiving unit includes a millimeter wave signal transmitting unit and a millimeter wave signal receiving unit;
  • the millimeter wave signal transmitting unit includes a millimeter wave signal transmitting module and a transmitting antenna connected thereto, and the millimeter wave signal receiving unit
  • the device includes a millimeter wave signal receiving module and a receiving antenna connected thereto;
  • the transmitting antenna and the receiving antenna are mounted on the mechanical scanning mechanism and are moved relative to the person to be inspected by the mechanical scanning mechanism.
  • the mechanical scanning mechanism includes a vertical scanning mechanism and a horizontal scanning mechanism
  • the vertical scanning mechanism includes a vertical rail and a vertical traction motor, and the vertical rails are respectively mounted with two millimeter wave signal transceiving units opposed to each other, and each of the millimeter wave signal transceiving units is driven by the vertical traction motor Reciprocating up and down along respective corresponding vertical rails;
  • the horizontal scanning mechanism comprises a horizontal beam and a horizontal rotating motor; two ends of the horizontal beam are respectively fixedly connected with the top ends of the two vertical rails, The horizontal rotating motor drives the horizontal beam and the vertical rail to rotate in the horizontal plane.
  • the millimeter wave signal transmitting unit includes a first independent signal source, a chirp source, a first mixer, a first wideband filter, a first frequency multiplying link, and a transmitting antenna;
  • the signal output by the first independent signal source and the signal output by the chirp source are mixed by the first mixer and then sent to the input end of the first wideband filter, and the output of the first wideband filter
  • the terminal is connected to the input end of the first frequency doubled link, and the output end of the first frequency doubled link is connected to the transmitting antenna.
  • the first frequency doubling link includes a first power amplifier and a first frequency doubler, and an output end of the first broadband filter is connected to an input end of the first power amplifier, the first power amplifier The output end is connected to the input end of the first double frequency multiplier, and the output end of the first double frequency multiplier is connected to the transmitting antenna.
  • the millimeter wave signal receiving unit includes a second independent signal source, a second mixer, a second wideband filter, a second multiplied link, a third mixer, a receiving antenna, and a fourth mixer. a fifth mixer, a third multiplier link, and a low noise amplifier;
  • the signal output by the second independent signal source and the signal output by the chirp source are mixed by the second mixer and then sent to the input end of the second wideband filter, and the output of the second wideband filter
  • the end is connected to the input end of the second frequency multiplied link, the output end of the second multiplied link is connected to one input end of the third mixer, and the other input end of the third mixer is connected a receiving antenna; one input of the fourth mixer is connected to the first independent signal source, and the other input of the fourth mixer is connected to the second independent signal source, and the output of the fourth mixer
  • the end is connected to the input end of the third multiplied link, the output end of the third multiplied link is connected to one input end of the fifth mixer, and the other input end of the fifth mixer is connected to the first end
  • An output of the third mixer, an output of the fifth mixer is coupled to an input of the low noise amplifier, and an output of the low noise amplifier is coupled to the image processing unit.
  • the second frequency multiplied link includes a second power amplifier and a second second frequency multiplier, and an output end of the second wideband filter is connected to an input end of the second power amplifier, and the second power amplifier The output is connected to the input of the second frequency multiplier, and the output of the second double frequency is connected to the third mixer.
  • the third frequency multiplying link includes a third power amplifier and a third frequency doubler, and an output end of the fourth mixer is connected to an input end of the third power amplifier, and the third power amplifier The output is connected to the input end of the third frequency multiplier, and the output end of the third double frequency multiplier is connected to the fifth mixer.
  • the image processing unit includes a low-pass filter, a co-directional quadrature demodulator, a video filter, and a data acquisition storage processor that are sequentially connected.
  • the sliding range of the slider is from the ground of the detection chamber to the top of the detection chamber.
  • the horizontal beam and the vertical rail rotate in the horizontal plane at an angle ranging from 0° to 120°.
  • the first independent signal source is a frequency modulated signal source with an operating frequency of 20 GHz to 23 GHz.
  • the second independent signal source is a frequency modulation signal source with an operating frequency of 19.95 GHz to 22.95 GHz.
  • the present invention provides a human body security inspection method based on three-dimensional imaging of millimeter wave holography, comprising the following steps:
  • the horizontal rotating motor drives the horizontal beam and the vertical rail to perform uniform circular motion in the horizontal plane.
  • the vertical traction motor drives the transmitting and receiving antennas on the vertical rail slider to move linearly up and down in the vertical direction, and the transmitting antenna in the transmitting and receiving antenna transmits.
  • the millimeter wave is applied to the human body of the person to be inspected in the cylindrical open detection room, and the human body is subjected to a full-scale millimeter wave scanning from top to bottom;
  • the receiving antenna in the transmitting and receiving antenna simultaneously receives the echo signal with the target information reflected by the human body, and the echo signal is sent to the high speed data acquisition card in the image processing unit via the millimeter wave signal receiving module;
  • the high-speed data acquisition card in the image processing unit collects the data and sends it to the data acquisition storage processor, and restores the human body image information in the received signal through the holographic imaging algorithm;
  • step (4) if there is no match, an audible alarm is issued through an alarm in the alarm unit, and the security personnel are manually detected to eliminate the safety hazard.
  • the transmitting signal of the transmitting antenna is p(t)
  • the radius of the circular trajectory generated by the horizontal rotating motion of the vertical rail is R
  • is the vertical rotation angle of the enemy rail
  • Z is the transmitting and receiving antenna.
  • the definition (R, ⁇ , Z) is the position of the sample, and the coordinates of any imaging position P n on the human body are (x n , y n , z n ), and the corresponding scattering intensity is ⁇ (x n , y n , z n ), then the echo signal received by the receiving antenna in the (t, ⁇ , z) domain is
  • step (3) the specific steps of the holographic imaging algorithm of step (3) are as follows:
  • step (b) ignoring the attenuation of the signal amplitude with distance, and decomposing the spherical wave signal in the exponential term of the formula in step (a) into the form of a plane wave signal,
  • step (c) the formula in step (b) Perform inverse Fourier transform
  • Phase factor Phase compensation is introduced here. Phase compensation plays an important role in short-range scattering imaging. Without phase compensation, the scattered echo distribution will be widened, and the imaging result will be blurred.
  • the present invention uses a horizontal rotating motor to perform horizontal scanning of 120° and vertical scanning motor for vertical scanning of 2 m in the vertical direction, so only two transmitting and receiving antennas with two sides are required. It can complete the omnidirectional scanning of the human body, greatly reducing the cost.
  • the transmitted signal of the present invention uses millimeter waves in the 40 GHz-46 GHz band and uses a three-dimensional holographic imaging algorithm, the imaging plane resolution is 3.75 mm.
  • the time for transmitting and receiving signals of the millimeter wave signal transmitting and receiving unit is controlled by adjusting the speed of the horizontal rotating motor and the vertical traction motor.
  • the transmitting and receiving antenna on the vertical scanning rail of length 2 m can be in 1 s. Complete a human body scan left and right.
  • the millimeter wave band of the invention can detect metal objects hidden under the fabric, and can also detect dangerous goods such as plastic pistols and explosives, and the obtained information is more detailed and accurate, and can be large.
  • the earth reduces the false alarm rate and is suitable for important positions such as airports, customs, high-speed rail stations, large-scale convention and exhibition centers, sports venues, military and political affairs.
  • FIG. 1 is a schematic view showing the overall structure of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of a millimeter wave signal transceiving unit and an image processing unit according to the present invention
  • FIG. 3 is a working flow chart of the present invention.
  • Figure 5 is a schematic diagram of the imaging of the present invention.
  • horizontal rotating motor 1 vertical traction motor 2; horizontal beam 3; transceiver antenna 4; millimeter wave signal transmitting module 5; millimeter wave signal receiving module 6; graphics processing unit 7; detection room 8; alarm unit 9; Personnel 10; vertical rail 11;
  • a first independent signal source 201 a first mixer 202; a first wideband filter 203; a first power amplifier 204; a first second frequency multiplier 205; a transmit antenna 206; a chirp source 207; a second mixer 209; a second wideband filter 210; a second power amplifier 211; a second second frequency multiplier 212; a third mixer 213; a receiving antenna 214; a fourth mixer 215; An amplifier 216; a third frequency doubler 217; a fifth mixer 218; a low noise amplifier 219; a low pass filter 220; a co-directional quadrature demodulator 221; a video filter 222; a data acquisition storage processor 223; First multiplier link 224; second multiplier link 225; third multiplier link 226.
  • the invention provides a human body security inspection system based on millimeter wave holographic three-dimensional imaging, comprising a mechanical scanning mechanism, a millimeter wave signal transceiving unit, an image processing unit 7 and an alarm unit 9, wherein the mechanical scanning mechanism comprises a horizontal rotating motor 1 , vertical traction motor 2, horizontal beam 3 and vertical rail 11, Wherein, the horizontal beam 3, the vertical rail 11 and the ground limit a space for accommodating the personnel to be inspected.
  • the space defined by the horizontal beam 3, the vertical rail 11 and the ground is hereinafter referred to as the detection room 8; the millimeter wave signal is transmitted and received.
  • the unit includes a transmitting and receiving antenna 4, a millimeter wave signal transmitting module 5 and a millimeter wave signal receiving module 6.
  • the transmitting and receiving antenna 4 includes a transmitting antenna 206 and a receiving antenna 214, and the millimeter wave signal transmitting module 5 is connected to the transmitting antenna 206.
  • the millimeter wave signal receiving module 6 is connected to the receiving antenna 214; the output signal of the millimeter wave signal receiving module 6 is sent to the image processing unit 7, and the image processing unit 7 performs holographic three-dimensional imaging on the human body of the security personnel 10 according to the signal to obtain a three-dimensional image of the human body.
  • the image; the alarm unit 9 compares the three-dimensional image of the human body with the three-dimensional image of the safe human body pre-existing in the alarm unit 9, and if not, the alarm unit 9 issues an alarm.
  • the two vertical rails 11 are symmetrically arranged on both sides of the detection chamber 8.
  • the two ends of the horizontal beam 3 are respectively connected to the top ends of the two vertical rails 11, so that the horizontal beam 3 and the two vertical rails 11 are integrated.
  • the security personnel 10 are standing on the ground in the detection room 8.
  • the side of each vertical rail 11 facing the security personnel 10 is provided with a concave surface from top to bottom along the guide rail.
  • the groove, that is, one form of the guide rail is a groove, and the groove extends from the floor of the detection chamber 8 to the top of the detection chamber 8.
  • the length of the groove (ie, the guide rail) is 2 m
  • the slider is provided with a slider, and the slider can be
  • the upper and lower sides of the groove are slid up and down, and the transmitting and receiving antennas 4 have a pair and are respectively mounted on the two sliders.
  • the length of the groove (ie, the guide rail) is set to 2 m in order to adapt to the height of the person to be inspected, and the height of an ordinary person usually does not exceed 2 m.
  • the horizontal rotating motor 1 is connected with the horizontal beam 3, and drives the horizontal beam 3 and the vertical rail 11 to rotate in a horizontal plane, and the angle of rotation ranges from 0° to 120°; the vertical traction motor 2 is connected with the slider to drive the transmitting and receiving antenna on the slider.
  • the mechanical scanning mechanism does not completely scan the complete inspector. It can be said that only the front side and the back side of the inspecting person are detected, mainly to leave a piece of the inspector entering and leaving. Even if the inspector is not fully scanned, it is sufficient to obtain the information needed for security screening.
  • the millimeter wave signal transmitting unit includes a millimeter wave signal transmitting module 5 and a transmitting antenna 206
  • the millimeter wave signal transmitting module 5 includes a first independent a signal source 201, a first mixer 202, a first wideband filter 203, and a first multiplier link 224, the first multiplying link 224 including a first power amplifier 204 and a A frequency doubler 205.
  • the millimeter wave signal receiving unit includes a millimeter wave signal receiving module 6 and a receiving antenna 214.
  • the millimeter wave signal receiving module 6 includes a second independent signal source 208, a second mixer 209, a second wideband filter 210, and a second frequency doubling chain. a path 225, a third mixer 213, a fourth mixer 215, a third multiplier link 226, a fifth mixer 218, and a low noise amplifier 219; wherein the second multiplier link 225 includes a second power amplifier 211 and second frequency doubler 212; third frequency doubled link 226 includes a third power amplifier 216 and a third frequency doubler 217.
  • the image processing unit 7 includes a low pass filter 220, a co-directional quadrature demodulator 221, a video filter 222, and a data acquisition storage processor 223.
  • the first independent signal source 201 is a frequency modulated signal source with an operating frequency of 20 GHz to 23 GHz, and an output signal thereof is input to the first mixer 202 and mixed with the chirp source 207, and after mixing, the first broadband filter 203 is input first.
  • the power amplifier 204 causes the link power to reach the input power safety range of the first second frequency multiplier 205. After the first double frequency multiplier 205, the input frequency of the link is multiplied to 40 GHz-46 GHz, and finally radiated by the transmitting antenna 206.
  • the second independent signal source 208 is a frequency modulated signal source operating at 19.95 GHz to 22.95 GHz, and its output signal is input to the second mixer 209 and mixed with the chirp source 207.
  • the fourth mixer 215 mixes the received first independent signal source 201 with the second independent signal source 208, and the difference frequency is 0.05 GHz and is input to the third power amplifier 216 to make the link power reach the third double frequency multiplier.
  • the third mixer 213 is a three-port device, and the three ports are RF, LO and IF, respectively, wherein the local oscillator LO is connected to the output signal of the second doubler 212, and the RF RF terminal is received by the receiving antenna 214.
  • the echo signal of the intermediate frequency IF outputs a superheterodyne signal of the local oscillator LO and the radio frequency RF, and the signal carries a certain spatial target information and is input to the radio frequency RF end of the fifth mixer 218.
  • the RF terminal of the fifth mixer 218 inputs the first down-converted signal with the target information output by the third mixer 213, and the local oscillator terminal LO inputs the 0.1 GHz point-frequency signal output by the third doubler 217.
  • the IF terminal outputs a second down-converted signal with target information.
  • the low noise amplifier 219 is capable of amplifying the weak intermediate frequency signal after two down-conversions to increase the signal-to-noise ratio of the output signal, and the output signal of the low noise amplifier 219 is input to the image processing unit 7.
  • the image processing unit 7 includes a high speed data acquisition card having a low pass filter 220, a co-directional quadrature demodulator 221 and a video filter 222, and a data acquisition storage processor 223 capable of image processing using a holographic imaging algorithm, data acquisition and storage.
  • the processor 223 can be selected from a general purpose computer. As shown in FIG. 4, the high-speed data acquisition card collects (step 401) the echo signals after amplification and filtering, and then inputs them into the computer in a mat format file, and then uses the matlab to perform the spatial domain frequency domain through the three-dimensional holographic imaging algorithm.
  • step 402 Fourier transform
  • step 403 an inverse Fourier transform of the frequency domain to the spatial domain
  • step 404-406 an inverse Fourier transform of the frequency domain to the spatial domain
  • the security personnel 10 to stand on the ground in the detection room 8 generally go through the following steps:
  • Step 301 The horizontal rotating motor 1 drives the horizontal beam 3 and the vertical rail 11 to perform a uniform circular motion of 0° to 120° in the horizontal plane.
  • the vertical traction motor 2 drives the transmitting and receiving antenna 4 on the slider in the vertical direction of 0-2 m.
  • the upper and lower uniform linear motions are performed, and the transmitting antenna 206 in the transmitting and receiving antenna 4 emits millimeter waves to the human body of the cylindrical open detecting chamber 8 to be inspected by the security personnel 10, and performs a full-scale millimeter wave scanning from the top to the bottom of the human body.
  • the length L T of the vertical guide rail 11 is set to 2 m
  • the circumferential diameter R of the cylindrical open detection chamber 8 is set to 1.8 m
  • the single up and down scanning time is t
  • the total scanning time is t.
  • the speed v T of the vertical scanning motor 2 the speed ⁇ of the motor 1 is horizontally rotated.
  • the speed of both motors can be controlled by preset.
  • the horizontal rotating motor 1 and the vertical traction motor 2 start working at the same time, and the horizontal rotating motor 1 makes the transmitting and receiving antenna 4 perform a circular motion while the vertical traction motor 2 makes the transmitting and receiving antenna 4 rapid. Up and down movement, scanning people's in multiple ups and downs plus horizontal movement Reflective information at multiple locations.
  • the vertical traction motor 2 drives the transmitting and receiving antenna 4 to move uniformly 2m downward from the top end of the vertical rail 11 to the bottom of the guide rail 11 to complete a full-body scanning operation. After the scanning operation is completed, the vertical traction motor 2 takes 0.5 s to quickly return to the top of the vertical rail 11 from bottom to top at a speed of 4 m/s, and continues the next human body scanning.
  • Step 302 The receiving antenna 214 in the transmitting and receiving antenna 4 simultaneously receives the signal with the target information reflected by the human body, and the signal is sent to the high speed data acquisition card in the image processing unit 7 via the millimeter wave signal receiving module 6;
  • Step 303 The high-speed data acquisition card in the image processing unit 7 collects the data and sends the data to the data acquisition and storage processor 223, such as a computer, and restores the human body image information in the received signal through the holographic imaging algorithm;
  • Step 304 Compare the human body image information with the standard three-dimensional image of the safe human body pre-stored in the alarm unit 9 to see if there is a match; if there is no match, that is, if there is no suspicious area in the human body image information, the security personnel are determined to be inspected. 10 is safe, then go to step 307; if there is no match, that is, if there is a suspicious area in the human body image information, proceed to the next step;
  • Step 305 The alarm in the alarm unit emits an audible alarm
  • Step 306 Perform manual detection on the security personnel 10 to eliminate security risks
  • Step 307 Perform security check on the next person.
  • the axis of the human body rotates to form a synthetic aperture in the direction of the circumference ⁇ .
  • the definition (R, ⁇ , Z) is the position of the sample, and the coordinates of any imaging position P n on the human body are (x n , y n , z n ), and the corresponding scattering intensity is ⁇ (x n , y n , z n ).
  • the antenna transmit signal as p(t)
  • receive the echo signal measured by the antenna as
  • the wave number k ⁇ ⁇ / c.
  • the decomposition of the spherical wave signal can be thought of as the accumulation of plane wave signals transmitted by the target at the (x, y, z) point.
  • the dispersion relation of the plane wave component is Where k x , k y and k z′ are the wavenumber components of k ⁇ in the direction of the coordinate axis in the spatial wavenumber domain. Define the k r wavenumber component in the XY plane as
  • the echo signal can be expressed as
  • is a three-dimensional Fourier transform of the non-uniformly sampled target scattering function, defining a three-dimensional Fourier transform pair as Then (6) can be rewritten as
  • the denominator in equation (12) can be numerically calculated by fast Fourier transform of the data of the equation (9) along the direction of the angle ⁇ .
  • the sampled data in the spatial wavenumber domain is non-uniformly distributed. Therefore, before calculating the final inverse three-dimensional Fourier transform to obtain the target scattering intensity in Cartesian coordinates, it is necessary to be in the (k x , k y , k z ) spatial wavenumber domain.
  • the interpolation operation of non-uniform sampling to uniform sampling is performed, so that the target scattering intensity reconstructed in the Cartesian coordinate system is
  • the above derivation can explain that the scattering intensity ⁇ (x, y, z) of the target is obtained by the echo data S( ⁇ , ⁇ , z), and finally the three-dimensional imaging of the millimeter wave hologram is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于毫米波全息三维成像的人体安检系统,包括机械扫描机构、毫米波信号收发单元、图像处理单元(7)和报警单元(9);机械扫描机构用于驱动毫米波信号收发单元同时在水平和垂直方向相对于待安检人员(10)运动;毫米波信号收发单元用于向待安检人员(10)发射毫米波信号,并接收从待安检人员(1))反射的毫米波信号;图像处理单元(7)用于根据反射的毫米波信号对待安检人员(10)的人体进行全息三维成像,得到人体的三维图像;报警单元(9)用于将人体的三维图像与预存在报警单元(9)内的安全人体三维图像进行比对,若不匹配,则报警单元(9)发出警报。该人体安检系统采用机械扫描代替电扫描,价格低廉;结构简单,生产周期短;分辨率高;成像时间快;用途广泛。还提供一种基于毫米波全息三维成像的人体安检方法。

Description

基于毫米波全息三维成像的人体安检系统及方法 技术领域
本发明涉及一种人体安检系统,尤其涉及一种基于毫米波全息三维成像的人体安检系统及方法。
背景技术
近年来,安全问题日益得到世界人民的关注,对安检系统的可靠性与智能化也提出了更高的要求。传统的金属探测器只能对近距离小范围目标进行检测,效率低,已远远不能满足安检的需求。尽管X光等各种射线具有很强的穿透力,但会对被测人体造成辐射伤害,即使当前存在低辐射剂量的X光机,但其依然不容易被公众接受。红外线是靠物体表面温度成像,在有织物遮挡的情况下无法清晰成像。而毫米波成像系统不仅可以检测出隐藏在织物下的金属物体,还可以检测出塑料手枪,炸药等危险品,获得的信息更加详尽、准确,可以大大地降低误警率。因此,近年来毫米波成像技术在人员安检等方面得到了更加广泛的应用。
毫米波成像系统一般有主动和被动两种工作模式。被动毫米波PMMW(Passive Millimeter Wave)成像系统基本原理是基于自然界中的任何物体都不停地辐射电磁波,该电磁波由不同频率的非相关波组成,它们是随机的,并具有很宽的频谱和不同的极化方向,不同的物体在不同波段的辐射率不同。被动毫米波成像是指依靠35GHz、94GHz、140GHz、220GHz毫米波的大气传播窗口,接收目标及背景亮温的微小差异以区别不同的物体(Appleby.R.,et al.IEEE Transactions on,2007,55(11):2944-2956)。目标的亮温主要由3部分组成,即自身的辐射、对环境噪声的反射和背景噪声的透射。相对介电常数较高或导电率较高的物质,辐射率较小,反射率较高。在相同的温度下,高导电材料相比低导电材料的辐射温度低,即较冷。
一般来说,被动毫米波成像系统由接收天线、毫米波辐射计、扫描机构和信号处理单元组成。系统的温度分辨率和空间分辨率是衡量成像效果的重要参数。相对于室外成像,室内成像需要更高的温度分辨率。
上世纪90年代中期美国就开始进行了第一代毫米波辐射计成像系统的研究工作,早期的毫米波成像系统普遍存在的问题就是扫描时间长、灵敏度不足等问题。被动毫米波焦平面阵列成像系统具有代表性成果的研究机构针对以上问题都做出了不同的应对方案和产品。比如美国Millivision公司的Millivision检测门,该系统采用线扫描结构,接收器为4排,每排64个,相邻两排纵向间隔为每排中两单元间隔的1/4。系统在1m远处视场为1.92m×0.768m,分辨率为3mm×3mm,像素为640×256。每幅图像成像时间为10s(Huguenin G.Richard.SPIE,1997,2938:152-159);Brojot公司开发的商用实时隐藏武器侦测照相机;TRW公司的由1040个W波段接收机集成的FPA(焦平面阵列)的3mm室外成像系统等等。虽然被动毫米波成像系统结构简单,实现成本较低,但是成像时间太长,成像分辨率较低,无法具体实用化和商业化,所以很多研究机构都随之转向主动毫米波成像系统的研究。
主动毫米波成像系统目前做得最好的是美国L-3公司的旋转扫描三维全息毫米波成像系统,其研究的技术成果来源于美国太平洋西北国家实验室PNNL(Pacific Northwest National Laboratoty)。该系统采用垂直方向排布天线,水平方向旋转120°扫描的方式产生人体正面和背面两幅图像(Douglas L.McMakin,et al.SPIE,2007,6538:1-12),图像算法上则是将得到的信息进行全息反演计算实现三维全息成像。此项技术已经授权给L-3Communications和Save View公司并商业化用于各个发达国家的大型机场、火车站和国际码头。但是该系统的两排收发天线阵列总共包含有384个收发单元,每列就有192个收发单元,结构相当复杂,成本也非常高。
除美国PNNL等实验室之外,不同国家的大学研究院、公司也渐渐加入了毫米波成像技术的研究中。典型的有英国Reading大学、德国微波与雷达研究所(Microwave and Radar Institute)、德国航空中心(German Aerospace  Center)、澳大利亚的ICT中心和日本的NEC公司等,这些研究机构都曾报道了有关毫米波成像的研究成果。国内,目前研究PMMW成像系统的单位主要有中国科学院空间科学与应用研究中心,国家863计划微波遥感技术实验室、南京理工大学,华中科技大学,东南大学和哈尔滨工业大学等。如南京理工大学毫米波成像技术研究团队研制了Ka波段交流辐射计扫描成像的原理样机(肖泽龙.毫米波对人体隐匿物品辐射成像研究[D].南京:南京理工大学,2007年),并对W波段直流辐射计扫描成像用于隐匿违禁物品探测开展了研究工作(钱嵩松.被动毫米波阵列探测成像的关键技术研究[D].南京:南京理工大学,2006);华中科技大学对3mm波段的辐射特性、成像机制和改善图像分辨率的方法进行了分析,研究了金属目标的毫米波辐射探测与识别和被动毫米波阵列探测成像的关键技术(张光锋.毫米波辐射特性及成像研究[D].武汉:华中科技大学,2005);东南大学毫米波重点实验室窦文斌等对用于毫米波焦平面成像的天线——扩展半球介质透镜进行了研究,做了隐蔽武器的毫米波成像实验(Wenbin DOU.IEICE Transactions on Electronics,2005,E88(7):1451-1456);哈尔滨工业大学邱景辉等研制了Ka波段20通道毫米波焦面阵成像系统样机,可以实现室内探测人体隐藏物体等等。
综上所述,现有的毫米波人体成像有几大缺点:对于被动毫米波成像系统,成像速率慢,分辨率差;对于主动毫米波成像系统,收发单元非常多,结构复杂,成本高昂。
发明内容
本发明的目的是为解决目前基于毫米波成像的人体安检系统成像速率慢,分辨率差,收发单元多,结构复杂的技术问题。
为了解决上述技术问题,一方面,本发明提供一种基于毫米波全息三维成像的人体安检系统,包括机械扫描机构、毫米波信号收发单元和图像处理单元;
所述机械扫描机构用于驱动所述毫米波信号收发单元同时在水平和垂直方向相对于待安检人员运动;
所述毫米波信号收发单元用于向待安检人员发射毫米波信号,并接收从待安检人员反射的毫米波信号;
所述图像处理单元用于根据所述反射的毫米波信号对待安检人员的人体进行全息三维成像,得到人体的三维图像。
进一步地,还包括报警单元,所述报警单元用于将所述人体的三维图像与预存在报警单元内的安全人体三维图像进行比对,若不匹配,则报警单元发出警报。
进一步地,所述毫米波信号收发单元包括毫米波信号发射单元和毫米波信号接收单元;所述毫米波信号发射单元包括毫米波信号发射模块及与其连接的发射天线,所述毫米波信号接收单元包括毫米波信号接收模块及与其连接的接收天线;
所述发射天线和接收天线安装于所述机械扫描机构上,并在所述机械扫描机构的驱动下相对于待安检人员运动。
进一步地,所述机械扫描机构包括垂直扫描机构和水平扫描机构;
所述垂直扫描机构包括垂直导轨和垂直牵引电机,所述垂直导轨上分别安装有彼此相对的两个毫米波信号收发单元,每个所述毫米波信号收发单元在所述垂直牵引电机的驱动下沿着各自对应的所述垂直导轨上、下往复运动;所述水平扫描机构包括水平横梁和水平转动电机;所述水平横梁的两端分别与两根所述垂直导轨的顶端固定连接,所述水平转动电机驱动水平横梁及垂直导轨在水平面内转动。
进一步地,所述毫米波信号发射单元包括第一独立信号源、线性调频源、第一混频器、第一宽带滤波器、第一倍频链路和发射天线;
所述第一独立信号源输出的信号与所述线性调频源输出的信号经所述第一混频器混频后送入所述第一宽带滤波器的输入端,第一宽带滤波器的输出端连接所述第一倍频链路的输入端,所述第一倍频链路的输出端连接所述发射天线。
进一步地,所述第一倍频链路包括第一功率放大器和第一二倍频器,所述第一宽带滤波器的输出端连接所述第一功率放大器的输入端,第一功率放大器 的输出端连接所述第一二倍频器的输入端,所述第一二倍频器的输出端连接所述发射天线。
进一步地,所述毫米波信号接收单元包括第二独立信号源、第二混频器、第二宽带滤波器、第二倍频链路、第三混频器、接收天线、第四混频器、第五混频器、第三倍频链路及低噪声放大器;
所述第二独立信号源输出的信号与所述线性调频源输出的信号经所述第二混频器混频后送入所述第二宽带滤波器的输入端,第二宽带滤波器的输出端连接所述第二倍频链路的输入端,所述第二倍频链路的输出端连接所述第三混频器的一个输入端,第三混频器的另一个输入端连接所述接收天线;所述第四混频器的一个输入端连接所述第一独立信号源,第四混频器的另一个输入端连接所述第二独立信号源,第四混频器的输出端连接所述第三倍频链路的输入端,第三倍频链路的输出端连接所述第五混频器的一个输入端,第五混频器的另一个输入端连接所述第三混频器的输出端,第五混频器的输出端连接所述低噪声放大器的输入端,低噪声放大器的输出端连接所述图像处理单元。
进一步地,所述第二倍频链路包括第二功率放大器和第二二倍频器,所述第二宽带滤波器的输出端连接所述第二功率放大器的输入端,第二功率放大器的输出端连接所述第二二倍频器的输入端,所述第二二倍频器的输出端连接所述第三混频器。
进一步地,所述第三倍频链路包括第三功率放大器和第三二倍频器,所述第四混频器的输出端连接所述第三功率放大器的输入端,第三功率放大器的输出端连接所述第三二倍频器的输入端,所述第三二倍频器的输出端连接所述第五混频器。
进一步地,其特征在于,所述图像处理单元包括顺次连接的低通滤波器、同向正交解调器、视频滤波器及数据采集存储处理器。
进一步地,所述滑块的滑动范围为从所述检测室的地面至检测室的顶部。
进一步地,所述水平横梁及垂直导轨在水平面内转动的角度范围为0°-120°。
进一步地,所述第一独立信号源是工作频率在20GHz-23GHz的调频信号源。
进一步地,所述第二独立信号源是工作频率在19.95GHz-22.95GHz的调频信号源。
另一方面,本发明提供一种基于毫米波全息三维成像的人体安检方法,包括如下步骤:
(1)水平转动电机带动水平横梁和垂直导轨在水平面内进行匀速圆周运动,同时,垂直牵引电机带动垂直导轨滑块上的收发天线在垂直方向进行上下匀速直线运动,收发天线中的发射天线发射毫米波到圆柱形开放检测室中待安检人员的人体上,对人体进行由上到下的全方位毫米波扫描;
(2)同时,收发天线中的接收天线同时接收由人体反射的带有目标信息的回波信号,所述回波信号经毫米波信号接收模块送至图像处理单元中的高速数据采集卡;
(3)图像处理单元中的高速数据采集卡采集数据后送至数据采集存储处理器,通过全息成像算法还原出接收信号中的人体图像信息;
(4)通过将上述人体图像信息与预存于报警单元中的标准的安全人体的三维图像进行比对,看是否匹配;若匹配,则通过安检;
(5)对下一个人进行安检。
进一步地,所述步骤(4)中,若不匹配,则通过报警单元中的报警器发出音响警报,对待安检人员进行人工检测,排除安全隐患。
进一步地,若所述发射天线的发射信号为p(t),所述垂直导轨水平旋转运动所产生圆形轨迹的半径为R,θ为垂直导轨水平旋转敌角度,Z为所述收发天线在垂直方向的位移,定义(R,θ,Z)为采样的位置,人体上任意成像位置Pn的坐标为(xn,yn,zn),其对应散射强度为σ(xn,yn,zn),则在(t,θ,z)域中所述接收天线接收到的回波信号为
Figure PCTCN2016072418-appb-000001
其中,c为光速。
进一步地,步骤(3)所述全息成像算法的具体步骤如下:
(a)对所述回波信号sn(t,θ,z)中的时间t进行傅里叶变换,得
Figure PCTCN2016072418-appb-000002
定义Zm-Z=z′;其中,kω=ω/c为波数,其在空间波数域中沿各个坐标轴方向的波数分量为kx,ky,kz’
(b)忽略信号幅度随着距离的衰减,将步骤(a)中公式指数项中球面波信号分解为平面波信号的形式,则有
Figure PCTCN2016072418-appb-000003
Figure PCTCN2016072418-appb-000004
定义三维傅立叶变换对为
Figure PCTCN2016072418-appb-000005
Figure PCTCN2016072418-appb-000006
公式
Figure PCTCN2016072418-appb-000007
两边的z进行傅立叶变换,忽略z和z′区别,得
Figure PCTCN2016072418-appb-000008
定义Fσ′(2kr,φ,kz)≡Fσ(2krcosφ,2krsinφ,kz);
Figure PCTCN2016072418-appb-000009
S(ω,θ,kz)=g(θ,kr)*Fσ′(2kr,φ,kz);
算式S(ω,θ,kz)=g(θ,kr)*Fσ′(2kr,φ,kz)的θ进行傅里叶变换,并用ξ代替θ,得
Figure PCTCN2016072418-appb-000010
将卷积变为乘积;
(c)对步骤(b)中的算式
Figure PCTCN2016072418-appb-000011
进行逆傅里叶变换,得
Figure PCTCN2016072418-appb-000012
对式Fσ(2krcosθ,2kr sinθ,kz)进行改写,得到:
Figure PCTCN2016072418-appb-000013
该式中引进了相位因子
Figure PCTCN2016072418-appb-000014
这里引入了相位补偿,相位补偿在近程散射成像中起到重要作用,没有相位补偿,会使散射回波分布变宽,从而使成像结果变得模糊;
(d)在(kx,ky,kz)空间波数域中进行非均匀采样向均匀采样的插值运算,在直角坐标系下重构目标散射强度;
(e)在插值运算后进行最终的逆三维傅里叶变换,获得直角坐标下的目标散射强度,如下:
Figure PCTCN2016072418-appb-000015
本发明相对现有毫米波成像安检仪具有以下突出的优点:
(1)采用机械扫描代替电扫描,价格低廉:本发明利用水平转动电机进行水平圆周120°的扫描和垂直扫描电机进行竖直方向2m的垂直扫描,所以只需要两边对称的两个收发天线就能完成对人体的全方位扫描,极大地降低了成本。
(2)结构简单,生产周期短:本方案中采用的两个电机和一个导轨的机械扫描结构非常简单,其中水平转动电机带动垂直导轨水平转动,垂直牵引电机带动两个毫米波收发天线实现上下运动。
(3)分辨率高:由于本发明中发射信号使用的是40GHz-46GHz频段的毫米波并使用三维全息成像算法,使得所成像平面分辨率达3.75mm。
(4)成像时间快:本发明中通过调节水平转动电机和垂直牵引电机的速度来控制毫米波信号收发单元发射和接收信号的时间,位于长度为2m的垂直扫描导轨上的收发天线可以在1s左右完成一次人体扫描。
(5)用途非常广泛:本发明的毫米波段能测出隐藏在织物下的金属物体,还可以检测出塑料手枪,炸药等危险品,获得的信息更加详尽、准确,可以大 大地降低误警率,适用于机场、海关、高铁站、大型会展中心、体育场馆、军政等重要岗位。
附图说明
图1为本发明一个实施例的整体结构示意图;
图2为本发明的毫米波信号收发单元及图像处理单元一个实施例的原理图;
图3为本发明工作流程图;
图4为本发明采用的成像算法流程图;
图5为本发明的成像原理图。
图中:水平转动电机1;垂直牵引电机2;水平横梁3;收发天线4;毫米波信号发射模块5;毫米波信号接收模块6;图形处理单元7;检测室8;报警单元9;待安检人员10;垂直导轨11;
第一独立信号源201;第一混频器202;第一宽带滤波器203;第一功率放大器204;第一二倍频器205;发射天线206;线性调频源207;第二独立信号源208;第二混频器209;第二宽带滤波器210;第二功率放大器211;第二二倍频器212;第三混频器213;接收天线214;第四混频器215;第三功率放大器216;第三二倍频器217;第五混频器218;低噪声放大器219;低通滤波器220;同向正交解调器221;视频滤波器222;数据采集存储处理器223;第一倍频链路224;第二倍频链路225;第三倍频链路226。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1所示,本发明提供的基于毫米波全息三维成像的人体安检系统,包机械扫描机构、毫米波信号收发单元、图像处理单元7和报警单元9,其中机械扫描机构包括水平转动电机1、垂直牵引电机2、水平横梁3和垂直导轨11, 其中,水平横梁3、垂直导轨11和地面限制了一个可容纳待安检人员的空间,为方便描述,以下将由水平横梁3、垂直导轨11和地面限制的空间称为检测室8;毫米波信号收发单元包括收发天线4、毫米波信号发射模块5和毫米波信号接收模块6,如图2所示,收发天线4包括发射天线206和接收天线214,毫米波信号发射模块5与发射天线206连接,毫米波信号接收模块6与接收天线214连接;毫米波信号接收模块6的输出信号送至图像处理单元7,图像处理单元7根据此信号对待安检人员10的人体进行全息三维成像,得到人体的三维图像;报警单元9将人体的三维图像与预存在报警单元9内的安全人体三维图像进行比对,若不匹配,则报警单元9发出警报。
左右对称的两根垂直导轨11分设于检测室8两侧,水平横梁3的两端分别连接在两根垂直导轨11的顶端,使水平横梁3与两根垂直导轨11组成一个整体。待安检人员10站立在检测室8内的地面上,为了使导轨11上能够容纳毫米波信号收发单元,每根垂直导轨11上面向待安检人员10的一侧沿导轨从上到下设有凹槽,即导轨的一个形态为凹槽,凹槽从检测室8的地面一直延伸到检测室8的顶部,凹槽(即导轨)的长度为2m,凹槽中设有滑块,滑块可在整个凹槽中上下滑动,收发天线4具有一对,分别安装在两个滑块上。这里,凹槽(即导轨)的长度设置为2m是为了适应待检测人员的身高,普通人的身高通常不超过2m。水平转动电机1与水平横梁3连接,驱动水平横梁3及垂直导轨11在水平面内转动,转动的角度范围为0°-120°;垂直牵引电机2与滑块连接,驱动滑块上的收发天线4上、下移动,在垂直导轨11的凹槽中的垂直移动范围为距检测室8的地面0-2m。可见,机械扫描机构并没有完全扫描完整的个检测人员,可以说只检测了检测人员的前侧和后侧,主要是为了留下检测人员进出的一块。即使不完全扫描检测人员,也足以获得安检所需的信息。
图2为本发明的毫米波信号收发单元及图像处理单元一个实施例的原理图,其中毫米波信号发射单元包括毫米波信号发射模块5和发射天线206,毫米波信号发射模块5包括第一独立信号源201、第一混频器202、第一宽带滤波器203和第一倍频链路224,第一倍频链路224包括第一功率放大器204和第 一二倍频器205。毫米波信号接收单元包括毫米波信号接收模块6和接收天线214,毫米波信号接收模块6包括第二独立信号源208、第二混频器209、第二宽带滤波器210、第二倍频链路225、第三混频器213、第四混频器215、第三倍频链路226、第五混频器218和低噪声放大器219;其中第二倍频链路225包括第二功率放大器211和第二二倍频器212;第三倍频链路226包括第三功率放大器216和第三二倍频器217。图像处理单元7包括低通滤波器220、同向正交解调器221、视频滤波器222和数据采集存储处理器223。
第一独立信号源201是工作频率在20GHz-23GHz的调频信号源,其输出信号输入第一混频器202中与线性调频源207混频,混频之后经第一宽带滤波器203输入第一功率放大器204,使本链路功率达到第一二倍频器205的输入功率安全范围,经过第一二倍频器205后本链路输入频率倍频至40GHz-46GHz,最终由发射天线206辐射出来;第二独立信号源208是工作频率在19.95GHz-22.95GHz的调频信号源,其输出信号输入第二混频器209中与线性调频源207混频。
第四混频器215将接收到的第一独立信号源201与第二独立信号源208进行混频,差频0.05GHz输入第三功率放大器216,使本链路功率达到第三二倍频器217的输入功率的安全范围,经过第三二倍频器217后,将频率倍频至0.1GHz,最终输入第五混频器218中。
第三混频器213是一个三端口器件,三个端口分别为RF、LO和IF,其中本振LO端接第二二倍频器212的输出信号,射频RF端输入接收天线214接收的反射的回波信号,中频IF端则输出本振LO与射频RF的超外差信号,此信号带有一定的空间目标信息,输入到第五混频器218的射频RF端。
第五混频器218的射频端输入由第三混频器213输出的带有目标信息的首次下变频信号,本振端LO输入由第三二倍频器217输出的0.1GHz点频信号,中频IF端则输出带有目标信息的第二次下变频信号。
低噪声放大器219能够对经过两次下变频后微弱的中频信号进行放大,提高输出信号的信噪比,低噪声放大器219的输出信号输入图像处理单元7。
图像处理单元7包括具有低通滤波器220、同向正交解调器221和视频滤波器222的高速数据采集卡和能运用全息成像算法进行图像处理的数据采集存储处理器223,数据采集存储处理器223可选用通用计算机。如图4所示,高速数据采集卡对通过放大和滤波之后的回波信号进行采集(步骤401)处理之后以mat格式文件输入计算机中,然后使用matlab通过三维全息成像算法进行空域转频域的傅里叶变换(步骤402),再进行一系列简化合并(步骤403)之后,最后进行频域转空域的逆傅里叶变换(步骤404-406),把采集信号中的振幅和相位信息对应空域物体深度和大小进行时域与空域之间的傅里叶变换和逆变换,最终还原目标三维图像。
如图3所示,采用本发明所述系统进行人员安检时,待安检人员10站立在检测室8内的地面上,一般要经过如下步骤:
步骤301:水平转动电机1带动水平横梁3和垂直导轨11在水平面内进行0°到120°的匀速圆周运动,同时,垂直牵引电机2带动滑块上的收发天线4在垂直方向0-2m范围内进行上下匀速直线运动,收发天线4中的发射天线206则发射毫米波到圆柱形开放检测室8中待安检人员10的人体上,对人体进行由上到下的全方位毫米波扫描。
根据世界各国人身高分布情况,将垂直导轨11的长度LT设定为2m,圆柱形开放检测室8的圆周直径R设为1.8m,单次上下扫描时间为t,总的扫描时间为t′,垂直扫描电机2的速度vT,水平转动电机1的速度ω。两电机的速度均可以通过预设来实现控制。
Figure PCTCN2016072418-appb-000016
Figure PCTCN2016072418-appb-000017
当待安检人员10站在检测室8中时,水平转动电机1和垂直牵引电机2同时开始工作,水平转动电机1在使收发天线4进行圆周运动的同时,垂直牵引电机2使收发天线4迅速上下运动,在多个上下运动加水平运动中扫描人的 多个位置上的反射信息。在一个实施例中,水平转动电机1匀速圆周运动120°的同时,垂直牵引电机2带动收发天线4由垂直导轨11的顶端向下匀速运动2m到达导轨11的底部,完成一次全身扫描工作。扫描工作结束之后,垂直牵引电机2则花费0.5s时间迅速以4m/s的速度由下至上回到垂直导轨11的顶端,继续下一次人体的扫描。
步骤302:收发天线4中的接收天线214同时接收由人体反射的带有目标信息的信号,该信号经毫米波信号接收模块6送至图像处理单元7中的高速数据采集卡;
步骤303:图像处理单元7中的高速数据采集卡采集数据后送至数据采集存储处理器223,如计算机,通过全息成像算法还原出接收信号中的人体图像信息;
步骤304:通过将上述人体图像信息与预存于报警单元9中的标准的安全人体的三维图像进行比对,看是否匹配;若匹配,即人体图像信息中不存在可疑区域时,认定待安检人员10是安全的,则转至步骤307;若不匹配,即人体图像信息中存在可疑区域时,则继续到下一步;
步骤305:报警单元中的报警器发出音响警报;
步骤306:对待安检人员10进行人工检测,排除安全隐患;
步骤307:对下一个人进行安检。
如此循环往复。
如图5所示,假定人体位于直角坐标系中心的O点,人体轴心与Z轴重合,人体成像区域为(x0,y0,z0)=(R0cos,R0sin,Z0)的圆柱,其中R0为需要成像区域的半径,
Figure PCTCN2016072418-appb-000018
的取值范围为0到2π。图中所运动的导轨长度为LT,即沿着Z轴方向的合成孔径长度为LT,孔径中心位于z=Zm的平面,垂直导轨在水平电机的转动下以半径为R的圆周绕着人体轴心旋转,形成了圆周θ方向的合成孔径。定义(R,θ,Z)为采样的位置,人体上任意成像位置Pn的坐标为(xn,yn,zn),其对应散射强度为σ(xn,yn,zn)。
定义天线发射信号为p(t),在(t,θ,z)域中接收天线测得回波信号为
Figure PCTCN2016072418-appb-000019
对时间t进行傅里叶变换有
Figure PCTCN2016072418-appb-000020
式中波数kω=ω/c。实际情况下目标的回波信号是成像区间内多个点目标回波信号的累加,信号幅度随着距离的衰减可以忽略不计,于是令P(ω)=1。
将上式指数项中球面波信号分解为平面波信号的形式,且定义Zm-Z=z′则有
Figure PCTCN2016072418-appb-000021
球面波信号的分解可以认为是由位于(x,y,z)点的目标发射的平面波信号的累加。平面波分量的色散关系式为
Figure PCTCN2016072418-appb-000022
其中kx、ky和kz′是kω在空间波数域中沿坐标轴方向的波数分量。在X-Y平面内定义kr波数分量为
Figure PCTCN2016072418-appb-000023
将球面波信号分解式(5)带入(2)简化后,回波信号可以表示为
Figure PCTCN2016072418-appb-000024
式中{}内的表达式为非均匀采样的目标散射函数的三维傅里叶变换,定义三维傅立叶变换对为
Figure PCTCN2016072418-appb-000025
则(6)式可以改写为
Figure PCTCN2016072418-appb-000026
对上式两边的z进行傅里叶变换得
Figure PCTCN2016072418-appb-000027
定义
Fσ′(2kr,φ,kz)≡Fσ(2kr cosφ,2kr sinφ,kz)      (8)
Figure PCTCN2016072418-appb-000028
则有
S(ω,θ,kz)=g(θ,kr)*Fσ′(2kr,φ,kz)           (10)
对式(10)中的θ进行傅里叶变换,并用ξ代替θ,则卷积变为乘积
Figure PCTCN2016072418-appb-000029
对式(11)进行逆傅里叶变换得
Figure PCTCN2016072418-appb-000030
式(12)中的分母可以通过对式(9)沿角度θ方向采样数据的快速傅里叶变换来进行数值计算。式中2krcosθ=kx,2krsinθ=ky。在空间波数域内的采样数据是非均匀分布的,因此,在计算最终的逆三维傅里叶变换获得直角坐标下的目标散射强度前,需要在(kx,ky,kz)空间波数域中进行非均匀采样向均匀采样的插值运算,于是,在直角坐标系下重构的目标散射强度为
Figure PCTCN2016072418-appb-000031
上述推导可以说明通过回波数据S(ω,θ,z)得到目标的散射强度σ(x,y,z),最终实现毫米波全息三维成像。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (15)

  1. 基于毫米波全息三维成像的人体安检系统,其特征在于,包括机械扫描机构、毫米波信号收发单元和图像处理单元;
    所述机械扫描机构用于驱动所述毫米波信号收发单元,同时在水平和垂直方向相对于待安检人员运动;
    所述毫米波信号收发单元,用于向待安检人员发射毫米波信号,并接收从待安检人员反射的毫米波信号;
    所述图像处理单元,用于根据所述反射的毫米波信号对待安检人员的人体进行全息三维成像,得到人体的三维图像。
  2. 根据权利要求1所述的基于毫米波全息三维成像的人体安检系统,其特征在于,还包括报警单元,所述报警单元用于将所述人体的三维图像与预存在报警单元内的安全人体三维图像进行比对,若不匹配,则报警单元发出警报。
  3. 根据权利要求1或2所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述毫米波信号收发单元包括毫米波信号发射单元和毫米波信号接收单元;所述毫米波信号发射单元包括毫米波信号发射模块及与其连接的发射天线,所述毫米波信号接收单元包括毫米波信号接收模块及与其连接的接收天线;
    所述发射天线和接收天线安装于所述机械扫描机构上,并在所述机械扫描机构的驱动下相对于待安检人员运动。
  4. 根据权利要求3所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述机械扫描机构包括垂直扫描机构和水平扫描机构;
    所述垂直扫描机构包括两根垂直导轨和垂直牵引电机,所述垂直导轨上分别安装有彼此相对的两个毫米波信号收发单元,每个所述毫米波信号收发单元 在所述垂直牵引电机的驱动下沿着各自对应的所述垂直导轨上、下往复运动;
    所述水平扫描机构包括水平横梁和水平转动电机;所述水平横梁的两端分别与两根所述垂直导轨的顶端固定连接,所述水平转动电机驱动水平横梁及垂直导轨在水平面内转动。
  5. 根据权利要求4所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述毫米波信号发射单元包括第一独立信号源、线性调频源、第一混频器、第一宽带滤波器、第一倍频链路和发射天线;
    所述第一独立信号源输出的信号与所述线性调频源输出的信号经所述第一混频器混频后送入所述第一宽带滤波器的输入端,第一宽带滤波器的输出端连接所述第一倍频链路的输入端,所述第一倍频链路的输出端连接所述发射天线。
  6. 根据权利要求5所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述第一倍频链路包括第一功率放大器和第一二倍频器,所述第一宽带滤波器的输出端连接所述第一功率放大器的输入端,第一功率放大器的输出端连接所述第一二倍频器的输入端,所述第一二倍频器的输出端连接所述发射天线。
  7. 根据权利要求5所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述毫米波信号接收单元包括第二独立信号源、第二混频器、第二宽带滤波器、第二倍频链路、第三混频器、接收天线、第四混频器、第五混频器、第三倍频链路及低噪声放大器;
    所述第二独立信号源输出的信号与所述线性调频源输出的信号经所述第二混频器混频后送入所述第二宽带滤波器的输入端,第二宽带滤波器的输出端连接所述第二倍频链路的输入端,所述第二倍频链路的输出端连接所述第三混频器的一个输入端,第三混频器的另一个输入端连接所述接收天线;所述第四混频器的一个输入端连接所述第一独立信号源,第四混频器的另一个输入端连接 所述第二独立信号源,第四混频器的输出端连接所述第三倍频链路的输入端,第三倍频链路的输出端连接所述第五混频器的一个输入端,第五混频器的另一个输入端连接所述第三混频器的输出端,第五混频器的输出端连接所述低噪声放大器的输入端,低噪声放大器的输出端连接所述图像处理单元。
  8. 根据权利要求7所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述第二倍频链路包括第二功率放大器和第二二倍频器,所述第二宽带滤波器的输出端连接所述第二功率放大器的输入端,第二功率放大器的输出端连接所述第二二倍频器的输入端,所述第二二倍频器的输出端连接所述第三混频器。
  9. 根据权利要求7所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述第三倍频链路包括第三功率放大器和第三二倍频器,所述第四混频器的输出端连接所述第三功率放大器的输入端,第三功率放大器的输出端连接所述第三二倍频器的输入端,所述第三二倍频器的输出端连接所述第五混频器。
  10. 根据权利要求1-2和4-9任一项所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述图像处理单元包括顺次连接的低通滤波器、同向正交解调器、视频滤波器及数据采集存储处理器。
  11. 根据权利要求5所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述第一独立信号源是工作频率在20GHz-23GHz的调频信号源。
  12. 根据权利要求7所述的基于毫米波全息三维成像的人体安检系统,其特征在于,所述第二独立信号源是工作频率在19.95GHz-22.95GHz的调频信号源。
  13. 基于毫米波全息三维成像的人体安检方法,其特征在于,包括如下步骤:
    (1)水平转动电机带动水平横梁和垂直导轨在水平面内进行匀速圆周运动,同时,垂直牵引电机带动垂直导轨滑块上的收发天线在垂直方向进行上下匀速直线运动,收发天线中的发射天线发射毫米波到待安检人员的人体上,对人体进行毫米波扫描;
    (2)同时,收发天线中的接收天线同时接收由人体反射的带有目标信息的回波信号,所述回波信号经毫米波信号接收模块送至图像处理单元中的高速数据采集卡;
    (3)图像处理单元中的高速数据采集卡采集数据后送至数据采集存储处理器,通过全息成像算法还原出接收信号中的人体图像信息;
    (4)通过将上述人体图像信息与预存于报警单元中的标准的安全人体的三维图像进行比对,看是否匹配;若匹配,则通过安检。
  14. 根据权利要求13所述的基于毫米波全息三维成像的人体安检方法,其特征在于,所述步骤(4)中,若不匹配,则通过报警单元中的报警器发出音响警报。
  15. 根据权利要求13所述的基于毫米波全息三维成像的人体安检方法,其特征在于,若所述发射天线的发射信号为p(t),所述垂直导轨水平旋转运动所产生圆形轨迹的半径为R,θ为垂直导轨水平旋转敌角度,Z为所述收发天线在垂直方向的位移,定义(R,θ,Z)为采样的位置,人体上任意成像位置Pn的坐标为(xn,yn,zn),其对应散射强度为σ(xn,yn,zn),则在(t,θ,z)域中所述接收天线接收到的回波信号为
    Figure PCTCN2016072418-appb-100001
    其中,c为光速;
    步骤(3)所述全息成像算法的具体步骤如下:
    (a)对所述回波信号sn(t,θ,z)中的时间t进行傅里叶变换,得
    Figure PCTCN2016072418-appb-100002
    定义Zm-Z=z′;其中,kω=ω/c为波数,其在空间波数域中沿各个坐标轴方向的波数分量为kx,ky,kz’
    (b)忽略信号幅度随着距离的衰减,将步骤(a)中公式指数项中球面波信号分解为平面波信号的形式,则有
    Figure PCTCN2016072418-appb-100003
    Figure PCTCN2016072418-appb-100004
    定义三维傅立叶变换对为
    Figure PCTCN2016072418-appb-100005
    Figure PCTCN2016072418-appb-100006
    公式
    Figure PCTCN2016072418-appb-100007
    两边的z进行傅立叶变换,忽略z和z′区别,得
    Figure PCTCN2016072418-appb-100008
    定义Fσ′(2kr,φ,kz)≡Fσ(2kr cosφ,2kr sinφ,kz);
    Figure PCTCN2016072418-appb-100009
    S(ω,θ,kz)=g(θ,kr)*Fσ′(2kr,φ,kz);
    算式S(ω,θ,kz)=g(θ,kr)*Fσ′(2kr,φ,kz)的θ进行傅里叶变换,并用ξ代替θ,得
    Figure PCTCN2016072418-appb-100010
    将卷积变为乘积;
    (c)对步骤(b)中的算式
    Figure PCTCN2016072418-appb-100011
    进行逆傅里叶变换,得
    Figure PCTCN2016072418-appb-100012
    对式Fσ(2kr cosθ,2kr sinθ,kz)进行改写,得到:
    Figure PCTCN2016072418-appb-100013
    (d)在(kx,ky,kz)空间波数域中进行非均匀采样向均匀采样的插值运算,在直角坐标系下重构目标散射强度;
    (e)在插值运算后进行最终的逆三维傅里叶变换,获得直角坐标下的目标散射强度,如下:
    Figure PCTCN2016072418-appb-100014
PCT/CN2016/072418 2015-12-25 2016-01-28 基于毫米波全息三维成像的人体安检系统及方法 WO2017107284A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/065,953 US20190391531A1 (en) 2015-12-25 2016-01-27 Human body security check system and method based on millimeter wave holographic three-dimensional imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510992149.7 2015-12-25
CN201510992149.7A CN105510912A (zh) 2015-12-25 2015-12-25 基于毫米波全息三维成像的人体安检系统及方法

Publications (1)

Publication Number Publication Date
WO2017107284A1 true WO2017107284A1 (zh) 2017-06-29

Family

ID=55719022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072418 WO2017107284A1 (zh) 2015-12-25 2016-01-28 基于毫米波全息三维成像的人体安检系统及方法

Country Status (3)

Country Link
US (1) US20190391531A1 (zh)
CN (2) CN110632593A (zh)
WO (1) WO2017107284A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597069A (zh) * 2018-12-25 2019-04-09 山东雷诚电子科技有限公司 一种主动毫米波成像隐私保护方法
CN110109096A (zh) * 2019-04-19 2019-08-09 山东省科学院自动化研究所 损耗补偿的双站毫米波成像装置及方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759269B (zh) * 2016-04-25 2018-06-26 华讯方舟科技有限公司 三维全息成像的安检系统及方法
CN105842690B (zh) * 2016-06-14 2019-02-26 华讯方舟科技有限公司 随动式扫描成像系统
CN107543831B (zh) * 2016-06-24 2020-05-22 南京理工大学 快递邮品微波扫描成像装置及微波图像的违禁品检测方法
CN106019275B (zh) * 2016-07-06 2018-05-29 深圳市华讯方舟太赫兹科技有限公司 毫米波成像系统及安检系统
CN105938206B (zh) 2016-07-06 2017-09-15 华讯方舟科技有限公司 毫米波安检仪调试系统及毫米波安检仪调试方法
CN106291732B (zh) * 2016-08-18 2018-03-02 华讯方舟科技有限公司 基于毫米波成像的全方位安检系统
CN106338732B (zh) 2016-08-23 2019-02-26 华讯方舟科技有限公司 一种毫米波三维全息成像方法及系统
CN106886022B (zh) * 2017-02-28 2020-01-31 微美光速资本投资管理(北京)有限公司 一种近距离三维全息成像装置
CN107102324B (zh) * 2017-04-28 2019-02-26 华讯方舟科技有限公司 一种近景微波成像方法及系统
CN107356984A (zh) * 2017-06-20 2017-11-17 深圳市无牙太赫兹科技有限公司 立体扫描装置
FR3072467B1 (fr) * 2017-10-13 2021-06-18 Alessandro Manneschi Inspection d'une chaussure avec une camera thermique
CN108182663B (zh) * 2017-12-26 2021-11-30 北京无线电计量测试研究所 一种毫米波图像效果增强方法、设备和可读存储介质
CN210155349U (zh) * 2018-03-09 2020-03-17 同方威视技术股份有限公司 可扩展式毫米波安检系统及扫描单元
CN108519623A (zh) * 2018-04-13 2018-09-11 北博(厦门)智能科技有限公司 基于毫米波雷达的异物探测系统
CN110412655B (zh) * 2018-04-26 2020-12-22 富士通株式会社 物品检测方法和装置
CN109633630A (zh) * 2018-10-31 2019-04-16 上海无线电设备研究所 一种e波段毫米波成像安检雷达系统
CN109581527B (zh) * 2018-12-21 2020-11-27 济南爱我本克网络科技有限公司 双臂式毫米波成像系统转动机构的驱动装置和方法
CN109490980A (zh) * 2018-12-28 2019-03-19 同方威视技术股份有限公司 毫米波安检门
CN109633770A (zh) * 2018-12-28 2019-04-16 同方威视技术股份有限公司 毫米波安检设备及人体或物品检查方法
CN109765631A (zh) * 2019-03-08 2019-05-17 山东雷诚电子科技有限公司 一种用于毫米波安检设备的脚底金属探测装置
CN110146879B (zh) * 2019-05-06 2021-08-17 河北华讯方舟太赫兹技术有限公司 圆盘式安检仪、成像方法、装置以及存储装置
CN110146934A (zh) * 2019-05-10 2019-08-20 中铁第四勘察设计院集团有限公司 适用于站台门的伸缩式激光扫描检测系统及其控制方法
CN110161581A (zh) * 2019-06-11 2019-08-23 武汉艾崴科技有限公司 一种断层扫描安检系统及其检测方法
US11249177B2 (en) * 2019-06-17 2022-02-15 The Boeing Company Transceiver assembly for detecting objects
CN110411375B (zh) * 2019-08-05 2021-05-11 上海亨临光电科技有限公司 一种基于被动式毫米波/太赫兹成像技术的三维成像方法
CN110929568A (zh) * 2019-10-17 2020-03-27 珠海格力电器股份有限公司 一种安全监控的防护方法、系统、电子设备及存储介质
CN110568511A (zh) * 2019-10-23 2019-12-13 中国工程物理研究院电子工程研究所 一种基于毫米波人体安检系统的数据处理方法及相关装置
CN110956704A (zh) * 2019-11-21 2020-04-03 北京城建设计发展集团股份有限公司 一种新型的地铁高效安检系统和方法
CN111025415B (zh) * 2020-01-10 2022-02-25 滨州学院 一种毫米波安检仪的传动装置
CN111272096B (zh) * 2020-03-09 2021-03-23 浙江云特森科技有限公司 一种三维扫描装置、安检设备
CN113377019A (zh) * 2020-03-10 2021-09-10 杭州萤石软件有限公司 监控设备、方法和智能家居系统
CN111449344A (zh) * 2020-04-15 2020-07-28 中国工程物理研究院电子工程研究所 一种人体三维尺寸测量系统
CN114609686A (zh) * 2020-12-09 2022-06-10 同方威视技术股份有限公司 三维成像方法和装置、以及三维成像设备
CN112799041A (zh) * 2020-12-30 2021-05-14 上海工物高技术产业发展有限公司 成像探测系统和成像探测方法
CN112859066A (zh) * 2021-02-23 2021-05-28 中国工程物理研究院电子工程研究所 一种基于视频成像模块的远距离人体隐藏危险品检测仪
CN113689416A (zh) * 2021-08-30 2021-11-23 中建深圳装饰有限公司 一种基于微波成像的建筑幕墙安全无损检测成像方法
CN114935756A (zh) * 2022-04-06 2022-08-23 电子科技大学 一种基于矢量网络分析仪的近场毫米波合成孔径扫描成像系统及成像的方法
CN115331818A (zh) * 2022-07-25 2022-11-11 水木普济健康科技发展(北京)有限公司 一种人体健康风险快速筛查设备及使用方法
CN115327541B (zh) * 2022-10-12 2023-03-14 中国人民解放军国防科技大学 阵列扫描全息穿透成像方法及手持全息穿透成像雷达系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129342A1 (ja) * 2010-04-12 2011-10-20 マスプロ電工株式会社 ミリ波撮像装置
CN102393537A (zh) * 2011-10-30 2012-03-28 北京无线电计量测试研究所 一种人体安检系统利用频分技术的扫描方法
CN102393536A (zh) * 2011-10-30 2012-03-28 北京无线电计量测试研究所 一种人体安检系统利用频分空分技术的扫描方法
CN102426361A (zh) * 2011-10-30 2012-04-25 北京无线电计量测试研究所 一种毫米波主动式三维全息成像的人体安检系统
CN102508240A (zh) * 2011-10-30 2012-06-20 北京无线电计量测试研究所 毫米波主动式三维全息成像的人体安检系统的扫描方法
CN102508306A (zh) * 2011-10-30 2012-06-20 北京无线电计量测试研究所 一种人体安检系统利用空分技术的扫描方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859609A (en) * 1991-08-30 1999-01-12 Battelle Memorial Institute Real-time wideband cylindrical holographic surveillance system
US5557283A (en) * 1991-08-30 1996-09-17 Sheen; David M. Real-time wideband holographic surveillance system
US8791851B2 (en) * 2011-06-02 2014-07-29 International Business Machines Corporation Hybrid millimeter wave imaging system
CN102565793B (zh) * 2011-12-30 2013-07-03 北京华航无线电测量研究所 一种单天线阵列全方位扫描的毫米波成像系统
CN104502993B (zh) * 2014-11-24 2018-04-10 北京华航无线电测量研究所 一种模块化快装安检门
CN205450265U (zh) * 2015-12-25 2016-08-10 深圳市太赫兹科技创新研究院 基于毫米波全息三维成像的人体安检系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129342A1 (ja) * 2010-04-12 2011-10-20 マスプロ電工株式会社 ミリ波撮像装置
CN102393537A (zh) * 2011-10-30 2012-03-28 北京无线电计量测试研究所 一种人体安检系统利用频分技术的扫描方法
CN102393536A (zh) * 2011-10-30 2012-03-28 北京无线电计量测试研究所 一种人体安检系统利用频分空分技术的扫描方法
CN102426361A (zh) * 2011-10-30 2012-04-25 北京无线电计量测试研究所 一种毫米波主动式三维全息成像的人体安检系统
CN102508240A (zh) * 2011-10-30 2012-06-20 北京无线电计量测试研究所 毫米波主动式三维全息成像的人体安检系统的扫描方法
CN102508306A (zh) * 2011-10-30 2012-06-20 北京无线电计量测试研究所 一种人体安检系统利用空分技术的扫描方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597069A (zh) * 2018-12-25 2019-04-09 山东雷诚电子科技有限公司 一种主动毫米波成像隐私保护方法
CN110109096A (zh) * 2019-04-19 2019-08-09 山东省科学院自动化研究所 损耗补偿的双站毫米波成像装置及方法
CN110109096B (zh) * 2019-04-19 2024-05-31 山东省科学院自动化研究所 损耗补偿的双站毫米波成像装置及方法

Also Published As

Publication number Publication date
CN110632593A (zh) 2019-12-31
CN105510912A (zh) 2016-04-20
US20190391531A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2017107284A1 (zh) 基于毫米波全息三维成像的人体安检系统及方法
US11209538B2 (en) Millimeter-wave three-dimensional holographic imaging method and system
Wang et al. Review of active millimeter wave imaging techniques for personnel security screening
US11313963B2 (en) Millimeter wave holographic three-dimensional imaging detection system and method
AU2015227069B2 (en) Ultra wide band detectors
WO2017107283A1 (zh) 基于线性调频的多人人体安检设备及方法
US20210088649A1 (en) Millimeter-wave real-time imaging based safety inspection system and safety inspection method
Sheen et al. Active millimeter-wave standoff and portal imaging techniques for personnel screening
CN105866771B (zh) 一种隐藏物检测系统及其检测方法
US20200158860A1 (en) Radar-Based Baggage and Parcel Inspection Systems
Kapilevich et al. Detecting hidden objects on human body using active millimeter wave sensor
CN205450265U (zh) 基于毫米波全息三维成像的人体安检系统
Gao et al. Study of a new millimeter-wave imaging scheme suitable for fast personal screening
WO2020023603A1 (en) Radar-based baggage and parcel inspection systems
Alvarez et al. SAR imaging-based techniques for low permittivity lossless dielectric bodies characterization
Mohammadian et al. SAR millimeter wave imaging systems
Roe et al. Wave-based sensing and imaging for security applications
Sheen et al. Detection of explosives by millimeter-wave imaging
RU2522853C1 (ru) Способ и устройство обнаружения и идентификации предметов, спрятанных под одеждой на теле человека
Enayati et al. THz holographic imaging: A spatial-domain technique for phase retrieval and image reconstruction
Yurduseven et al. From microwaves to submillimeter waves: modern advances in computational imaging, radar, and future trends
Zhang et al. A near-field 3D circular SAR imaging technique based on spherical wave decomposition
Sheen et al. Advanced millimeter-wave imaging enhances security screening
Hong et al. Performance Evaluation of mmWave SAR Imaging Systems using K-domain interpolation and Matched filter methods
Shaobei et al. Target detection and recognition based on active millimeter-wave imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877098

Country of ref document: EP

Kind code of ref document: A1