WO2017107068A1 - 终端定位方法、装置及系统 - Google Patents

终端定位方法、装置及系统 Download PDF

Info

Publication number
WO2017107068A1
WO2017107068A1 PCT/CN2015/098320 CN2015098320W WO2017107068A1 WO 2017107068 A1 WO2017107068 A1 WO 2017107068A1 CN 2015098320 W CN2015098320 W CN 2015098320W WO 2017107068 A1 WO2017107068 A1 WO 2017107068A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
shaped
shaped beam
signal
Prior art date
Application number
PCT/CN2015/098320
Other languages
English (en)
French (fr)
Inventor
严平
李英伦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/098320 priority Critical patent/WO2017107068A1/zh
Publication of WO2017107068A1 publication Critical patent/WO2017107068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a terminal positioning method, apparatus, and system.
  • the terminal is positioned using a Global Positioning System (GPS).
  • GPS Global Positioning System
  • the terminal positioning method using GPS must be implemented by arranging the corresponding GPS receiver and satellite antenna on the terminal, and it is impossible to locate the terminal that does not include the GPS receiver and the satellite antenna.
  • GPS positioning relies on satellite signals, when there is no satellite signal or the satellite signal is weak, the positioning cannot be completed.
  • the existing terminal positioning method using GPS is limited by the configuration of the terminal and the satellite signal, and the application range of the terminal positioning is small.
  • the embodiment of the invention provides a terminal positioning method, device and system, which are used to solve the existing terminal positioning method using GPS in the prior art, which is limited by the configuration of the terminal and the limitation of the satellite signal, and the application range of the terminal positioning is small. problem.
  • an embodiment of the present invention provides a terminal positioning method, including:
  • the terminal determines the location of the terminal according to the strength of the signal in the electromagnetic wave of each of the shaped beam shapes of the at least two base stations.
  • the strength of the signals in the electromagnetic waves of each of the at least two base stations is determined by the terminal, and the shaped beams of the base stations of the at least two base stations form the coverage of the base stations;
  • the terminal determines the location of the terminal according to the strength of the signal in the electromagnetic wave of each of the shaped beam shapes of the at least two base stations; and improves the application range of the terminal positioning.
  • the terminal determines a location of the terminal according to an intensity of a signal in an electromagnetic wave of each of the shaped beam shapes of the at least two base stations, including :
  • the terminal Determining, by the terminal, the shaped beam having the largest signal strength of each of the at least two base stations as the first shaped beam according to the intensity of the signal in the electromagnetic wave of each of the at least two base stations;
  • the terminal determines the location of the terminal according to the direction information of the first shaped beam of each base station and the location information of each base station.
  • the determining, by the terminal, the shaped beam with the highest signal strength of each of the at least two base stations is the first one according to the strength of the signal in the electromagnetic wave of each of the at least two base stations.
  • the terminal determines the location of the terminal according to the direction information of the first shaped beam and the location information of the at least two base stations; and improves the application range of the terminal positioning.
  • the terminal determines, according to a beam identifier of a first shaped beam of each base station, a Beam ID. Before the direction information of the first shaped beam of each base station, the method further includes:
  • the Beam ID of the first shaped beam of each base station is obtained by using a broadcast message carried by the signal in the electromagnetic wave of the first shaped beam shape of each base station; or, according to the descrambling station
  • the scrambling code used by the signals in the electromagnetic wave of the first shaped beam shape of each base station is determined, and the Beam ID of the first shaped beam of each base station is determined; so that the terminal can obtain the Beam ID of the first shaped beam.
  • the terminal is configured according to a Beam ID of the first shaped beam of each base station, Determining direction information of the first shaped beam of each of the base stations, including:
  • the terminal determines direction information of the first shaped beam of each base station according to the total number of the shaped beams of the base stations and the direction information of the preset shaped beam whose Beam ID is the preset Beam ID.
  • the direction information of the first shaped beam of each base station is determined according to the total number of shaped beams of the base stations and the direction information of the preset shaped beam of the preset Beam ID.
  • the terminal is made to obtain direction information of the first shaped beam.
  • the terminal is configured according to the total number of the shaped beams of the base stations and the Beam ID as the preset Beam ID.
  • the method further includes:
  • the terminal determines a total number of shaped beams of the base stations according to a mask used to de-mask the signals in the electromagnetic waves of the first shaped beam shape of each base station.
  • the total number of the shaped beams of the base stations is obtained from the broadcast messages carried by the signals in the electromagnetic waves of the first shaped beam shape of the base stations; or, according to the de-masking
  • the mask used by the signals in the first shaped beam shape electromagnetic wave of the base station determines the total number of shaped beams of the base stations; so that the terminal can determine the total number of shaped beams of each base station.
  • the terminal is configured according to the direction of the first shaped beam of each base station, in a manner that may be implemented by any one of the first to fourth aspects of the first aspect.
  • the information and the location information of each of the base stations, before determining the location of the terminal further includes:
  • the terminal acquires location information of each base station from a broadcast message carried by a signal in a first shaped beam shape electromagnetic wave of each base station.
  • the location information of each base station is obtained by using a broadcast message carried by the signal in the electromagnetic wave of the first shaped beam shape of each base station; so that the terminal can obtain the location information of each base station.
  • the terminal determines a location of the terminal according to an intensity of a signal in an electromagnetic wave of each of the shaped beam shapes of the at least two base stations, including :
  • the terminal uses the location corresponding to the first preset signal strength vector as the location of the terminal.
  • the current signal strength vector is generated by the terminal according to the intensity of the signal in the electromagnetic wave shape of each of the at least two base stations; the terminal is determined according to the current signal strength vector and the preset spatial range. a preset signal strength vector corresponding to each position, determining a correlation between a preset signal strength vector corresponding to each position and the current signal strength vector; and the preset signal strength vector corresponding to each position of the terminal according to the position Correlating the current signal strength vector, determining that the first preset signal strength vector in the preset signal strength vector has the greatest correlation with the current signal strength vector; the terminal sets the first preset The position corresponding to the signal strength vector serves as the position of the terminal; the application range of the terminal positioning is improved.
  • an embodiment of the present invention provides a terminal positioning method, including:
  • the base station generates signals corresponding to the respective shaped beams
  • the base station transmits signals corresponding to the respective shaped beams through an antenna to form an electromagnetic wave of a shaped beam shape corresponding to the signal; and all the shaped beams of the base station form a coverage range of the base station.
  • a signal corresponding to each of the shaped beams is transmitted by an antenna through an antenna to form an electromagnetic wave of a shaped beam shape corresponding to the signal; and all shaped beams of the base station constitute the base station. Coverage; enables the terminal to determine the position of the terminal according to the strength of the signal in the electromagnetic wave of each shaped beam shape of the base station.
  • system message is carried in the signal, the system message comprising at least one of the following information:
  • a Beam ID of the shaped beam corresponding to the signal a total number of shaped beams of the base station, or a The location information of the base station.
  • the system message includes at least one of the following information: a Beam ID of the shaped beam corresponding to the signal, a total number of shaped beams of the base station, or location information of the base station;
  • the Beam ID, the total number of shaped beams, and the location information of the base station can be obtained from the system message.
  • the base station in a second possible implementation manner of the second aspect, generates, respectively, a signal corresponding to each of the shaped beams, where: the base station adopts The scrambling code determined by the Beam ID of each of the shaped beams is used to scramble and modulate the data to be transmitted corresponding to the respective shaped beams to obtain signals corresponding to the respective shaped beams.
  • the data to be transmitted corresponding to each of the shaped beams is scrambled and modulated by using a scrambling code determined according to the Beam ID of each of the shaped beams to obtain signals corresponding to the respective shaped beams.
  • the terminal can determine the Beam ID of the shaped beam corresponding to the signal according to the scrambling code used to descramble a signal.
  • the base station in a third possible implementation manner of the second aspect, generates, respectively, a signal corresponding to each of the shaped beams, where: the base station adopts The masks to be sent according to the total number of the shaped beams are respectively masked and modulated to obtain signals corresponding to the respective shaped beams.
  • the data to be sent corresponding to each of the shaped beams is separately masked and modulated by using a mask determined according to the total number of the shaped beams to obtain signals corresponding to the respective shaped beams;
  • the terminal can determine the total number of shaped beams according to the mask used to demask a signal.
  • an embodiment of the present invention provides a terminal positioning apparatus, including:
  • a first determining module configured to determine strengths of signals in electromagnetic waves of each of the at least two base stations, and all of the shaped beams of each of the at least two base stations form a coverage of the base stations;
  • a second determining module configured to determine, by the terminal, a location of the terminal according to an intensity of a signal in an electromagnetic wave of each of the shaped beam shapes of the at least two base stations.
  • the second determining module is specifically configured to:
  • An shaping beam having a maximum signal strength of each of the at least two base stations is a first shaped beam
  • Determining a location of the terminal according to direction information of the first shaped beam of each base station and location information of each base station.
  • the device further includes: a first acquiring module, configured to use the first forming from each of the base stations Obtaining, in a broadcast message carried by the signal in the beam-shaped electromagnetic wave, a Beam ID of the first shaped beam of each base station; or, according to a signal in an electromagnetic wave that descrambles the first shaped beam shape of each base station The scrambling code determines the Beam ID of the first shaped beam of each of the base stations.
  • the second determining module is configured according to the first shaped beam of each of the base stations ID, determining direction information of the first shaped beam of each of the base stations, specifically:
  • the device further includes: a second acquiring module, configured, by the terminal, the first assignment from the base stations Obtaining, in a broadcast message carried by a signal in a beam-shaped electromagnetic wave, obtaining a total number of shaped beams of the base stations; or masking used according to a signal in an electromagnetic wave that demasks the first shaped beam shape of each base station And determining a total number of shaped beams of the base stations.
  • a second acquiring module configured, by the terminal, the first assignment from the base stations Obtaining, in a broadcast message carried by a signal in a beam-shaped electromagnetic wave, obtaining a total number of shaped beams of the base stations; or masking used according to a signal in an electromagnetic wave that demasks the first shaped beam shape of each base station And determining a total number of shaped beams of the base stations.
  • the device further includes: a third obtaining module, configured to The location information of each base station is obtained in a broadcast message carried by a signal in an electromagnetic wave of a first shaped beam shape of each base station.
  • the second determining module is specifically configured to:
  • the position corresponding to the first preset signal strength vector is taken as the position of the terminal.
  • an embodiment of the present invention provides a terminal positioning apparatus, including:
  • Generating a module configured to generate a signal corresponding to each of the shaped beams
  • a sending module configured to transmit, by the antenna, a signal corresponding to each of the shaped beams to form an electromagnetic wave of a shaped beam shape corresponding to the signal; and all the shaped beams of the base station form a coverage of the base station.
  • system message is carried in the signal, the system message comprising at least one of the following information:
  • a Beam ID of the shaped beam corresponding to the signal a Beam ID of the shaped beam corresponding to the signal, a total number of shaped beams of the base station, or location information of the base station.
  • the generating module is specifically configured to: adopt a Beam according to each of the shaped beams The scrambling code determined by the ID scrambles and modulates the data to be transmitted corresponding to each of the shaped beams to obtain signals corresponding to the respective shaped beams.
  • the generating module is specifically configured to: determine, according to the total number of the shaped beams, The masks respectively mask and modulate the data to be transmitted corresponding to the respective shaped beams to obtain signals corresponding to the respective shaped beams.
  • the fifth aspect provides a terminal positioning system, comprising: the terminal positioning device according to any one of the first to sixth aspects of the third aspect or the fourth aspect, The terminal positioning device of any one of the first to third.
  • the invention provides a terminal positioning method, device and system; determining, by a terminal, an intensity of a signal in an electromagnetic wave of each shaped beam shape of at least two base stations, and forming beams of each base station of the at least two base stations Describe the coverage of each base station; the terminal determines the location of the terminal according to the strength of the signal in the electromagnetic wave of each of the at least two base stations; and realizes the electromagnetic wave of the terminal according to the shape of each shaped beam of the base station The strength of the signal to determine the position of the terminal; Compared with the terminal positioning method using GPS in the prior art, the terminal does not need to be limited by the GPS transmitter and the satellite antenna and the better satellite signal, and only the terminal can receive the signal of the base station to complete the positioning; , to improve the application range of terminal positioning.
  • FIG. 1 is a schematic diagram of an application scenario of a method for locating a terminal according to an embodiment of the present invention
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for locating a terminal according to an embodiment of the present invention
  • Embodiment 3 is a flowchart of Embodiment 2 of a method for locating a terminal according to an embodiment of the present invention
  • FIG. 4 and FIG. 5 are schematic diagrams showing signal strengths in electromagnetic waves of respective shaped beam shapes of a base station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing relationship between a Beam ID of a shaped beam and a direction of a shaped beam according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a positional relationship between three points according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of Embodiment 3 of a method for locating a terminal according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of Embodiment 4 of a method for locating a terminal according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of a process for a base station to transmit a signal corresponding to an shaped beam through an antenna according to an embodiment of the present invention
  • FIG. 11 is a processing block diagram of a terminal receiving a signal corresponding to an shaped beam through an antenna according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a terminal positioning apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a terminal positioning apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of Embodiment 4 of a terminal positioning apparatus according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of Embodiment 6 of a terminal positioning apparatus according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of Embodiment 7 of a terminal positioning apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of a method for locating a terminal according to an embodiment of the present invention
  • an application scenario of the present invention may include: a base station 1, a base station 2, and a terminal; wherein each shaped beam of the base station 1 (for example, ..., Beam n-2, Beam n-1, Beam n, Beam n+1, ...) constitute the coverage of base station 1; each shaped beam of base station 2 (for example, ..., Beam m-1, Beam m, Beam m+1, Beam m+2, ...);
  • the terminal determines the position of the terminal according to the strength of the signal in the electromagnetic wave of each of the shaped beam shapes of the base station 1 and the base station 2.
  • the number of base stations in the application scenario of the present invention is at least two.
  • the at least two base stations are geographically adjacent base stations.
  • each of the shaped beams of the base station may be shaped beams having the same pitch angle; or may be shaped beams having different elevation angles.
  • FIG. 2 is a flowchart of Embodiment 1 of a method for locating a terminal according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • Step 201 The terminal determines strengths of signals in electromagnetic waves of each of the at least two base stations, and all of the shaped beams of each of the at least two base stations form a coverage of the base stations.
  • Step 202 The terminal determines a location of the terminal according to an intensity of a signal in an electromagnetic wave of each of the shaped beam shapes of the at least two base stations.
  • the strength of the signals in the electromagnetic waves of each of the at least two base stations is determined by the terminal, and each of the at least two base stations forms a coverage range of the base stations; Determining, by the terminal, a location of the terminal according to an intensity of a signal in an electromagnetic wave of each of the shaped beam shapes of the at least two base stations; and determining, by the terminal, a location of the terminal according to an intensity of a signal in an electromagnetic wave of each shaped beam shape of the base station Compared with the terminal positioning method using GPS in the prior art, there is no need to be limited by the necessity of configuring the GPS transmitter and the satellite antenna and the better satellite signal on the terminal, and only the terminal can receive the signal of the base station to complete the positioning. Therefore, the application range of terminal positioning is improved.
  • FIG. 3 is a flowchart of Embodiment 2 of a method for locating a terminal according to an embodiment of the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • Step 301 The terminal determines strengths of signals in electromagnetic waves of each of the at least two base stations, and all of the shaped beams of each of the at least two base stations form a coverage of the base stations.
  • the signals in the electromagnetic waves of the shaped beam shapes of any one of the at least two base stations may be time division, frequency division or code division.
  • the terminal may receive electromagnetic waves of different shaped beam shapes at different times; when it is code division or frequency division, the terminal may receive electromagnetic waves of different shaped beam shapes at the same time.
  • Step 302 The terminal determines, according to the strength of the signal in the electromagnetic wave of each of the at least two base stations, that the shaped beam with the highest signal strength of each of the at least two base stations is the first shaped beam. ;
  • the strength of the signal may specifically be a Received Signal Strength Indication (RSSI) of the signal.
  • RSSI Received Signal Strength Indication
  • the strengths of the signals in the electromagnetic waves of the shaped beam shapes of the at least two base stations may be as shown in FIG. 4 and FIG. 5.
  • the first shaped beam of the base station 1 is an shaped beam whose Beam ID is Beam n
  • the first shaped beam of the base station 2 is an shaped beam whose Beam ID is Beam m.
  • the electromagnetic wave beam for example, the shaped beam whose Beam ID is Beam m+2
  • the reflector for example, the wall
  • Step 303 The terminal determines, according to a beam identifier (Beam ID) of the first shaped beam of each base station, direction information of the first shaped beam of each base station;
  • Beam ID a beam identifier
  • the step 303 may be: the terminal may determine, according to the direction information corresponding to each of the at least two base stations, and the Beam ID of the first shaped beam, the first shaped beam.
  • Direction information of the base station or the terminal determines the first shaped beam of each base station according to the total number of shaped beams of the base stations and the direction information of the preset shaped beam whose Beam ID is the preset Beam ID Direction information.
  • the terminal determines, according to the total number of the shaped beams of the base stations and the direction information of the preset shaping beam whose Beam ID is the preset Beam ID, the square of the first shaped beam of each base station. Before the information, it can also include:
  • the mask used by the signals in the electromagnetic waves of the first shaped beam shape determines the total number of shaped beams of the respective base stations.
  • the terminal determines, according to a mask used by the signal in the electromagnetic wave of the first shaped beam shape of each base station, the total number of the shaped beams of the base stations, including:
  • the terminal shall demask the mask used by the signals in the electromagnetic waves of the first shaped beam shape of each base station as the total number of shaped beams of the base stations; or
  • the terminal determines the direction information of the first shaped beam according to the direction information corresponding to each of the at least two base stations and the Beam ID of the first shaped beam, as follows:
  • the terminal may be in the north direction according to the direction information when the Beam ID is 0 in a base station, ..., and the direction information corresponding to the south direction is when the Beam ID is 99. , ...; determining the direction information of the first shaped beam is the east direction.
  • the terminal determines the direction information of the first shaped beam of each base station according to the total number of shaped beams of the base stations and the direction information of the preset shaped beam whose Beam ID is the preset Beam ID. For example,
  • the Beam ID of the first shaped beam is 45
  • the total number of shaped beams of the base station is 197
  • the direction information of the preset shaped beam whose preset Beam ID is 0 is the north direction
  • the direction information of the first shaped beam is the east direction.
  • Beam ID in FIG. 6 is incremented in the direction indicated by the dotted arrow in the figure.
  • FIG. 6 is an example of a two-dimensional planar shaped beam (that is, the shaped beam has the same elevation angle).
  • the first shaped beam is determined. The method is similar to that of FIG. 6, and will not be described again here.
  • the terminal may further: obtain, by using the broadcast message carried by the signal in the electromagnetic wave of the first shaped beam shape of each base station, the first shape of each base station. a Beam ID of the beam; or the terminal determines a Beam ID of the first shaped beam of each base station according to a scrambling code used by a signal in an electromagnetic wave that descrambles the first shaped beam shape of each base station.
  • the determining, by the terminal, the Beam ID of the first shaped beam of each base station according to the scrambling code used by the signal in the electromagnetic wave of the first shaped beam shape of each base station including:
  • the terminal will descramble the scrambling code used by the signals in the first shaped beam shape of each base station as the Beam ID of the first shaped beam of each base station; or the terminal according to the descrambling
  • Step 304 The terminal determines the location of the terminal according to the direction information of the first shaped beam of each base station and the location information of each base station.
  • the position information of point A in FIG. 7 is coordinate (0, 0), and the position information of point B is coordinate (1, 0); the direction of point C is 30 degrees east to north with respect to point A, and point C is relatively The direction at point B is 60° north and west; then the position of point C can be calculated as coordinates.
  • FIG. 7 is an example of two-dimensional coordinates.
  • the position of the terminal is a two-dimensional position, at least two base stations are needed to determine the location information of the terminal; when the location of the terminal is a three-dimensional position. At least three base stations are needed to determine the location information of the terminal, and details are not described herein again.
  • the method may further include:
  • the terminal acquires location information of each base station from a broadcast message carried by a signal in a first shaped beam shape electromagnetic wave of each base station.
  • the determining, by the terminal, the shaped beam having the largest signal strength of each of the at least two base stations is the first shape according to the strength of the signal in the electromagnetic wave of each of the at least two base stations.
  • a beam the terminal determines a location of the terminal according to the direction information of the first shaped beam and the location information of the at least two base stations; and implements an electromagnetic wave signal according to each shaped beam shape of the base station.
  • the strength is used to determine the position of the terminal; compared with the prior art GPS positioning method, the terminal does not need to be limited by the GPS transmitter and the satellite antenna and the better satellite signal, and only the terminal can receive the base station.
  • the signal can be positioned; therefore, the application range of the terminal positioning is improved.
  • FIG. 8 is a flowchart of Embodiment 3 of a method for locating a terminal according to an embodiment of the present invention. As shown in FIG. 8 , the method in this embodiment may include:
  • Step 801 The terminal determines strengths of signals in electromagnetic waves of each of the at least two base stations, and all of the shaped beams of each of the at least two base stations form a coverage of the base stations.
  • step 801 is similar to step 301, and details are not described herein again.
  • Step 802 The terminal generates a current signal strength vector according to strengths of signals in electromagnetic waves of each of the at least two base stations.
  • the current signal strength vector may be:
  • N is the number of shaped beams of the base station 1
  • K is the number of shaped beams of the base station M.
  • the signal strength may be RSSI.
  • Step 803 The terminal determines, according to the current signal strength vector and a preset signal strength vector corresponding to each position in the preset spatial range, a correlation between a preset signal strength vector corresponding to each position and the current signal strength vector.
  • the preset signal strength vector corresponding to each position in the preset space range may be as shown in Table 1 below.
  • M, N, and K are the same as those in step 802;
  • P is the number of positions in which the preset spatial range is divided; and the column corresponding to each position in Table 1 is the preset signal strength corresponding to the position. vector.
  • the method further includes: dividing the preset spatial range into multiple locations; and measuring and recording a preset signal strength vector corresponding to each of the divided locations.
  • the preset signal strength vector corresponding to each location may be stored in a server, and the terminal may obtain, from the server, a preset signal strength vector corresponding to each location.
  • the preset space range may be a shopping mall, an office building, or the like.
  • the multiple locations that divide the preset spatial range may be a two-dimensional location or a three-dimensional location.
  • Step 804 The terminal determines, according to the correlation between the preset signal strength vector corresponding to each position and the current signal strength vector, the first preset signal strength vector in each of the preset signal strength vectors.
  • the correlation of the current signal strength vector is the largest;
  • the terminal may determine the correlation between the preset signal strength vector and the current signal strength vector in the following two manners.
  • T represents the transposition of the vector a
  • Re represents the 2 norm of the vector a
  • arccos() is the inverse cosine function.
  • Step 805 The terminal uses the location corresponding to the first preset signal strength vector as the location of the terminal.
  • the current signal strength vector is generated by the terminal according to the strength of the signal in the electromagnetic wave shape of each of the at least two base stations; the terminal according to the current signal strength vector and the preset spatial range Determining a correlation between a preset signal strength vector corresponding to each position and the current signal strength vector; and determining, by the terminal, a preset signal strength vector corresponding to each position Determining a correlation with the current signal strength vector, determining that a correlation between the first preset signal strength vector and the current signal strength vector is the largest in the preset signal strength vector;
  • the position corresponding to the signal strength vector is set as the position of the terminal; the terminal is determined according to the intensity of the signal in the electromagnetic wave of each shaped beam shape of the base station; and the terminal positioning method using GPS in the prior art is implemented. No need to be limited by the need to configure GPS transmitters and satellite antennas on the terminal and better satellite signals, only To the terminal can receive signals from base stations can be positioned to complete; thus, increase the range of applications of the positioning terminal.
  • FIG. 9 is a flowchart of Embodiment 4 of a method for locating a terminal according to an embodiment of the present invention. As shown in FIG. 9, the method in this embodiment may include:
  • Step 901 The base station generates a signal corresponding to each of the shaped beams.
  • Step 902 The base station transmits, by using the antenna, a signal corresponding to each of the shaped beams to form an electromagnetic wave of a shaped beam shape corresponding to the signal; and all the shaped beams of the base station form a coverage of the base station. .
  • step 901 and step 902 may be: first, in step 901, a signal corresponding to the shaped beam is generated, and in step 902, the signal corresponding to the shaped beam is transmitted through the antenna, in step 901. Generating a signal corresponding to another shaped beam, in step 902, transmitting a signal corresponding to the other shaped beam through the antenna, ... or, in the second step, generating a signal corresponding to each of the shaped beams in step 901, The base station transmits signals corresponding to the respective shaped beams through the antenna.
  • the first type corresponds to a time division of signals in the electromagnetic waves of the shaped beam shapes of the base station; and the signals in the electromagnetic waves of the shaped beams of the second corresponding base station are frequency-divided or code-divided.
  • a signal corresponding to each of the shaped beams is transmitted by an antenna through an antenna to form an electromagnetic wave of a shaped beam shape corresponding to the signal; and all the shaped beams of the base station form an overlay of the base station.
  • the range is such that the terminal can determine the position of the terminal according to the strength of the signal in the electromagnetic wave of each shaped beam shape of the base station.
  • the system message is carried in the signal, and the system message includes at least one of the following information:
  • a Beam ID of the shaped beam corresponding to the signal a Beam ID of the shaped beam corresponding to the signal, a total number of shaped beams of the base station, or location information of the base station.
  • the base station generates a signal corresponding to each of the shaped beams, where the base station uses the scrambling code determined according to the Beam ID of each of the shaped beams to respectively send data to be sent corresponding to the shaped beams. Performing scrambling and modulating to obtain signals respectively corresponding to the respective shaped beams; or, the base station respectively uses the mask determined according to the Beam ID of each of the shaped beams to respectively send the corresponding shaped beams to be sent The data is masked and modulated to obtain signals corresponding to the respective shaped beams.
  • the data to be transmitted corresponding to the shaped beam is scrambled (or masked) and modulated by using a scrambling code (or mask) determined according to the Beam ID of the shaped beam, and the shaped beam corresponding is obtained.
  • the signal is such that the terminal can determine the Beam ID of the shaped beam corresponding to the signal according to the scrambling code used when descrambling (or de-masking) the signal.
  • the base station generates a signal corresponding to each of the shaped beams, where the base station separately adds data to be sent corresponding to each of the shaped beams according to a mask determined by using the total number of the shaped beams. Masking the modulation to obtain a signal corresponding to each of the shaped beams; or, the base station respectively adopts a mask determined according to the total number of the shaped beams to respectively correspond to the shaped beams.
  • the data is transmitted for scrambling and modulation, and signals corresponding to the respective shaped beams are obtained.
  • the corresponding beam is obtained.
  • the to-be-sent data may correspond to a content of a broadcast message; the data to be transmitted may include only a location of the base station.
  • the information, the scrambling code used in the scrambling process may be the selected Beam ID; or the data to be transmitted may include the location information of the base station and the selected Beam ID.
  • the total number of the shaped beams of the base station may be included by the data to be transmitted, or the mask used when the CRC is masked is the shaped beam of the base station.
  • FIG. 10 corresponds to the base station processing procedure when the terminal performs the terminal location determination in the manner of the second embodiment.
  • FIG. 11 is a block diagram of a process for a terminal to receive a signal corresponding to an shaped beam through an antenna according to an embodiment of the present invention.
  • the terminal may determine the location information of the base station, the Beam ID, and the total number of the shaped beams from the obtained data; or, the location information of the base station may be determined from the obtained data, and the interference according to the descrambling is used.
  • the code determines the Beam ID and determines the total number of shaped beams based on the mask used for the mask.
  • FIG. 11 is a processing procedure when the terminal performs the terminal location determination by using the method in the second embodiment.
  • the location information when the location information is calculated according to the Beam ID and the RSSI, the location information of the terminal needs to be calculated according to the Beam ID and the corresponding RSSI corresponding to all the shaped beams and the location information of the base station.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a terminal locating device according to an embodiment of the present invention.
  • the device in this embodiment is a terminal.
  • the device in this embodiment may include: a first determining module 1201 and a second determining module 1202. .
  • the first determining module 1201 is configured to determine strengths of signals in electromagnetic waves of each of the at least two base stations, and all of the shaped beams of each of the at least two base stations form a coverage of the base stations.
  • the second determining module 1202 is configured to determine, by the terminal, the location of the terminal according to the strength of the signal in the electromagnetic wave of each of the shaped beam shapes of the at least two base stations.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a second embodiment of a terminal locating device according to an embodiment of the present invention. As shown in FIG. 13 , the device in this embodiment is based on the device structure shown in FIG. 12 , and further includes: a first acquiring module. 1203.
  • the second determining module 1202 is specifically configured to:
  • the shaped beam having the highest signal strength of each of the at least two base stations is the first shaped beam
  • Determining a location of the terminal according to direction information of the first shaped beam of each base station and location information of each base station.
  • the first obtaining module 1203 is configured to acquire, according to a broadcast message carried by the signal in the electromagnetic wave of the first shaped beam shape of each base station, a Beam ID of the first shaped beam of each base station; or, according to the solution
  • the scrambling code used by the signals in the electromagnetic waves of the first shaped beam shape of each base station is disturbed, and the Beam ID of the first shaped beam of each base station is determined.
  • the second determining module 1202 determines the direction information of the first shaped beam of each of the base stations according to the Beam ID of the first shaped beam of each of the base stations, and specifically includes:
  • the apparatus of this embodiment further includes: a second obtaining module 1204, configured to acquire, by the terminal, the broadcast messages carried by the signals in the electromagnetic waves of the first shaped beam shape of the base stations
  • the total number of shaped beams; or the total number of shaped beams of the respective base stations is determined according to a mask used to de-mask the signals in the electromagnetic waves of the first shaped beam shape of each base station.
  • the apparatus of this embodiment further includes: a third obtaining module 1205, configured to acquire, according to a broadcast message carried by the signal in the electromagnetic wave of the first shaped beam shape of each base station, the location of each base station information.
  • a third obtaining module 1205 configured to acquire, according to a broadcast message carried by the signal in the electromagnetic wave of the first shaped beam shape of each base station, the location of each base station information.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the second determining module 1202 is specifically configured to:
  • the position corresponding to the first preset signal strength vector is taken as the position of the terminal.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 8.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of Embodiment 4 of a terminal locating device according to an embodiment of the present invention.
  • the device in this embodiment is a base station.
  • the device in this embodiment may include: a generating module 1401 and a sending module 1402.
  • the generating module 1401 is configured to generate a signal corresponding to each of the shaped beams
  • the sending module 1402 is configured to transmit, by using the antenna, a signal corresponding to each of the shaped beams to form an shaped beam shape corresponding to the signal.
  • Electromagnetic waves; all of the shaped beams of the base station constitute the coverage of the base station.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 9 , and the implementation principle and technical effects are similar, and details are not described herein again.
  • the system message is carried in the signal, and the system message includes at least one of the following information:
  • a Beam ID of the shaped beam corresponding to the signal a Beam ID of the shaped beam corresponding to the signal, a total number of shaped beams of the base station, or location information of the base station.
  • the generating module 1401 is configured to: perform scrambling and modulation on the data to be sent corresponding to each of the shaped beams by using a scrambling code determined according to the Beam ID of each of the shaped beams, to obtain the The signals corresponding to the beam respectively.
  • the generating module 1401 is specifically configured to: adopt a total according to the shaped beam The determined masks respectively mask and modulate the data to be transmitted corresponding to the respective shaped beams to obtain signals corresponding to the respective shaped beams.
  • the device in this embodiment may be used to implement the technical solution of the fifth embodiment of the terminal positioning method, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the present invention further provides a terminal positioning system, comprising: the terminal positioning device according to the first embodiment, the second embodiment or the third embodiment, and the terminal positioning device according to the fourth embodiment or the fifth embodiment.
  • FIG. 15 is a schematic structural diagram of Embodiment 6 of a terminal locating device according to an embodiment of the present invention.
  • the device in this embodiment is a terminal.
  • the device in this embodiment may include: a processor 1501 and a memory 1502.
  • the apparatus can also include a transmitter 1503 and a receiver 1504. Transmitter 1503 and receiver 1504 can be coupled to processor 1501.
  • the transmitter 1503 is configured to transmit data or information
  • the receiver 1504 is configured to receive data or information
  • the memory 1502 stores execution instructions.
  • the processor 1501 communicates with the memory 1502, and the processor 1501 calls the memory 1502. Execution instructions for performing the following operations:
  • Determining a position of the terminal according to an intensity of a signal in an electromagnetic wave of each of the shaped beam shapes of the at least two base stations.
  • determining a location of the terminal according to an intensity of a signal in an electromagnetic wave of each of the shaped beam shapes of the at least two base stations including:
  • the shaped beam having the highest signal strength of each of the at least two base stations is the first shaped beam
  • Determining a location of the terminal according to direction information of the first shaped beam of each base station and location information of each base station.
  • the method before determining the direction information of the first shaped beam of each of the base stations according to the beam identifier of the first shaped beam of the base station, the method further includes:
  • determining the direction information of the first shaped beam of each of the base stations according to the Beam ID of the first shaped beam of each of the base stations including:
  • the determining, according to the total number of the shaped beams of the base stations and the direction information of the preset shaping beam of the preset Beam ID, determining the direction information of the first shaped beam of each base station ,Also includes:
  • the total number of shaped beams of the base stations is determined according to a mask used to de-mask the signals in the electromagnetic waves of the first shaped beam shape of each base station.
  • the method before determining the location of the terminal, according to the direction information of the first shaped beam of the base station and the location information of each base station, the method further includes:
  • the terminal determines the location of the terminal according to the strength of the signal in the electromagnetic wave of each of the shaped beam shapes of the at least two base stations, including:
  • the position corresponding to the first preset signal strength vector is taken as the position of the terminal.
  • the device of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, FIG. 3 or FIG. 8.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of Embodiment 7 of a terminal locating device according to an embodiment of the present invention.
  • the device in this embodiment is a base station.
  • the device in this embodiment may include: a processor 1601 and a transmitter 1602.
  • the processor 1601 is configured to generate a signal corresponding to each of the shaped beams
  • the transmitter 1602 is configured to transmit, by using the antenna, a signal corresponding to each of the shaped beams to form an shaped beam shape corresponding to the signal.
  • Electromagnetic waves; all of the shaped beams of the base station constitute the coverage of the base station.
  • a system message is carried in the signal, and the system message includes at least one of the following information:
  • a Beam ID of the shaped beam corresponding to the signal a Beam ID of the shaped beam corresponding to the signal, a total number of shaped beams of the base station, or location information of the base station.
  • the processor 1601 is configured to: perform scrambling and modulation on the to-be-transmitted data corresponding to each of the shaped beams by using a scrambling code determined according to the Beam ID of each of the shaped beams, to obtain the The signals corresponding to the beam respectively.
  • the processor 1601 is configured to: perform masking and modulation on the data to be sent corresponding to each of the shaped beams, respectively, by using a mask determined according to the total number of the shaped beams, to obtain the The signals corresponding to the shaped beams.
  • the device of this embodiment may be used to implement the technical solution of the fourth embodiment or the fifth embodiment of the terminal positioning method, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种终端定位方法、装置及系统。一种终端定位方法,包括:终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。本发明提高了终端定位的应用范围。

Description

终端定位方法、装置及系统 技术领域
本发明实施例涉及通信技术,尤其涉及一种终端定位方法、装置及系统。
背景技术
随着移动通信技术的发展,在要求移动终端具有基本的通信业务的基础上,越来越多的增值业务需要终端能够获知自身所在的位置。
目前,采用全球定位系统(GPS,Global Positioning System)对终端进行定位。采用GPS的终端定位方法,必须在终端上配置相应的GPS接收机和卫星天线才能实现,无法对不包含GPS接收机和卫星天线的终端进行定位。并且,由于GPS定位依赖卫星信号,当没有卫星信号或卫星信号很微弱时,则无法完成定位。
因此,现有采用GPS的终端定位方法,受到终端的配置情况以及卫星信号的限制,终端定位的应用范围较小。
发明内容
本发明实施例提供一种终端定位方法、装置及系统,用以解决现有技术中现有采用GPS的终端定位方法,受到终端的配置情况以及卫星信号的限制,终端定位的应用范围较小的问题。
第一方面,本发明实施例提供一种终端定位方法,包括:
终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
本发明实施例中,通过终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的各赋形波束组成所述各基站的覆盖范围;所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置;提高了终端定位的应用范围。
结合第一方面,在第一方面的第一种可能实现的方式中,所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置,包括:
所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;
所述终端根据所述各基站的所述第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息;
所述终端根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置。
本发明实施例中,通过终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;所述终端根据所述第一赋形波束的方向信息及所述至少两个基站的位置信息,确定所述终端的位置;提高了终端定位的应用范围。
结合第一方面的第一种可能实现的方式,在第一方面的第二种可能实现的方式中,所述终端根据所述各基站的第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息之前,还包括:
所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形波束的Beam ID;
或者,
所述终端根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID。
本发明实施例中通过从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形波束的Beam ID;或者,根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID;使得终端可以获得第一赋形波束的Beam ID。
结合第一方面的第一种或第二种可能实现的方式,在第一方面的第三种可能实现的方式中,所述终端根据所述各基站的第一赋形波束的Beam ID, 确定所述各基站的第一赋形波束的方向信息,包括:
所述终端根据所述各基站赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息。
本发明实施例中,通过据所述各基站赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息;使得终端可以获得第一赋形波束的方向信息。
结合第一方面的第三种可能实现的方式,在第一方面的第四种可能实现的方式中,所述终端根据所述各基站的赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息之前,还包括:
所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;
或者,
所述终端根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数。
本发明实施例中,通过从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;或者,根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数;使得终端可以确定各基站的赋形波束的总数。
结合第一方面的第一种至第四种任一种可能实现的方式,在第一方面的第五种可能实现的方式中,所述终端根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置之前,还包括:
所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息。
本发明实施例中,通过从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息;使得终端可以获得各基站的位置信息。
结合第一方面,在第一方面的第六种可能实现的方式中,所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置,包括:
所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;
所述终端根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;
所述终端根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;
所述终端将所述第一预设信号强度向量对应的位置,作为所述终端的位置。
本发明实施例中,通过终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;所述终端根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;所述终端根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;所述终端将所述第一预设信号强度向量对应的位置,作为所述终端的位置;提高了终端定位的应用范围。
第二方面,本发明实施例提供一种终端定位方法,包括:
基站生成各赋形波束分别对应的信号;
所述基站将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围。
本发明实施例中,通过基站将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围;使得终端可以根据基站的各赋形波束形状的电磁波中信号的强度来确定终端的位置。
结合第二方面,在第二方面的第一种可能实现的方式中,系统消息承载在所述信号中,所述系统消息包括下述信息中的至少一种:
所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所 述基站的位置信息。
本发明实施例中,通过系统消息包括下述信息中的至少一种:所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所述基站的位置信息;使得终端可以从系统消息中获取Beam ID、赋形波束的总数及基站的位置信息。
结合第二方面或第二方面的第一种可能实现的方式,在第二方面的第二种可能实现的方式中,所述基站生成各赋形波束分别对应的信号,包括:所述基站采用根据所述各赋形波束的Beam ID确定的扰码对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号。
本实施例中,通过采用根据所述各赋形波束的Beam ID确定的扰码对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号;使得终端可以根据解扰一信号所使用的扰码,确定该信号对应的赋形波束的Beam ID。
结合第二方面或第二方面的第一种可能实现的方式,在第二方面的第三种可能实现的方式中,所述基站生成各赋形波束分别对应的信号,包括:所述基站采用根据所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号。
本实施例中,通过采用根据所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号;使得终端可以根据解掩一信号所使用的掩码,确定赋形波束的总数。
第三方面,本发明实施例提供一种终端定位装置,包括:
第一确定模块,用于确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
第二确定模块,用于终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
结合第三方面,在第三方面的第一种可能实现的方式中,所述第二确定模块,具体用于:
根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定 所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;
根据所述各基站的所述第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息;
根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置。
结合第三方面的第一种可能实现的方式,在第三方面的第二种可能实现的方式中,所述装置还包括:第一获取模块,用于从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形波束的Beam ID;或者,根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID。
结合第三方面的第一种或第二种可能实现的方式,在第三方面的第三种可能实现的方式中,所述第二确定模块根据所述各基站的第一赋形波束的Beam ID,确定所述各基站的第一赋形波束的方向信息,具体包括:
根据所述各基站赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息。
结合第三方面的第三种可能实现的方式,在第三方面的第四种可能实现的方式中,所述装置还包括:第二获取模块,用于终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;或者,根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数。
结合第三方面的第一种至第四种任一种可能实现的方式,在第三方面的第五种可能实现的方式中,所述装置还包括:第三获取模块,用于从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息。
结合第三方面,在第三方面的第六种可能实现的方式中,所述第二确定模块,具体用于:
根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;
根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度 向量的相关性;
根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;
将所述第一预设信号强度向量对应的位置,作为所述终端的位置。
第四方面,本发明实施例提供一种终端定位装置,包括:
生成模块,用于生成各赋形波束分别对应的信号;
发送模块,用于将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围。
结合第四方面,在第四方面的第一种可能实现的方式中,系统消息承载在所述信号中,所述系统消息包括下述信息中的至少一种:
所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所述基站的位置信息。
结合第四方面或第四方面的第一种可能实现的方式,在第四方面的第二种可能实现的方式中,所述生成模块,具体用于:采用根据所述各赋形波束的Beam ID确定的扰码对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号。
结合第四方面或第四方面的第一种可能实现的方式,在第四方面的第三种可能实现的方式中,所述生成模块,具体用于:采用根据所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号。
第五方面,本发明实施例提供一种终端定位系统,包括:第三方面或第三方面的第一种至第六种任一种所述的终端定位装置及第四方面或第四方面的第一种至第三种任一种所述的终端定位装置。
本发明提供的一种终端定位方法、装置及系统;通过终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的各赋形波束组成所述各基站的覆盖范围;所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置;实现了终端根据基站的各赋形波束形状的电磁波中信号的强度来确定终端的位置;与 现有技术中采用GPS的终端定位方法相比,不需要受到终端上必须配置GPS发射机和卫星天线以及较好的卫星信号的限制,只需要终端能够接收到基站的信号就可以完成定位;因此,提高了终端定位的应用范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例终端定位方法的应用场景的示意图;
图2为本发明实施例终端定位方法实施例一的流程图;
图3为本发明实施例终端定位方法实施例二的流程图;
图4和图5为本发明实施例基站的各赋形波束形状的电磁波中信号强度的示意图;
图6为本发明实施例赋形波束的Beam ID与赋形波束的方向的关系示意图;
图7为本发明实施例三个点之间的位置关系的示意图;
图8为本发明实施例终端定位方法实施例三的流程图;
图9为本发明实施例终端定位方法实施例四的流程图;
图10为本发明实施例提供的基站将一赋形波束对应的信号通过天线发射的处理框图;
图11为本发明实施例提供的终端通过天线接收一赋形波束对应的信号的处理框图;
图12为本发明实施例终端定位装置实施例一的结构示意图;
图13为本发明实施例终端定位装置实施例二的结构示意图;
图14为本发明实施例终端定位装置实施例四的结构示意图;
图15为本发明实施例终端定位装置实施例六的结构示意图;
图16为本发明实施例终端定位装置实施例七的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例终端定位方法的应用场景的示意图;如图1所示,本发明的应用场景可以包括:基站1、基站2及终端;其中,基站1的各赋形波束(例如,……、Beam n-2、Beam n-1、Beam n、Beam n+1、……)组成基站1的覆盖范围;基站2的各赋形波束(例如,……、Beam m-1、Beam m、Beam m+1、Beam m+2、……);所述终端根据基站1和基站2的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
需要说明的是,本发明的应用场景中的基站的个数为至少两个。优选的,所述至少两个基站为地理位置相邻的基站。
需要说明的是,本发明的应用场景中基站的各赋形波束可以为具有相同俯仰角的赋形波束;或者,也可以为具有不同俯仰角的赋形波束。
图2为本发明实施例终端定位方法实施例一的流程图,如图2所示,本实施例的方法可以包括:
步骤201、终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
步骤202、所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
本实施例中,通过终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的各赋形波束组成所述各基站的覆盖范围;所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置;实现了终端根据基站的各赋形波束形状的电磁波中信号的强度来确定终端的位置;与现有技术中采用GPS的终端定位方法相比,不需要受到终端上必须配置GPS发射机和卫星天线以及较好的卫星信号的限制,只需要终端能够接收到基站的信号就可以完成定位;因此,提高了终端定位的应用范围。
图3为本发明实施例终端定位方法实施例二的流程图,如图3所示,本实施例的方法可以包括:
步骤301、终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
需要说明的是,所述至少两个基站中任一基站的各赋形波束形状的电磁波中的信号之间可以为时分、频分或码分。
当为时分时,所述终端可以在不同时刻接收到不同赋形波束形状的电磁波;当为码分或频分时,所述终端可以在同一时刻接收到不同赋形波束形状的电磁波。
步骤302、所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;
其中,所述信号的强度具体可以为信号的接收的信号强度指示(RSSI,Received Signal Strength Indication)。
可选的,所述至少两个基站的各赋形波束形状的电磁波中信号的强度可以如图4和图5所示。例如,图4和图5中,基站1的第一赋形波束为Beam ID为Beam n的赋形波束,基站2的第一赋形波束为Beam ID为Beam m的赋形波束。从图5也可以看出,电磁波波束(例如,Beam ID为Beam m+2的赋形波束)经反射体(例如,墙体)反射后,衰减较大,并不影响第一赋形波束的确定。
步骤303、所述终端根据所述各基站的第一赋形波束的波束标识(Beam ID),确定所述各基站的第一赋形波束的方向信息;
可选的,步骤303具体可以为:所述终端可以根据所述至少两个基站中各Beam ID分别对应的方向信息及所述第一赋形波束的Beam ID,确定所述第一赋形波束的方向信息;或者,所述终端根据所述各基站的赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息。
可选的,所述终端根据所述各基站的赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方 向信息之前,还可以包括:
所述基站从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;或者,所述终端根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数。
可选的,所述终端根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数,包括:
所述终端将解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,作为所述各基站的赋形波束的总数;或者,
所述终端根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,以及所述掩码与赋形波束总数的对应关系,确定所述各基站的赋形波束的总数。
参考图6,对终端根据所述至少两个基站中各Beam ID分别对应的方向信息及所述第一赋形波束的Beam ID,确定所述第一赋形波束的方向信息,举例如下:
例如,若第一赋形波束的Beam ID为45;终端可以根据一基站中Beam ID为0时对应的方向信息为正北方向,……,Beam ID为99时对应的方向信息为正南方向,……;确定第一赋形波束的方向信息为正东方向。
继续参考图6,对终端根据所述各基站的赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息,举例如下:
又例如,若第一赋形波束的Beam ID为45,基站的赋形波束的总数为197,预设Beam ID为0的预设赋形波束的方向信息为正北方向;则也可以确定出第一赋形波束的方向信息为正东方向。
需要说明的是,图6中Beam ID沿图中虚线箭头所示的方向递增。
需要说明的是,图6是以二维平面的赋形波束(也即,赋形波束具有相同的俯仰角)为例进行举例说明;对于三维空间的赋形波束时,确定第一赋形波束的方法与图6类似,在此不再赘述。
可选的,步骤303之前还可以包括:所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形 波束的Beam ID;或者,所述终端根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID。
可选的,所述终端根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID,包括:
所述终端将解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,作为所述各基站的第一赋形波束的Beam ID;或者,终端根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,以及所述扰码与Beam ID的对应关系,确定所述各基站的第一赋形波束的Beam ID。
步骤304、所述终端根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置。
例如,已知图7中A点的位置信息为坐标(0,0),B点的位置信息为坐标(1,0);C点相对A点的方向为东偏北30°,C点相对于B点的方向为西偏北60°;则可以计算出C点的位置为坐标
Figure PCTCN2015098320-appb-000001
需要说明的是,图7是以二维坐标为例进行举例说明,当终端的位置为二维位置时,则至少需要两个基站来确定该终端的位置信息;当终端的位置为三维位置时,则至少需要三个基站来确定该终端的位置信息,在此不再赘述。
可选的,步骤304之前,还可以包括:
所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息。
本实施例中,通过终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;所述终端根据所述第一赋形波束的方向信息及所述至少两个基站的位置信息,确定所述终端的位置;实现了终端根据基站的各赋形波束形状的电磁波中信号的强度来确定终端的位置;与现有技术中采用GPS的终端定位方法相比,不需要受到终端上必须配置GPS发射机和卫星天线以及较好的卫星信号的限制,只需要终端能够接收到基站的信号就可以完成定位;因此,提高了终端定位的应用范围。
图8为本发明实施例终端定位方法实施例三的流程图,如图8所示,本实施例的方法可以包括:
步骤801、终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
需要说明的是,步骤801与步骤301类似,在此不再赘述。
步骤802、所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;
可选的,所述当前信号强度向量可以为:
基站1Beam 1的信号强度
基站1Beam 2的信号强度
……
基站1Beam N的信号强度
……
基站M Beam 1的信号强度
……
基站M Beam K的信号强度
其中,M为大于等于2的整数,N为基站1的赋形波束的个数,K为基站M的赋形波束的个数。
可选的,所述信号强度可以为RSSI。
步骤803、所述终端根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;
可选的,预设空间范围内各位置分别对应的预设信号强度向量,可以如下表1所示。
表1
Figure PCTCN2015098320-appb-000002
Figure PCTCN2015098320-appb-000003
需要说明的是,表1中M、N、K与步骤802中相同;P为预设空间范围划分的位置的个数;表1中各位置对应的列,为该位置对应的预设信号强度向量。
可选的,在步骤803之前还可以包括:将所述预设空间范围划分为多个位置;测量并记录所划分的各位置对应的预设信号强度向量。
需要说明的是,所述各位置分别对应的预设信号强度向量可以存储在服务器,所述终端可以从所述服务器获取所述各位置分别对应的预设信号强度向量。
可选的,所述预设空间范围可以为商场、写字楼等。
可选的,所述将预设空间范围划分为的多个位置可以为二维位置或三维位置。
步骤804、所述终端根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定各所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;
可选的,所述终端可以采用如下两种方式确定预设信号强度向量与当前信号强度向量的相关性。
方法1:
假设,向量a=[a1 a2 … aM×N]T,向量b=[b1 b2 … bM×N]T(这里,假设向量a和向量b都为列向量);则可以采用如下公式1,确定向量a与向量b之间的夹角θ:
Figure PCTCN2015098320-appb-000004
其中,aT代表求向量a的转置;
Figure PCTCN2015098320-appb-000005
代表求向量a的2范数;arccos()为反余弦函数。
原则:向量a与向量b之间的夹角越小,则相关性越大;向量a与向量b之间的夹角越大,则相关性越小。
方法2:
假设,向量a=[a1 a2 … aM×N]T,向量b=[b1 b2 … bM×N]T(这里,假设向量a和向量b都为列向量);则度量量C可以如公式(2)所示:
Figure PCTCN2015098320-appb-000006
原则:C越大,则向量a与向量b之间相关性越大;C越小,则向量a与向量b之间相关性越小。
步骤805、所述终端将所述第一预设信号强度向量对应的位置,作为所述终端的位置。
本实施例中,通过所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;所述终端根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;所述终端根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;所述终端将所述第一预设信号强度向量对应的位置,作为所述终端的位置;实现了终端根据基站的各赋形波束形状的电磁波中信号的强度来确定终端的位置;与现有技术中采用GPS的终端定位方法相比,不需要受到终端上必须配置GPS发射机和卫星天线以及较好的卫星信号的限制,只需要终端能够接收到基站的信号就可以完成定位;因此,提高了终端定位的应用范围。
图9为本发明实施例终端定位方法实施例四的流程图,如图9所示,本实施例的方法可以包括:
步骤901、基站生成各赋形波束分别对应的信号;
步骤902、所述基站将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围。
需要说明的是,步骤901与步骤902的执行顺序可以为:第一种,步骤901中生成一赋形波束对应的信号,步骤902中将该赋形波束对应的信号通过天线发射,步骤901中生成另一赋形波束对应的信号,步骤902中将该另一赋形波束对应的信号通过天线发射,……;或者,第二种,步骤901中生成各赋形波束分别对应的信号,所述基站将各赋形波束分别对应的信号通过天线发射。
其中,第一种对应基站的各赋形波束形状的电磁波中的信号之间时分;第二种对应基站的各赋形波束形状的电磁波中的信号之间频分或码分。
本实施例中,通过基站将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围;使得终端可以根据基站的各赋形波束形状的电磁波中信号的强度来确定终端的位置。
终端定位方法实施例五
可选的,在本发明终端定位方法实施例四的基础上,系统消息承载在所述信号中,所述系统消息包括下述信息中的至少一种:
所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所述基站的位置信息。
可选的,所述基站生成各赋形波束分别对应的信号,包括:所述基站采用根据所述各赋形波束的Beam ID确定的扰码分别对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号;或者,所述基站采用根据所述各赋形波束的Beam ID确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号。
本实施例中,通过采用根据赋形波束的Beam ID确定的扰码(或掩码)对该赋形波束对应的待发送数据进行加扰(或加掩)及调制,获得该赋形波束对应的信号;使得终端可以根据解扰(或解掩)该信号时所使用的扰码,确定该信号对应的赋形波束的Beam ID。
可选的,所述基站生成各赋形波束分别对应的信号,包括:所述基站根据采用所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号;或者,所述基站采用根据所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待 发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号。
本实施例中,通过采用根据赋形波束的总数确定的掩码(或扰码)对该赋形波束对应的待发送数据进行加掩(或加扰)及调制,获得该赋形波束对应的信号;使得终端可以根据解掩(或解扰)该信号时所使用的掩码(或扰码),确定赋形波束的总数。
图10为本发明实施例提供的基站将一赋形波束对应的信号通过天线发射的处理框图;图10中,所述待发数据可以对应广播消息的内容;待发送数据可以仅包括基站的位置信息,加扰处理时使用的扰码可以为所选择的Beam ID;或者,待发送数据可以包括基站的位置信息和所选择的Beam ID。
可选的,当需要将基站的赋形波束的总数发送至终端时,可以通过待发送数据还包括基站的赋形波束的总数,或者CRC加掩时使用的掩码为基站的赋形波束的总数的方式。
需要说明的是,图10对应终端采用实施例二的方式进行终端位置确定时的基站处理过程。
图11为本发明实施例提供的终端通过天线接收一赋形波束对应的信号的处理框图。图11中,终端可以从所获得的数据中确定出基站的位置信息、Beam ID和赋形波束的总数;或者,可以从所获得数据中确定出基站的位置信息,根据解扰所使用的扰码确定Beam ID,根据解掩所使用的掩码确定赋形波束的总数。
需要说明的是,图11为终端采用实施例二的方式进行终端位置确定时的处理过程。图11中,根据Beam ID和RSSI计算位置信息时,需要根据所有赋形波束对应的Beam ID和对应的RSSI,以及基站的位置信息来计算终端的位置信息。
图12为本发明实施例终端定位装置实施例一的结构示意图,本实施例的装置为终端;如图12所示,本实施例的装置可以包括:第一确定模块1201和第二确定模块1202。其中,第一确定模块1201,用于确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;第二确定模块1202,用于终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
本实施例的装置,可以用于执行图2所述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图13为本发明实施例终端定位装置实施例二的结构示意图;如图13所示,本实施例的装置在图12所示装置结构的基础上,进一步的,还可以包括:第一获取模块1203。
第二确定模块1202,具体用于:
根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;
根据所述各基站的所述第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息;
根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置。
第一获取模块1203,用于从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形波束的Beam ID;或者,根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID。
可选的,第二确定模块1202根据所述各基站的第一赋形波束的Beam ID,确定所述各基站的第一赋形波束的方向信息,具体包括:
根据所述各基站赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息。
可选的,本实施例的装置还包括:第二获取模块1204,用于终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;或者,根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数。
可选的,本实施例的装置还包括:第三获取模块1205,用于从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息。
本实施例的装置,可以用于执行图3所述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
终端定位装置实施例三
可选的,在本发明终端定位装置实施例一的基础上,第二确定模块1202,具体用于:
根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;
根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;
根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;
将所述第一预设信号强度向量对应的位置,作为所述终端的位置。
本实施例的装置,可以用于执行图8所述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本发明实施例终端定位装置实施例四的结构示意图,本实施例的装置为基站;如图14所示,本实施例的装置可以包括:生成模块1401和发送模块1402。其中,生成模块1401,用于生成各赋形波束分别对应的信号;发送模块1402,用于将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围。
本实施例的装置,可以用于执行图9所述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
终端定位装置实施例五
可选的,在本发明终端定位装置实施例四的基础上,系统消息承载在所述信号中,所述系统消息包括下述信息中的至少一种:
所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所述基站的位置信息。
可选的,生成模块1401,具体用于:采用根据所述各赋形波束的Beam ID确定的扰码对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号。
或者,可选的,生成模块1401,具体用于:采用根据所述赋形波束的总 数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号。
本实施例的装置,可以用于执行终端定位方法实施例五的技术方案,其实现原理和技术效果类似,此处不再赘述。
本发明还提供一种终端定位系统,包括:终端定位装置实施例一、实施例二或实施例三所述的终端定位装置及终端定位装置实施例四或实施例五所述的终端定位装置。
图15为本发明实施例终端定位装置实施例六的结构示意图,本实施例的装置为终端;如图15所示,本实施例的装置可以包括:处理器1501和存储器1502。该装置还可以包括发送器1503、接收器1504。发送器1503和接收器1504可以和处理器1501相连。其中,发送器1503用于发送数据或信息,接收器1504用于接收数据或信息,存储器1502存储执行指令,当装置运行时,处理器1501与存储器1502之间通信,处理器1501调用存储器1502中的执行指令,用于执行以下操作:
确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
可选的,根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置,包括:
根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;
根据所述各基站的所述第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息;
根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置。
可选的,所述根据所述各基站的第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息之前,还包括:
从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形波束的Beam ID;
或者,
根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID。
可选的,所述根据所述各基站的第一赋形波束的Beam ID,确定所述各基站的第一赋形波束的方向信息,包括:
根据所述各基站赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息。
可选的,所述根据所述各基站的赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息之前,还包括:
从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;
或者,
根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数。
可选的,所述根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置之前,还包括:
从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息。
可选的,终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置,包括:
根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;
根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;
根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;
将所述第一预设信号强度向量对应的位置,作为所述终端的位置。
本实施例的装置,可以用于执行图2、图3或图8所述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图16为本发明实施例终端定位装置实施例七的结构示意图,本实施例的装置为基站;如图16所示,本实施例的装置可以包括:处理器1601和发送器1602。其中,处理器1601,用于生成各赋形波束分别对应的信号;发送器1602,用于将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围。
可选的,系统消息承载在所述信号中,所述系统消息包括下述信息中的至少一种:
所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所述基站的位置信息。
可选的,处理器1601,具体用于:采用根据所述各赋形波束的Beam ID确定的扰码对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号。
或者,可选的,处理器1601,具体用于:采用根据所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号。
本实施例的装置,可以用于执行终端定位方法实施例四或实施例五的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种终端定位方法,其特征在于,包括:
    终端确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
    所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置,包括:
    所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;
    所述终端根据所述各基站的所述第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息;
    所述终端根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述终端根据所述各基站的第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息之前,还包括:
    所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形波束的Beam ID;
    或者,
    所述终端根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各基站的第一赋形波束的Beam ID。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端根据所述各基站的第一赋形波束的Beam ID,确定所述各基站的第一赋形波束的方向信息,包括:
    所述终端根据所述各基站赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息。
  5. 根据权利要求4所述的方法,其特征在于,所述终端根据所述各基站 的赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息之前,还包括:
    所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;
    或者,
    所述终端根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述终端根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置之前,还包括:
    所述终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息。
  7. 根据权利要求1所述的方法,其特征在于,所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置,包括:
    所述终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;
    所述终端根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;
    所述终端根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;
    所述终端将所述第一预设信号强度向量对应的位置,作为所述终端的位置。
  8. 一种终端定位方法,其特征在于,包括:
    基站生成各赋形波束分别对应的信号;
    所述基站将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围。
  9. 根据权利要求8所述的方法,其特征在于,系统消息承载在所述信号中,所述系统消息包括下述信息中的至少一种:
    所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所述基站的位置信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述基站生成各赋形波束分别对应的信号,包括:所述基站采用根据所述各赋形波束的Beam ID确定的扰码对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号。
  11. 根据权利要求8或9所述的方法,其特征在于,所述基站生成各赋形波束分别对应的信号,包括:所述基站采用根据所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号。
  12. 一种终端定位装置,其特征在于,包括:
    第一确定模块,用于确定至少两个基站的各赋形波束形状的电磁波中信号的强度,所述至少两个基站中各基站的所有赋形波束组成所述各基站的覆盖范围;
    第二确定模块,用于终端根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述终端的位置。
  13. 根据权利要求12所述的装置,其特征在于,所述第二确定模块,具体用于:
    根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,确定所述至少两个基站中各基站的信号强度最大的赋形波束为第一赋形波束;
    根据所述各基站的所述第一赋形波束的波束标识Beam ID,确定所述各基站的第一赋形波束的方向信息;
    根据所述各基站的第一赋形波束的方向信息及所述各基站的位置信息,确定所述终端的位置。
  14. 根据权利要求13所述的装置,其特征在于,所述装置还包括:第一获取模块,用于从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的第一赋形波束的Beam ID;或者,根据解扰所述各基站的第一赋形波束形状的电磁波中信号所使用的扰码,确定所述各 基站的第一赋形波束的Beam ID。
  15. 根据权利要求13或14所述的装置,其特征在于,所述第二确定模块根据所述各基站的第一赋形波束的Beam ID,确定所述各基站的第一赋形波束的方向信息,具体包括:
    根据所述各基站赋形波束的总数和Beam ID为预设Beam ID的预设赋形波束的方向信息,确定所述各基站的第一赋形波束的方向信息。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:第二获取模块,用于终端从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的赋形波束的总数;或者,根据解掩所述各基站的第一赋形波束形状的电磁波中信号所使用的掩码,确定所述各基站的赋形波束的总数。
  17. 根据权利要求13-16任一项所述的装置,其特征在于,所述装置还包括:第三获取模块,用于从所述各基站的第一赋形波束形状的电磁波中信号所承载的广播消息中,获取所述各基站的位置信息。
  18. 根据权利要求12所述的装置,其特征在于,所述第二确定模块,具体用于:
    根据所述至少两个基站的各赋形波束形状的电磁波中信号的强度,生成当前信号强度向量;
    根据所述当前信号强度向量及预设空间范围内各位置分别对应的预设信号强度向量,确定各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性;
    根据所述各位置分别对应的预设信号强度向量与所述当前信号强度向量的相关性,确定所述预设信号强度向量中所述第一预设信号强度向量与所述当前信号强度向量的相关性最大;
    将所述第一预设信号强度向量对应的位置,作为所述终端的位置。
  19. 一种终端定位装置,其特征在于,包括:
    生成模块,用于生成各赋形波束分别对应的信号;
    发送模块,用于将所述各赋形波束分别对应的信号通过天线发射,以形成所述信号对应的赋形波束形状的电磁波;所述基站的所有赋形波束组成所述基站的覆盖范围。
  20. 根据权利要求19所述的装置,其特征在于,系统消息承载在所述信号中,所述系统消息包括下述信息中的至少一种:
    所述信号对应的赋形波束的Beam ID、所述基站的赋形波束的总数或所述基站的位置信息。
  21. 根据权利要求19或20所述的装置,其特征在于,所述生成模块,具体用于:采用根据所述各赋形波束的Beam ID确定的扰码对所述各赋形波束对应的待发送数据进行加扰及调制,获得所述各赋形波束分别对应的信号。
  22. 根据权利要求19或20所述的装置,其特征在于,所述生成模块,具体用于:采用根据所述赋形波束的总数确定的掩码分别对所述各赋形波束对应的待发送数据进行加掩及调制,获得所述各赋形波束分别对应的信号。
  23. 一种终端定位系统,其特征在于,包括:权利要求12-18任一项所述的终端定位装置及权利要求19-22任一项所述的终端定位装置。
PCT/CN2015/098320 2015-12-22 2015-12-22 终端定位方法、装置及系统 WO2017107068A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098320 WO2017107068A1 (zh) 2015-12-22 2015-12-22 终端定位方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098320 WO2017107068A1 (zh) 2015-12-22 2015-12-22 终端定位方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017107068A1 true WO2017107068A1 (zh) 2017-06-29

Family

ID=59088622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098320 WO2017107068A1 (zh) 2015-12-22 2015-12-22 终端定位方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2017107068A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054908A1 (en) * 2017-09-13 2019-03-21 Telefonaktiebolaget Lm Ericsson (Publ) AUTHORIZATION FOR EFFICIENT POSITIONING OF A TARGET DEVICE IN A WIRELESS COMMUNICATION SYSTEM
JP2021014589A (ja) * 2018-10-02 2021-02-12 Dic株式会社 配向助剤を使用した液晶組成物及び液晶表示素子、およびその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339755A (ja) * 2000-05-25 2001-12-07 Seiko Epson Corp 位置算出方法、位置算出装置及び携帯端末
JP2002107443A (ja) * 2000-09-29 2002-04-10 Ntt Docomo Inc 移動機の位置推定方法及び装置
CN1815812A (zh) * 2006-01-20 2006-08-09 东南大学 移动通信用宽频带赋形波束天线
CN201282561Y (zh) * 2008-09-27 2009-07-29 广东南方通信建设有限公司 固定波束切换智能天线系统
KR20100032695A (ko) * 2008-09-18 2010-03-26 에스케이 텔레콤주식회사 이동통신 단말기의 위치를 계산하기 위한 방법 및 장치
CN102118850A (zh) * 2010-01-05 2011-07-06 香港理工大学 一种通过移动通信信号来实现定位的方法及系统
JP2012170013A (ja) * 2011-02-16 2012-09-06 Nec Corp フェムトセル基地局装置、無線電力制御方法、およびプログラム
CN103281777A (zh) * 2013-04-25 2013-09-04 浙江大学 一种基于WiFi的差分定位方法
WO2014010793A1 (ko) * 2012-07-09 2014-01-16 주식회사 케이티 협력 통신 제공을 위한 상향 링크 신호 처리 시스템 및 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339755A (ja) * 2000-05-25 2001-12-07 Seiko Epson Corp 位置算出方法、位置算出装置及び携帯端末
JP2002107443A (ja) * 2000-09-29 2002-04-10 Ntt Docomo Inc 移動機の位置推定方法及び装置
CN1815812A (zh) * 2006-01-20 2006-08-09 东南大学 移动通信用宽频带赋形波束天线
KR20100032695A (ko) * 2008-09-18 2010-03-26 에스케이 텔레콤주식회사 이동통신 단말기의 위치를 계산하기 위한 방법 및 장치
CN201282561Y (zh) * 2008-09-27 2009-07-29 广东南方通信建设有限公司 固定波束切换智能天线系统
CN102118850A (zh) * 2010-01-05 2011-07-06 香港理工大学 一种通过移动通信信号来实现定位的方法及系统
JP2012170013A (ja) * 2011-02-16 2012-09-06 Nec Corp フェムトセル基地局装置、無線電力制御方法、およびプログラム
WO2014010793A1 (ko) * 2012-07-09 2014-01-16 주식회사 케이티 협력 통신 제공을 위한 상향 링크 신호 처리 시스템 및 방법
CN103281777A (zh) * 2013-04-25 2013-09-04 浙江大学 一种基于WiFi的差分定位方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054908A1 (en) * 2017-09-13 2019-03-21 Telefonaktiebolaget Lm Ericsson (Publ) AUTHORIZATION FOR EFFICIENT POSITIONING OF A TARGET DEVICE IN A WIRELESS COMMUNICATION SYSTEM
JP2021014589A (ja) * 2018-10-02 2021-02-12 Dic株式会社 配向助剤を使用した液晶組成物及び液晶表示素子、およびその製造方法
JP7014282B2 (ja) 2018-10-02 2022-02-01 Dic株式会社 配向助剤を使用した液晶組成物及び液晶表示素子、およびその製造方法

Similar Documents

Publication Publication Date Title
Keating et al. Overview of positioning in 5G new radio
US20210099989A1 (en) Communication devices and methods for rf-based communication and position determination
US11006246B2 (en) Base station, wireless communications network and methods for operating the same
KR102347722B1 (ko) 무선 통신 시스템에서 위치 측정을 위한 장치 및 방법
CN101965050B (zh) 使用多波束发射来估计无线站的位置的方法和装置
US20210345285A1 (en) Method and Device for User Equipment Positioning
CN111212378B (zh) 一种ue、基站和服务中心中的方法和设备
CN114245457A (zh) 定位方法、装置及设备
EP4014607A1 (en) Non-line-of-sight path detection for user equipment positioning in wireless networks
CN111447543A (zh) 定位方法及装置
CN113747341A (zh) 一种定位方法、定位管理装置、接入网设备以及终端
WO2022027203A1 (en) Identification of an invalid reference device in device positioning
US10531465B2 (en) Communication device, access node and methods thereof
TW202215865A (zh) 用於用戶裝備功率節省的接收天線適配的方法和裝置
Gong et al. A multipath-aided localization method for MIMO-OFDM systems via tensor decomposition
WO2017107068A1 (zh) 终端定位方法、装置及系统
US10649062B2 (en) Terminal positioning method and apparatus
CN117529670A (zh) 使用角误差组(AEG)来改进到达角(AoA)定位
CN110445523B (zh) 波束训练方法、相关装置及系统
US20160112112A1 (en) Method and apparatus for beamforming
CN108064081B (zh) 一种ue、基站、服务中心中的定位的方法和装置
CN115053584A (zh) 相对发送点波束配置信息
US20230300630A1 (en) Method for angle based positioning measurement and apparatus therefor
WO2017075839A1 (zh) 一种测量和反馈信道状态信息csi的方法及装置
Rahman Investigations of 5G localization with positioning reference signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911067

Country of ref document: EP

Kind code of ref document: A1