WO2017104241A1 - 乾き度測定装置 - Google Patents

乾き度測定装置 Download PDF

Info

Publication number
WO2017104241A1
WO2017104241A1 PCT/JP2016/080157 JP2016080157W WO2017104241A1 WO 2017104241 A1 WO2017104241 A1 WO 2017104241A1 JP 2016080157 W JP2016080157 W JP 2016080157W WO 2017104241 A1 WO2017104241 A1 WO 2017104241A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
dryness
sight glass
tube
wet steam
Prior art date
Application number
PCT/JP2016/080157
Other languages
English (en)
French (fr)
Inventor
志功 田邉
康博 五所尾
泰明 松儀
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2017104241A1 publication Critical patent/WO2017104241A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a measurement technique and relates to a dryness measuring apparatus.
  • dryness is also defined as the ratio of the difference between the specific enthalpy of wet steam and the specific enthalpy of saturated liquid to the specific enthalpy of latent heat.
  • the dryness is 0.5.
  • the dryness is 1.0.
  • the wet steam dryness is controlled. It is desired to be in a state close to 1.0. Therefore, various methods for measuring the dryness have been proposed.
  • Patent Document 1 uses a saturated steam table based on the wet steam flow rate and pressure before and after the pressure control valve, using the fact that there is no change in the total enthalpy before and after the pressure control valve provided in the pipe.
  • a technique for calculating dryness by obtaining saturated water enthalpy and saturated steam enthalpy is disclosed.
  • Patent Document 1 needs to change the wet vapor of the measurement object from the two-phase state to the gas phase state and further stabilize the measurement object in the gas phase state, measurement of dryness There is a problem that it takes time.
  • Patent Document 2 discloses a technique for optically measuring the dryness.
  • an object of the present invention is to provide a dryness measuring apparatus capable of accurately measuring the dryness.
  • aspects of the present invention are: (a) a test tube for flowing wet steam inside, a test tube provided with a lower opening on the lower side in the direction of gravity; and (b) provided at a lower opening of the test tube.
  • a light receiving element that receives the inspection light transmitted through the groove of the lower sight glass, and (e) drying wet steam based on the intensity of the inspection light received by the light receiving element.
  • the width of the groove provided in the lower sight glass may become narrower toward the lower side in the direction of gravity. At least a part of the side wall of the groove of the lower sight glass may be inclined, and the inclination may decrease the width of the groove downward.
  • a step is provided on at least a part of the side wall of the groove of the lower sight glass, and the width of the groove may become narrower toward the lower side by the step.
  • an upper opening is provided on the upper side of the test tube in the gravity direction, and an upper sight glass provided on the upper opening of the test tube may be further provided.
  • the inspection light may enter the inspection tube through the upper sight glass and pass through the lower sight glass.
  • the inspection light may enter the inspection tube through the lower sight glass and pass through the upper sight glass.
  • the inspection light may enter the inside of the inspection tube through the lower sight glass, be reflected inside the inspection tube, and pass through the lower sight glass.
  • the dryness specifying unit may specify the dryness of the wet steam based on the absorbance of the wet steam.
  • An aspect of the present invention is (a) a test tube for flowing wet steam inside, wherein a lower opening is provided on the lower side in the direction of gravity, and the lower opening is provided in the portion provided with the lower opening.
  • the inspection tube having a narrow flow path, (b) the lower sight glass provided in the lower opening of the inspection tube, and (c) irradiating the inside of the inspection tube with the inspection light
  • An inspection light emitter (d) a light receiving element that receives inspection light transmitted through the flow path of the inspection tube on the lower opening, and (e) wet steam based on the intensity of the inspection light received by the light receiving element.
  • a dryness measuring device comprising: a dryness specifying unit that specifies the dryness of.
  • the flow path may become narrower in the portion where the lower opening is provided.
  • At least a part of the inner wall of the inspection tube may be inclined, and the inclination may make the flow path of the inspection tube narrower toward the lower side in the portion where the lower opening is provided.
  • a step may be provided on at least a part of the inner wall of the test tube, and the flow path of the test tube may become narrower toward the lower side in the portion where the lower opening is provided.
  • an upper opening is provided on the upper side of the test tube in the gravity direction, and an upper sight glass provided on the upper opening of the test tube may be further provided.
  • the inspection light may enter the inspection tube through the upper sight glass and pass through the lower sight glass.
  • the inspection light may enter the inspection tube through the lower sight glass and pass through the upper sight glass.
  • the inspection light may enter the inside of the inspection tube through the lower sight glass, be reflected inside the inspection tube, and pass through the lower sight glass.
  • the dryness specifying unit may specify the dryness of the wet steam based on the absorbance of the wet steam.
  • the dryness measuring apparatus includes a test tube 21 that allows wet steam to flow therein as shown in FIG. 1 and FIG. 2 which is a cross-sectional view seen from the direction II-II.
  • a test tube 21 provided with a lower opening 221 on the lower side in the direction of gravity, and a lower sight glass 42 provided in the lower opening 221 of the test tube 21.
  • a lower sight glass 42 in which a groove 142 narrower than the width of the inspection tube 221 is provided in parallel to the longitudinal direction of the inspection tube 21, an inspection light emitter 11 that irradiates inspection light into the inspection tube 21, and the lower sight glass 42.
  • the light receiving element 12 that receives the inspection light transmitted through the groove 142 and the dryness specifying unit 301 that specifies the dryness of the wet steam based on the intensity of the inspection light received by the light receiving element 12.
  • the inspection tube 21 is made of, for example, metal.
  • the inspection tube 21 is further provided with an upper opening 121 on the upper side in the gravity direction.
  • the upper opening 121 and the lower opening 221 face each other in the direction of gravity.
  • the upper opening 121 and the lower opening 221 may face each other in an oblique direction with respect to the direction of gravity.
  • the lower sight glass 42 covers the lower opening 221.
  • the dryness measuring apparatus further includes an upper sight glass 41 provided in the upper opening 121 of the test tube 21.
  • the upper sight glass 41 covers the upper opening 121.
  • the upper sight glass 41 and the lower sight glass 42 are made of a transparent member such as quartz through which inspection light is transmitted.
  • the width of the groove 142 provided in the lower sight glass 42 is narrower than the width of the lower opening 221 provided in the test tube 21.
  • the groove 142 provided in the lower sight glass 42 may be narrower as it goes downward in the direction of gravity.
  • at least a part of the side wall of the groove 142 of the lower sight glass 42 is inclined, and the width of the groove 142 may become narrower toward the lower side due to the inclination. .
  • the angle of inclination is not particularly limited.
  • at least a part of the side wall of the groove 142 of the lower sight glass 42 may be inclined in a curved shape.
  • a step is provided on at least a part of the side wall of the groove 142 of the lower sight glass 42, and the width of the groove 142 may become narrower toward the lower side by the step. .
  • the number of stages is not particularly limited.
  • the mass of the saturated vapor is proportional to the absorbance of the saturated vapor.
  • the mass of the saturated liquid is proportional to the absorbance of the saturated liquid. Therefore, the following equation (2) is derived from the above equation (1).
  • k is the following (3) the molar extinction coefficient ratio given by the formula of the saturated liquid.
  • k e vapor / e water (3)
  • e vapor represents the extinction coefficient of saturated vapor
  • e water represents the extinction coefficient of saturated liquid.
  • the absorbance A of the wet steam is given by the sum of the absorbance of the saturated steam and the absorbance of the saturated liquid, as given by the following equation (4).
  • A a vapor + a water (4)
  • the light absorbency of the wet steam is given by the ratio of the light intensity of the light after passing through the wet to the light intensity of the light before passing through the wet steam as given by the following equation (5).
  • A -ln (I steam1 / I steam0 ) (5)
  • I steam0 represents the light intensity before passing through the wet steam
  • I steam1 represents the light intensity after passing through the wet steam.
  • the absorption spectra of the saturated vapor and the saturated liquid are different, and when the dryness changes, the absorption spectrum of the saturated liquid changes. For example, as the dryness changes from 0 to 1, the content of the saturated liquid in the wet steam decreases. Therefore, as shown in FIG. 9, the absorbance A of the wet steam at the peak wavelength of the absorption spectrum of the saturated liquid also decreases. To do. The wavelength at the peak of the absorption spectrum of the saturated liquid is around 1880 nm. In wet steam, since the volume of saturated steam is much larger than the volume of saturated liquid, the absorbance of saturated steam can be regarded as constant if the pressure is constant.
  • the dryness of the wet steam is also given by the following equation (6) derived from the above equations (2), (4), and (5).
  • x 1 / (1 ⁇ k + (k / a vapor ) ⁇ A) (6)
  • the molar extinction coefficient ratio k is a constant.
  • the absorbance a Vapor saturated steam can be considered a constant under constant pressure
  • the absorbance a Vapor saturated steam can be derived from the pressure of the wet steam. Therefore, by measuring the absorbance A of the wet steam, it is possible to calculate the dryness x of the wet steam from the equation (6).
  • the inspection light emitter 11 shown in FIG. 1 emits inspection light including a wavelength band absorbed by the saturated solution.
  • the inspection light is, for example, near infrared light having a wavelength region of 800 to 2500 nm. As shown in FIG. 10, the inspection light may have the peak wavelength of the absorption spectrum of the saturated liquid as the center wavelength. In the wavelength region, the absorption spectra of the saturated vapor and the saturated liquid overlap.
  • a light-emitting diode or the like can be used for the inspection light emitter 11 shown in FIG.
  • the dryness measuring apparatus further includes a reference light emitter 111.
  • the reference light emitter 111 emits reference light in a wavelength band that is difficult to be absorbed by wet steam over the entire range of dryness.
  • a light emitting diode or the like can be used for the reference light emitter 111 shown in FIG. 1, a light emitting diode or the like can be used.
  • the inspection light emitter 11 is connected to an optical waveguide 30 that propagates inspection light
  • the reference light emitter 111 is connected to an optical waveguide 130 that propagates reference light
  • the multiplexer 14 is connected to the optical waveguide 30 and the optical waveguide 130.
  • Connected to the multiplexer 14 is an optical waveguide 31 that propagates the inspection light and the reference light combined by the multiplexer 14 to an upper sight glass 41 provided in the inspection tube 21.
  • a collimator lens may be disposed between the end of the optical waveguide 31 and the outer surface of the upper sight glass 41.
  • Inspection light and reference light enter the inspection tube 21 through the upper sight glass 41.
  • the inspection light travels substantially parallel to the direction of gravity, for example, toward the bottom of the inspection tube 21.
  • the traveling direction of the inspection light is not particularly limited as long as the inspection light can cross the laminar flow or the wavy flow of the saturated liquid inside the groove 142 of the lower sight glass 42 and, for example, reach the lowest point of the groove 142.
  • the reference light also travels inside the inspection tube 21 in the same manner as the inspection light.
  • Near-infrared light which is inspection light emitted from the inspection light emitter 11, is absorbed by the saturated liquid contained in the wet steam inside the inspection tube 21.
  • the saturated liquid contained in the wet steam decreases as the dryness approaches from 0 to 1. Therefore, as the dryness of the wet steam in the test tube 21 approaches 0 to 1, the absorbance of the wet steam tends to decrease.
  • a part of the inspection light and the reference light is reflected, scattered, refracted, etc. by the laminar flow or wave flow of the saturated liquid inside the inspection tube 21.
  • the loss of inspection light due to reflection, scattering, and refraction inside the inspection tube 21 and dirt on the upper side 41 and the lower sight glass 42 is substantially the same as the loss of reference light.
  • the optical waveguide 32 through which the inspection light and reference light that have passed through the groove 142 of the lower sight glass 42 enters is connected to the outer surface of the lower sight glass 42 of the inspection tube 21.
  • the end portion of the optical waveguide 32 faces the end portion of the optical waveguide 31.
  • a gap may be provided between the outer surface of the lower sight glass 42 and the end face of the optical waveguide 32, and a lens that allows light to enter the optical waveguide 32 may be disposed in the gap.
  • the optical waveguide 32 guides the inspection light and the reference light transmitted through the laminar flow or the wavy flow of the saturated liquid inside the groove 142 of the lower sight glass 42 to the light receiving element 12.
  • a light intensity detecting element such as a photodiode can be used.
  • plastic optical fiber made of polymethyl methacrylate resin PMMA: Poly (methyl methacrylate)
  • glass optical fiber made of quartz glass etc.
  • the dryness measuring apparatus may further include a pressure sensor 13 that measures the pressure of wet steam in the test tube 21.
  • the pressure information may be obtained from upstream or downstream of the inspection tube 21.
  • a central processing unit (CPU) 300 is connected to the light receiving element 12 and the pressure sensor 13.
  • a data storage device 400 including a relationship storage unit 401 is connected to the CPU 300.
  • the relation storage unit 401 stores, for example, a relational expression between the absorbance of the wet steam and the dryness of the wet steam as in the above formula (6).
  • the dryness specifying unit 301 is included in the CPU 300.
  • the dryness specifying unit 301 receives from the light receiving element 12 the measurement values of the received light intensity of the inspection light and the reference light transmitted through the wet steam inside the inspection tube 21. Further, the dryness specifying unit 301 receives the measured value of the pressure of the wet steam in the test tube 21 from the pressure sensor 13.
  • the dryness specifying unit 301 specifies the absorbance A of the wet steam inside the inspection tube 21, for example, according to the above equation (5).
  • I steam0 represents the light intensity of the inspection light before passing through the wet steam
  • I steam1 represents the light intensity of the inspection light after passing through the wet steam.
  • a constant measured in advance may be used as the light intensity of the inspection light emitted from the inspection light emitter 11 before passing through the wet steam.
  • the dryness specifying unit 301 subtracts the absorbance of the reference light from the absorbance of the inspection light according to, for example, the following equation (7), and performs inspection due to reflection, scattering, refraction, etc. inside the inspection tube 21 and dirt on the sight glass. calculating a corrected absorbance a C obtained by correcting the loss of light.
  • a C A ⁇ ( ⁇ ln (I ref1 / I ref0 ) (7)
  • I ref0 represents the light intensity of the reference light before passing through the wet steam
  • I ref1 represents the light intensity of the reference light after passing through the wet steam.
  • a constant measured in advance may be used as the light intensity of the reference light emitted from the reference light emitter 111 before passing through the wet steam.
  • the dryness specifying unit 301 calculates the absorbance a vapor of the saturated vapor depending on the pressure based on the measured value of the pressure of the wet steam in the test tube 21 received from the pressure sensor 13. Furthermore, the dryness of the particular section 301, for example, in the above (6), by substituting the value of the corrected absorbance A C wet steam inside the inspection tube 21, and the absorbance values a Vapor saturated steam, the inspection The dryness x of the wet steam in the tube 21 is calculated. However, if the pressure is constant, the absorbance a vapor of the saturated vapor can be regarded as constant. Therefore, if the pressure in the test tube 21 is constant, a constant may be used for the absorbance a vapor of the saturated vapor. In this case, the dryness measuring apparatus according to the first embodiment may not include the pressure sensor 13.
  • an input device 321, an output device 322, a program storage device 323, and a temporary storage device 324 are connected to the CPU 300.
  • a switch, a keyboard, and the like can be used.
  • the relational expression stored in the relation storage unit 401 is input using the input device 321, for example.
  • an optical indicator, a digital indicator, a liquid crystal display device, or the like can be used.
  • the output device 322 displays the value of the dryness of the wet steam inside the test tube 21 specified by the dryness specifying unit 301.
  • the program storage device 323 stores a program for causing the CPU 300 to execute data transmission / reception between devices connected to the CPU 300.
  • the temporary storage device 324 temporarily stores data in the calculation process of the CPU 300.
  • the dryness measuring apparatus according to the first embodiment, as shown in FIG. 2, by providing the groove 142 in the portion of the lower sight glass 42 through which the inspection light passes, Is prevented from spreading unevenly, and the change in the amount of water in the saturated liquid can be accurately measured. Therefore, it is possible to accurately measure the dryness.
  • the width of the groove 142 provided in the lower sight glass 42 is narrowed toward the lower side in the gravity direction, in other words, the width is increased toward the upper side. It is possible to suppress the thickness of the saturated liquid flowing inside from being increased more than necessary. Therefore, it is possible to suppress the loss of inspection light due to the saturated liquid flowing inside the groove 142 when the dryness is around zero.
  • the dryness measuring apparatus is an inspection tube 21 for flowing wet steam therein as shown in FIG. 12 and FIG. 13 which is a cross-sectional view seen from the XIII-XIII direction.
  • a lower opening 231 is provided on the lower side in the direction of gravity, and the test tube 21 whose flow path is narrower in the portion where the lower opening 231 is provided compared to the front and rear of the lower opening 231.
  • the lower sight glass 242 provided in the lower opening 231 of the inspection tube 21, the inspection light emitter 11 that irradiates the inspection light inside the inspection tube 21, and the flow of the inspection tube 21 on the lower opening 231 A light receiving element 12 that receives the inspection light transmitted through the path, and a dryness specifying unit 301 that specifies the dryness of the wet steam based on the intensity of the inspection light received by the light receiving element 12.
  • the inspection tube 21 is, for example, a circular tube in a portion where the lower opening 231 is not provided.
  • the inner wall of the test tube 21 is thickened.
  • the inner wall of the test tube 21 itself may be thickened at the portion where the lower opening 231 is provided, or a member that narrows the flow path is disposed on the lower sight glass 242 to thicken the inner wall of the test tube 21. May be.
  • the flow path of the test tube 21 may become narrower as it goes downward.
  • at least a part of the inner wall of the test tube 21 is inclined, and the flow path of the test tube 21 goes downward in the portion where the lower opening 231 is provided due to the inclination. It may be narrowed.
  • the angle of inclination is not particularly limited. At least a part of the inner wall of the inspection tube 21 may be inclined in a curved shape. Alternatively, a step is provided on at least a part of the inner wall of the test tube 21, and the flow path of the test tube 21 may become narrower toward the lower side in the portion where the lower opening 231 is provided. .
  • the flow of the test tube 21 is narrowed in the portion where the lower opening 231 is provided, thereby preventing the saturated liquid from spreading unevenly.
  • the flow of the test tube 21 is narrowed in the portion where the lower opening 231 is provided, thereby preventing the saturated liquid from spreading unevenly.
  • the width of the flow path of the test tube 21 is narrowed toward the lower side in the direction of gravity, in other words, the width is increased toward the upper side. It is possible to suppress the thickness of the saturated liquid flowing through the layer from being increased more than necessary. Therefore, it is possible to suppress the loss of inspection light due to the saturated liquid flowing inside the flow path of the inspection tube 21 when the dryness is around zero.
  • the relationship between the intensity of light received by the light receiving element and the dryness of the wet steam is measured by measuring the dryness of the wet steam using a conventional dryness measurement method while heating the wet steam with a boiler or the like.
  • it may be acquired in advance by measuring the intensity of the inspection light that has passed through.
  • the relationship between the light reception intensity by the light receiving element and the dryness of the wet steam may be stored as a table.
  • the inspection light emitted from the inspection light emitter may enter the inside of the inspection tube through the lower sight glass, pass through the upper sight glass, and be received by the light receiving element.
  • the inspection light emitted from the inspection light emitter may enter the inspection tube through the lower sight glass, be reflected inside the inspection tube, pass through the lower sight glass, and be received by the light receiving element.
  • the dryness measuring device is a visualization of the latent heat increase effect by the pressure reducing valve, dryness measurement to obtain the optimum boiler efficiency, wet loss measurement of the steam turbine, optimal dryness control of the heat exchanger, It can be used for the control of food production processes such as a noodle-making process and the control of chemical processes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

内部に湿り蒸気を流す検査管21であって、重力方向下側に下側開口部221が設けられた検査管21と、検査管21の下側開口部221に設けられた下側サイトグラス42であって、検査管21の下側開口部221の幅よりも狭い溝が検査管21の長手方向と平行に設けられた下側サイトグラス42と、検査管21内部に検査光を照射する検査光発光体11と、下側サイトグラス42の溝内部を透過した検査光を受光する受光素子12と、受光素子12が受光した検査光の強度に基づき、湿り蒸気の乾き度を特定する乾き度特定部301と、を備える乾き度測定装置。

Description

乾き度測定装置
 本発明は測定技術に係り、乾き度測定装置に関する。
 水は沸点に達した後、水蒸気ガス(気相部分)と、水滴(液相部分)と、が混合した湿り蒸気となる。ここで、湿り蒸気に対する水蒸気ガスの質量比を、「乾き度」という。あるいは、乾き度は、潜熱の比エンタルピに対する、湿り蒸気の比エンタルピと飽和液の比エンタルピとの差の比、としても定義される。
 例えば、水蒸気ガスと、水滴と、が半分ずつ存在すれば、乾き度は0.5となる。また、水滴が存在せず、水蒸気ガスのみが存在する場合は、乾き度は1.0となる。熱交換器等において、湿り蒸気が保有する顕熱と、潜熱と、を有効に利用することや、水蒸気タービンにおいて、タービン翼の腐食を防止すること、等の観点から、湿り蒸気の乾き度を1.0に近い状態にすることが望まれている。そのため、乾き度を測定する様々な方法が提案されている。
 例えば、特許文献1は、配管に設けられた圧力調節弁の前後で全エンタルピに変化がないことを利用して、圧力調節弁の前後の湿り蒸気流量及び圧力に基づき、飽和蒸気表を用いて飽和水エンタルピと、飽和蒸気エンタルピと、を求めて、乾き度を算出する技術を開示している。しかし、特許文献1に開示された技術は、測定対象の湿り蒸気を二相状態から気相状態に状態変化させ、さらに測定対象を気相状態で安定化させる必要があるため、乾き度の測定に時間がかかるという問題がある。これに対し、特許文献2は、光学的に乾き度を測定する技術を開示している。
特開平8-312908号公報 特開2013-92457号公報
 従来の乾き度測定装置のさらなる改良が望まれている。そこで、本発明は、乾き度を正確に測定可能な乾き度測定装置を提供することを目的の一つとする。
 本発明の態様は、(a)内部に湿り蒸気を流す検査管であって、重力方向下側に下側開口部が設けられた検査管と、(b)検査管の下側開口部に設けられた下側サイトグラスであって、検査管の下側開口部の幅よりも狭い溝が検査管の長手方向と平行に設けられた下側サイトグラスと、(c)検査管内部に検査光を照射する検査光発光体と、(d)下側サイトグラスの溝内部を透過した検査光を受光する受光素子と、(e)受光素子が受光した検査光の強度に基づき、湿り蒸気の乾き度を特定する乾き度特定部と、を備える乾き度測定装置である。
 上記の乾き度測定装置において、下側サイトグラスに設けられた溝が、重力方向において、下方に向かうほど幅が狭くなってもよい。下側サイトグラスの溝の側壁の少なくとも一部が傾斜しており、当該傾斜によって、溝の幅が下方に向かうほど狭くなってもよい。下側サイトグラスの溝の側壁の少なくとも一部に段が設けられており、当該段によって、溝の幅が下方に向かうほど狭くなってもよい。
 上記の乾き度測定装置において、検査管の重力方向上側に上側開口部が設けられており、検査管の上側開口部に設けられた上側サイトグラスをさらに備えていてもよい。
 上記の乾き度測定装置において、検査光が上側サイトグラスを経て検査管内部に進入し、下側サイトグラスを透過してもよい。あるいは、検査光が下側サイトグラスを経て検査管内部に進入し、上側サイトグラスを透過してもよい。またあるいは、検査光が下側サイトグラスを経て検査管内部に進入し、検査管内部で反射されて、下側サイトグラスを透過してもよい。
 上記の乾き度測定装置において、乾き度特定部が、湿り蒸気の吸光度に基づき、湿り蒸気の乾き度を特定してもよい。
 また、本発明の態様は、(a)内部に湿り蒸気を流す検査管であって、重力方向下側に下側開口部が設けられており、下側開口部が設けられた部分において、下側開口部の前後と比較して、流路が狭くなる検査管と、(b)検査管の下側開口部に設けられた下側サイトグラスと、(c)検査管内部に検査光を照射する検査光発光体と、(d)下側開口部上の検査管の流路を透過した検査光を受光する受光素子と、(e)受光素子が受光した検査光の強度に基づき、湿り蒸気の乾き度を特定する乾き度特定部と、を備える乾き度測定装置である。
 上記の乾き度測定装置において、下側開口部が設けられた部分において、流路が下方に向かうほど狭くなってもよい。検査管の内壁の少なくとも一部が傾斜しており、当該傾斜によって、下側開口部が設けられた部分において検査管の流路が下方に向かうほど狭くなってもよい。検査管の内壁の少なくとも一部に段が設けられており、当該段によって、下側開口部が設けられた部分において検査管の流路が下方に向かうほど狭くなってもよい。
 上記の乾き度測定装置において、検査管の重力方向上側に上側開口部が設けられており、検査管の上側開口部に設けられた上側サイトグラスをさらに備えていてもよい。
 上記の乾き度測定装置において、検査光が上側サイトグラスを経て検査管内部に進入し、下側サイトグラスを透過してもよい。あるいは、検査光が下側サイトグラスを経て検査管内部に進入し、上側サイトグラスを透過してもよい。またあるいは、検査光が下側サイトグラスを経て検査管内部に進入し、検査管内部で反射されて、下側サイトグラスを透過してもよい。
 上記の乾き度測定装置において、乾き度特定部が、湿り蒸気の吸光度に基づき、湿り蒸気の乾き度を特定してもよい。
 本発明によれば、乾き度を正確に測定可能な乾き度測定装置を提供可能である。
本発明の第1の実施の形態に係る乾き度測定装置の模式図である。 本発明の第1の実施の形態に係る乾き度測定装置の検査管、上側サイトグラス、及び下側サイトグラスの断面図である。 本発明の第1の実施の形態に係る乾き度測定装置の検査管、上側サイトグラス、及び下側サイトグラスの斜視図である。 本発明の第1の実施の形態に係る乾き度測定装置の検査管、上側サイトグラス、及び下側サイトグラスの断面図である。 本発明の第1の実施の形態に係る乾き度測定装置の検査管、上側サイトグラス、及び下側サイトグラスの断面図である。 本発明の第1の実施の形態に係る管内の飽和液による層状流と波状流を示す模式図である。 本発明の第1の実施の形態に係る標準大気圧における水の状態変化を示すグラフである。 本発明の第1の実施の形態に係る飽和蒸気と飽和液の吸光スペクトルを示すグラフである。 本発明の第1の実施の形態に係る飽和蒸気と飽和液の吸光スペクトルと、乾き度の関係と、を示すグラフである。 本発明の第1の実施の形態に係る飽和蒸気と飽和液の吸光スペクトルと、乾き度の関係と、を示すグラフである。 比較例に係る乾き度測定装置の検査管、上側サイトグラス、及び下側サイトグラスの断面図である。 本発明の第2の実施の形態に係る乾き度測定装置の模式図である。 本発明の第2の実施の形態に係る乾き度測定装置の検査管、上側サイトグラス、及び下側サイトグラスの断面図である。 本発明の第2の実施の形態に係る乾き度測定装置の検査管の断面図である。
 以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 (第1の実施の形態)
 本発明の第1の実施の形態に係る乾き度測定装置は、図1及びII-II方向から見た断面図である図2に示すように、内部に湿り蒸気を流す検査管21であって、重力方向下側に下側開口部221が設けられた検査管21と、検査管21の下側開口部221に設けられた下側サイトグラス42であって、検査管21の下側開口部221の幅よりも狭い溝142が検査管21の長手方向と平行に設けられた下側サイトグラス42と、検査管21内部に検査光を照射する検査光発光体11と、下側サイトグラス42の溝142内部を透過した検査光を受光する受光素子12と、受光素子12が受光した検査光の強度に基づき、湿り蒸気の乾き度を特定する乾き度特定部301と、を備える。
 検査管21は、例えば、金属等からなる。検査管21には、さらに、重力方向上側に上側開口部121が設けられている。上側開口部121と、下側開口部221は、例えば、重力方向において対向している。ただし、上側開口部121と、下側開口部221は、重力方向に対して斜め方向において対向していてもよい。下側サイトグラス42は、下側開口部221を覆っている。乾き度測定装置は、検査管21の上側開口部121に設けられた上側サイトグラス41をさらに備える。上側サイトグラス41は上側開口部121を覆っている。上側サイトグラス41及び下側サイトグラス42は、検査光が透過する、石英等の透明部材からなる。
 断面において、下側サイトグラス42に設けられた溝142の幅は、検査管21に設けられた下側開口部221の幅よりも狭い。下側サイトグラス42に設けられた溝142は、重力方向において、下方に向かうほど幅が狭くなってもよい。例えば、図2及び図3に示すように、下側サイトグラス42の溝142の側壁の少なくとも一部が傾斜しており、当該傾斜によって、溝142の幅が下方に向かうほど狭くなってもよい。傾斜の角度は特に限定されない。また、図4に示すように、下側サイトグラス42の溝142の側壁の少なくとも一部が曲線状に傾斜していてもよい。あるいは、図5に示すように、下側サイトグラス42の溝142の側壁の少なくとも一部に段が設けられており、当該段によって、溝142の幅が下方に向かうほど狭くなっていてもよい。段の数は特に限定されない。
 図1及び図2に示す検査管21には、湿り蒸気(飽和蒸気と、飽和液と、が合わさったもの)が通過する。検査管21内部の重力方向下側において、例えば図6に示すように、飽和液の層状流又は波状流が流れる場合がある。図2及び図3に示す下側サイトグラス42が設けられた部分においては、飽和液の層状流又は波状流は、下側サイトグラス42の溝142の内部を流れる。
 図7に示すように、標準大気圧下においては、水は沸点(100℃)に達した後、液滴としての水と、蒸気と、が混合し、共存態にある湿り蒸気となる。圧力が一定の場合、湿り蒸気は加熱及び冷却により潜熱が変化するため、飽和温度は一定となる。ここで、下記(1)で与えられるように、湿り蒸気全量に対する、飽和蒸気の質量比を、「乾き度」という。したがって、飽和蒸気の乾き度は1となり、飽和液の乾き度は0となる。
  x=mvapor/(mvapor+mwater)   (1)
 xは乾き度、mvaporは飽和蒸気の質量、mwaterは飽和液の質量を表す。
 ここで、飽和蒸気の質量は、飽和蒸気の吸光度に比例する。また、飽和液の質量は、飽和液の吸光度に比例する。そのため、上記(1)式から下記(2)式が導かれる。
  x=mvapor/(mvapor+mwater
   =avapor/(avapor+k×awater)   (2)
 avaporは飽和蒸気の吸光度、awaterは飽和液の吸光度、kは下記(3)式で与えられるモル吸光係数比を表す。
  k=evapor/ewater   (3)
 evaporは飽和蒸気の吸光係数、ewaterは飽和液の吸光係数を表す。
 湿り蒸気の吸光度Aは、下記(4)式で与えられるように、飽和蒸気の吸光度と、飽和液の吸光度と、の和で与えられる。
  A=avapor+awater   (4)
 また、湿り蒸気の吸光度は、下記(5)式で与えられるように、湿り蒸気を透過する前の光の光強度に対する、湿り上記を透過した後の光の光強度の比で与えられる。
  A=-ln(Isteam1/Isteam0)   (5)
 Isteam0は湿り蒸気を透過する前の光の光強度、Isteam1は湿り蒸気を透過した後の光の光強度を表す。
 図8に示すように、飽和蒸気と飽和液の吸収スペクトルは異なり、乾き度が変化すると、飽和液の吸収スペクトルが変化する。例えば、乾き度が0から1に向かって変化するにつれて湿り蒸気における飽和液の含有量は減少するので、図9に示すように、飽和液の吸収スペクトルのピーク波長における湿り蒸気の吸光度Aも減少する。飽和液の吸収スペクトルのピークにおける波長は、1880nm付近である。なお、湿り蒸気においては、飽和蒸気の体積が飽和液の体積より非常に大きいため、圧力が一定であれば、飽和蒸気の吸光度は一定とみなすことができる。
 湿り蒸気の乾き度は、上記(2)式、(4)式及び(5)式から導かれる下記(6)式でも与えられる。
  x=1/(1-k+(k/avapor)×A)   (6)
 モル吸光係数比kは定数である。上述したように、飽和蒸気の吸光度avaporは一定圧力下では一定とみなせるため、飽和蒸気の吸光度avaporは湿り蒸気の圧力から導くことができる。そのため、湿り蒸気の吸光度Aを測定することにより、(6)式から湿り蒸気の乾き度xを算出することが可能である。
 図1に示す検査光発光体11は、飽和溶液によって吸収される波長帯域を含む検査光を発する。検査光は、例えば、波長領域800ないし2500nmの近赤外光である。図10に示すように、検査光は、飽和液の吸収スペクトルのピーク波長を中心波長としてもよい。当該波長領域において、飽和蒸気と飽和液の吸収スペクトルは重なりあっている。図1に示す検査光発光体11には、発光ダイオード等が使用可能である。
 第1の実施の形態に係る乾き度測定装置は、参照光発光体111をさらに備える。図10に示すように、参照光発光体111は、乾き度の全範囲において、湿り蒸気に吸収されにくい波長帯域の参照光を発する。図1に示す参照光発光体111には、発光ダイオード等が使用可能である。
 検査光発光体11には検査光を伝搬する光導波路30が接続されており、参照光発光体111には参照光を伝搬する光導波路130が接続されている。光導波路30と光導波路130には、合波器14が接続されている。合波器14には、合波器14で合波された検査光と参照光を、検査管21に設けられた上側サイトグラス41に伝搬する光導波路31が接続されている。光導波路31の端部と、上側サイトグラス41の外側表面と、の間に、コリメータレンズを配置してもよい。
 検査光及び参照光は、上側サイトグラス41を経て検査管21内部に進入する。検査光は、例えば検査管21の底に向けて、重力方向と略平行に進行する。ただし、検査光が下側サイトグラス42の溝142内部の飽和液の層状流又は波状流を横切り、例えば溝142の最下点に到達することができれば、検査光の進行方向は特に限定されない。参照光も、検査光と同様に検査管21内部を進行する。
 検査光発光体11が発した検査光である近赤外光は、検査管21の内部において、湿り蒸気に含まれる飽和液によって吸収される。上述したように、湿り蒸気に含まれる飽和液は、乾き度が0から1に近づくにつれて減少する。したがって、検査管21内部の湿り蒸気の乾き度が0から1に近づくにつれて、湿り蒸気の吸光度は低下する傾向にある。
 検査光及び参照光の一部は、検査管21内部の飽和液の層状流又は波状流によって、反射、散乱、及び屈折等される。検査管21内部における反射、散乱、及び屈折、並びに上側41及び下側サイトグラス42の汚れ等による検査光の損失は、参照光の損失と略同一である。
 検査管21の下側サイトグラス42の外側表面には、下側サイトグラス42の溝142内部を通過した検査光及び参照光が進入する光導波路32が接続されている。光導波路32の端部は、光導波路31の端部と対向している。なお、下側サイトグラス42の外側表面と、光導波路32の端面と、の間に隙間を設けて、当該隙間に、光導波路32に光を入射させるレンズを配置してもよい。
 光導波路32は、下側サイトグラス42の溝142内部の飽和液の層状流又は波状流を透過した検査光及び参照光を、受光素子12に導く。受光素子12には、フォトダイオード等の光強度検出素子が使用可能である。
 光導波路30、31、130、32には、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び石英ガラスからなるガラス光ファイバ等が使用可能であるが、検査光発光体11が発した検査光、及び参照光発光体111が発した参照光を伝搬可能であれば、これらに限定されない。
 第1の実施の形態に係る乾き度測定装置は、検査管21内の湿り蒸気の圧力を測定する圧力センサ13をさらに備えていてもよい。ただし、圧力の情報は、検査管21の上流や下流から得てもよい。
 受光素子12及び圧力センサ13には、中央演算処理装置(CPU)300が接続されている。CPU300には、関係記憶部401を含むデータ記憶装置400が接続されている。関係記憶部401は、例えば、上記(6)式のような、湿り蒸気の吸光度と、湿り蒸気の乾き度と、の関係式を保存する。
 乾き度特定部301は、CPU300に含まれている。乾き度特定部301は、受光素子12から、検査管21内部の湿り蒸気を透過した検査光及び参照光の受光強度の測定値を受信する。また、乾き度特定部301は、圧力センサ13から、検査管21内の湿り蒸気の圧力の測定値を受信する。
 乾き度特定部301は、受光素子12が受光した検査光の強度に基づき、例えば上記(5)式に従って、検査管21内部の湿り蒸気の吸光度Aを特定する。この場合、Isteam0は湿り蒸気を透過する前の検査光の光強度を表し、Isteam1は湿り蒸気を透過した後の検査光の光強度を表す。湿り蒸気を透過する前の検査光発光体11が発した検査光の光強度は、予め測定した定数を用いてもよい。
 さらに、乾き度特定部301は、例えば下記(7)式に従って、検査光の吸光度から参照光の吸光度を引き、検査管21内部における反射、散乱、及び屈折等、並びにサイトグラスの汚れ等による検査光の損失を補正した補正された吸光度ACを算出する。
  AC=A-(-ln(Iref1/Iref0)   (7)
 Iref0は湿り蒸気を透過する前の参照光の光強度を表し、Iref1は湿り蒸気を透過した後の参照光の光強度を表す。湿り蒸気を透過する前の参照光発光体111が発した参照光の光強度は、予め測定した定数を用いてもよい。
 また、乾き度特定部301は、圧力センサ13から受信した検査管21内の湿り蒸気の圧力の測定値に基づき、圧力に依存する飽和蒸気の吸光度avaporを算出する。さらに、乾き度特定部301は、例えば上記(6)式に、検査管21内部の湿り蒸気の補正された吸光度ACの値と、飽和蒸気の吸光度avaporの値と、を代入し、検査管21内の湿り蒸気の乾き度xを算出する。ただし、圧力が一定であれば、飽和蒸気の吸光度avaporは一定であるとみなせるため、検査管21内の圧力が一定であれば、飽和蒸気の吸光度avaporに定数を用いてもよい。この場合、第1の実施の形態に係る乾き度測定装置は、圧力センサ13を備えていなくてもよい。
 CPU300には、さらに入力装置321、出力装置322、プログラム記憶装置323、及び一時記憶装置324が接続される。入力装置321としては、スイッチ及びキーボード等が使用可能である。関係記憶部401に保存される関係式は、例えば、入力装置321を用いて入力される。出力装置322としては、光インジケータ、デジタルインジケータ、及び液晶表示装置等が使用可能である。出力装置322は、例えば、乾き度特定部301が特定した検査管21内部の湿り蒸気の乾き度の値を表示する。プログラム記憶装置323は、CPU300に接続された装置間のデータ送受信等をCPU300に実行させるためのプログラムを保存している。一時記憶装置324は、CPU300の演算過程でのデータを一時的に保存する。
 ここで、図11に示すように、比較例に係る下側サイトグラス542に溝が設けられていない場合、飽和液は、下側サイトグラス542の平坦な表面上を流れる。しかし、湿り蒸気の乾き度が1に近くなると、検査管521内部を流れる飽和液の水量が少なくなるため、飽和液が下側サイトグラス542の表面上に不均一に広がる場合が生じる。この場合、乾き度を正確に測定できない場合がある。
 これに対し、第1の実施の形態に係る乾き度測定装置によれば、図2に示すように、下側サイトグラス42の検査光が通過する部分に溝142を設けたことにより、飽和液が不均一に広がることを抑制し、飽和液の水量の変化を精度よく測定することが可能となる。そのため、乾き度を正確に測定することが可能となる。
 また、下側サイトグラス42に設けられた溝142の幅を、重力方向において、下方に向かうほど狭くする、換言すれば、上方に向かうほど広くすることにより、乾き度が0付近で、溝142内部を流れる飽和液の厚みを必要以上に厚くすることを抑制することが可能となる。そのため、乾き度0付近において、溝142内部を流れる飽和液による検査光の損失を抑制することが可能となる。
 (第2の実施の形態)
 本発明の第2の実施の形態に係る乾き度測定装置は、図12及びXIII-XIII方向から見た断面図である図13に示すように、内部に湿り蒸気を流す検査管21であって、重力方向下側に下側開口部231が設けられており、下側開口部231が設けられた部分において、下側開口部231の前後と比較して、流路が狭くなる検査管21と、検査管21の下側開口部231に設けられた下側サイトグラス242と、検査管21内部に検査光を照射する検査光発光体11と、下側開口部231上の検査管21の流路を透過した検査光を受光する受光素子12と、受光素子12が受光した検査光の強度に基づき、湿り蒸気の乾き度を特定する乾き度特定部301と、を備える。
 図14に示すように、検査管21は、例えば、下側開口部231が設けられていない部分においては、円管である。図13に示す検査管21の下側開口部231が設けられた部分において、流路を狭くする方法としては、例えば、検査管21の内壁を厚くする等がある。下側開口部231が設けられた部分において検査管21の内壁そのものを厚くしてもよいし、下側サイトグラス242上に流路を狭くする部材を配置して、検査管21の内壁を厚くしてもよい。
 検査管21の下側開口部231が設けられた部分において、検査管21の流路が下方に向かうほど狭くなってもよい。例えば、図13に示すように、検査管21の内壁の少なくとも一部が傾斜しており、当該傾斜によって、下側開口部231が設けられた部分において検査管21の流路が下方に向かうほど狭くなってもよい。傾斜の角度は特に限定されない。検査管21の内壁の少なくとも一部が曲線状に傾斜していてもよい。あるいは、検査管21の内壁の少なくとも一部に段が設けられており、当該段によって、下側開口部231が設けられた部分において検査管21の流路が下方に向かうほど狭くなってもよい。
 第2の実施の形態に係る乾き度測定装置のその他の構成要素は、第1の実施の形態と同様である。
 第2の実施の形態に係る乾き度測定装置によれば、下側開口部231が設けられた部分において、検査管21の流路を狭くしたことにより、飽和液が不均一に広がることを抑制し、飽和液の水量の変化を精度よく測定することが可能となる。そのため、乾き度を正確に測定することが可能となる。
 また、検査管21の流路の幅を、重力方向において、下方に向かうほど狭くする、換言すれば、上方に向かうほど広くすることにより、乾き度が0付近で、検査管21の流路内部を流れる飽和液の厚みを必要以上に厚くすることを抑制することが可能となる。そのため、乾き度0付近において、検査管21の流路内部を流れる飽和液による検査光の損失を抑制することが可能となる。
 (その他の実施の形態)
 上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、受光素子による受光強度と、湿り蒸気の乾き度と、の関係は、ボイラ等で湿り蒸気を加熱しながら、従来の乾き度測定方法で湿り蒸気の乾き度を測定し、あわせて湿り蒸気を透過した検査光の強度を測定することによって、予め取得してもよい。従来、種々の乾き度測定方法があるが、関係を取得する際には、それらのいずれかを単独で用いても、組み合わせて用いてもよい。また、受光素子による受光強度と、湿り蒸気の乾き度と、の関係は、表として保存されてもよい。
 さらに、例えば、検査光発光体から発せられた検査光が下側サイトグラスを経て検査管内部に進入し、上側サイトグラスを透過して受光素子に受光されてもよい。あるいは、検査光発光体から発せられた検査光が下側サイトグラスを経て検査管内部に進入し、検査管内部で反射されて、下側サイトグラスを透過して受光素子に受光されてもよい。このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
 本発明の実施の形態に係る乾き度測定装置は、減圧弁による潜熱増加効果の可視化、最適ボイラ効率を得るための乾き度計測、水蒸気タービンの湿り損失計測、熱交換器の最適乾き度制御、製麺蒸し工程等の食品製造工程の制御、及び化学工程の制御等に利用可能である。
11   検査光発光体
12   受光素子
13   圧力センサ
14   合波器
21、521  検査管
30、31、32、130    光導波路
41   上側サイトグラス
42   下側サイトグラス
111 参照光発光体
121 上側開口部
142 溝
221、231              下側開口部
242、542              下側サイトグラス
300 中央演算処理装置
301 乾き度特定部
321 入力装置
322 出力装置
323 プログラム記憶装置
324 一時記憶装置
400 データ記憶装置
401 関係記憶部

Claims (18)

  1.  内部に湿り蒸気を流す検査管であって、重力方向下側に下側開口部が設けられた検査管と、
     前記検査管の下側開口部に設けられた下側サイトグラスであって、前記検査管の下側開口部の幅よりも狭い溝が前記検査管の長手方向と平行に設けられた下側サイトグラスと、
     前記検査管内部に検査光を照射する検査光発光体と、
     前記下側サイトグラスの溝内部を透過した前記検査光を受光する受光素子と、
     前記受光素子が受光した前記検査光の強度に基づき、前記湿り蒸気の乾き度を特定する乾き度特定部と、
     を備える乾き度測定装置。
  2.  前記下側サイトグラスに設けられた溝が、重力方向において、下方に向かうほど幅が狭くなる、請求項1に記載の乾き度測定装置。
  3.  前記下側サイトグラスの溝の側壁の少なくとも一部が傾斜しており、当該傾斜によって、前記溝の幅が下方に向かうほど狭くなる、請求項2に記載の乾き度測定装置。
  4.  前記下側サイトグラスの溝の側壁の少なくとも一部に段が設けられており、当該段によって、前記溝の幅が下方に向かうほど狭くなる、請求項2に記載の乾き度測定装置。
  5.  前記検査管の重力方向上側に上側開口部が設けられており、
     前記検査管の上側開口部に設けられた上側サイトグラスを更に備える、請求項1から4のいずれか1項に記載の乾き度測定装置。
  6.  前記検査光が前記上側サイトグラスを経て前記検査管内部に進入し、前記下側サイトグラスを透過する、請求項5に記載の乾き度測定装置。
  7.  前記検査光が前記下側サイトグラスを経て前記検査管内部に進入し、前記上側サイトグラスを透過する、請求項5に記載の乾き度測定装置。
  8.  前記検査光が前記下側サイトグラスを経て前記検査管内部に進入し、前記検査管内部で反射されて、前記下側サイトグラスを透過する、請求項1から4のいずれか1項に記載の乾き度測定装置。
  9.  前記乾き度特定部が、前記湿り蒸気の吸光度に基づき、前記湿り蒸気の乾き度を特定する、請求項1から8のいずれか1項に記載の乾き度測定装置。
  10.  内部に湿り蒸気を流す検査管であって、重力方向下側に下側開口部が設けられており、前記下側開口部が設けられた部分において、前記下側開口部の前後と比較して、流路が狭くなる検査管と、
     前記検査管の下側開口部に設けられた下側サイトグラスと、
     前記検査管内部に検査光を照射する検査光発光体と、
     前記下側開口部上の検査管の流路を透過した前記検査光を受光する受光素子と、
     前記受光素子が受光した前記検査光の強度に基づき、前記湿り蒸気の乾き度を特定する乾き度特定部と、
     を備える乾き度測定装置。
  11.  前記下側開口部が設けられた部分において、前記流路が下方に向かうほど狭くなる、請求項10に記載の乾き度測定装置。
  12.  前記検査管の内壁の少なくとも一部が傾斜しており、当該傾斜によって、前記下側開口部が設けられた部分において前記検査管の流路が下方に向かうほど狭くなる、請求項11に記載の乾き度測定装置。
  13.  前記検査管の内壁の少なくとも一部に段が設けられており、当該段によって、前記下側開口部が設けられた部分において前記検査管の流路が下方に向かうほど狭くなる、請求項11に記載の乾き度測定装置。
  14.  前記検査管の重力方向上側に上側開口部が設けられており、
     前記検査管の上側開口部に設けられた上側サイトグラスを更に備える、請求項10から13のいずれか1項に記載の乾き度測定装置。
  15.  前記検査光が前記上側サイトグラスを経て前記検査管内部に進入し、前記下側サイトグラスを透過する、請求項14に記載の乾き度測定装置。
  16.  前記検査光が前記下側サイトグラスを経て前記検査管内部に進入し、前記上側サイトグラスを透過する、請求項14に記載の乾き度測定装置。
  17.  前記検査光が前記下側サイトグラスを経て前記検査管内部に進入し、前記検査管内部で反射されて、前記下側サイトグラスを透過する、請求項10から13のいずれか1項に記載の乾き度測定装置。
  18.  前記乾き度特定部が、前記湿り蒸気の吸光度に基づき、前記湿り蒸気の乾き度を特定する、請求項10から17のいずれか1項に記載の乾き度測定装置。
PCT/JP2016/080157 2015-12-16 2016-10-12 乾き度測定装置 WO2017104241A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-245146 2015-12-16
JP2015245146A JP2017111000A (ja) 2015-12-16 2015-12-16 乾き度測定装置

Publications (1)

Publication Number Publication Date
WO2017104241A1 true WO2017104241A1 (ja) 2017-06-22

Family

ID=59055964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080157 WO2017104241A1 (ja) 2015-12-16 2016-10-12 乾き度測定装置

Country Status (2)

Country Link
JP (1) JP2017111000A (ja)
WO (1) WO2017104241A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065067A1 (ja) * 2017-09-26 2019-04-04 アズビル株式会社 乾き度測定装置及び情報取得方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098279A1 (ja) * 2013-12-27 2015-07-02 アズビル株式会社 乾き度測定装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098279A1 (ja) * 2013-12-27 2015-07-02 アズビル株式会社 乾き度測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065067A1 (ja) * 2017-09-26 2019-04-04 アズビル株式会社 乾き度測定装置及び情報取得方法

Also Published As

Publication number Publication date
JP2017111000A (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
JP5539176B2 (ja) 乾き度測定装置及び乾き度測定方法
JP5885461B2 (ja) 乾き度測定装置及び乾き度測定方法
US9372153B2 (en) Dryness fraction distribution measuring device and dryness fraction distribution measuring method
WO2017104241A1 (ja) 乾き度測定装置
JP2016151572A (ja) 乾き度測定装置
WO2017183433A1 (ja) 乾き度測定装置及び湿り蒸気検査装置
WO2017183434A1 (ja) 乾き度測定装置及び湿り蒸気検査装置
JP6057859B2 (ja) 乾き度測定装置
JP6392673B2 (ja) 湿度計及び湿度の計測方法
JP6664926B2 (ja) 乾き度測定装置
JP6307427B2 (ja) 乾き度測定装置及び乾き度測定方法
WO2017203841A1 (ja) 乾き度測定装置及び湿り蒸気検査装置
JP6392661B2 (ja) 乾き度測定装置
JP5968241B2 (ja) 乾き度測定装置及び乾き度測定方法
WO2018135130A1 (ja) 乾き度測定装置及び乾き度の測定方法
JP2018119861A (ja) 乾き度測定装置及び乾き度の測定方法
JP6175370B2 (ja) 乾き度測定装置及び乾き度測定方法
JP2016151571A (ja) 乾き度測定装置
JP6006605B2 (ja) 蒸気流量測定装置および蒸気流量測定方法
WO2017187784A1 (ja) 乾き度測定装置及び乾き度測定装置の測定誤差評価方法
JP6392627B2 (ja) 乾き度測定装置および乾き度測定方法
JP2019052924A (ja) 乾き度測定装置及び乾き度測定方法
JP2018169218A (ja) 乾き度測定装置及び乾き度測定方法
JP2014029307A (ja) 蒸気熱量測定装置および蒸気熱量測定方法
JP2015117977A (ja) 熱量算出装置及び熱量算出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875226

Country of ref document: EP

Kind code of ref document: A1