WO2017099175A1 - Plasma reactor - Google Patents

Plasma reactor Download PDF

Info

Publication number
WO2017099175A1
WO2017099175A1 PCT/JP2016/086536 JP2016086536W WO2017099175A1 WO 2017099175 A1 WO2017099175 A1 WO 2017099175A1 JP 2016086536 W JP2016086536 W JP 2016086536W WO 2017099175 A1 WO2017099175 A1 WO 2017099175A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
electrode
plasma reactor
panel
main surface
Prior art date
Application number
PCT/JP2016/086536
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 伊藤
灘浪 紀彦
和彦 間所
一哉 内藤
上西 真里
田中 裕久
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2017099175A1 publication Critical patent/WO2017099175A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases

Definitions

  • the present invention relates to a plasma reactor, and more particularly to a plasma reactor suitable for an apparatus for purifying exhaust gas of an internal combustion engine (engine).
  • Diesel engine exhaust gas contains CO (carbon monoxide), HC (hydrocarbon), NOx (nitrogen oxide), PM (particulate matter), and the like.
  • CO carbon monoxide
  • HC hydrocarbon
  • NOx nitrogen oxide
  • PM particle matter
  • DPF Diesel particulate filter
  • a technique for burning fresh PM has been proposed.
  • fuel is consumed when PM is burned, there is a problem that fuel efficiency is deteriorated.
  • city riding city riding
  • the temperature of the exhaust gas does not reach the temperature at which PM is burned, so it is not suitable for small cars frequently used for city riding.
  • Patent Document 1 has a structure in which a plate-like dielectric having electrode members (discharge electrodes) formed on the front or back surface is vertically stacked, and a voltage is applied between adjacent electrode members.
  • a technique for generating plasma is disclosed.
  • the electrode member is energized by a pair of lead line members (electrically conductive members) penetrating a plurality of electrode panels in the stacking direction, and the upper end portions of both lead line members extend from the upper surface of the stacked body of electrode panels. Connected to protruding external terminals.
  • lead line members electrically conductive members
  • water may flow into the plasma reactor.
  • the water flowing into the plasma reactor for example, exhaust condensed water generated due to condensation in the exhaust pipe at the time of cold start of the vehicle, water flowing from the muffler as the vehicle enters the puddle, etc. There is.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma reactor capable of reliably generating plasma even when water flows in.
  • plasma has a structure in which a plurality of electrode panels having discharge electrodes are stacked, and plasma is generated when a voltage is applied between the adjacent electrode panels.
  • a plasma reactor comprising a panel laminate and an electrically conductive member electrically connected to the discharge electrodes of the plurality of electrode panels, wherein a stacking direction of the plurality of electrode panels is 90 ° with respect to a vertical direction.
  • the stacking direction of the plurality of electrode panels forms an angle of 90 ° ⁇ 45 ° with respect to the vertical direction, and the electrically conductive member is located in the upper half region of the plasma panel stack. Is arranged. Therefore, even if water flows into the plasma reactor, the electrically conductive member responsible for energizing each electrode panel is less likely to be submerged, so that it is possible to prevent the occurrence of a leakage current due to the submergence of the electrically conductive member. Therefore, since a sufficient amount of plasma is generated with respect to the input power, PM in the exhaust gas flowing between adjacent electrode panels is oxidized and removed using plasma, so that PM can be efficiently removed. it can.
  • the plasma panel laminate constituting the plasma reactor has a structure in which a plurality of electrode panels on which discharge electrodes are formed are laminated.
  • Examples of the material for forming the discharge electrode include tungsten (W), molybdenum (Mo), ruthenium oxide (RuO 2 ), silver (Ag), copper (Cu), platinum (Pt), and the like.
  • the plasma reactor has a case in which the plasma panel laminate is accommodated, and an external terminal that is electrically connected to the electrically conductive member and exposed from the case.
  • the electrically conductive member disposed in the case may be disposed in the upper half region of the plasma panel laminate.
  • the conductive portion constituting the external terminal outside the case is also disposed in the upper half region of the plasma panel laminate. That is, in addition to the electrical conductive member being disposed in the case, the external terminals are preferably disposed in the upper half region of the plasma panel laminate outside the case. In this way, when water flows into the plasma reactor, the electrical conducting member in the case is not easily submerged, and when the plasma reactor is submerged, the external terminal outside the case is submerged. It becomes difficult. For this reason, generation
  • the plasma panel laminate has, for example, a pair of gas passage surfaces and a plurality of gas non-passage surfaces between the pair of gas passage surfaces.
  • a plurality of external terminals are provided, and the plurality of external terminals are preferably arranged on the same gas non-passing surface.
  • wiring of the wiring connected to the external terminals (for example, avoidance of wiring from a high-temperature exhaust pipe) can be performed when mounted on a vehicle or the like. It becomes easy.
  • the plasma reactor of the above means 1 is mounted under the floor of the vehicle (for example, an exhaust pipe), if the external terminal protrudes in the vertical direction, the wiring connected to the external terminal easily comes into contact with the floor of the vehicle, for example. Therefore, it may be difficult to draw out the wiring. Therefore, in the above means 1, the plurality of external terminals can be projected in a direction that forms an angle of 90 ° ⁇ 45 ° with respect to the vertical direction, in other words, in a direction parallel to the stacking direction of the electrode panel. Good. In this way, the wiring connected to the external terminal can be easily pulled out. Further, since the length of the plasma reactor in the vertical direction is reduced, the degree of freedom in mounting the plasma reactor is increased.
  • the plurality of external terminals are preferably arranged in the upper half region of the gas non-passing surface parallel to the electrode panel. In this way, even if the external terminal protrudes in a direction that makes an angle of 90 ° ⁇ 45 ° with respect to the vertical direction, the external terminal is less likely to be submerged. Generation of current can be prevented more reliably.
  • the electrode panel has a rectangular shape in plan view, and the length of the side extending along the passage direction of the gas flowing between the adjacent electrode panels is the length of the side extending along the direction orthogonal to the passage direction. Longer than this is better. In this way, the gas passing between the adjacent electrode panels is longer than the case where the length of the side extending along the gas passage direction is equal to or less than the length of the side extending along the direction orthogonal to the passage direction. Is exposed to plasma for a long time. As a result, when PM in exhaust gas flowing between adjacent electrode panels is oxidized and removed using plasma, PM can be removed more efficiently.
  • the electrode panel has a first main surface and a second main surface, and is provided with a conduction structure for conducting the first main surface side and the second main surface side in the upper region of the electrode panel. Also good. If it does in this way, when a plurality of electrode panels are laminated, electrode panels can be made to conduct reliably.
  • FIG. 1 is a schematic cross-sectional view showing a plasma reactor in the present embodiment.
  • the perspective view which shows a plasma reactor. The perspective view which shows the state in which the plasma panel laminated body is accommodated in the case.
  • the plasma reactor 1 of the present embodiment is a device that removes PM contained in exhaust gas of an automobile engine (not shown), and is attached to an exhaust pipe 2. .
  • the plasma reactor 1 includes a pulse generation power source 3, a case 10, and a plasma panel laminate 20.
  • the case 10 is formed in a tubular shape (tubular shape) using, for example, stainless steel.
  • a first cone portion 11 is connected to a first end portion (left end portion in FIG. 1) of the case 10, and a second cone portion 12 is connected to a second end portion (right end portion in FIG. 1) of the case 10. Yes.
  • the first cone portion 11 is connected to the upstream portion 4 (engine portion) of the exhaust pipe 2, and the second cone portion 12 is connected to the downstream portion 5 (opposite side of the engine side) of the exhaust pipe 2.
  • the exhaust gas from the engine flows into the case 10 from the upstream portion 4 of the exhaust pipe 2 through the first cone portion 11, passes through the case 10, and then passes through the second cone portion 12 to the exhaust pipe. 2 flows out to the downstream part 5.
  • the plasma panel laminate 20 is accommodated in the case 10, and the mat 6 is interposed between the case 10 and the plasma panel laminate 20.
  • the mat 6 has a function of holding the plasma panel laminate 20 in the case 10.
  • the plasma panel laminate 20 has a substantially rectangular parallelepiped shape having a pair of gas passage surfaces 21 and 22 and four gas non-passage surfaces 23, 24, 25, and 26. I am doing. Both gas passage surfaces 21 and 22 are located on opposite sides of the plasma panel laminate 20. On the other hand, the gas non-passing surfaces 23 to 26 are located between the pair of gas passing surfaces 21 and 22.
  • the plasma panel laminate 20 has a structure in which a plurality of electrode panels 30 are laminated.
  • the stacking direction of the electrode panel 30 is a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction).
  • Each electrode panel 30 is disposed in parallel with the passage direction of the exhaust gas in the case 10 (the X direction that is the direction from the first cone portion 11 toward the second cone portion 12), and is spaced from each other (this embodiment). Then, they are spaced apart so as to have a gap of 0.5 mm.
  • the plasma panel laminate 20 has a gas flow path 27 (see FIG. 1) through which gas passes between the adjacent electrode panels 30.
  • the gas flow path 27 includes an opening 28 that opens at both end surfaces of the electrode panel 30 (that is, the surfaces constituting the gas passage surfaces 21 and 22 of the plasma panel laminate 20).
  • the plasma reactor 1 of this embodiment is a vertical reactor in which the opening 28 is vertically long (see FIGS. 3 and 4).
  • the first wiring 7 and the second wiring 8 are alternately electrically connected to each electrode panel 30 along the thickness direction of the plasma panel laminate 20.
  • the first wiring 7 is electrically connected to the first terminal of the pulse generating power supply 3
  • the second wiring 8 is electrically connected to the second terminal of the pulse generating power supply 3.
  • the electrode panel 30 of the present embodiment has a first main surface 31 and a second main surface 32, and has a substantially rectangular plate shape of length 100 mm ⁇ width 200 mm. ing.
  • the first main surface 31 and the second main surface 32 are located on opposite sides in the thickness direction of the electrode panel 30.
  • the electrode panel 30 has a rectangular shape in plan view, and the length of the side 33 extending along the passage direction (lateral direction) of the gas flowing between the adjacent electrode panels 30 is perpendicular to the passage direction. It is longer than the length of the side 34 extending along (vertical direction).
  • the electrode panel 30 has a structure in which a discharge electrode 36 (thickness 10 ⁇ m) is built in a rectangular plate-like dielectric 35.
  • the dielectric 35 is made of ceramic such as alumina (Al 2 O 3 ), and the discharge electrode 36 is made of tungsten (W).
  • the dielectric 35 has a recess 37 that opens at the second main surface 32.
  • the concave portion 37 extends in the lateral direction of the electrode panel 30 and opens at both end surfaces of the electrode panel 30.
  • the gas flow path 27 described above is configured by the recess 37 and the first main surface 31 of the electrode panel 30 adjacent to the lower layer side.
  • the lowermost electrode panel 30 constituting the plasma panel laminate 20 is not formed with the recess 37 because the electrode panel 30 does not exist on the lower layer side.
  • each conduction structure 40 includes a through-hole conductor 41, a first pad 42, and a second pad 43, which are electrical conduction members.
  • the through-hole conductor 41 passes through the first main surface 31 and the second main surface 32.
  • electrical_connection structure 40 penetrates the extension part 38 extended in the outer peripheral side from the discharge electrode 36 in addition to the 1st main surface 31 and the 2nd main surface 32.
  • the first pad 42 is formed on the upper end portion of the first main surface 31 in the electrode panel 30.
  • the first pad 42 is electrically connected to the end portion of the through hole conductor 41 on the first main surface 31 side.
  • the second pad 43 is formed on the upper end portion of the second main surface 32 in the electrode panel 30.
  • the second pad 43 is electrically connected to the end of the through hole conductor 41 on the second main surface 32 side.
  • the first pad 42 and the second pad 43 each have a rectangular shape, and the surface thereof is plated with Ni or the like.
  • the plasma reactor 1 includes a pair of first clamps 50 and 51 for sandwiching and fixing each electrode panel 30 (plasma panel laminate 20) from above, and each electrode panel 30 from below.
  • a pair of second clamps 52 and 53 to be fixed is provided.
  • Each clamp 50 to 53 is formed by bending a metal plate (for example, a stainless steel plate).
  • the first clamps 50 and 51 have a function as an electrically conductive member that is electrically connected to the discharge electrode 36 in addition to the function of sandwiching each electrode panel 30.
  • the first clamps 50 and 51 are arranged in the upper half region of the plasma panel laminate 20 in the case 10 and are not arranged in the lower half region of the plasma panel laminate 20.
  • the second clamps 52 and 53 have only a function of sandwiching each electrode panel 30.
  • the second clamps 52 and 53 are disposed in the lower half region of the plasma panel laminate 20 in the case 10.
  • the “upper half region of the plasma panel laminate 20” refers to a region that becomes the upper half in the vertical direction when the plasma reactor 1 is attached to the vehicle.
  • the “lower half region of the plasma panel laminate 20” refers to a region that is the lower half in the vertical direction when the plasma reactor 1 is attached to the vehicle.
  • a virtual plane C1 passing through the intersection P1 of the two diagonal lines L1 set on the first main surface 31 of the uppermost electrode panel 30 is set.
  • the virtual plane C1 is arranged in parallel to the stacking direction of the electrode panels 30 and in parallel to the passage direction of the exhaust gas flowing between the adjacent electrode panels 30.
  • the plasma panel laminated body 20 is divided into 1st area
  • the first clamps 50 and 51 are arranged in the first area A1, and are not arranged in the second area A2.
  • the second clamps 52 and 53 are disposed in the second region A2.
  • the clamps 50 to 53 include a clamp body 54 and a pressing plate 55.
  • the clamp body 54 extends in the stacking direction of the electrode panel 30.
  • the holding plate 55 is formed integrally with the clamp body 54 and is disposed at both ends of the clamp body 54.
  • Each pressing plate 55 is a leaf spring having elasticity and a folded structure.
  • the pair of pressing plates 55 constituting the first clamps 50 and 51 constitute the plasma panel laminate 20 and the upper end portion of the first main surface 31 of the uppermost electrode panel 30 constituting the plasma panel laminate 20.
  • the lowermost electrode panel 30 is in pressure contact with the upper end of the second main surface 32 of the lowermost electrode panel 30.
  • One of the pressing plates 55 constituting the first clamp 50 is in pressure contact with the first pad 42 formed on the plasma panel laminate 20.
  • One of the pressing plates 55 constituting the first clamp 51 is in pressure contact with the second pad 43 formed on the plasma panel laminate 20.
  • the pair of pressing plates 55 constituting the second clamps 52 and 53 constitute the plasma panel laminate 20 and the lower end portion of the first main surface 31 of the uppermost electrode panel 30 constituting the plasma panel laminate 20.
  • the lowermost electrode panel 30 is in pressure contact with the lower end of the second main surface 32 of the lowermost electrode panel 30.
  • the plasma reactor 1 includes a pair of external terminals 60 and 61.
  • the external terminals 60 and 61 of this embodiment have the same structure as a spark plug.
  • the external terminals 60 and 61 include an external connection portion 62, a conductive seal 63 containing metal powder, an insulator 64, a metal shell 65, a talc 66, a connection flange 67, packings 68, and the like.
  • the external connection part 62 is connected to the middle shaft 69 (electrically conductive member) via the conductive seal 63.
  • the middle shaft 69 protrudes from the holding plate 55 of the first clamps 50, 51 and is inserted through a through hole provided in the case 10, and the tip is inserted into the insulator 64.
  • the connection flange 67 is connected to the outer surface of the metal shell 65 and the outer surface of the case 10 to connect the external terminals 60 and 61 to the case 10.
  • the external terminal is not limited to the one in the present embodiment, and may have another structure as long as the external connection portion 62 and the case 10 are insulated by an insulator. .
  • the base ends of the external terminals 60 and 61 are electrically connected to the pressing plates 55 of the first clamps 50 and 51, and the tip ends are exposed from the case 10 (see FIGS. 2 and 3).
  • tip part of the external terminal 60 is connected to the 1st wiring 7, and the front-end
  • the length of the pressing plate 55 to which the external terminals 60 and 61 are connected is longer than the length of the other pressing plates 55.
  • the external terminals 60 and 61 are arranged on the same gas non-passing surface 26.
  • the external terminals 60 and 61 are arranged in the upper half area of the gas non-passing surfaces 24 and 26 parallel to the electrode panel 30, that is, in the upper half area of the plasma panel laminate 20 outside the case 10. .
  • the external terminals 60 and 61 protrude in a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction).
  • the plasma reactor 1 of the present embodiment is used, for example, to remove PM contained in exhaust gas.
  • a pulse voltage for example, peak voltage: 5 kV (5000 V), pulse repetition frequency: 100 Hz
  • pulse repetition frequency 100 Hz
  • the discharge electrode A plasma due to dielectric barrier discharge is generated between the electrodes 36. Due to the generation of plasma, PM contained in the exhaust gas flowing between the discharge electrodes 36 is oxidized (burned) and removed.
  • first to third ceramic green sheets to be the dielectric 35 are formed using a ceramic material whose main component is alumina powder.
  • a ceramic green sheet well-known shaping
  • each ceramic green sheet is laser-processed and a through-hole is formed in a predetermined position.
  • the through hole may be formed by punching, drilling, or the like.
  • the through holes of each ceramic green sheet are filled with a conductive paste (in this embodiment, a tungsten paste), and an unfired portion that becomes the through-hole conductor 41 is obtained.
  • a through-hole conductor is formed.
  • the first ceramic green sheet is placed on a support base (not shown). Furthermore, a conductive paste is printed on the back surface of the first ceramic green sheet using a paste printing apparatus. As a result, an unfired electrode having a thickness of 10 ⁇ m to be the discharge electrode 36 is formed on the back surface of the first ceramic green sheet.
  • well-known printing methods such as screen printing, can be used as a printing method of the unsintered electrode with respect to the 1st ceramic green sheet.
  • the second ceramic green sheet and the third ceramic green sheet are sequentially laminated on the back surface of the first ceramic green sheet on which the unfired electrodes are printed, in the sheet lamination direction. Apply pressing force.
  • the ceramic green sheets are integrated to form a ceramic laminate.
  • a paste printing device a conductive paste is printed on the main surface of the first ceramic green sheet to form the unfired first pad 42 and conductive on the back surface of the third ceramic green sheet.
  • the non-sintered second pad 43 is formed by printing the conductive paste.
  • the third ceramic green sheet is laminated after being subjected to a punching process in accordance with the shape of the recess 37.
  • a predetermined temperature for example, about 1400 ° C. to 1600 ° C.
  • the ceramic laminate ceramic green sheet and unfired electrode
  • Is simultaneously fired Is simultaneously fired.
  • alumina in the ceramic green sheet and tungsten in the conductive paste are simultaneously sintered, and the dielectric 35, the discharge electrode 36, the through-hole conductor 41, the first pad 42, and the second pad 43 are simultaneously fired.
  • the formed ceramic laminate becomes the electrode panel 30.
  • a plurality of obtained electrode panels 30 are laminated to form a plasma panel laminate 20.
  • the plurality of electrode panels 30 are sandwiched and fixed in the stacking direction.
  • one of the pressing plates 55 constituting the first clamp 50 comes into pressure contact with the first pad 42
  • one of the pressing plates 55 constituting the first clamp 51 comes into pressure contact with the second pad 43.
  • the base end portions of the external terminals 60 and 61 are attached to one of the both holding plates 55 constituting the first clamp 50 and one of the both holding plates 55 constituting the first clamp 51. Connecting.
  • both external terminals 60 and 61 are arranged on the same gas non-passing surface 26 and protrude in a direction perpendicular to the vertical direction.
  • the first wiring 7 is connected to the distal end portion of the external terminal 60
  • the second wiring 8 is connected to the distal end portion of the external terminal 61.
  • the plasma reactor 1 is completed through the above processes.
  • the stacking direction of the electrode panels 30 constituting the plasma panel stack 20 is set to a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction).
  • the first clamps 50 and 51 are arranged in the upper half region of the plasma panel laminate 20. Therefore, even if water flows into the plasma reactor 1, the first clamps 50 and 51 responsible for energizing each electrode panel 30 are less likely to be submerged, so that leakage current is generated due to the submersion of the first clamps 50 and 51. Can be prevented. Therefore, since a sufficient amount of plasma is generated with respect to the input power, PM in the exhaust gas flowing between adjacent electrode panels 30 is oxidized and removed using plasma, and PM is efficiently removed. Can do.
  • the external terminals 60 and 61 are arranged in the upper half region of the plasma panel laminate 20 outside the case 10.
  • the first clamps 50 and 51 in the case 10 are less likely to be submerged, and when the plasma reactor 1 is submerged, there is an external outside the case 10.
  • the terminals 60 and 61 are not easily submerged. For this reason, generation
  • the plasma reactor 1 of this embodiment is attached to the exhaust pipe 2 via the first cone portion 11 and the second cone portion 12.
  • the resistance in the exhaust gas flow path in which the exhaust gas flows in the order of the upstream portion 4 of the exhaust pipe 2 ⁇ the first cone portion 11 ⁇ the plasma reactor 1 ⁇ the second cone portion 12 ⁇ the downstream portion 5 of the exhaust pipe 2 is reduced. Therefore, the pressure loss in the exhaust gas passage can be suppressed. As a result, it is possible to prevent the engine output from decreasing due to pressure loss.
  • the pair of external terminals 60 and 61 protrude in a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction). , It may protrude in a direction different from the Y direction.
  • the pair of external terminals 70 and 71 may protrude in the vertical direction (Z direction).
  • the pair of external terminals 60 and 61 are disposed on the same gas non-passing surface 26, but the external terminals may be disposed on different gas non-passing surfaces.
  • the external terminals may be disposed on different gas non-passing surfaces.
  • FIG. 4 when two external terminals 60 and 61 are provided, one external terminal 60 is disposed on the gas non-passing surface 23 and the other external terminal 61 is a gas. You may arrange
  • the electrode panel 30 of the above embodiment is configured by incorporating the discharge electrode 36 in the dielectric 35.
  • the electrode panel may be configured by forming the discharge electrode 36 on the surface of the dielectric 35.
  • the plasma reactor 1 of the said embodiment was used for exhaust gas purification of the engine of a motor vehicle, you may use it for exhaust gas purification of engines, such as a ship, for example.
  • the plasma reactor 1 should just perform a plasma process, and does not need to perform the process of waste gas, and does not need to be used for purification
  • a gas flow path through which a gas passes is provided between the adjacent electrode panels, and the gas flow path includes openings that are opened at both ends of the electrode panel, and the plasma
  • the reactor is a vertically placed reactor in which the opening is vertically long.
  • the electrode panel has a first main surface and a second main surface, and the first main surface side and the second main surface side in the upper region of the electrode panel.
  • a conduction structure is provided, wherein the conduction structure is formed in the first main surface and the through hole conductor that penetrates the first main surface and the second main surface, A first pad electrically connected to one main surface side end portion and a second pad formed on the second main surface and electrically connected to the second main surface side end portion of the through-hole conductor And a plasma reactor.
  • a plasma panel laminate having a structure in which a plurality of electrode panels having discharge electrodes are laminated, and generating a plasma when a voltage is applied between the adjacent electrode panels, and the plurality of electrode panels
  • a plasma reactor comprising an electrically conductive member electrically connected to a discharge electrode, wherein a stacking direction of the plurality of electrode panels forms an angle of 90 ° ⁇ 45 ° with respect to a vertical direction.
  • the plasma panel laminate passing through an intersection of two diagonal lines set on the first main surface, and the stacking direction Is divided into a first region and a second region on the basis of a virtual plane parallel to the passage direction of the gas flowing between the adjacent electrode panels, and the electrically conductive member is the first conductive member.
  • the plasma reactor of the present invention is useful for exhaust gas purification devices for engines, particularly diesel engines.

Abstract

This plasma reactor is provided with a plasma panel stack (20) and electrically conductive members (50, 51). A plasma panel stack (20) has a structure in which electrode panels (30) are stacked, and plasma is generated between adjacent electrode panels (30). The stacking direction of the electrode panels (30) is 90°±45° relative to the vertical direction. The electrically conductive members (50, 51) are connected to a discharge electrode of the electrode panels (30), and are disposed in the region at the upper half of the plasma panel stack (20).

Description

プラズマリアクタPlasma reactor
 本発明は、プラズマリアクタに関するものであり、特には、内燃機関(エンジン)の排ガスを浄化するための装置に好適なプラズマリアクタに関するものである。 The present invention relates to a plasma reactor, and more particularly to a plasma reactor suitable for an apparatus for purifying exhaust gas of an internal combustion engine (engine).
 エンジン、特にディーゼルエンジンの排ガスには、CO(一酸化炭素)、HC(炭化水素)、NOx(窒素酸化物)及びPM(Particulate Matter:粒子状物質)などが含まれている。近年、排ガスに含まれるPMを除去する手法として、例えば、PMをDPF(Diesel particulate filter)で捕集し、燃料のポスト噴射または排気管内噴射により排ガスを昇温させることにより、DPFに捕集されたPMを燃焼させる技術が提案されている。しかしながら、PMを燃焼させる際に燃料を消費してしまうため、燃費が悪化するという問題がある。また、いわゆる街乗り(市街地走行)では、排ガスの温度がPMを燃焼させる温度に到達しないため、街乗りに多用される小型車には不向きである。 Engine, particularly diesel engine exhaust gas contains CO (carbon monoxide), HC (hydrocarbon), NOx (nitrogen oxide), PM (particulate matter), and the like. In recent years, as a method for removing PM contained in exhaust gas, for example, PM is collected by DPF (Diesel particulate filter) and collected by DPF by raising the temperature of exhaust gas by post injection of fuel or in-pipe injection. A technique for burning fresh PM has been proposed. However, since fuel is consumed when PM is burned, there is a problem that fuel efficiency is deteriorated. Also, in so-called city riding (city driving), the temperature of the exhaust gas does not reach the temperature at which PM is burned, so it is not suitable for small cars frequently used for city riding.
 そこで、放電電極が形成された複数の電極パネルを積層し、隣接する電極パネル間に電圧を印加して誘電体バリア放電による低温プラズマ(非平衡プラズマ)を発生させることにより、電極パネル間を流れる排ガス中のPMを酸化して除去するプラズマリアクタが種々提案されている(例えば、特許文献1参照)。詳述すると、特許文献1には、表面または裏面に電極部材(放電電極)が形成された板状の誘電体を鉛直方向に積層した構造を有し、隣接する電極部材間に電圧を印加することによってプラズマを発生させる技術が開示されている。なお、電極部材への通電は、複数の電極パネルを積層方向に貫通する一対のリードライン部材(電気導通部材)によって行われ、両リードライン部材の上端部は、電極パネルの積層体の上面から突出する外部端子に接続されている。 Therefore, a plurality of electrode panels on which discharge electrodes are formed are stacked, and a voltage is applied between adjacent electrode panels to generate low-temperature plasma (non-equilibrium plasma) due to dielectric barrier discharge, thereby flowing between the electrode panels. Various plasma reactors that oxidize and remove PM in exhaust gas have been proposed (see, for example, Patent Document 1). More specifically, Patent Document 1 has a structure in which a plate-like dielectric having electrode members (discharge electrodes) formed on the front or back surface is vertically stacked, and a voltage is applied between adjacent electrode members. Thus, a technique for generating plasma is disclosed. The electrode member is energized by a pair of lead line members (electrically conductive members) penetrating a plurality of electrode panels in the stacking direction, and the upper end portions of both lead line members extend from the upper surface of the stacked body of electrode panels. Connected to protruding external terminals.
日本国特許第3832654号公報(図4等)Japanese Patent No. 3832654 (FIG. 4 etc.)
 ところで、プラズマリアクタを車両等に搭載して使用する際に、プラズマリアクタに水が流入することがある。ここで、プラズマリアクタに流入する水としては、例えば、車両の冷間始動時において排気管内の結露に起因して発生する排気凝縮水や、水たまりへの車両の進入に伴いマフラーから流入する水等がある。 By the way, when the plasma reactor is mounted on a vehicle or the like and used, water may flow into the plasma reactor. Here, as the water flowing into the plasma reactor, for example, exhaust condensed water generated due to condensation in the exhaust pipe at the time of cold start of the vehicle, water flowing from the muffler as the vehicle enters the puddle, etc. There is.
 ところが、特許文献1に記載の従来技術では、リードライン部材が最上層の電極パネルから最下層の電極パネルまで延びているため、流入した水が少量であったとしても、リードライン部材が水に浸かってしまう。その結果、本来であれば絶縁する必要がある一対のリードライン部材間が、水を介して導通してしまい、リーク電流が発生するおそれがある。この場合、投入電力に対するプラズマの発生量が少なくなるため、排ガスの浄化効率が低いという問題がある。 However, in the prior art described in Patent Document 1, since the lead line member extends from the uppermost electrode panel to the lowermost electrode panel, even if a small amount of water flows in, the lead line member becomes water. I'm soaked. As a result, a pair of lead line members that should normally be insulated are electrically connected to each other through water, which may cause leakage current. In this case, since the amount of plasma generated with respect to the input power is reduced, there is a problem that the exhaust gas purification efficiency is low.
 本発明は上記の課題に鑑みてなされたものであり、その目的は、水が流入した場合であっても、プラズマを確実に発生させることができるプラズマリアクタを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma reactor capable of reliably generating plasma even when water flows in.
 上記課題を解決するための手段(手段1)としては、放電電極を有する複数の電極パネルを積層した構造を有し、隣接する前記電極パネル間に電圧が印加されたときにプラズマを発生するプラズマパネル積層体と、前記複数の電極パネルの前記放電電極に電気的に接続される電気導通部材とを備えるプラズマリアクタであって、前記複数の電極パネルの積層方向は、鉛直方向に対して90°±45°の角度をなし、前記電気導通部材は、前記プラズマパネル積層体の上半分の領域に配置されていることを特徴とするプラズマリアクタがある。 As means (means 1) for solving the above-mentioned problem, plasma has a structure in which a plurality of electrode panels having discharge electrodes are stacked, and plasma is generated when a voltage is applied between the adjacent electrode panels. A plasma reactor comprising a panel laminate and an electrically conductive member electrically connected to the discharge electrodes of the plurality of electrode panels, wherein a stacking direction of the plurality of electrode panels is 90 ° with respect to a vertical direction. There is a plasma reactor in which an angle of ± 45 ° is formed and the electrically conductive member is arranged in an upper half region of the plasma panel laminate.
 従って、上記手段1に記載の発明では、複数の電極パネルの積層方向が、鉛直方向に対して90°±45°の角度をなし、電気導通部材が、プラズマパネル積層体の上半分の領域に配置されている。よって、プラズマリアクタに水が流入したとしても、各電極パネルへの通電を担う電気導通部材が水没しにくくなるため、電気導通部材の水没に起因するリーク電流の発生を防止することができる。ゆえに、投入電力に対するプラズマの発生量が十分に確保されるため、隣接する電極パネル間を流れる排ガス中のPMをプラズマを用いて酸化して除去する場合に、PMの除去を効率良く行うことができる。 Therefore, in the invention described in the means 1, the stacking direction of the plurality of electrode panels forms an angle of 90 ° ± 45 ° with respect to the vertical direction, and the electrically conductive member is located in the upper half region of the plasma panel stack. Is arranged. Therefore, even if water flows into the plasma reactor, the electrically conductive member responsible for energizing each electrode panel is less likely to be submerged, so that it is possible to prevent the occurrence of a leakage current due to the submergence of the electrically conductive member. Therefore, since a sufficient amount of plasma is generated with respect to the input power, PM in the exhaust gas flowing between adjacent electrode panels is oxidized and removed using plasma, so that PM can be efficiently removed. it can.
 上記プラズマリアクタを構成するプラズマパネル積層体は、放電電極が形成された複数の電極パネルを積層した構造を有する。放電電極の形成材料としては、例えば、タングステン(W)、モリブデン(Mo)、酸化ルテニウム(RuO)、銀(Ag)、銅(Cu)、白金(Pt)などを挙げることができる。 The plasma panel laminate constituting the plasma reactor has a structure in which a plurality of electrode panels on which discharge electrodes are formed are laminated. Examples of the material for forming the discharge electrode include tungsten (W), molybdenum (Mo), ruthenium oxide (RuO 2 ), silver (Ag), copper (Cu), platinum (Pt), and the like.
 また、上記プラズマリアクタは、プラズマパネル積層体が収容されるケースと、電気導通部材に電気的に接続され、かつケースから露出する外部端子とを有している。なお、プラズマリアクタでは、少なくともケース内に配置される電気導通部材が、プラズマパネル積層体の上半分の領域に配置されていればよい。しかし、ケース外にある外部端子を構成する導通部も、プラズマパネル積層体の上半分の領域に配置されることがより好ましい。つまり、電気導通部材がケース内に配置されるのに加えて、外部端子も、ケース外においてプラズマパネル積層体の上半分の領域に配置されることがよい。このようにすれば、プラズマリアクタに水が流入した際に、ケース内にある電気導通部材が水没しにくくなるのに加えて、プラズマリアクタが水没した際に、ケース外にある外部端子が水没しにくくなる。このため、電気導通部材及び外部端子の水没に起因するリーク電流の発生を防止することができる。 The plasma reactor has a case in which the plasma panel laminate is accommodated, and an external terminal that is electrically connected to the electrically conductive member and exposed from the case. In the plasma reactor, at least the electrically conductive member disposed in the case may be disposed in the upper half region of the plasma panel laminate. However, it is more preferable that the conductive portion constituting the external terminal outside the case is also disposed in the upper half region of the plasma panel laminate. That is, in addition to the electrical conductive member being disposed in the case, the external terminals are preferably disposed in the upper half region of the plasma panel laminate outside the case. In this way, when water flows into the plasma reactor, the electrical conducting member in the case is not easily submerged, and when the plasma reactor is submerged, the external terminal outside the case is submerged. It becomes difficult. For this reason, generation | occurrence | production of the leakage current resulting from the water immersion of an electrically-conductive member and an external terminal can be prevented.
 また、プラズマパネル積層体は、例えば、一対のガス通過面と、一対のガス通過面の間にある複数のガス非通過面とを有している。この場合、外部端子は複数設けられており、複数の外部端子は、同一のガス非通過面上に配置されていることがよい。このようにすれば、外部端子が同一面上に配置されることから、車両等に搭載する際に、外部端子に接続される配線の取り回し(例えば、高温の排気管からの配線の回避)が容易になる。 Further, the plasma panel laminate has, for example, a pair of gas passage surfaces and a plurality of gas non-passage surfaces between the pair of gas passage surfaces. In this case, a plurality of external terminals are provided, and the plurality of external terminals are preferably arranged on the same gas non-passing surface. In this way, since the external terminals are arranged on the same surface, wiring of the wiring connected to the external terminals (for example, avoidance of wiring from a high-temperature exhaust pipe) can be performed when mounted on a vehicle or the like. It becomes easy.
 さらに、上記手段1のプラズマリアクタを車両の床下(例えば、排気管)に取り付ける場合、外部端子が鉛直方向に突出していると、外部端子に接続した配線が例えば車両の床部等に接触しやすくなるため、配線を引き出す作業が困難になるおそれがある。そこで、上記手段1では、複数の外部端子を、例えば、鉛直方向に対して90°±45°の角度をなす方向、換言すると、電極パネルの積層方向に対して平行な方向に突出させることがよい。このようにすれば、外部端子に接続した配線を容易に引き出すことができる。また、プラズマリアクタの鉛直方向における長さが小さくなるため、プラズマリアクタの取り付けの自由度が高くなる。しかも、複数の外部端子は、電極パネルと平行なガス非通過面の上半分の領域に配置されていることがよい。このようにすれば、外部端子が鉛直方向に対して90°±45°の角度をなす方向に突出する場合であっても、外部端子が水没しにくくなるため、外部端子の水没に起因するリーク電流の発生をより確実に防止できる。 Further, when the plasma reactor of the above means 1 is mounted under the floor of the vehicle (for example, an exhaust pipe), if the external terminal protrudes in the vertical direction, the wiring connected to the external terminal easily comes into contact with the floor of the vehicle, for example. Therefore, it may be difficult to draw out the wiring. Therefore, in the above means 1, the plurality of external terminals can be projected in a direction that forms an angle of 90 ° ± 45 ° with respect to the vertical direction, in other words, in a direction parallel to the stacking direction of the electrode panel. Good. In this way, the wiring connected to the external terminal can be easily pulled out. Further, since the length of the plasma reactor in the vertical direction is reduced, the degree of freedom in mounting the plasma reactor is increased. Moreover, the plurality of external terminals are preferably arranged in the upper half region of the gas non-passing surface parallel to the electrode panel. In this way, even if the external terminal protrudes in a direction that makes an angle of 90 ° ± 45 ° with respect to the vertical direction, the external terminal is less likely to be submerged. Generation of current can be prevented more reliably.
 また、電極パネルは、平面視で長方形状をなしており、隣接する電極パネル間を流れるガスの通過方向に沿って延びる辺の長さは、通過方向と直交する方向に沿って延びる辺の長さよりも長いことがよい。このようにすれば、ガスの通過方向に沿って延びる辺の長さが、通過方向と直交する方向に沿って延びる辺の長さ以下である場合よりも、隣接する電極パネル間を通過するガスがプラズマに晒される時間が長くなる。その結果、隣接する電極パネル間を流れる排ガス中のPMをプラズマを用いて酸化して除去する場合に、PMの除去をよりいっそう効率良く行うことができる。 The electrode panel has a rectangular shape in plan view, and the length of the side extending along the passage direction of the gas flowing between the adjacent electrode panels is the length of the side extending along the direction orthogonal to the passage direction. Longer than this is better. In this way, the gas passing between the adjacent electrode panels is longer than the case where the length of the side extending along the gas passage direction is equal to or less than the length of the side extending along the direction orthogonal to the passage direction. Is exposed to plasma for a long time. As a result, when PM in exhaust gas flowing between adjacent electrode panels is oxidized and removed using plasma, PM can be removed more efficiently.
 なお、電極パネルは、第1主面及び第2主面を有しており、電極パネルにおける上側の領域に、第1主面側と第2主面側とを導通させる導通構造を備えていてもよい。このようにすれば、複数の電極パネルを積層した際に、電極パネル同士を確実に導通させることができる。 The electrode panel has a first main surface and a second main surface, and is provided with a conduction structure for conducting the first main surface side and the second main surface side in the upper region of the electrode panel. Also good. If it does in this way, when a plurality of electrode panels are laminated, electrode panels can be made to conduct reliably.
本実施形態におけるプラズマリアクタを示す概略断面図。1 is a schematic cross-sectional view showing a plasma reactor in the present embodiment. プラズマリアクタを示す斜視図。The perspective view which shows a plasma reactor. プラズマパネル積層体がケースに収容されている状態を示す斜視図。The perspective view which shows the state in which the plasma panel laminated body is accommodated in the case. プラズマパネル積層体、クランプ及び外部端子を示す斜視図。The perspective view which shows a plasma panel laminated body, a clamp, and an external terminal. 電極パネルを示す斜視図。The perspective view which shows an electrode panel. 電極パネルを示す平面図。The top view which shows an electrode panel. 外部端子を示す断面図。Sectional drawing which shows an external terminal. 他の実施形態において、プラズマパネル積層体、クランプ及び外部端子を示す斜視図。The perspective view which shows a plasma panel laminated body, a clamp, and an external terminal in other embodiment.
 以下、本発明のプラズマリアクタ1を具体化した一実施形態を図面に基づき詳細に説明する。 Hereinafter, an embodiment embodying the plasma reactor 1 of the present invention will be described in detail with reference to the drawings.
 図1~図3に示されるように、本実施形態のプラズマリアクタ1は、自動車のエンジン(図示略)の排ガスに含まれているPMを除去する装置であり、排気管2に取り付けられている。プラズマリアクタ1は、パルス発生電源3、ケース10及びプラズマパネル積層体20を備えている。 As shown in FIGS. 1 to 3, the plasma reactor 1 of the present embodiment is a device that removes PM contained in exhaust gas of an automobile engine (not shown), and is attached to an exhaust pipe 2. . The plasma reactor 1 includes a pulse generation power source 3, a case 10, and a plasma panel laminate 20.
 ケース10は、例えばステンレス鋼を用いて管状(筒状)に形成されている。ケース10の第1端部(図1では左端部)には第1コーン部11が接続され、ケース10の第2端部(図1では右端部)には第2コーン部12が接続されている。さらに、第1コーン部11は、排気管2の上流側部分4(エンジン側の部分)に接続され、第2コーン部12は、排気管2の下流側部分5(エンジン側とは反対側の部分)に接続されている。なお、エンジンからの排ガスは、排気管2の上流側部分4から第1コーン部11を介してケース10内に流入し、ケース10内を通過した後、第2コーン部12を介して排気管2の下流側部分5に流出する。 The case 10 is formed in a tubular shape (tubular shape) using, for example, stainless steel. A first cone portion 11 is connected to a first end portion (left end portion in FIG. 1) of the case 10, and a second cone portion 12 is connected to a second end portion (right end portion in FIG. 1) of the case 10. Yes. Further, the first cone portion 11 is connected to the upstream portion 4 (engine portion) of the exhaust pipe 2, and the second cone portion 12 is connected to the downstream portion 5 (opposite side of the engine side) of the exhaust pipe 2. Part). The exhaust gas from the engine flows into the case 10 from the upstream portion 4 of the exhaust pipe 2 through the first cone portion 11, passes through the case 10, and then passes through the second cone portion 12 to the exhaust pipe. 2 flows out to the downstream part 5.
 図1,図3に示されるように、プラズマパネル積層体20は、ケース10内に収容されており、ケース10とプラズマパネル積層体20との間にはマット6が介在されている。ここで、マット6を構成する絶縁材料としては、例えば、セラミック繊維、金属繊維、発泡金属等を用いることができる。マット6は、プラズマパネル積層体20をケース10に保持させる機能を有している。 As shown in FIGS. 1 and 3, the plasma panel laminate 20 is accommodated in the case 10, and the mat 6 is interposed between the case 10 and the plasma panel laminate 20. Here, as an insulating material which comprises the mat | matte 6, a ceramic fiber, a metal fiber, a foam metal etc. can be used, for example. The mat 6 has a function of holding the plasma panel laminate 20 in the case 10.
 図1,図3,図4に示されるように、プラズマパネル積層体20は、一対のガス通過面21,22と、4つのガス非通過面23,24,25,26とを有する略直方体状をなしている。両ガス通過面21,22は、プラズマパネル積層体20において互いに反対側に位置している。一方、各ガス非通過面23~26は、一対のガス通過面21,22の間に位置している。 As shown in FIGS. 1, 3, and 4, the plasma panel laminate 20 has a substantially rectangular parallelepiped shape having a pair of gas passage surfaces 21 and 22 and four gas non-passage surfaces 23, 24, 25, and 26. I am doing. Both gas passage surfaces 21 and 22 are located on opposite sides of the plasma panel laminate 20. On the other hand, the gas non-passing surfaces 23 to 26 are located between the pair of gas passing surfaces 21 and 22.
 また、プラズマパネル積層体20は、複数の電極パネル30を積層した構造を有している。電極パネル30の積層方向は、鉛直方向(Z方向)に対して90°の角度をなす方向(Y方向)となっている。また、各電極パネル30は、ケース10内における排ガスの通過方向(第1コーン部11から第2コーン部12に向かう方向であるX方向)と平行に配置されており、互いに隙間(本実施形態では、0.5mmの隙間)を有するように離間して配置されている。詳述すると、プラズマパネル積層体20は、隣接する電極パネル30間に、ガスが通過するガス流路27(図1参照)を有している。そして、ガス流路27は、電極パネル30の両端面(即ち、プラズマパネル積層体20のガス通過面21,22を構成する面)において開口する開口部28を備えている。なお、本実施形態のプラズマリアクタ1は、開口部28が縦長(図3,図4参照)となる縦置きのリアクタである。 The plasma panel laminate 20 has a structure in which a plurality of electrode panels 30 are laminated. The stacking direction of the electrode panel 30 is a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction). Each electrode panel 30 is disposed in parallel with the passage direction of the exhaust gas in the case 10 (the X direction that is the direction from the first cone portion 11 toward the second cone portion 12), and is spaced from each other (this embodiment). Then, they are spaced apart so as to have a gap of 0.5 mm. Specifically, the plasma panel laminate 20 has a gas flow path 27 (see FIG. 1) through which gas passes between the adjacent electrode panels 30. The gas flow path 27 includes an opening 28 that opens at both end surfaces of the electrode panel 30 (that is, the surfaces constituting the gas passage surfaces 21 and 22 of the plasma panel laminate 20). In addition, the plasma reactor 1 of this embodiment is a vertical reactor in which the opening 28 is vertically long (see FIGS. 3 and 4).
 図1に示されるように、各電極パネル30には、プラズマパネル積層体20の厚さ方向に沿って第1の配線7及び第2の配線8が交互に電気的に接続されている。第1の配線7は、パルス発生電源3の第1の端子に電気的に接続され、第2の配線8は、パルス発生電源3の第2の端子に電気的に接続されている。 As shown in FIG. 1, the first wiring 7 and the second wiring 8 are alternately electrically connected to each electrode panel 30 along the thickness direction of the plasma panel laminate 20. The first wiring 7 is electrically connected to the first terminal of the pulse generating power supply 3, and the second wiring 8 is electrically connected to the second terminal of the pulse generating power supply 3.
 図1,図5,図6に示されるように、本実施形態の電極パネル30は、第1主面31及び第2主面32を有し、縦100mm×横200mmの略矩形板状をなしている。第1主面31及び第2主面32は、電極パネル30の厚さ方向において互いに反対側に位置している。また、電極パネル30は、平面視で長方形状をなしており、隣接する電極パネル30間を流れるガスの通過方向(横方向)に沿って延びる辺33の長さが、通過方向と直交する方向(縦方向)に沿って延びる辺34の長さよりも長くなっている。 As shown in FIGS. 1, 5, and 6, the electrode panel 30 of the present embodiment has a first main surface 31 and a second main surface 32, and has a substantially rectangular plate shape of length 100 mm × width 200 mm. ing. The first main surface 31 and the second main surface 32 are located on opposite sides in the thickness direction of the electrode panel 30. The electrode panel 30 has a rectangular shape in plan view, and the length of the side 33 extending along the passage direction (lateral direction) of the gas flowing between the adjacent electrode panels 30 is perpendicular to the passage direction. It is longer than the length of the side 34 extending along (vertical direction).
 さらに、電極パネル30は、矩形板状の誘電体35に放電電極36(厚さ10μm)を内蔵してなる構造を有している。本実施形態において、誘電体35はアルミナ(Al)等のセラミックからなり、放電電極36はタングステン(W)からなる。誘電体35は、第2主面32にて開口する凹部37を有している。凹部37は、電極パネル30の横方向に延びており、電極パネル30の両端面にて開口している。本実施形態のプラズマパネル積層体20では、凹部37と下層側に隣接する電極パネル30の第1主面31とによって、上記したガス流路27が構成される。なお、プラズマパネル積層体20を構成する最下層の電極パネル30には、下層側に電極パネル30が存在しないため、凹部37が形成されていない。 Further, the electrode panel 30 has a structure in which a discharge electrode 36 (thickness 10 μm) is built in a rectangular plate-like dielectric 35. In the present embodiment, the dielectric 35 is made of ceramic such as alumina (Al 2 O 3 ), and the discharge electrode 36 is made of tungsten (W). The dielectric 35 has a recess 37 that opens at the second main surface 32. The concave portion 37 extends in the lateral direction of the electrode panel 30 and opens at both end surfaces of the electrode panel 30. In the plasma panel laminate 20 of the present embodiment, the gas flow path 27 described above is configured by the recess 37 and the first main surface 31 of the electrode panel 30 adjacent to the lower layer side. The lowermost electrode panel 30 constituting the plasma panel laminate 20 is not formed with the recess 37 because the electrode panel 30 does not exist on the lower layer side.
 図5,図6に示されるように、電極パネル30における上側の領域には、第1主面31側と第2主面32側とを導通させる導通構造40が一対設けられている。各導通構造40は、電気導通部材であるスルーホール導体41、第1パッド42及び第2パッド43を備えている。スルーホール導体41は、第1主面31及び第2主面32を貫通している。そして、一方の導通構造40に設けられたスルーホール導体41は、第1主面31及び第2主面32に加えて、放電電極36から外周側に延出する延出部38を貫通している。また、第1パッド42は、電極パネル30において第1主面31の上端部に形成されている。第1パッド42は、スルーホール導体41の第1主面31側端部に電気的に接続されている。一方、第2パッド43は、電極パネル30において第2主面32の上端部に形成されている。第2パッド43は、スルーホール導体41の第2主面32側端部に電気的に接続されている。なお、第1パッド42及び第2パッド43は、それぞれ長方形状をなしており、表面にNi等のめっきが施されている。 As shown in FIG. 5 and FIG. 6, a pair of conductive structures 40 for conducting the first main surface 31 side and the second main surface 32 side are provided in the upper region of the electrode panel 30. Each conduction structure 40 includes a through-hole conductor 41, a first pad 42, and a second pad 43, which are electrical conduction members. The through-hole conductor 41 passes through the first main surface 31 and the second main surface 32. And the through-hole conductor 41 provided in one conduction | electrical_connection structure 40 penetrates the extension part 38 extended in the outer peripheral side from the discharge electrode 36 in addition to the 1st main surface 31 and the 2nd main surface 32. Yes. The first pad 42 is formed on the upper end portion of the first main surface 31 in the electrode panel 30. The first pad 42 is electrically connected to the end portion of the through hole conductor 41 on the first main surface 31 side. On the other hand, the second pad 43 is formed on the upper end portion of the second main surface 32 in the electrode panel 30. The second pad 43 is electrically connected to the end of the through hole conductor 41 on the second main surface 32 side. The first pad 42 and the second pad 43 each have a rectangular shape, and the surface thereof is plated with Ni or the like.
 図4に示されるように、プラズマリアクタ1は、各電極パネル30(プラズマパネル積層体20)を上方から挟み込んで固定する一対の第1クランプ50,51と、各電極パネル30を下方から挟み込んで固定する一対の第2クランプ52,53とを備えている。各クランプ50~53は、金属板(例えばステンレス板)を折り曲げることによって形成されている。第1クランプ50,51は、各電極パネル30を挟み込む機能に加えて、放電電極36に電気的に接続される電気導通部材としての機能を有している。第1クランプ50,51は、ケース10内においてプラズマパネル積層体20の上半分の領域に配置されており、プラズマパネル積層体20の下半分の領域には配置されないようになっている。一方、第2クランプ52,53は、各電極パネル30を挟み込む機能のみを有している。第2クランプ52,53は、ケース10内においてプラズマパネル積層体20の下半分の領域に配置されている。ここで、「プラズマパネル積層体20の上半分の領域」とは、プラズマリアクタ1が車両に取り付けられた際に、鉛直方向において上半分となる領域をいう。同様に、「プラズマパネル積層体20の下半分の領域」とは、プラズマリアクタ1が車両に取り付けられた際に、鉛直方向において下半分となる領域をいう。詳述すると、プラズマパネル積層体20には、最上層の電極パネル30の第1主面31に設定された2本の対角線L1の交点P1を通過する仮想面C1が設定されている。仮想面C1は、電極パネル30の積層方向に平行であって、かつ、隣接する電極パネル30間を流れる排ガスの通過方向に平行に配置されている。そして、プラズマパネル積層体20は、仮想面C1を基準として第1領域A1と第2領域A2とに分けられている。なお、第1クランプ50,51は、第1領域A1に配置され、第2領域A2には配置されないようになっている。一方、第2クランプ52,53は、第2領域A2に配置されている。 As shown in FIG. 4, the plasma reactor 1 includes a pair of first clamps 50 and 51 for sandwiching and fixing each electrode panel 30 (plasma panel laminate 20) from above, and each electrode panel 30 from below. A pair of second clamps 52 and 53 to be fixed is provided. Each clamp 50 to 53 is formed by bending a metal plate (for example, a stainless steel plate). The first clamps 50 and 51 have a function as an electrically conductive member that is electrically connected to the discharge electrode 36 in addition to the function of sandwiching each electrode panel 30. The first clamps 50 and 51 are arranged in the upper half region of the plasma panel laminate 20 in the case 10 and are not arranged in the lower half region of the plasma panel laminate 20. On the other hand, the second clamps 52 and 53 have only a function of sandwiching each electrode panel 30. The second clamps 52 and 53 are disposed in the lower half region of the plasma panel laminate 20 in the case 10. Here, the “upper half region of the plasma panel laminate 20” refers to a region that becomes the upper half in the vertical direction when the plasma reactor 1 is attached to the vehicle. Similarly, the “lower half region of the plasma panel laminate 20” refers to a region that is the lower half in the vertical direction when the plasma reactor 1 is attached to the vehicle. Specifically, in the plasma panel laminate 20, a virtual plane C1 passing through the intersection P1 of the two diagonal lines L1 set on the first main surface 31 of the uppermost electrode panel 30 is set. The virtual plane C1 is arranged in parallel to the stacking direction of the electrode panels 30 and in parallel to the passage direction of the exhaust gas flowing between the adjacent electrode panels 30. And the plasma panel laminated body 20 is divided into 1st area | region A1 and 2nd area | region A2 on the basis of the virtual surface C1. The first clamps 50 and 51 are arranged in the first area A1, and are not arranged in the second area A2. On the other hand, the second clamps 52 and 53 are disposed in the second region A2.
 また、図4に示されるように、クランプ50~53は、クランプ本体54及び押さえ板55を備えている。クランプ本体54は、電極パネル30の積層方向に延びている。押さえ板55は、クランプ本体54と一体に形成され、クランプ本体54の両端部に配置されている。各押さえ板55は、弾性を有しており、折り返し構造を有する板ばねである。なお、第1クランプ50,51を構成する一対の押さえ板55は、プラズマパネル積層体20を構成する最上層の電極パネル30の第1主面31の上端部と、プラズマパネル積層体20を構成する最下層の電極パネル30の第2主面32の上端部とにそれぞれ圧接している。そして、第1クランプ50を構成する両押さえ板55の一方は、プラズマパネル積層体20に形成された第1パッド42に圧接している。また、第1クランプ51を構成する両押さえ板55の一方は、プラズマパネル積層体20に形成された第2パッド43に圧接している。一方、第2クランプ52,53を構成する一対の押さえ板55は、プラズマパネル積層体20を構成する最上層の電極パネル30の第1主面31の下端部と、プラズマパネル積層体20を構成する最下層の電極パネル30の第2主面32の下端部とにそれぞれ圧接している。 Further, as shown in FIG. 4, the clamps 50 to 53 include a clamp body 54 and a pressing plate 55. The clamp body 54 extends in the stacking direction of the electrode panel 30. The holding plate 55 is formed integrally with the clamp body 54 and is disposed at both ends of the clamp body 54. Each pressing plate 55 is a leaf spring having elasticity and a folded structure. The pair of pressing plates 55 constituting the first clamps 50 and 51 constitute the plasma panel laminate 20 and the upper end portion of the first main surface 31 of the uppermost electrode panel 30 constituting the plasma panel laminate 20. The lowermost electrode panel 30 is in pressure contact with the upper end of the second main surface 32 of the lowermost electrode panel 30. One of the pressing plates 55 constituting the first clamp 50 is in pressure contact with the first pad 42 formed on the plasma panel laminate 20. One of the pressing plates 55 constituting the first clamp 51 is in pressure contact with the second pad 43 formed on the plasma panel laminate 20. On the other hand, the pair of pressing plates 55 constituting the second clamps 52 and 53 constitute the plasma panel laminate 20 and the lower end portion of the first main surface 31 of the uppermost electrode panel 30 constituting the plasma panel laminate 20. The lowermost electrode panel 30 is in pressure contact with the lower end of the second main surface 32 of the lowermost electrode panel 30.
 図2~図4,図7に示されるように、プラズマリアクタ1は、一対の外部端子60,61を備えている。本実施形態の外部端子60,61は、スパークプラグと同様の構造を有している。詳述すると、外部端子60,61は、外部接続部62、金属粉末を含む導電性シール63、絶縁体64、主体金具65、滑石66、接続フランジ67、パッキン類68等を備えている。外部接続部62は、導電性シール63を介して中軸69(電気導通部材)に接続されている。中軸69は、第1クランプ50,51の押さえ板55から突出してケース10に設けられた貫通孔を挿通し、先端部が絶縁体64内に挿入されている。また、接続フランジ67は、主体金具65の外周面とケース10の外側面とに接合することにより、外部端子60,61をケース10に接続するようになっている。なお、外部端子は、本実施形態のものに限定される訳ではなく、絶縁体によって外部接続部62とケース10との間が絶縁されている構造であれば、他の構造であってもよい。 As shown in FIGS. 2 to 4 and 7, the plasma reactor 1 includes a pair of external terminals 60 and 61. The external terminals 60 and 61 of this embodiment have the same structure as a spark plug. Specifically, the external terminals 60 and 61 include an external connection portion 62, a conductive seal 63 containing metal powder, an insulator 64, a metal shell 65, a talc 66, a connection flange 67, packings 68, and the like. The external connection part 62 is connected to the middle shaft 69 (electrically conductive member) via the conductive seal 63. The middle shaft 69 protrudes from the holding plate 55 of the first clamps 50, 51 and is inserted through a through hole provided in the case 10, and the tip is inserted into the insulator 64. The connection flange 67 is connected to the outer surface of the metal shell 65 and the outer surface of the case 10 to connect the external terminals 60 and 61 to the case 10. The external terminal is not limited to the one in the present embodiment, and may have another structure as long as the external connection portion 62 and the case 10 are insulated by an insulator. .
 また、各外部端子60,61は、基端部が第1クランプ50,51の押さえ板55に電気的に接続され、先端部がケース10(図2,図3参照)から露出している。そして、外部端子60の先端部が第1の配線7に接続されるとともに、外部端子61の先端部が第2の配線8に接続されるようになっている(図1参照)。なお、外部端子60,61が接続される押さえ板55の長さは、他の押さえ板55の長さよりも長くなっている。また、各外部端子60,61は、同一のガス非通過面26上に配置されている。さらに、各外部端子60,61は、電極パネル30と平行なガス非通過面24,26の上半分の領域、即ち、ケース10外においてプラズマパネル積層体20の上半分の領域に配置されている。そして、各外部端子60,61は、鉛直方向(Z方向)に対して90°の角度をなす方向(Y方向)に突出している。 Further, the base ends of the external terminals 60 and 61 are electrically connected to the pressing plates 55 of the first clamps 50 and 51, and the tip ends are exposed from the case 10 (see FIGS. 2 and 3). And the front-end | tip part of the external terminal 60 is connected to the 1st wiring 7, and the front-end | tip part of the external terminal 61 is connected to the 2nd wiring 8 (refer FIG. 1). The length of the pressing plate 55 to which the external terminals 60 and 61 are connected is longer than the length of the other pressing plates 55. The external terminals 60 and 61 are arranged on the same gas non-passing surface 26. Further, the external terminals 60 and 61 are arranged in the upper half area of the gas non-passing surfaces 24 and 26 parallel to the electrode panel 30, that is, in the upper half area of the plasma panel laminate 20 outside the case 10. . The external terminals 60 and 61 protrude in a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction).
 なお、図1に示されるように、本実施形態のプラズマリアクタ1は、例えば、排ガスに含まれているPMを除去するために用いられる。この場合、パルス発生電源3から互いに隣接する電極パネル30間にパルス電圧(例えば、ピーク電圧:5kV(5000V)、パルス繰返し周波数:100Hz)が印加されると、誘電体バリア放電が生じ、放電電極36間に誘電体バリア放電によるプラズマが発生する。そして、プラズマの発生により、放電電極36間を流通する排ガスに含まれるPMが酸化(燃焼)されて除去される。 Note that, as shown in FIG. 1, the plasma reactor 1 of the present embodiment is used, for example, to remove PM contained in exhaust gas. In this case, when a pulse voltage (for example, peak voltage: 5 kV (5000 V), pulse repetition frequency: 100 Hz) is applied between the electrode panels 30 adjacent to each other from the pulse generating power supply 3, dielectric barrier discharge occurs, and the discharge electrode A plasma due to dielectric barrier discharge is generated between the electrodes 36. Due to the generation of plasma, PM contained in the exhaust gas flowing between the discharge electrodes 36 is oxidized (burned) and removed.
 次に、プラズマリアクタ1の製造方法を説明する。 Next, a method for manufacturing the plasma reactor 1 will be described.
 まず、アルミナ粉末を主成分とするセラミック材料を用いて、誘電体35となる第1~第3のセラミックグリーンシートを形成する。なお、セラミックグリーンシートの形成方法としては、テープ成形や押出成形などの周知の成形法を用いることができる。そして、各セラミックグリーンシートに対してレーザ加工を行い、所定の位置に貫通孔を形成する。なお、貫通孔の形成は、パンチング加工、ドリル加工等によって行ってもよい。 First, first to third ceramic green sheets to be the dielectric 35 are formed using a ceramic material whose main component is alumina powder. In addition, as a formation method of a ceramic green sheet, well-known shaping | molding methods, such as tape shaping | molding and extrusion molding, can be used. And each ceramic green sheet is laser-processed and a through-hole is formed in a predetermined position. The through hole may be formed by punching, drilling, or the like.
 次に、従来周知のペースト印刷装置(図示略)を用いて、各セラミックグリーンシートの貫通孔に導電性ペースト(本実施形態では、タングステンペースト)を充填し、スルーホール導体41となる未焼成のスルーホール導体部を形成する。 Next, using a conventionally known paste printing apparatus (not shown), the through holes of each ceramic green sheet are filled with a conductive paste (in this embodiment, a tungsten paste), and an unfired portion that becomes the through-hole conductor 41 is obtained. A through-hole conductor is formed.
 次に、第1のセラミックグリーンシートを支持台(図示略)に載置する。さらに、ペースト印刷装置を用いて、第1のセラミックグリーンシートの裏面上に、導電性ペーストを印刷する。その結果、第1のセラミックグリーンシートの裏面上に、放電電極36となる厚さ10μmの未焼成電極が形成される。なお、第1のセラミックグリーンシートに対する未焼成電極の印刷方法としては、スクリーン印刷などの周知の印刷法を使用することができる。 Next, the first ceramic green sheet is placed on a support base (not shown). Furthermore, a conductive paste is printed on the back surface of the first ceramic green sheet using a paste printing apparatus. As a result, an unfired electrode having a thickness of 10 μm to be the discharge electrode 36 is formed on the back surface of the first ceramic green sheet. In addition, as a printing method of the unsintered electrode with respect to the 1st ceramic green sheet, well-known printing methods, such as screen printing, can be used.
 そして、導電性ペーストの乾燥後、未焼成電極が印刷された第1のセラミックグリーンシートの裏面上に、第2のセラミックグリーンシート及び第3のセラミックグリーンシートを順番に積層し、シート積層方向に押圧力を付与する。その結果、各セラミックグリーンシートが一体化され、セラミック積層体が形成される。さらに、ペースト印刷装置を用いて、第1のセラミックグリーンシートの主面上に導電性ペーストを印刷し、未焼成の第1パッド42を形成するとともに、第3のセラミックグリーンシートの裏面上に導電性ペーストを印刷し、未焼成の第2パッド43を形成する。なお、第3のセラミックグリーンシートは、凹部37の形状に合わせた打抜加工を施した後に積層される。 Then, after the conductive paste is dried, the second ceramic green sheet and the third ceramic green sheet are sequentially laminated on the back surface of the first ceramic green sheet on which the unfired electrodes are printed, in the sheet lamination direction. Apply pressing force. As a result, the ceramic green sheets are integrated to form a ceramic laminate. Further, using a paste printing device, a conductive paste is printed on the main surface of the first ceramic green sheet to form the unfired first pad 42 and conductive on the back surface of the third ceramic green sheet. The non-sintered second pad 43 is formed by printing the conductive paste. Note that the third ceramic green sheet is laminated after being subjected to a punching process in accordance with the shape of the recess 37.
 次に、周知の手法に従って乾燥工程や脱脂工程などを行った後、セラミック積層体(セラミックグリーンシート及び未焼成電極)をアルミナ及びタングステンが焼結しうる所定の温度(例えば1400℃~1600℃程度)に加熱する同時焼成を行う。その結果、セラミックグリーンシート中のアルミナ、及び、導電性ペースト中のタングステンが同時焼結し、誘電体35、放電電極36、スルーホール導体41、第1パッド42及び第2パッド43が同時焼成によって形成され、セラミック積層体が電極パネル30となる。 Next, after performing a drying process or a degreasing process according to a known method, a predetermined temperature (for example, about 1400 ° C. to 1600 ° C.) at which the ceramic laminate (ceramic green sheet and unfired electrode) can be sintered by alumina and tungsten. ) Is simultaneously fired. As a result, alumina in the ceramic green sheet and tungsten in the conductive paste are simultaneously sintered, and the dielectric 35, the discharge electrode 36, the through-hole conductor 41, the first pad 42, and the second pad 43 are simultaneously fired. The formed ceramic laminate becomes the electrode panel 30.
 その後、得られた電極パネル30を複数積層し、プラズマパネル積層体20を形成する。次に、クランプ50~53を用いて、複数の電極パネル30を積層方向に挟み込んで固定する。このとき、第1クランプ50を構成する両押さえ板55の一方が、第1パッド42に圧接するとともに、第1クランプ51を構成する両押さえ板55の一方が、第2パッド43に圧接する。さらに、溶接等を行うことにより、第1クランプ50を構成する両押さえ板55の一方と、第1クランプ51を構成する両押さえ板55の一方とに、外部端子60,61の基端部を接続する。その結果、両外部端子60,61が、同一のガス非通過面26上に配置されるとともに、鉛直方向と直交する方向に突出するようになる。次に、外部端子60の先端部に第1の配線7を接続するとともに、外部端子61の先端部に第2の配線8を接続する。以上のプロセスを経て、プラズマリアクタ1が完成する。 Thereafter, a plurality of obtained electrode panels 30 are laminated to form a plasma panel laminate 20. Next, using the clamps 50 to 53, the plurality of electrode panels 30 are sandwiched and fixed in the stacking direction. At this time, one of the pressing plates 55 constituting the first clamp 50 comes into pressure contact with the first pad 42, and one of the pressing plates 55 constituting the first clamp 51 comes into pressure contact with the second pad 43. Further, by performing welding or the like, the base end portions of the external terminals 60 and 61 are attached to one of the both holding plates 55 constituting the first clamp 50 and one of the both holding plates 55 constituting the first clamp 51. Connecting. As a result, both external terminals 60 and 61 are arranged on the same gas non-passing surface 26 and protrude in a direction perpendicular to the vertical direction. Next, the first wiring 7 is connected to the distal end portion of the external terminal 60, and the second wiring 8 is connected to the distal end portion of the external terminal 61. The plasma reactor 1 is completed through the above processes.
 従って、本実施形態によれば以下の効果を得ることができる。 Therefore, according to this embodiment, the following effects can be obtained.
 (1)本実施形態のプラズマリアクタ1では、プラズマパネル積層体20を構成する電極パネル30の積層方向が、鉛直方向(Z方向)に対して90°の角度をなす方向(Y方向)に設定され、第1クランプ50,51が、プラズマパネル積層体20の上半分の領域に配置されている。よって、プラズマリアクタ1に水が流入したとしても、各電極パネル30への通電を担う第1クランプ50,51が水没しにくくなるため、第1クランプ50,51の水没に起因するリーク電流の発生を防止することができる。ゆえに、投入電力に対するプラズマの発生量が十分に確保されるため、隣接する電極パネル30間を流れる排ガス中のPMをプラズマを用いて酸化して除去する場合に、PMの除去を効率良く行うことができる。 (1) In the plasma reactor 1 of the present embodiment, the stacking direction of the electrode panels 30 constituting the plasma panel stack 20 is set to a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction). The first clamps 50 and 51 are arranged in the upper half region of the plasma panel laminate 20. Therefore, even if water flows into the plasma reactor 1, the first clamps 50 and 51 responsible for energizing each electrode panel 30 are less likely to be submerged, so that leakage current is generated due to the submersion of the first clamps 50 and 51. Can be prevented. Therefore, since a sufficient amount of plasma is generated with respect to the input power, PM in the exhaust gas flowing between adjacent electrode panels 30 is oxidized and removed using plasma, and PM is efficiently removed. Can do.
 (2)さらに、本実施形態のプラズマリアクタ1では、外部端子60,61がケース10外においてプラズマパネル積層体20の上半分の領域に配置されている。その結果、プラズマリアクタ1に水が流入した際に、ケース10内にある第1クランプ50,51が水没しにくくなるのに加えて、プラズマリアクタ1が水没した際に、ケース10外にある外部端子60,61が水没しにくくなる。このため、第1クランプ50,51及び外部端子60,61の水没に起因するリーク電流の発生を防止することができる。 (2) Furthermore, in the plasma reactor 1 of the present embodiment, the external terminals 60 and 61 are arranged in the upper half region of the plasma panel laminate 20 outside the case 10. As a result, when water flows into the plasma reactor 1, the first clamps 50 and 51 in the case 10 are less likely to be submerged, and when the plasma reactor 1 is submerged, there is an external outside the case 10. The terminals 60 and 61 are not easily submerged. For this reason, generation | occurrence | production of the leakage current resulting from the submersion of the 1st clamps 50 and 51 and the external terminals 60 and 61 can be prevented.
 (3)本実施形態のプラズマリアクタ1は、第1コーン部11及び第2コーン部12を介して排気管2に取り付けられている。その結果、排気管2の上流側部分4→第1コーン部11→プラズマリアクタ1→第2コーン部12→排気管2の下流側部分5の順番に排ガスが流れる排ガス流路内の抵抗が低減されるため、排ガス流路内における圧力損失を抑えることができる。ひいては、圧力損失に伴うエンジンの出力低下も防止することができる。 (3) The plasma reactor 1 of this embodiment is attached to the exhaust pipe 2 via the first cone portion 11 and the second cone portion 12. As a result, the resistance in the exhaust gas flow path in which the exhaust gas flows in the order of the upstream portion 4 of the exhaust pipe 2 → the first cone portion 11 → the plasma reactor 1 → the second cone portion 12 → the downstream portion 5 of the exhaust pipe 2 is reduced. Therefore, the pressure loss in the exhaust gas passage can be suppressed. As a result, it is possible to prevent the engine output from decreasing due to pressure loss.
 なお、上記実施形態を以下のように変更してもよい。 In addition, you may change the said embodiment as follows.
 ・上記実施形態のプラズマリアクタ1では、一対の外部端子60,61が、鉛直方向(Z方向)に対して90°の角度をなす方向(Y方向)に突出していたが、一対の外部端子は、Y方向とは別の方向に突出するものであってもよい。例えば、図8に示されるように、一対の外部端子70,71は鉛直方向(Z方向)に突出していてもよい。 In the plasma reactor 1 of the above embodiment, the pair of external terminals 60 and 61 protrude in a direction (Y direction) that forms an angle of 90 ° with respect to the vertical direction (Z direction). , It may protrude in a direction different from the Y direction. For example, as shown in FIG. 8, the pair of external terminals 70 and 71 may protrude in the vertical direction (Z direction).
 ・上記実施形態のプラズマリアクタ1では、一対の外部端子60,61が同一のガス非通過面26上に配置されていたが、外部端子は、互いに異なるガス非通過面上に配置されていてもよい。例えば、図4に示されるように、2個の外部端子60,61が設けられている場合、一方の外部端子60がガス非通過面23上に配置されるとともに、他方の外部端子61がガス非通過面23とは別のガス非通過面26上に配置されていてもよい。 In the plasma reactor 1 of the above embodiment, the pair of external terminals 60 and 61 are disposed on the same gas non-passing surface 26, but the external terminals may be disposed on different gas non-passing surfaces. Good. For example, as shown in FIG. 4, when two external terminals 60 and 61 are provided, one external terminal 60 is disposed on the gas non-passing surface 23 and the other external terminal 61 is a gas. You may arrange | position on the gas non-passing surface 26 different from the non-passing surface 23. FIG.
 ・上記実施形態の電極パネル30は、誘電体35に放電電極36を内蔵することによって構成されていた。しかし、誘電体35の表面に放電電極36を形成することによって電極パネルを構成してもよい。 The electrode panel 30 of the above embodiment is configured by incorporating the discharge electrode 36 in the dielectric 35. However, the electrode panel may be configured by forming the discharge electrode 36 on the surface of the dielectric 35.
 ・上記実施形態のプラズマリアクタ1は、自動車のエンジンの排ガス浄化に用いられていたが、例えば、船舶等のエンジンの排ガス浄化に用いてもよい。また、プラズマリアクタ1は、プラズマ処理を行うものであればよく、排ガスの処理を行うものでなくてもよいし、浄化に用いるものでなくてもよい。 -Although the plasma reactor 1 of the said embodiment was used for exhaust gas purification of the engine of a motor vehicle, you may use it for exhaust gas purification of engines, such as a ship, for example. Moreover, the plasma reactor 1 should just perform a plasma process, and does not need to perform the process of waste gas, and does not need to be used for purification | cleaning.
 次に、請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。 Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiment described above are listed below.
 (1)上記手段1において、前記電気導通部材は、前記プラズマパネル積層体の下半分の領域には配置されていないことを特徴とするプラズマリアクタ。 (1) The plasma reactor according to the means 1, wherein the electrically conductive member is not disposed in a lower half region of the plasma panel laminate.
 (2)上記手段1において、隣接する前記電極パネル間に、ガスが通過するガス流路が設けられ、前記ガス流路は、前記電極パネルの両端において開口する開口部を備えており、前記プラズマリアクタは、前記開口部が縦長となる縦置きのリアクタであることを特徴とするプラズマリアクタ。 (2) In the means 1, a gas flow path through which a gas passes is provided between the adjacent electrode panels, and the gas flow path includes openings that are opened at both ends of the electrode panel, and the plasma The reactor is a vertically placed reactor in which the opening is vertically long.
 (3)上記手段1において、前記電極パネルは、第1主面及び第2主面を有しており、前記電極パネルにおける上側の領域に、前記第1主面側と前記第2主面側とを導通させる導通構造が設けられ、前記導通構造は、前記第1主面及び前記第2主面を貫通するスルーホール導体と、前記第1主面に形成され、前記スルーホール導体の前記第1主面側端部に電気的に接続される第1パッドと、前記第2主面に形成され、前記スルーホール導体の前記第2主面側端部に電気的に接続される第2パッドとを備えることを特徴とするプラズマリアクタ。 (3) In the above means 1, the electrode panel has a first main surface and a second main surface, and the first main surface side and the second main surface side in the upper region of the electrode panel. A conduction structure is provided, wherein the conduction structure is formed in the first main surface and the through hole conductor that penetrates the first main surface and the second main surface, A first pad electrically connected to one main surface side end portion and a second pad formed on the second main surface and electrically connected to the second main surface side end portion of the through-hole conductor And a plasma reactor.
 (4)放電電極を有する複数の電極パネルを積層した構造を有し、隣接する前記電極パネル間に電圧が印加されたときにプラズマを発生するプラズマパネル積層体と、前記複数の電極パネルの前記放電電極に電気的に接続される電気導通部材とを備えるプラズマリアクタであって、前記複数の電極パネルの積層方向は、鉛直方向に対して90°±45°の角度をなし、前記電極パネルは、第1主面及び第2主面を有する略矩形板状をなしており、前記プラズマパネル積層体は、前記第1主面に設定される2本の対角線の交点を通過し、前記積層方向に平行であって、隣接する前記電極パネル間を流れるガスの通過方向に平行な仮想面を基準として、第1領域と第2領域とに分けられており、前記電気導通部材は、前記第1領域に配置されていることを特徴とするプラズマリアクタ。 (4) A plasma panel laminate having a structure in which a plurality of electrode panels having discharge electrodes are laminated, and generating a plasma when a voltage is applied between the adjacent electrode panels, and the plurality of electrode panels A plasma reactor comprising an electrically conductive member electrically connected to a discharge electrode, wherein a stacking direction of the plurality of electrode panels forms an angle of 90 ° ± 45 ° with respect to a vertical direction. , Having a substantially rectangular plate shape having a first main surface and a second main surface, the plasma panel laminate passing through an intersection of two diagonal lines set on the first main surface, and the stacking direction Is divided into a first region and a second region on the basis of a virtual plane parallel to the passage direction of the gas flowing between the adjacent electrode panels, and the electrically conductive member is the first conductive member. Is located in the area Plasma reactor, characterized in that.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年12月9日出願の日本特許出願(特願2015-240438)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on December 9, 2015 (Japanese Patent Application No. 2015-240438), the contents of which are incorporated herein by reference.
 本発明のプラズマリアクタは、エンジン、特にディーゼルエンジンの排ガスの浄化装置に有用である。 The plasma reactor of the present invention is useful for exhaust gas purification devices for engines, particularly diesel engines.
1…プラズマリアクタ
10…ケース
20…プラズマパネル積層体
21,22…ガス通過面
23,24,25,26…ガス非通過面
30…電極パネル
31…第1主面
32…第2主面
33…隣接する電極パネル間を流れるガスの通過方向に沿って延びる辺
34…隣接する電極パネル間を流れるガスの通過方向と直交する方向に沿って延びる辺
36…放電電極
40…導通構造
41…電気導通部材としてのスルーホール導体
42…電気導通部材としての第1パッド
43…電気導通部材としての第2パッド
50,51…電気導通部材としての第1クランプ
60,61,70,71…外部端子
69…電気導通部材としての中軸
DESCRIPTION OF SYMBOLS 1 ... Plasma reactor 10 ... Case 20 ... Plasma panel laminated body 21,22 ... Gas passage surface 23, 24, 25, 26 ... Gas non-passage surface 30 ... Electrode panel 31 ... 1st main surface 32 ... 2nd main surface 33 ... Side 34 extending along the passage direction of the gas flowing between the adjacent electrode panels ... Side 36 extending along the direction orthogonal to the passage direction of the gas flowing between the adjacent electrode panels ... Discharge electrode 40 ... Conducting structure 41 ... Electrical conduction Through-hole conductor 42 as member ... First pad 43 as electric conduction member ... Second pads 50, 51 as electric conduction member ... First clamps 60, 61, 70, 71 as electric conduction member ... External terminal 69 ... Central shaft as an electrically conductive member

Claims (7)

  1.  放電電極を有する複数の電極パネルを積層した構造を有し、隣接する前記電極パネル間に電圧が印加されたときにプラズマを発生するプラズマパネル積層体と、
     前記複数の電極パネルの前記放電電極に電気的に接続される電気導通部材と
    を備えるプラズマリアクタであって、
     前記複数の電極パネルの積層方向は、鉛直方向に対して90°±45°の角度をなし、
     前記電気導通部材は、前記プラズマパネル積層体の上半分の領域に配置されている
    ことを特徴とするプラズマリアクタ。
    A plasma panel laminate having a structure in which a plurality of electrode panels having discharge electrodes are laminated, and generating plasma when a voltage is applied between the adjacent electrode panels;
    A plasma reactor comprising: an electrically conductive member electrically connected to the discharge electrodes of the plurality of electrode panels;
    The stacking direction of the plurality of electrode panels forms an angle of 90 ° ± 45 ° with respect to the vertical direction,
    The plasma reactor according to claim 1, wherein the electrically conductive member is disposed in an upper half region of the plasma panel laminate.
  2.  前記プラズマパネル積層体が収容されるケースと、前記電気導通部材に電気的に接続され、かつ前記ケースから露出する外部端子とを有し、
     前記電気導通部材は、前記ケース内に配置され、
     前記外部端子は、前記ケース外において前記プラズマパネル積層体の上半分の領域に配置されている
    ことを特徴とする請求項1に記載のプラズマリアクタ。
    A case in which the plasma panel laminate is accommodated, and an external terminal that is electrically connected to the electrically conductive member and exposed from the case,
    The electrically conductive member is disposed in the case;
    2. The plasma reactor according to claim 1, wherein the external terminal is disposed in an upper half region of the plasma panel laminate outside the case.
  3.  前記電気導通部材に電気的に接続される外部端子を有し、
     前記プラズマパネル積層体は、一対のガス通過面と、前記一対のガス通過面の間にある複数のガス非通過面とを有し、
     前記外部端子は複数設けられており、
     複数の前記外部端子は、同一の前記ガス非通過面上に配置されている
    ことを特徴とする請求項1または2に記載のプラズマリアクタ。
    Having an external terminal electrically connected to the electrically conductive member;
    The plasma panel laminate has a pair of gas passage surfaces and a plurality of gas non-passage surfaces between the pair of gas passage surfaces,
    A plurality of the external terminals are provided,
    The plasma reactor according to claim 1, wherein the plurality of external terminals are disposed on the same non-passing surface of the gas.
  4.  複数の前記外部端子は、前記鉛直方向に対して90°±45°の角度をなす方向に突出することを特徴とする請求項3に記載のプラズマリアクタ。 4. The plasma reactor according to claim 3, wherein the plurality of external terminals protrude in a direction that forms an angle of 90 ° ± 45 ° with respect to the vertical direction.
  5.  複数の前記外部端子は、前記電極パネルと平行な前記ガス非通過面の上半分の領域に配置されていることを特徴とする請求項3または4に記載のプラズマリアクタ。 5. The plasma reactor according to claim 3, wherein the plurality of external terminals are arranged in an upper half region of the gas non-passing surface parallel to the electrode panel.
  6.  前記電極パネルは、平面視で長方形状をなしており、隣接する前記電極パネル間を流れるガスの通過方向に沿って延びる辺の長さが、前記通過方向と直交する方向に沿って延びる辺の長さよりも長いことを特徴とする請求項1乃至5のいずれか1項に記載のプラズマリアクタ。 The electrode panel has a rectangular shape in plan view, and the length of the side extending along the passage direction of the gas flowing between the adjacent electrode panels is a side extending along the direction orthogonal to the passage direction. 6. The plasma reactor according to claim 1, wherein the plasma reactor is longer than the length.
  7.  前記電極パネルは、第1主面及び第2主面を有しており、
     前記電極パネルにおける上側の領域に、前記第1主面側と前記第2主面側とを導通させる導通構造を備える
    ことを特徴とする請求項1乃至6のいずれか1項に記載のプラズマリアクタ。
    The electrode panel has a first main surface and a second main surface,
    The plasma reactor according to any one of claims 1 to 6, further comprising a conductive structure that conducts the first main surface side and the second main surface side in an upper region of the electrode panel. .
PCT/JP2016/086536 2015-12-09 2016-12-08 Plasma reactor WO2017099175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015240438A JP2017104803A (en) 2015-12-09 2015-12-09 Plasma reactor
JP2015-240438 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017099175A1 true WO2017099175A1 (en) 2017-06-15

Family

ID=59014204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086536 WO2017099175A1 (en) 2015-12-09 2016-12-08 Plasma reactor

Country Status (2)

Country Link
JP (1) JP2017104803A (en)
WO (1) WO2017099175A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738175B2 (en) * 2016-03-23 2020-08-12 日本特殊陶業株式会社 Plasma reactor
JP2019046555A (en) * 2017-08-30 2019-03-22 日本特殊陶業株式会社 Plasma reactor
JP7101521B2 (en) * 2018-04-17 2022-07-15 ダイハツ工業株式会社 Plasma reactor and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269635A (en) * 1993-03-19 1994-09-27 Mitsubishi Heavy Ind Ltd Waste gas treatment apparatus
JPH0824559A (en) * 1994-07-18 1996-01-30 Takuma Sogo Kenkyusho:Kk Rotating disk discharge type waste gas treating device
JP2006138227A (en) * 2004-11-10 2006-06-01 Toyota Motor Corp Exhaust emission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269635A (en) * 1993-03-19 1994-09-27 Mitsubishi Heavy Ind Ltd Waste gas treatment apparatus
JPH0824559A (en) * 1994-07-18 1996-01-30 Takuma Sogo Kenkyusho:Kk Rotating disk discharge type waste gas treating device
JP2006138227A (en) * 2004-11-10 2006-06-01 Toyota Motor Corp Exhaust emission control device

Also Published As

Publication number Publication date
JP2017104803A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2017099175A1 (en) Plasma reactor
JP2009110752A (en) Plasma generating body, plasma generating apparatus, ozone generating apparatus, and exhaust gas treatment apparatus
WO2017099011A1 (en) Plasma reactor and plasma electrode plate
JPWO2004114729A1 (en) Plasma generating electrode, plasma generating apparatus, and exhaust gas purification apparatus
JP6491749B2 (en) Plasma reactor
JP4895824B2 (en) Plasma generating electrode and plasma reactor
JP5164500B2 (en) Plasma generator, plasma generator, ozone generator, exhaust gas treatment device
WO2017098987A1 (en) Plasma reactor and clamp for laminated body
JP6656008B2 (en) Plasma reactor
JP7049777B2 (en) Plasma reactor
JP2017174619A (en) Plasma reactor
JP2017140575A (en) Plasma reactor
JP7044485B2 (en) Plasma reactor
JP2017157363A (en) Plasma reactor
JP7101521B2 (en) Plasma reactor and its control method
JP6886349B2 (en) Plasma reactor
JP2019190378A (en) Plasma reactor
JP2019046555A (en) Plasma reactor
JP6890045B2 (en) Plasma reactor
JP2017174620A (en) Plasma reactor
JP2018122238A (en) Plasma reactor
JP2022155124A (en) Plasma reactor for exhaust emission control
JP2009032574A (en) Structure and device using this
JP2008272615A (en) Wiring structure, apparatus and fluid treating apparatus, and vehicle
JP2016085132A (en) Sensor substrate and sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873068

Country of ref document: EP

Kind code of ref document: A1