WO2017098987A1 - Plasma reactor and clamp for laminated body - Google Patents

Plasma reactor and clamp for laminated body Download PDF

Info

Publication number
WO2017098987A1
WO2017098987A1 PCT/JP2016/085707 JP2016085707W WO2017098987A1 WO 2017098987 A1 WO2017098987 A1 WO 2017098987A1 JP 2016085707 W JP2016085707 W JP 2016085707W WO 2017098987 A1 WO2017098987 A1 WO 2017098987A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamp
panel
clamp body
pressing member
electrode
Prior art date
Application number
PCT/JP2016/085707
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 伊藤
灘浪 紀彦
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2017098987A1 publication Critical patent/WO2017098987A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric

Definitions

  • the present invention relates to a plasma reactor suitable for an apparatus for purifying exhaust gas of an internal combustion engine (engine), and a clamp for a laminated body that sandwiches and fixes a ceramic panel in a laminating direction.
  • Patent Documents 1 to 3 For example, by laminating a plurality of electrode panels on which discharge electrodes are formed and applying a voltage between adjacent electrode panels to generate low temperature plasma (non-equilibrium plasma) due to dielectric barrier discharge, the electrodes flow between the electrode panels.
  • Various plasma reactors that oxidize and remove PM in exhaust gas have been proposed (see, for example, Patent Documents 1 to 3).
  • the plasma reactors described in Patent Documents 1 to 3 include a case for accommodating a plasma panel laminate formed by laminating electrode panels, a mat interposed between the case and the plasma panel laminate, and the like. Yes.
  • another component is provided in the plasma reactor.
  • a lead line member is provided in the plasma reactor described in Patent Document 1, and the lead line member is in contact with a housing (case) via a mat.
  • Patent Document 3 includes an electrode that is stacked while being held by a holding member, a pair of pressing members that sandwich and fix a plurality of electrodes in the stacking direction, and four frame bodies.
  • a plasma reactor accommodated in a case body (case) through members and a frame.
  • a fixed mat (mat) is interposed between the frame body and the case body, and the frame body is in contact with the case body via the fixed mat.
  • the present invention has been made in view of the above problems, and a first object is to provide a plasma reactor capable of improving reliability by securely fixing a plurality of electrode panels. . Moreover, the 2nd objective is to provide the clamp for laminated bodies which can fix a some ceramic panel reliably.
  • a plasma panel has a structure in which a plurality of electrode panels having discharge electrodes are laminated, and plasma is generated by applying a voltage between the adjacent electrode panels.
  • a plasma reactor comprising a laminate and a clamp that sandwiches and fixes the plurality of electrode panels in the stacking direction, wherein the clamp is a separate body from the clamp body extending in the stacking direction of the electrode panels, and the clamp body And a pressing member that is attached to at least one end of the clamp body and presses the surface of the electrode panel that constitutes the plasma panel laminate, and the clamp body and the pressing member are fixed.
  • the clamp includes the clamp body and the pressing member that is configured separately from the clamp body. Therefore, the plurality of electrode panels can be stably provided by the elasticity of the pressing member. Can be held. Therefore, even if the stress caused by the thermal expansion difference between the case and the plasma panel laminate, or the external force caused by vibration or impact at the time of attachment to a vehicle or the like, acts on the plasma panel laminate from the case, The deformation of the plasma panel laminate is suppressed by the elastic deformation of the pressing member.
  • the pressing member can be fixed to the clamp body in accordance with the thickness of the plasma panel laminate. As a result, variations in the thickness of the plasma panel laminate can be absorbed, and a plurality of electrode panels (plasma panel laminate) can be securely sandwiched and fixed by the clamp. Therefore, the reliability of the plasma reactor can be improved.
  • the plasma panel laminate constituting the plasma reactor has a structure in which a plurality of electrode panels having discharge electrodes are laminated.
  • Examples of the material for forming the discharge electrode include tungsten (W), molybdenum (Mo), ruthenium oxide (RuO 2 ), silver (Ag), copper (Cu), platinum (Pt), and the like.
  • a plurality of clamps are provided, and at least one of the plurality of clamps has a function as an electrically conductive member that is electrically connected to the discharge electrode.
  • the clamp is firmly fixed to the plasma panel laminate when the pressing member constituting the clamp presses the surface of the electrode panel, so that the clamp and the discharge electrode function as an electrically conductive member.
  • the electrical connection can be reliably performed.
  • the number of parts can be reduced as compared with the case where the clamp and the electrical conducting member are provided separately, the weight and size of the plasma reactor can be reduced.
  • the clamp includes a pressing member that is attached to at least one end of the clamp body and presses the surface of the electrode panel that constitutes the plasma panel laminate.
  • a pressing member presses the surface of the electrode panel at a plurality of locations.
  • the pressing member may be fixed to only one end of the clamp body, or may be fixed to both ends of the clamp body, but is particularly fixed to both ends of the clamp body. It is good. In this way, since the plurality of electrode panels can be pressed from both sides, the plurality of electrode panels (plasma panel laminate) can be held more stably, and the reliability of the plasma reactor is further improved.
  • the pressing member may be a leaf spring having a bending back structure. If it does in this way, when pinching and fixing a plurality of electrode panels using a clamp, the elastic force of a pressing member will be given to the surface of an electrode panel. For this reason, the shift
  • the pressing member may be a leaf spring having a slit that penetrates the pressing member in the thickness direction. If it does in this way, the deformation
  • the material for forming the leaf spring is appropriately selected in accordance with the operating temperature in order to prevent heat sag and the like.
  • Examples of the material for forming the leaf spring include SUS301-CSP (thermal expansion coefficient: about 18 ppm / ° C), SUS304-CSP (thermal expansion coefficient: about 18 ppm / ° C), and SUS631-CSP (thermal expansion coefficient: about 11-12 ppm).
  • Inconel X-750 thermal expansion coefficient: about 14 ppm / ° C.
  • Inconel 718 thermal expansion coefficient: about 14 ppm / ° C.
  • the thermal expansion coefficient of the leaf spring is an average value of measured values between room temperature and 500 ° C. *
  • the clamp includes a clamp body that extends in the stacking direction of the electrode panels.
  • the clamp body is a rod-shaped shaft member
  • the plasma panel laminate preferably has a hole portion that penetrates in the stacking direction of the electrode panel and into which the shaft member is inserted. In this way, it is possible to prevent the clamp from falling off the electrode panel. Moreover, positioning with a some electrode panel (plasma panel laminated body) and a clamp can be performed easily.
  • the clamp body is a rod-shaped shaft member
  • the plasma panel laminate has a groove portion that penetrates in the electrode panel lamination direction and into which the shaft member is inserted, so that the width of the groove portion becomes narrow at the opening portion. It may have a retaining mechanism for preventing the shaft member from coming off from the groove portion. Even in this case, it is possible to prevent the clamp from falling off the electrode panel, and it is possible to easily position the plurality of electrode panels and the clamp.
  • a gap may be provided between the outer peripheral surface of the shaft member and the inner peripheral surface of the hole, or between the outer peripheral surface of the shaft member and the inner side surface of the groove portion.
  • the clamp body may be formed of a material having a lower thermal expansion coefficient than the pressing member. In this way, even if the clamp body and the pressing member expand as the temperature rises, the clamp body is unlikely to extend in the electrode panel stacking direction, so that it is possible to prevent the load from falling in the direction of sandwiching the plurality of electrode panels. be able to. That is, the adverse effect on the clamp accompanying the temperature change is reduced.
  • a threaded portion is provided at the end of the clamp body, and the retaining member is fixed to the clamp body by screwing a nut into the threaded portion with the clamping body inserted through the retaining member. May be. If it does in this way, the process of inserting a plurality of electrode panels in the lamination direction using a clamp can be simplified.
  • the pressing member and the clamp body may be partially fixed to each other by a welded portion. In this case, it is possible to prevent a load from being applied to the plurality of electrode panels from the pressing member due to the positional relationship between the clamp body and the pressing member being shifted.
  • the pressing member is interposed between a pressing plate that contacts the surface of the electrode panel (ceramic panel) and a fixing plate provided at the end of the clamping plate and the pressing plate. And a compression coil spring that presses against.
  • the pressing plate is maintained in a state of being pressed to the surface side of the electrode panel by the compression coil spring. For this reason, it is possible to more reliably suppress the loss of load applied in the direction in which the plurality of electrode panels are sandwiched. That is, the adverse effect on the clamp accompanying the temperature change is further reduced.
  • Another means (means 2) for solving the above problem is a laminate clamp that sandwiches and fixes a ceramic panel laminate having a structure in which a plurality of ceramic panels are laminated in the lamination direction of the ceramic panels.
  • the clamp body extending in the laminating direction of the ceramic panel and the clamp body are configured separately from each other, attached to at least one end of the clamp body, and the ceramic panel constituting the ceramic panel laminate
  • There is a clamp for a laminate including a pressing member that presses the surface, and the clamp body and the pressing member are fixed.
  • the laminate clamp since the laminate clamp includes the clamp body and the pressing member formed separately from the clamp body, the plurality of ceramic panels are formed by the elasticity of the pressing member. It can be held stably. Therefore, even if an external force or the like acts on the ceramic panel laminate, the deformation of the ceramic panel laminate is suppressed by the elastic deformation of the pressing member.
  • the pressing member by configuring the pressing member separately from the clamp body, the pressing member can be fixed to the clamp body in accordance with the thickness of the ceramic panel laminate. As a result, variations in the thickness of the ceramic panel laminate can be absorbed, and a plurality of ceramic panels (ceramic panel laminate) can be securely sandwiched and fixed by the laminate clamp. Therefore, the reliability of the ceramic panel laminate can be improved.
  • FIG. 1 is a schematic cross-sectional view showing a plasma reactor in the present embodiment.
  • the top view which shows a plasma reactor.
  • the perspective view which shows a plasma reactor.
  • the perspective view which shows the state in which the plasma panel laminated body is accommodated in the case.
  • the perspective view which shows a plasma panel laminated body and a clamp.
  • the cross-sectional view which shows a plasma panel laminated body.
  • the longitudinal cross-sectional view which shows a plasma panel laminated body and a clamp.
  • the principal part sectional drawing which shows a plasma panel laminated body and a clamp.
  • the perspective view which shows an electrode panel.
  • the perspective view which shows a plasma panel laminated body, a clamp, and an external terminal in other embodiment.
  • the longitudinal cross-sectional view which shows a plasma panel laminated body and a clamp In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, the principal part perspective view which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp.
  • principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. In other embodiment, the plane sectional view which shows a plasma panel laminated body. In other embodiment, the plane sectional view which shows a plasma panel laminated body.
  • the plasma reactor 1 of the present embodiment is a device that removes PM contained in exhaust gas from an automobile engine (not shown), and is attached to an exhaust pipe 2. .
  • the plasma reactor 1 includes a pulse generation power source 3, a case 10, and a plasma panel laminate 20 (ceramic panel laminate). *
  • the case 10 is formed in a rectangular cylinder shape using, for example, stainless steel.
  • the case 10 has a thermal expansion coefficient of about 10 to 18 ppm / ° C.
  • the thermal expansion coefficient of the case 10 is an average value of measured values between room temperature and 300 ° C.
  • a first cone portion 11 is connected to a first end portion (left end portion in FIG. 1) of the case 10, and a second cone portion 12 is connected to a second end portion (right end portion in FIG. 1) of the case 10. Yes.
  • the first cone portion 11 is connected to the upstream portion 4 (engine portion) of the exhaust pipe 2, and the second cone portion 12 is connected to the downstream portion 5 (opposite side of the engine side) of the exhaust pipe 2.
  • the exhaust gas from the engine flows into the case 10 from the upstream portion 4 of the exhaust pipe 2 through the first cone portion 11, passes through the case 10, and then passes through the second cone portion 12 to the exhaust pipe. 2 flows out to the downstream part 5.
  • the plasma panel laminate 20 is accommodated in the case 10, and a mat 8 is interposed between the case 10 and the plasma panel laminate 20.
  • the mat 8 has a function of fixing the plasma panel laminate 20 to the case 10.
  • insulating materials such as a ceramic fiber, a metal fiber, a foam metal, can be used, for example.
  • the plasma panel laminate 20 has a substantially rectangular parallelepiped shape having a pair of gas passage surfaces 21 and 22 and four gas non-passage surfaces 23, 24, 25, and 26. Is made. Both gas passage surfaces 21 and 22 are located on opposite sides of the plasma panel laminate 20. On the other hand, the gas non-passing surfaces 23 to 26 are located between the pair of gas passing surfaces 21 and 22. *
  • the plasma panel laminate 20 has a structure in which a plurality of electrode panels 30 (ceramic panels) are laminated. Each electrode panel 30 is arranged in parallel with the passage direction of exhaust gas in the case 10 (the direction from the first cone portion 11 toward the second cone portion 12), and is spaced from each other (in this embodiment, 0.5 mm). It is arranged to have a gap). *
  • the first wiring 6 and the second wiring 7 are alternately and electrically connected to each electrode panel 30 along the thickness direction of the plasma panel laminate 20.
  • the first wiring 6 is electrically connected to the first terminal of the pulse generating power supply 3
  • the second wiring 7 is electrically connected to the second terminal of the pulse generating power supply 3.
  • the electrode panel 30 of the present embodiment has a first main surface 31 (surface) and a second main surface 32 (surface), and is a substantially rectangular plate having a length of 100 mm ⁇ width of 120 mm. It has a shape.
  • the first main surface 31 and the second main surface 32 are located on opposite sides in the thickness direction of the electrode panel 30.
  • the electrode panel 30 has a structure in which a discharge electrode 34 (thickness 10 ⁇ m) is built in a rectangular plate-like dielectric 33.
  • the dielectric 33 is made of ceramic such as alumina (Al 2 O 3 ), and the discharge electrode 34 is made of tungsten (W).
  • the thermal expansion coefficient of the dielectric 33 is about 2 to 8 ppm / ° C., and in the present embodiment in which the dielectric 33 is made of alumina, it is about 7 ppm / ° C.
  • the thermal expansion coefficient of the dielectric 33 is an average value of measured values between room temperature and 400 ° C.
  • the dielectric 33 has a recess 35 that opens at the second main surface 32.
  • the recess 35 extends in the lateral direction of the electrode panel 30 and opens at both end faces of the electrode panel 30.
  • the exhaust gas flow path is constituted by the recess 35 and the first main surface 31 of the electrode panel 30 adjacent to the lower layer side.
  • the lowermost electrode panel 30 constituting the plasma panel laminate 20 is not formed with the recess 35 because the electrode panel 30 does not exist on the lower layer side.
  • each conduction structure 40 includes a through-hole conductor 41, a first pad 42, and a second pad 43, which are electrical conduction members.
  • the through-hole conductor 41 passes through the first main surface 31 and the second main surface 32.
  • electrical_connection structure 40 penetrates the extension part 36 extended in the outer peripheral side from the discharge electrode 34 in addition to the 1st main surface 31 and the 2nd main surface 32.
  • the first pad 42 is formed on the first main surface 31 and is electrically connected to the end of the through-hole conductor 41 on the first main surface 31 side.
  • the second pad 43 is formed on the second main surface 32 and is electrically connected to the end of the through-hole conductor 41 on the second main surface 32 side.
  • the first pad 42 and the second pad 43 each have a rectangular shape, and the surface thereof is plated with Ni or the like. *
  • the plasma reactor 1 includes two first clamps 51 and two second clamps 52 that are laminate clamps.
  • Each of the first clamps 51 and each of the second clamps 52 is configured to sandwich and fix each electrode panel 30 (plasma panel laminate 20) in the stacking direction.
  • Each first clamp 51 is disposed near the gas non-passing surface 24 of the plasma panel laminate 20, and each second clamp 52 is disposed near the gas non-passing surface 26 of the plasma panel laminate 20.
  • Each first clamp 51 has a function as an electrically conductive member that is electrically connected to the discharge electrode 34 in addition to the function of sandwiching each electrode panel 30 in the stacking direction.
  • each second clamp 52 has only a function of sandwiching each electrode panel 30 in the stacking direction. *
  • Each clamp 51, 52 includes a shaft member 53 (clamp body), a leaf spring 54 (pressing member), and a fixing ring 55.
  • the shaft member 53 is formed in a substantially cylindrical shape using a material such as SUS430.
  • the thermal expansion coefficient of the shaft member 53 is about 11 to 13 ppm / ° C.
  • the thermal expansion coefficient of the shaft member 53 is an average value of measured values between room temperature and 500 ° C.
  • the plasma panel laminate 20 has holes 27 having a circular cross section penetrating in the laminating direction of the electrode panel 30 (see FIGS. 6 to 8). The shaft members 53 of the clamps 51 and 52 are inserted into the holes 27 and extend in the stacking direction of the electrode panel 30.
  • a gap S1 (0.2 mm in the present embodiment) is provided between the outer peripheral surface of the shaft member 53 and the inner peripheral surface of the hole 27.
  • the material for forming the shaft member 53 is SUS430.
  • SUS430 has a large heat sink in a temperature range of 500 ° C. or higher.
  • heat resistance such as Inconel 718 and Inconel X-750 is preferentially taken into consideration with respect to thermal deformation rather than thermal expansion coefficient. It is preferable to form the shaft member 53 using a material excellent in the above. *
  • the leaf spring 54 is configured separately from the shaft member 53.
  • the leaf springs 54 are respectively fixed to small diameter portions 56 formed at both ends of the shaft member 53. More specifically, the leaf spring 54 is formed by bending a rectangular metal plate, and a central portion 57 occupying the central portion of the metal plate and a pair of stretches positioned on both sides of the central portion 57 in the metal plate. It is comprised by the part 58 and a pair of contact part 59 located in the outer side of both the extending
  • the central portion 57 is a portion through which the small-diameter portion 56 of the shaft member 53 passes, and is disposed in parallel with the gas non-passing surfaces 23 and 25 of the plasma panel laminate 20. Further, the extending portions 58 are disposed on the opposite sides with respect to the small diameter portion 56 of the shaft member 53. Each extending portion 58 is bent to the back surface side (the gas non-passing surface 23 side or the gas non-passing surface 25 side) of the leaf spring 54, and the base end portion is connected to both end edges of the central portion 57, and the tip The part extends in a direction approaching the gas non-passing surfaces 23 and 25.
  • each contact portion 59 is arranged on opposite sides with respect to the small diameter portion 56 of the shaft member 53, and the distances from the central axis of the small diameter portion 56 to the proximal end of the contact portion 59 are equal to each other. Further, each contact portion 59 is located on a side of the gas non-passing surface 23 which is located at a connection portion with the gas non-passing surfaces 24 or 26 or on a portion where the gas non-passing surface 25 is connected to the gas non-passing surfaces 24 and 26. They are spaced apart from each other along the side where they are located.
  • each contact portion 59 is connected to the distal end portion of the extending portion 58 and is formed on the surface of the plasma panel laminate 20 (specifically, on the first main surface 31 of the uppermost electrode panel 30).
  • the first pad 42 or the second pad 43) formed on the second main surface 32 of the lowermost electrode panel 30 is in contact. That is, the leaf spring 54 presses the surface of the electrode panel 30 at two locations.
  • tip part of each contact part 59 is bent to the surface side of the leaf
  • the fixing ring 55 is press-fitted into the tip of the small diameter portion 56 with the small diameter portion 56 penetrating through the central portion 57 of the leaf spring 54.
  • Each leaf spring 54 is formed using a material such as Inconel 718.
  • the thermal expansion coefficient of the leaf spring 54 is about 14 ppm / ° C. Therefore, the shaft member 53 is formed of a material having a lower thermal expansion coefficient than that of the leaf spring 54 (in this embodiment, a material having a thermal expansion coefficient of about 11 to 13 ppm / ° C.).
  • the thermal expansion coefficient of the leaf spring 54 is an average value of measured values between room temperature and 500 ° C.
  • the plate spring 54 is formed by bending a metal plate (here, a metal plate made of Inconel 718) and has higher elasticity than the shaft member 53. *
  • the two leaf springs 54 constituting the clamps 51 and 52 are arranged on the first main surface 31 (gas gas) of the uppermost electrode panel 30 constituting the plasma panel laminate 20.
  • the non-passing surface 23) and the second main surface 32 (gas non-passing surface 25) of the lowermost electrode panel 30 constituting the plasma panel laminate 20 are respectively pressed.
  • One leaf spring 54 presses the surface (first main surface 31 or second main surface 32) of the electrode panel 30 at two locations (that is, two contact portions 59).
  • the two leaf springs 54 constituting one first clamp 51 include a first pad 42 formed on the gas non-passing surface 23 (the first main surface 31 of the uppermost electrode panel 30), and a gas non-passing surface. 25 (second main surface 32 of the lowermost electrode panel 30) is in pressure contact with a second pad 43 formed on the lowermost electrode panel 30.
  • the plasma reactor 1 includes a pair of external terminals 60 and 61.
  • the external terminals 60 and 61 of this embodiment have the same structure as a spark plug. More specifically, the external terminals 60 and 61 include an external connection portion, a conductive seal containing metal powder, an insulator, a metal shell, talc, packing, and the like.
  • the external connection portion is connected to the clamps 51 and 52 via a conductive seal.
  • the external terminal is not limited to the one in the present embodiment, and may have another structure as long as the external connection portion and the case 10 are insulated by an insulator. *
  • the external terminal 60 is electrically connected to the first clamp 51 at the base end portion, and the distal end portion is exposed from the case 10.
  • the external terminal 61 is electrically connected to a first clamp 51 different from the first clamp 51 to which the external terminal 60 is connected, and the distal end is exposed from the case 10.
  • the external terminals 60 and 61 protrude in the same direction.
  • the tip of the external terminal 60 is connected to the first wiring 6 (see FIG. 1), and the tip of the external terminal 61 is connected to the second wiring 7 (see FIG. 1). It has become so. *
  • the plasma reactor 1 of this embodiment is used in order to remove PM contained in exhaust gas, for example.
  • a pulse voltage for example, peak voltage: 5 kV (5000 V), pulse repetition frequency: 100 Hz
  • pulse repetition frequency 100 Hz
  • first to third ceramic green sheets to be the dielectric 33 are formed using a ceramic material whose main component is alumina powder.
  • a ceramic green sheet well-known shaping
  • laser processing is performed on each ceramic green sheet to form a through hole for the through-hole conductor 41 and a through hole for the clamps 51 and 52.
  • the through hole may be formed by punching, drilling, or the like.
  • the through hole for the through-hole conductor 41 is filled with a conductive paste (in this embodiment, a tungsten paste) to form the through-hole conductor 41.
  • a conductive paste in this embodiment, a tungsten paste
  • the first ceramic green sheet is placed on a support base (not shown). Furthermore, a conductive paste is printed on the back surface of the first ceramic green sheet using a paste printing apparatus. As a result, an unsintered electrode having a thickness of 10 ⁇ m to be the discharge electrode 34 is formed on the back surface of the first ceramic green sheet.
  • a printing method of the unsintered electrode with respect to the 1st ceramic green sheet well-known printing methods, such as screen printing, can be used.
  • the second ceramic green sheet and the third ceramic green sheet are sequentially laminated on the back surface of the first ceramic green sheet on which the unfired electrodes are printed, and in the sheet lamination direction. Apply pressing force.
  • the ceramic green sheets are integrated to form a ceramic laminate.
  • the through holes for the clamps 51 and 52 of the first to third ceramic green sheets communicate with each other to form the through hole portion 28 (see FIG. 9).
  • a conductive paste is printed on the main surface of the first ceramic green sheet to form the unfired first pad 42 and conductive on the back surface of the third ceramic green sheet.
  • the conductive paste is printed, and the conductive paste is printed on the back surface of the third ceramic green sheet to form the unfired second pad 43.
  • the third ceramic green sheet is laminated after being subjected to a punching process that matches the shape of the recess 35.
  • a predetermined temperature for example, about 1400 ° C. to 1600 ° C.
  • the ceramic laminate ceramic green sheet and unfired electrode
  • Is simultaneously fired Is simultaneously fired.
  • alumina in the ceramic green sheet and tungsten in the conductive paste are simultaneously sintered, and the dielectric 33, the discharge electrode 34, the through-hole conductor 41, the first pad 42, and the second pad 43 are simultaneously fired.
  • the formed ceramic laminate becomes the electrode panel 30.
  • the shaft member setting step is performed, and the shaft member 53 is inserted into the hole 27.
  • a leaf spring 54 is attached to each of the small diameter portions 56. Specifically, first, the small-diameter portion 56 is inserted into the central portion 57 constituting the leaf spring 54. Next, the fixing ring 55 is fixed to the distal end portion of the small diameter portion 56. In the present embodiment, the fixing ring 55 is fixed to the small diameter portion 56 by press-fitting the small diameter portion 56 into the fixing ring 55.
  • the fixing ring 55 may be fixed to the small diameter portion 56 by welding in a state of being temporarily assembled to the small diameter portion 56 via a jig or the like, or after the small diameter portion 56 is press-fitted. It may be fixed to the small diameter portion 56 by performing welding.
  • the leaf spring 54 is pressed by the fixing ring 55.
  • the leaf spring 54 is fixed in a state in which the distal end of the leaf spring 54 is deformed by at least 0.3 mm or more in the distal direction of the small diameter portion 56, so that the leaf spring 54 is fixed to the first pad 42 and the second pad 43. It comes in pressure contact with.
  • the first end 51 of the external terminal 60 is electrically connected to the shaft member 53 constituting the first clamp 51, and the first clamp 51 is electrically connected to the external terminal 60.
  • the first clamp 51 is electrically connected to the external terminal 60.
  • the case 10 is attached so as to cover the outer surface of the mat 8.
  • the first wiring 6 is connected to the distal end portion of the external terminal 60, and the second wiring 7 is connected to the distal end portion of the external terminal 61.
  • the plasma reactor 1 is completed through the above processes. *
  • the clamps 51 and 52 are formed in a substantially cylindrical shape, and thus have elasticity by being formed by bending a relatively rigid shaft member 53 and a metal plate.
  • a leaf spring 54 is provided.
  • the plurality of electrode panels 30 are sandwiched in the stacking direction using the clamps 51 and 52, the plurality of electrode panels 30 can be stably held. Therefore, the stress caused by the difference in thermal expansion between the case 10 and the plasma panel laminate 20 and the external force caused by the vibration or impact at the time of mounting on the vehicle or the like acts on the plasma panel laminate 20 from the case 10. Even so, the deformation of the plasma panel laminate 20 is suppressed by the elastic deformation of the leaf spring 54.
  • the plate spring 54 can be fixed to the shaft member 53 in accordance with the thickness of the plasma panel laminate 20.
  • variations in the thickness of the plasma panel laminate 20 can be absorbed, and the plurality of electrode panels 30 (plasma panel laminate 20) can be securely sandwiched and fixed by the clamps 51 and 52. Therefore, the reliability of the plasma reactor 1 can be improved.
  • the leaf spring 54 of the present embodiment is fixed to the shaft member 53 in a state where the tip is deformed by at least 0.3 mm in the tip direction of the small diameter portion 56.
  • the leaf spring 54 is pressed against the surface (gas non-passing surfaces 23, 25) side of the electrode panel 30. Maintained. Therefore, since the loss of the load applied in the direction in which the plurality of electrode panels 30 are sandwiched is suppressed, the reliability of the plasma reactor 1 is further improved. If the amount of deformation at the tip of the leaf spring 54 is less than 0.3 mm, the surface of the electrode panel 30 cannot be pressed when the shaft member 53 expands, and the required clamping force may not be obtained. is there. *
  • the shaft member 53 that constitutes the clamps 51 and 52 is disposed in the hole portion 27 that penetrates the plasma panel stacked body 20, that is, in the plasma panel stacked body 20. It is arranged in the vicinity.
  • the shaft member 53 is also heated accordingly, so that the temperature difference between the electrode panel 30 and the shaft member 53 is reduced. Therefore, stress due to the difference in thermal expansion between the electrode panel 30 and the shaft member 53 is less likely to occur, so that the reliability of the plasma reactor 1 is further improved.
  • the cross-sectional shape of the hole that penetrates the plasma panel laminate 20 may be a shape having a corner (such as a square shape).
  • the electrode panel 30 may be deformed starting from the corner when the electrode panel 30 is fired.
  • the plasma panel laminate 20 is provided with a hole 27 having a circular cross section, and a substantially cylindrical shaft member 53 is inserted into the hole 27.
  • the plasma reactor 1 of the present embodiment is attached to the exhaust pipe 2 via the first cone portion 11 and the second cone portion 12.
  • the resistance in the exhaust gas flow path in which the exhaust gas flows in the order of the upstream portion 4 of the exhaust pipe 2 ⁇ the first cone portion 11 ⁇ the plasma reactor 1 ⁇ the second cone portion 12 ⁇ the downstream portion 5 of the exhaust pipe 2 is reduced. Therefore, the pressure loss in the exhaust gas passage can be suppressed. As a result, it is possible to prevent the engine output from decreasing due to pressure loss.
  • the clamps 51 and 52 of the said embodiment were comprised by attaching the leaf
  • the clamp 71 may be configured by fitting a leaf spring 73 (pressing member) to one end (upper end) of the plate member 72 (clamp body). It may be configured by welding after the leaf spring 73 is fitted.
  • the plurality of electrode panels 30 can be easily fixed by the clamp 71.
  • the attachment position of the clamp 71 can also be changed easily. *
  • the clamps 51 and 52 of the said embodiment were comprised by attaching the leaf
  • the clamp 81 may be configured by attaching a leaf spring 83 (pressing member) to only one end (upper end) of the shaft member 82 (clamp body).
  • a locking plate 84 is formed at the other end (lower end) of the shaft member 82, and the locking plate 84 is the lowest layer that constitutes the plasma panel laminate 85 (ceramic panel laminate).
  • the electrode panel 86 (ceramic panel) is in contact with the surface (second main surface 87). *
  • plate spring 54 does not necessarily need to be the same shape.
  • the spring constant of the leaf spring may be increased by changing one leaf spring to another shape. In this way, the attachment efficiency of the leaf spring to the assembly jig is improved, so that the assembly efficiency of the leaf spring is improved.
  • the leaf spring 54 and the shaft member 53 are fixed by press-fitting the fixing ring 55 into the tip of the small diameter portion 56 of the shaft member 53.
  • the leaf spring 54 and the shaft member 53 may be fixed using another method.
  • the plate spring 91 and the shaft member 94 (clamp main body) can be obtained by performing welding in a state where the distal end portion of the small diameter portion 93 is inserted into the central portion 92 of the plate spring 91 (pressing member). ) May be fixed to each other via the welded portion 95.
  • the method for caulking the tip of the small diameter portion is not limited to spin caulking, and for example, methods such as burring caulking, dowel caulking, and V caulking can be used. *
  • the pressing member that presses the surface (the gas non-passing surfaces 23 and 25) of the electrode panel 30 may be a leaf spring 102 (pressing member) having a bent back structure.
  • the leaf spring 102 may extend in a direction away from the small diameter portion 56 of the shaft member 53, but may have a structure in which the tip portion is curved and returns to the reverse direction (the small diameter portion 56 side).
  • the curvature radius R1 of the folded portion 113 and the curvature of the contact portion 115 between the electrode panel 114 (ceramic panel).
  • the radius R2 may be set to have different sizes.
  • the curvature radius R2 of the contact portion 115 may be made larger than the curvature radius R1 of the folded portion 113, the stress concentration on the electrode panel 114 can be alleviated. If the stress concentration on the electrode panel 114 is not a problem, the curvature radius R2 of the contact portion 115 may be smaller than the curvature radius R1 of the folded portion 113.
  • the center of the curvature radius R2 of the contact portion 115 and the center of the curvature radius R1 of the folded portion 113 may be shifted from each other (see G1 in FIG. 14).
  • the center of the curvature radius R2 is shifted to the shaft member 116 (clamp main body) side from the center of the curvature radius R1.
  • the contact position between the electrode panel 114 and the leaf spring 112 can be reduced. Misalignment is less likely to occur. For this reason, the plurality of electrode panels 114 can be fixed more stably.
  • the leaf spring 122 when the leaf spring 122 (pressing member) has a bent back structure, the leaf spring 122 has a slit 123 that penetrates the leaf spring 122 in the thickness direction. You may have. In this way, deformation of the leaf spring 122 due to thermal expansion can be absorbed by the portion where the slit 123 is formed.
  • the leaf spring 54 is fixed to the shaft member 53 by press-fitting the fixing ring 55 to the tip of the small diameter portion 56 of the shaft member 53.
  • the leaf spring 54 may be fixed to the shaft member 53 using the above method.
  • a nut 135 is provided in a state in which a screw portion 133 is provided at the end of the shaft member 132 (clamp body) and the shaft member 132 is inserted through the leaf spring 134 (pressing member).
  • the leaf spring 134 may be fixed to the shaft member 132 by screwing the screw spring 133 to the screw portion 133.
  • the pressing member 142 may include a pressing plate 143 and a compression coil spring 144.
  • the pressing plate 143 is in contact with the surface 146 of the electrode panel 145 (ceramic panel).
  • the pressing plate 143 is a first surface formed on the surface 146 (specifically, the first main surface 31 of the uppermost electrode panel 145).
  • the contact portion 147 is in pressure contact with the first pad 42 or the second pad 43) formed on the second main surface 32 of the lowermost electrode panel 145.
  • the compression coil spring 144 is interposed between the pressing plate 143 and a fixing ring 149 (fixing portion) provided at the end of the shaft member 148 (clamp body), and the pressing plate 143 is attached to the surface 146 of the electrode panel 145. It pushes to the side.
  • the pressing plate 152 may have a shape (that is, a flat plate shape) in which the contact portion 147 is omitted.
  • the pressing plate 162 may have a positioning protrusion 164 for positioning the compression coil spring 163 instead of the contact portion 147 described above.
  • the pressing member 172 does not include the pressing plates 143, 152, 162, and the compression coil spring 173 directly presses the electrode panel 174 (ceramic panel). It may be.
  • the hole 27 having a circular cross section is provided in the plasma panel laminate 20, and the substantially cylindrical shaft member 53 constituting the clamps 51 and 52 is inserted into the hole 27.
  • the structure of 53 and the hole part 27 may be changed suitably.
  • a hole 182 having a rectangular cross section is provided in the plasma panel laminate 181 (ceramic panel laminate), and a shaft member 183 (clamp body) having a substantially quadrangular prism shape constituting the clamp is provided as a hole. You may insert in the part 182. *
  • the plasma panel laminate 191 may have a groove 192 and a retaining mechanism 193.
  • the groove 192 penetrates in the stacking direction of the electrode panel 194 (ceramic panel), and the shaft member 195 (clamp main body) is inserted therein.
  • the retaining mechanism 193 is formed so that the width of the groove portion 192 becomes narrow at the opening 196, thereby preventing the shaft member 195 from coming off from the groove portion 192.
  • a gap S ⁇ b> 2 may be provided between the outer peripheral surface of the shaft member 195 and the inner surface of the groove portion 192. *
  • the electrode panel 30 of the said embodiment was comprised by incorporating the discharge electrode 34 in the dielectric material 33.
  • the electrode panel may be configured by forming the discharge electrode 34 on the surface of the dielectric 33.
  • the plasma reactor 1 of the said embodiment was used for exhaust gas purification of the engine of a motor vehicle, you may use it for exhaust gas purification of engines, such as a ship, for example. Moreover, the plasma reactor 1 should just perform a plasma process, and does not need to perform the process of waste gas, and does not need to be used for purification
  • the clamps 51 and 52 of the above embodiment are clamps that sandwich and fix the plasma panel laminate 20 (a plurality of electrode panels 30) constituting the plasma reactor 1 in the lamination direction. What is the plasma panel laminate 20? It may be a laminate clamp that sandwiches and fixes different predetermined ceramic panel laminates (a plurality of ceramic panels) in the lamination direction. *
  • the electrode panel has a first main surface and a second main surface, and the first main surface side and the second main surface side are electrically connected to the electrode panel.
  • a conduction structure is provided, and the conduction structure is formed in the first main surface and the through hole conductor penetrating the first main surface and the second main surface, and the first main surface side of the through hole conductor.
  • a plasma reactor characterized by.
  • Plasma reactor 20 85, 181, 191 ...
  • Plasma panel laminate as a ceramic panel laminate 27, 182 ... hole 30, 86, 114, 145, 174, 194 ...
  • Electrode panel as a ceramic panel 31 ... 1st main surface as a surface 32 ... Second main surface as a surface 34 ...
  • Discharge electrode 41 Through-hole conductor as an electrically conductive member 42.
  • First pad as an electrically conductive member 43 ...
  • Second pad as an electrically conductive member 51...
  • First clamp as a clamp, an electrically conductive member, and a laminate clamp 52.
  • Second clamp as clamp and laminate clamp 53, 82, 94, 116, 132, 148, 183, 195 ...
  • Shaft member as a clamp body 54, 73, 83, 91, 102, 112, 122, 134 ... leaf springs as pressing members 71, 81, 101, 111, 121, 131, 141, 151, 161, 171...
  • Clamps as electrical conducting members and laminate clamps 72 ... Plate member as clamp body 95 ... Welded part 123 ... Slit 133 ... Screw part 135 ... Nut 142, 172 ... holding members 143, 152, 162 ... holding plate 144, 163 ... Compression coil spring 146 ... Surface 149: Fixing ring as a fixing part 192 ... Groove 193 ... Retaining mechanism 196 ... opening S1, S2 ... Gap

Abstract

Provided is a plasma reactor capable of improving reliability by reliably fixing a plurality of electrode panels. The plasma reactor of the present invention is provided with: a plasma panel laminated body 20; and clamps 51 and 52. The plasma panel laminated body 20 has a structure formed by laminating electrode panels 30. The clamps 51 and 52 sandwich and fix a plurality of the electrode panels 30 in a laminated layer direction. The clamps 51 and 52 are each provided with: a clamp body 53 and a pressing member 54. The clamp body 53 extends in the laminated layer direction of the electrode panels 30. The pressing member 54 is configured separately from the clamp body 53, is mounted to at least one end portion of the clamp body 53, and presses surfaces 31 and 32 of the electrode panels 30. The clamp body 53 and the pressing member 54 are fixed.

Description

プラズマリアクタ及び積層体用クランプPlasma reactor and laminate clamp
本発明は、内燃機関(エンジン)の排ガスを浄化するための装置に好適なプラズマリアクタ、及び、セラミックパネルを積層方向に挟み込んで固定する積層体用クランプに関するものである。 The present invention relates to a plasma reactor suitable for an apparatus for purifying exhaust gas of an internal combustion engine (engine), and a clamp for a laminated body that sandwiches and fixes a ceramic panel in a laminating direction.
エンジンの排ガスや焼却炉の排ガスをプラズマ場に通すことにより、排ガス中に含まれているCO(一酸化炭素)、HC(炭化水素)、NOx(窒素酸化物)及びPM(Particulate Matter:粒子状物質)などの有害物質を処理するプラズマリアクタが開示されている。  By passing engine exhaust gas and incinerator exhaust gas through the plasma field, CO (carbon monoxide), HC (hydrocarbon), NOx (nitrogen oxide) and PM (Particulate Matter: particulate form) contained in the exhaust gas A plasma reactor for treating harmful substances such as substances) is disclosed. *
例えば、放電電極が形成された複数の電極パネルを積層し、隣接する電極パネル間に電圧を印加して誘電体バリア放電による低温プラズマ(非平衡プラズマ)を発生させることにより、電極パネル間を流れる排ガス中のPMを酸化して除去するプラズマリアクタが種々提案されている(例えば、特許文献1~3参照)。なお、特許文献1~3に記載のプラズマリアクタは、電極パネルを積層してなるプラズマパネル積層体を収容するためのケースや、ケース及びプラズマパネル積層体の間に介在されるマットなどを備えている。また、プラズマリアクタには別部品が設けられている。例えば、特許文献1に記載のプラズマリアクタには、リードライン部材が設けられており、リードライン部材は、マットを介してハウジング(ケース)に接触している。また、特許文献3では、保持部材で保持した状態で積層される電極と、複数の電極を積層方向に挟み込んで固定する一対の押さえ部材と、4つの枠体とを備え、複数の電極を押さえ部材や枠体を介してケース体(ケース)の内部に収容したプラズマリアクタが提案されている。なお、特許文献3では、枠体とケース体との間に固定マット(マット)が介在されており、枠体は、固定マットを介してケース体に接触している。 For example, by laminating a plurality of electrode panels on which discharge electrodes are formed and applying a voltage between adjacent electrode panels to generate low temperature plasma (non-equilibrium plasma) due to dielectric barrier discharge, the electrodes flow between the electrode panels. Various plasma reactors that oxidize and remove PM in exhaust gas have been proposed (see, for example, Patent Documents 1 to 3). The plasma reactors described in Patent Documents 1 to 3 include a case for accommodating a plasma panel laminate formed by laminating electrode panels, a mat interposed between the case and the plasma panel laminate, and the like. Yes. In addition, another component is provided in the plasma reactor. For example, a lead line member is provided in the plasma reactor described in Patent Document 1, and the lead line member is in contact with a housing (case) via a mat. Patent Document 3 includes an electrode that is stacked while being held by a holding member, a pair of pressing members that sandwich and fix a plurality of electrodes in the stacking direction, and four frame bodies. There has been proposed a plasma reactor accommodated in a case body (case) through members and a frame. In Patent Document 3, a fixed mat (mat) is interposed between the frame body and the case body, and the frame body is in contact with the case body via the fixed mat.
特許第3832654号公報(図4等)Japanese Patent No. 3832654 (FIG. 4 etc.) 米国特許第6464945号明細書(図8等)US Pat. No. 6,464,945 (FIG. 8 etc.) 特許第4448097号公報([0063]、図9等)Japanese Patent No. 4448097 ([0063], FIG. 9 etc.)
ところで、プラズマリアクタを車両等に搭載して使用する際には、プラズマリアクタに高温の排気ガスが流れるため、プラズマリアクタの内部は排気ガスによって加熱される。一方、プラズマリアクタの外部は、走行風によって冷却される。その結果、プラズマリアクタの内部にあるプラズマパネル積層体は、温度上昇に伴って膨張するが、プラズマリアクタの外部に露出するケースは、温度があまり上昇しないため、プラズマパネル積層体のように膨張することはない。よって、この場合には、ケースとプラズマパネル積層体(電極パネル)との熱膨張差に起因する応力により、ケースからマットを介してプラズマパネル積層体に大きな力が作用してしまう。また、車両等への取付時における振動や衝撃等の外的要因によって、プラズマパネル積層体に大きな力が作用することもある。その結果、複数の電極パネルを確実に固定できなくなり、プラズマパネル積層体の破損等につながってしまうという問題がある。  By the way, when the plasma reactor is mounted on a vehicle or the like and used, high-temperature exhaust gas flows through the plasma reactor, so that the inside of the plasma reactor is heated by the exhaust gas. On the other hand, the outside of the plasma reactor is cooled by the traveling wind. As a result, the plasma panel stack inside the plasma reactor expands as the temperature rises, but the case exposed to the outside of the plasma reactor expands like a plasma panel stack because the temperature does not increase much. There is nothing. Therefore, in this case, a large force acts on the plasma panel laminate from the case via the mat due to the stress caused by the difference in thermal expansion between the case and the plasma panel laminate (electrode panel). In addition, a large force may act on the plasma panel laminate due to external factors such as vibration and impact during attachment to a vehicle or the like. As a result, there is a problem that a plurality of electrode panels cannot be fixed securely, resulting in damage to the plasma panel laminate. *
また、電極パネルをセラミック材料によって形成する場合には、電極パネルの1枚当りの厚さのバラツキが大きくなる。このため、電極パネルを積層してプラズマパネル積層体を形成すると、プラズマパネル積層体の厚さのバラツキが非常に大きくなってしまう。ゆえに、複数の電極パネルを積層方向に挟んで固定する際には、バラツキ分を考慮する必要があるが、特許文献1~3に記載の従来技術では、バラツキを吸収することができないため、複数の電極パネルを確実に固定できないという問題がある。  Further, when the electrode panel is formed of a ceramic material, the variation in thickness per electrode panel increases. For this reason, when an electrode panel is laminated | stacked and a plasma panel laminated body is formed, the variation in the thickness of a plasma panel laminated body will become very large. Therefore, when fixing a plurality of electrode panels sandwiched in the stacking direction, it is necessary to consider the variation, but the conventional techniques described in Patent Documents 1 to 3 cannot absorb the variation. There is a problem that the electrode panel cannot be securely fixed. *
本発明は上記の課題に鑑みてなされたものであり、第1の目的は、複数の電極パネルを確実に固定することにより、信頼性を向上させることが可能なプラズマリアクタを提供することにある。また、第2の目的は、複数のセラミックパネルを確実に固定することができる積層体用クランプを提供することにある。 The present invention has been made in view of the above problems, and a first object is to provide a plasma reactor capable of improving reliability by securely fixing a plurality of electrode panels. . Moreover, the 2nd objective is to provide the clamp for laminated bodies which can fix a some ceramic panel reliably.
上記課題を解決するための手段(手段1)としては、放電電極を有する複数の電極パネルを積層した構造を有し、隣接する前記電極パネル間に電圧を印加することによってプラズマを発生させるプラズマパネル積層体と、前記複数の電極パネルを積層方向に挟み込んで固定するクランプとを備えるプラズマリアクタであって、前記クランプは、前記電極パネルの積層方向に延びるクランプ本体と、前記クランプ本体とは別体に構成され、前記クランプ本体の少なくとも一方の端部に取り付けられ、前記プラズマパネル積層体を構成する前記電極パネルの表面を押圧する押さえ部材とを備え、前記クランプ本体と前記押さえ部材とが固定されていることを特徴とするプラズマリアクタがある。  As means (means 1) for solving the above-mentioned problems, a plasma panel has a structure in which a plurality of electrode panels having discharge electrodes are laminated, and plasma is generated by applying a voltage between the adjacent electrode panels. A plasma reactor comprising a laminate and a clamp that sandwiches and fixes the plurality of electrode panels in the stacking direction, wherein the clamp is a separate body from the clamp body extending in the stacking direction of the electrode panels, and the clamp body And a pressing member that is attached to at least one end of the clamp body and presses the surface of the electrode panel that constitutes the plasma panel laminate, and the clamp body and the pressing member are fixed. There is a plasma reactor characterized by *
従って、上記手段1に記載の発明では、クランプが、クランプ本体と、クランプ本体とは別体に構成された押さえ部材とを備えているため、押さえ部材の弾性によって複数の電極パネルを安定して保持することができる。よって、ケースとプラズマパネル積層体との熱膨張差に起因する応力や、車両等への取付時における振動や衝撃等に起因する外力が、ケースからプラズマパネル積層体に対して作用したとしても、プラズマパネル積層体の変形が押さえ部材の弾性変形によって抑制される。また、押さえ部材をクランプ本体とは別体に構成することにより、プラズマパネル積層体の厚さに合わせて、クランプ本体に押さえ部材を固定することができる。その結果、プラズマパネル積層体の厚さのバラツキを吸収することができ、複数の電極パネル(プラズマパネル積層体)をクランプによって確実に挟み込んで固定することができる。ゆえに、プラズマリアクタの信頼性を向上させることができる。  Therefore, in the invention described in the means 1, the clamp includes the clamp body and the pressing member that is configured separately from the clamp body. Therefore, the plurality of electrode panels can be stably provided by the elasticity of the pressing member. Can be held. Therefore, even if the stress caused by the thermal expansion difference between the case and the plasma panel laminate, or the external force caused by vibration or impact at the time of attachment to a vehicle or the like, acts on the plasma panel laminate from the case, The deformation of the plasma panel laminate is suppressed by the elastic deformation of the pressing member. In addition, by configuring the pressing member separately from the clamp body, the pressing member can be fixed to the clamp body in accordance with the thickness of the plasma panel laminate. As a result, variations in the thickness of the plasma panel laminate can be absorbed, and a plurality of electrode panels (plasma panel laminate) can be securely sandwiched and fixed by the clamp. Therefore, the reliability of the plasma reactor can be improved. *
上記プラズマリアクタを構成するプラズマパネル積層体は、放電電極を有する複数の電極パネルを積層した構造を有する。放電電極の形成材料としては、例えば、タングステン(W)、モリブデン(Mo)、酸化ルテニウム(RuO)、銀(Ag)、銅(Cu)、白金(Pt)などを挙げることができる。  The plasma panel laminate constituting the plasma reactor has a structure in which a plurality of electrode panels having discharge electrodes are laminated. Examples of the material for forming the discharge electrode include tungsten (W), molybdenum (Mo), ruthenium oxide (RuO 2 ), silver (Ag), copper (Cu), platinum (Pt), and the like.
なお、上記プラズマリアクタでは、クランプが複数設けられ、複数のクランプの少なくとも1つが、放電電極に電気的に接続される電気導通部材としての機能を有していることがよい。このようにすれば、クランプを構成する押さえ部材が電極パネルの表面を押圧することにより、クランプがプラズマパネル積層体に強固に固定されるため、電気導通部材としての機能を有するクランプと放電電極との電気的な接続を確実に行うことができる。また、クランプと電気導通部材とを別々に設ける場合よりも部品点数を減らすことができるため、プラズマリアクタの軽量化や小型化を図ることができる。  In the plasma reactor, it is preferable that a plurality of clamps are provided, and at least one of the plurality of clamps has a function as an electrically conductive member that is electrically connected to the discharge electrode. In this way, the clamp is firmly fixed to the plasma panel laminate when the pressing member constituting the clamp presses the surface of the electrode panel, so that the clamp and the discharge electrode function as an electrically conductive member. The electrical connection can be reliably performed. Moreover, since the number of parts can be reduced as compared with the case where the clamp and the electrical conducting member are provided separately, the weight and size of the plasma reactor can be reduced. *
上記クランプは、クランプ本体の少なくとも一方の端部に取り付けられ、プラズマパネル積層体を構成する電極パネルの表面を押圧する押さえ部材を備える。ここで、1つの押さえ部材は、複数箇所において電極パネルの表面を押圧することがよい。このようにすれば、より安定的に複数の電極パネル(プラズマパネル積層体)を保持できるため、プラズマリアクタの信頼性がよりいっそう向上する。さらに、押さえ部材は、クランプ本体の一方の端部のみに固定されていてもよいし、クランプ本体の両端部に固定されていてもよいが、特には、クランプ本体の両端部に固定されていることがよい。このようにすれば、複数の電極パネルを両側から押圧できるため、より安定的に複数の電極パネル(プラズマパネル積層体)を保持することができ、プラズマリアクタの信頼性がよりいっそう向上する。  The clamp includes a pressing member that is attached to at least one end of the clamp body and presses the surface of the electrode panel that constitutes the plasma panel laminate. Here, it is preferable that one pressing member presses the surface of the electrode panel at a plurality of locations. In this way, since a plurality of electrode panels (plasma panel laminate) can be held more stably, the reliability of the plasma reactor is further improved. Furthermore, the pressing member may be fixed to only one end of the clamp body, or may be fixed to both ends of the clamp body, but is particularly fixed to both ends of the clamp body. It is good. In this way, since the plurality of electrode panels can be pressed from both sides, the plurality of electrode panels (plasma panel laminate) can be held more stably, and the reliability of the plasma reactor is further improved. *
また、押さえ部材は、曲げ戻し構造を有する板ばねであることがよい。このようにすれば、クランプを用いて複数の電極パネルを挟み込んで固定する際に、押さえ部材の弾性力が電極パネルの表面に付与されるようになる。このため、複数の電極パネルを固定する際に生じる、電極パネルと押さえ部材との接触位置のずれを抑制することができる。さらに、電極パネルと押さえ部材との熱膨張差に起因する応力により生じる、電極パネルと押さえ部材との接触位置のずれも抑制することができる。以上の結果、所望の荷重で安定して複数の電極パネルを固定することができるため、プラズマリアクタの信頼性がよりいっそう向上する。  The pressing member may be a leaf spring having a bending back structure. If it does in this way, when pinching and fixing a plurality of electrode panels using a clamp, the elastic force of a pressing member will be given to the surface of an electrode panel. For this reason, the shift | offset | difference of the contact position of an electrode panel and a pressing member which arises when fixing a some electrode panel can be suppressed. Furthermore, the displacement of the contact position between the electrode panel and the pressing member, which is caused by the stress caused by the difference in thermal expansion between the electrode panel and the pressing member, can be suppressed. As a result, since the plurality of electrode panels can be stably fixed with a desired load, the reliability of the plasma reactor is further improved. *
さらに、押さえ部材は、同押さえ部材を厚さ方向に貫通するスリットを有する板ばねであってもよい。このようにすれば、熱膨張による押さえ部材の変形が、スリットの形成部分によって吸収される。その結果、電極パネルと押さえ部材との熱膨張差に起因する応力により生じる、電極パネルと押さえ部材との接触位置のずれをより確実に抑制することができるため、より安定的に複数の電極パネルを固定することができる。  Furthermore, the pressing member may be a leaf spring having a slit that penetrates the pressing member in the thickness direction. If it does in this way, the deformation | transformation of the pressing member by thermal expansion will be absorbed by the formation part of a slit. As a result, the displacement of the contact position between the electrode panel and the pressing member, which is caused by the stress caused by the difference in thermal expansion between the electrode panel and the pressing member, can be more reliably suppressed, and thus more stable multiple electrode panels Can be fixed. *
なお、板ばねの形成材料は、熱へたり等を防止するために、使用温度に合わせて適宜選択される。板ばねの形成材料としては、例えば、SUS301-CSP(熱膨張係数:約18ppm/℃)、SUS304-CSP(熱膨張係数:約18ppm/℃)、SUS631-CSP(熱膨張係数:約11~12ppm/℃)、インコネルX-750(熱膨張係数:約14ppm/℃)、インコネル718(熱膨張係数:約14ppm/℃)などを挙げることができる。なお、板ばねの熱膨張係数は、常温~500℃間の測定値の平均値をいう。  The material for forming the leaf spring is appropriately selected in accordance with the operating temperature in order to prevent heat sag and the like. Examples of the material for forming the leaf spring include SUS301-CSP (thermal expansion coefficient: about 18 ppm / ° C), SUS304-CSP (thermal expansion coefficient: about 18 ppm / ° C), and SUS631-CSP (thermal expansion coefficient: about 11-12 ppm). Inconel X-750 (thermal expansion coefficient: about 14 ppm / ° C.), Inconel 718 (thermal expansion coefficient: about 14 ppm / ° C.), and the like. The thermal expansion coefficient of the leaf spring is an average value of measured values between room temperature and 500 ° C. *
また、上記クランプは、電極パネルの積層方向に延びるクランプ本体を備える。ここで、クランプ本体は、棒状をなす軸部材であり、プラズマパネル積層体は、電極パネルの積層方向に貫通し、軸部材が挿入される孔部を有することがよい。このようにすれば、電極パネルからのクランプの脱落を防止することができる。また、複数の電極パネル(プラズマパネル積層体)とクランプとの位置決めを容易に行うことができる。なお、クランプ本体が棒状をなす軸部材である場合、プラズマパネル積層体は、電極パネルの積層方向に貫通し、軸部材が挿入される溝部を有し、溝部の幅が開口部において狭くなるように形成されることにより、溝部からの軸部材の抜けを防止する抜け止め機構を有していてもよい。このようにした場合でも、電極パネルからのクランプの脱落を防止することができ、複数の電極パネルとクランプとの位置決めを容易に行うことができる。  The clamp includes a clamp body that extends in the stacking direction of the electrode panels. Here, the clamp body is a rod-shaped shaft member, and the plasma panel laminate preferably has a hole portion that penetrates in the stacking direction of the electrode panel and into which the shaft member is inserted. In this way, it is possible to prevent the clamp from falling off the electrode panel. Moreover, positioning with a some electrode panel (plasma panel laminated body) and a clamp can be performed easily. When the clamp body is a rod-shaped shaft member, the plasma panel laminate has a groove portion that penetrates in the electrode panel lamination direction and into which the shaft member is inserted, so that the width of the groove portion becomes narrow at the opening portion. It may have a retaining mechanism for preventing the shaft member from coming off from the groove portion. Even in this case, it is possible to prevent the clamp from falling off the electrode panel, and it is possible to easily position the plurality of electrode panels and the clamp. *
さらに、軸部材の外周面と孔部の内周面との間や、軸部材の外周面と溝部の内側面との間には、隙間が設けられていることがよい。このようにすれば、熱膨張によって軸部材の外径が大きくなったとしても、軸部材の外周面が孔部の内周面や溝部の内側面に接触しにくくなるため、軸部材の熱膨張に起因するプラズマパネル積層体の割れを防止することができる。  Further, a gap may be provided between the outer peripheral surface of the shaft member and the inner peripheral surface of the hole, or between the outer peripheral surface of the shaft member and the inner side surface of the groove portion. In this way, even if the outer diameter of the shaft member increases due to thermal expansion, the outer peripheral surface of the shaft member is less likely to contact the inner peripheral surface of the hole or the inner surface of the groove. The crack of the plasma panel laminated body resulting from this can be prevented. *
ここで、クランプ本体は、押さえ部材よりも熱膨張係数が低い材料によって形成されていることがよい。このようにすれば、温度上昇に伴ってクランプ本体及び押さえ部材が膨張したとしても、クランプ本体は電極パネルの積層方向に延びにくいため、複数の電極パネルを挟み込む方向に掛かる荷重の抜けを抑制することができる。即ち、温度変化に伴うクランプへの悪影響が小さくなる。  Here, the clamp body may be formed of a material having a lower thermal expansion coefficient than the pressing member. In this way, even if the clamp body and the pressing member expand as the temperature rises, the clamp body is unlikely to extend in the electrode panel stacking direction, so that it is possible to prevent the load from falling in the direction of sandwiching the plurality of electrode panels. be able to. That is, the adverse effect on the clamp accompanying the temperature change is reduced. *
なお、クランプ本体の端部にネジ部が設けられ、押さえ部材にクランプ本体を挿通させた状態で、ナットをネジ部に螺着させることにより、押さえ部材がクランプ本体に固定されるようになっていてもよい。このようにすれば、クランプを用いて複数の電極パネルを積層方向に挟み込む工程を簡略化することができる。  In addition, a threaded portion is provided at the end of the clamp body, and the retaining member is fixed to the clamp body by screwing a nut into the threaded portion with the clamping body inserted through the retaining member. May be. If it does in this way, the process of inserting a plurality of electrode panels in the lamination direction using a clamp can be simplified. *
また、押さえ部材及びクランプ本体は、一部の領域が溶接部により互いに固定されていてもよい。このようにした場合、クランプ本体と押さえ部材との位置関係がずれることに起因する、押さえ部材から複数の電極パネルに掛かる荷重の抜けを防止することができる。  In addition, the pressing member and the clamp body may be partially fixed to each other by a welded portion. In this case, it is possible to prevent a load from being applied to the plurality of electrode panels from the pressing member due to the positional relationship between the clamp body and the pressing member being shifted. *
さらに、押さえ部材は、電極パネル(セラミックパネル)の表面に当接する押さえ板と、押さえ板とクランプ本体の端部に設けられた固定部と
の間に介在され、押さえ板を電極パネルの表面側に押圧する圧縮コイルばねとを備えていてもよい。このようにした場合、温度上昇に伴ってクランプ本体が電極パネルの積層方向に膨張したとしても、押さえ板は、圧縮コイルばねによって電極パネルの表面側に押圧された状態に維持される。このため、複数の電極パネルを挟み込む方向に掛かる荷重の抜けをより確実に抑制することができる。即ち、温度変化に伴うクランプへの悪影響がよりいっそう小さくなる。 
Further, the pressing member is interposed between a pressing plate that contacts the surface of the electrode panel (ceramic panel) and a fixing plate provided at the end of the clamping plate and the pressing plate. And a compression coil spring that presses against. In this case, even if the clamp body expands in the stacking direction of the electrode panel as the temperature rises, the pressing plate is maintained in a state of being pressed to the surface side of the electrode panel by the compression coil spring. For this reason, it is possible to more reliably suppress the loss of load applied in the direction in which the plurality of electrode panels are sandwiched. That is, the adverse effect on the clamp accompanying the temperature change is further reduced.
上記課題を解決するための別の手段(手段2)としては、複数のセラミックパネルを積層した構造を有するセラミックパネル積層体を、前記セラミックパネルの積層方向に挟み込んで固定する積層体用クランプであって、前記セラミックパネルの積層方向に延びるクランプ本体と、前記クランプ本体とは別体に構成され、前記クランプ本体の少なくとも一方の端部に取り付けられ、前記セラミックパネル積層体を構成する前記セラミックパネルの表面を押圧する押さえ部材とを備え、前記クランプ本体と前記押さえ部材とが固定されていることを特徴とする積層体用クランプがある。  Another means (means 2) for solving the above problem is a laminate clamp that sandwiches and fixes a ceramic panel laminate having a structure in which a plurality of ceramic panels are laminated in the lamination direction of the ceramic panels. The clamp body extending in the laminating direction of the ceramic panel and the clamp body are configured separately from each other, attached to at least one end of the clamp body, and the ceramic panel constituting the ceramic panel laminate There is a clamp for a laminate including a pressing member that presses the surface, and the clamp body and the pressing member are fixed. *
従って、上記手段2に記載の発明では、積層体用クランプが、クランプ本体と、クランプ本体とは別体に構成された押さえ部材とを備えているため、押さえ部材の弾性によって複数のセラミックパネルを安定して保持することができる。よって、外力等がセラミックパネル積層体に対して作用したとしても、セラミックパネル積層体の変形が押さえ部材の弾性変形によって抑制される。また、押さえ部材をクランプ本体とは別体に構成することにより、セラミックパネル積層体の厚さに合わせて、クランプ本体に押さえ部材を固定することができる。その結果、セラミックパネル積層体の厚さのバラツキを吸収することができ、複数のセラミックパネル(セラミックパネル積層体)を積層体用クランプによって確実に挟み込んで固定することができる。ゆえに、セラミックパネル積層体の信頼性を向上させることができる。 Therefore, in the invention described in the above means 2, since the laminate clamp includes the clamp body and the pressing member formed separately from the clamp body, the plurality of ceramic panels are formed by the elasticity of the pressing member. It can be held stably. Therefore, even if an external force or the like acts on the ceramic panel laminate, the deformation of the ceramic panel laminate is suppressed by the elastic deformation of the pressing member. In addition, by configuring the pressing member separately from the clamp body, the pressing member can be fixed to the clamp body in accordance with the thickness of the ceramic panel laminate. As a result, variations in the thickness of the ceramic panel laminate can be absorbed, and a plurality of ceramic panels (ceramic panel laminate) can be securely sandwiched and fixed by the laminate clamp. Therefore, the reliability of the ceramic panel laminate can be improved.
本実施形態におけるプラズマリアクタを示す概略断面図。1 is a schematic cross-sectional view showing a plasma reactor in the present embodiment. プラズマリアクタを示す平面図。The top view which shows a plasma reactor. プラズマリアクタを示す斜視図。The perspective view which shows a plasma reactor. プラズマパネル積層体がケースに収容されている状態を示す斜視図。The perspective view which shows the state in which the plasma panel laminated body is accommodated in the case. プラズマパネル積層体及びクランプを示す斜視図。The perspective view which shows a plasma panel laminated body and a clamp. プラズマパネル積層体を示す平断面図。The cross-sectional view which shows a plasma panel laminated body. プラズマパネル積層体及びクランプを示す縦断面図。The longitudinal cross-sectional view which shows a plasma panel laminated body and a clamp. プラズマパネル積層体及びクランプを示す要部断面図。The principal part sectional drawing which shows a plasma panel laminated body and a clamp. 電極パネルを示す斜視図。The perspective view which shows an electrode panel. 他の実施形態において、プラズマパネル積層体、クランプ及び外部端子を示す斜視図。The perspective view which shows a plasma panel laminated body, a clamp, and an external terminal in other embodiment. 他の実施形態において、プラズマパネル積層体及びクランプを示す縦断面図。In other embodiment, the longitudinal cross-sectional view which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部斜視図。In other embodiment, the principal part perspective view which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体及びクランプを示す要部断面図。In other embodiment, principal part sectional drawing which shows a plasma panel laminated body and a clamp. 他の実施形態において、プラズマパネル積層体を示す平断面図。In other embodiment, the plane sectional view which shows a plasma panel laminated body. 他の実施形態において、プラズマパネル積層体を示す平断面図。In other embodiment, the plane sectional view which shows a plasma panel laminated body.
以下、本発明のプラズマリアクタ1を具体化した一実施形態を図面に基づき詳細に説明する。  Hereinafter, an embodiment of the plasma reactor 1 of the present invention will be described in detail with reference to the drawings. *
図1~図4に示されるように、本実施形態のプラズマリアクタ1は、自動車のエンジン(図示略)の排ガスに含まれているPMを除去する装置であり、排気管2に取り付けられている。プラズマリアクタ1は、パルス発生電源3、ケース10及びプラズマパネル積層体20(セラミックパネル積層体)を備えている。  As shown in FIGS. 1 to 4, the plasma reactor 1 of the present embodiment is a device that removes PM contained in exhaust gas from an automobile engine (not shown), and is attached to an exhaust pipe 2. . The plasma reactor 1 includes a pulse generation power source 3, a case 10, and a plasma panel laminate 20 (ceramic panel laminate). *
ケース10は、例えばステンレス鋼を用いて矩形筒状に形成されている。ケース10の熱膨張係数は、10~18ppm/℃程度となっている。なお、ケース10の熱膨張係数は、常温~300℃間の測定値の平均値をいう。ケース10の第1端部(図1では左端部)には第1コーン部11が接続され、ケース10の第2端部(図1では右端部)には第2コーン部12が接続されている。さらに、第1コーン部11は、排気管2の上流側部分4(エンジン側の部分)に接続され、第2コーン部12は、排気管2の下流側部分5(エンジン側とは反対側の部分)に接続されている。なお、エンジンからの排ガスは、排気管2の上流側部分4から第1コーン部11を介してケース10内に流入し、ケース10内を通過した後、第2コーン部12を介して排気管2の下流側部分5に流出する。  The case 10 is formed in a rectangular cylinder shape using, for example, stainless steel. The case 10 has a thermal expansion coefficient of about 10 to 18 ppm / ° C. The thermal expansion coefficient of the case 10 is an average value of measured values between room temperature and 300 ° C. A first cone portion 11 is connected to a first end portion (left end portion in FIG. 1) of the case 10, and a second cone portion 12 is connected to a second end portion (right end portion in FIG. 1) of the case 10. Yes. Further, the first cone portion 11 is connected to the upstream portion 4 (engine portion) of the exhaust pipe 2, and the second cone portion 12 is connected to the downstream portion 5 (opposite side of the engine side) of the exhaust pipe 2. Part). The exhaust gas from the engine flows into the case 10 from the upstream portion 4 of the exhaust pipe 2 through the first cone portion 11, passes through the case 10, and then passes through the second cone portion 12 to the exhaust pipe. 2 flows out to the downstream part 5. *
図4に示されるように、プラズマパネル積層体20は、ケース10内に収容されており、ケース10とプラズマパネル積層体20との間にはマット8が介在されている。マット8は、プラズマパネル積層体20をケース10に固定する機能を有している。ここで、マット8を構成する材料としては、例えば、セラミック繊維、金属繊維、発泡金属等の絶縁材料を用いることができる。  As shown in FIG. 4, the plasma panel laminate 20 is accommodated in the case 10, and a mat 8 is interposed between the case 10 and the plasma panel laminate 20. The mat 8 has a function of fixing the plasma panel laminate 20 to the case 10. Here, as a material which comprises the mat | matte 8, insulating materials, such as a ceramic fiber, a metal fiber, a foam metal, can be used, for example. *
図1,図4,図5に示されるように、プラズマパネル積層体20は、一対のガス通過面21,22と、4つのガス非通過面23,24,25,26とを有する略直方体状を成している。両ガス通過面21,22は、プラズマパネル積層体20において互いに反対側に位置している。一方、各ガス非通過面23~26は、一対のガス通過面21,22の間に位置している。  As shown in FIGS. 1, 4, and 5, the plasma panel laminate 20 has a substantially rectangular parallelepiped shape having a pair of gas passage surfaces 21 and 22 and four gas non-passage surfaces 23, 24, 25, and 26. Is made. Both gas passage surfaces 21 and 22 are located on opposite sides of the plasma panel laminate 20. On the other hand, the gas non-passing surfaces 23 to 26 are located between the pair of gas passing surfaces 21 and 22. *
また、プラズマパネル積層体20は、複数の電極パネル30(セラミックパネル)を積層した構造を有している。各電極パネル30は、ケース10内における排ガスの通過方向(第1コーン部11から第2コーン部12に向かう方向)と平行に配置されており、互いに隙間(本実施形態では、0.5mmの隙間)を有するように配置されている。  The plasma panel laminate 20 has a structure in which a plurality of electrode panels 30 (ceramic panels) are laminated. Each electrode panel 30 is arranged in parallel with the passage direction of exhaust gas in the case 10 (the direction from the first cone portion 11 toward the second cone portion 12), and is spaced from each other (in this embodiment, 0.5 mm). It is arranged to have a gap). *
図1に示されるように、各電極パネル30には、プラズマパネル積層体20の厚さ方向に沿って第1の配線6及び第2の配線7が交互に電気的に接続されている。第1の配線6は、パルス発生電源3の第1の端子に電気的に接続され、第2の配線7は、パルス発生電源3の第2の端子に電気的に接続されている。  As shown in FIG. 1, the first wiring 6 and the second wiring 7 are alternately and electrically connected to each electrode panel 30 along the thickness direction of the plasma panel laminate 20. The first wiring 6 is electrically connected to the first terminal of the pulse generating power supply 3, and the second wiring 7 is electrically connected to the second terminal of the pulse generating power supply 3. *
図1,図9に示されるように、本実施形態の電極パネル30は、第1主面31(表面)及び第2主面32(表面)を有し、縦100mm×横120mmの略矩形板状を成している。第1主面31及び第2主面32は、電極パネル30の厚さ方向において互いに反対側に位置している。さらに、電極パネル30は、矩形板状の誘電体33に放電電極34(厚さ10μm)を内蔵してなる構造を有している。本実施形態において、誘電体33はアルミナ(Al)等のセラミックからなり、放電電極34はタングステン(W)からなる。また、誘電体33の熱膨張係数は、2~8ppm/℃程度であり、誘電体33がアルミナからなる本実施形態においては、7ppm/℃程度となっている。なお、誘電体33の熱膨張係数は、常温~400℃間の測定値の平均値をいう。また、誘電体33は、第2主面32にて開口する凹部35を有している。凹部35は、電極パネル30の横方向に延びており、電極パネル30の両端面にて開口している。本実施形態のプラズマパネル積層体20では、凹部35と下層側に隣接する電極パネル30の第1主面31とによって、排ガスの流路が構成される。なお、プラズマパネル積層体20を構成する最下層の電極パネル30には、下層側に電極パネル30が存在しないため、凹部35が形成されていない。  As shown in FIGS. 1 and 9, the electrode panel 30 of the present embodiment has a first main surface 31 (surface) and a second main surface 32 (surface), and is a substantially rectangular plate having a length of 100 mm × width of 120 mm. It has a shape. The first main surface 31 and the second main surface 32 are located on opposite sides in the thickness direction of the electrode panel 30. Further, the electrode panel 30 has a structure in which a discharge electrode 34 (thickness 10 μm) is built in a rectangular plate-like dielectric 33. In the present embodiment, the dielectric 33 is made of ceramic such as alumina (Al 2 O 3 ), and the discharge electrode 34 is made of tungsten (W). The thermal expansion coefficient of the dielectric 33 is about 2 to 8 ppm / ° C., and in the present embodiment in which the dielectric 33 is made of alumina, it is about 7 ppm / ° C. The thermal expansion coefficient of the dielectric 33 is an average value of measured values between room temperature and 400 ° C. In addition, the dielectric 33 has a recess 35 that opens at the second main surface 32. The recess 35 extends in the lateral direction of the electrode panel 30 and opens at both end faces of the electrode panel 30. In the plasma panel laminate 20 of the present embodiment, the exhaust gas flow path is constituted by the recess 35 and the first main surface 31 of the electrode panel 30 adjacent to the lower layer side. The lowermost electrode panel 30 constituting the plasma panel laminate 20 is not formed with the recess 35 because the electrode panel 30 does not exist on the lower layer side.
図9に示されるように、電極パネル30における凹部35の片側部分には、第1主面31側と第2主面32側とを導通させる一対の導通構造40が設けられている。各導通構造40は、電気導通部材であるスルーホール導体41、第1パッド42及び第2パッド43を備えている。スルーホール導体41は、第1主面31及び第2主面32を貫通している。そして、一方の導通構造40に設けられたスルーホール導体41は、第1主面31及び第2主面32に加えて、放電電極34から外周側に延出する延出部36を貫通している。また、第1パッド42は、第1主面31に形成されており、スルーホール導体41の第1主面31側端部に電気的に接続されている。一方、第2パッド43は、第2主面32に形成されており、スルーホール導体41の第2主面32側端部に電気的に接続されている。なお、第1パッド42及び第2パッド43は、それぞれ長方形状を成しており、表面にNi等のめっきが施されている。  As shown in FIG. 9, a pair of conducting structures 40 that conduct the first main surface 31 and the second main surface 32 are provided on one side of the recess 35 in the electrode panel 30. Each conduction structure 40 includes a through-hole conductor 41, a first pad 42, and a second pad 43, which are electrical conduction members. The through-hole conductor 41 passes through the first main surface 31 and the second main surface 32. And the through-hole conductor 41 provided in one conduction | electrical_connection structure 40 penetrates the extension part 36 extended in the outer peripheral side from the discharge electrode 34 in addition to the 1st main surface 31 and the 2nd main surface 32. Yes. The first pad 42 is formed on the first main surface 31 and is electrically connected to the end of the through-hole conductor 41 on the first main surface 31 side. On the other hand, the second pad 43 is formed on the second main surface 32 and is electrically connected to the end of the through-hole conductor 41 on the second main surface 32 side. The first pad 42 and the second pad 43 each have a rectangular shape, and the surface thereof is plated with Ni or the like. *
図5~図8に示されるように、プラズマリアクタ1は、積層体用クランプである第1クランプ51及び第2クランプ52をそれぞれ2個ずつ備えている。各第1クランプ51及び各第2クランプ52は、各電極パネル30(プラズマパネル積層体20)を積層方向に挟み込んで固定するようになっている。各第1クランプ51は、プラズマパネル積層体20のガス非通過面24寄りに配置され、各第2クランプ52は、プラズマパネル積層体20のガス非通過面26寄りに配置されている。なお、各第1クランプ51は、各電極パネル30を積層方向に挟み込む機能に加えて、放電電極34に電気的に接続される電気導通部材としての機能を有している。一方、各第2クランプ52は、各電極パネル30を積層方向に挟み込む機能のみを有している。  As shown in FIGS. 5 to 8, the plasma reactor 1 includes two first clamps 51 and two second clamps 52 that are laminate clamps. Each of the first clamps 51 and each of the second clamps 52 is configured to sandwich and fix each electrode panel 30 (plasma panel laminate 20) in the stacking direction. Each first clamp 51 is disposed near the gas non-passing surface 24 of the plasma panel laminate 20, and each second clamp 52 is disposed near the gas non-passing surface 26 of the plasma panel laminate 20. Each first clamp 51 has a function as an electrically conductive member that is electrically connected to the discharge electrode 34 in addition to the function of sandwiching each electrode panel 30 in the stacking direction. On the other hand, each second clamp 52 has only a function of sandwiching each electrode panel 30 in the stacking direction. *
また、各クランプ51,52は、軸部材53(クランプ本体)、板ばね54(押さえ部材)及び固定リング55を備えている。軸部材53は、SUS430等の材料を用いて略円柱形状に形成されている。軸部材53の熱膨張係数は、約11~13ppm/℃となっている。なお、軸部材53の熱膨張係数は、常温~500℃間の測定値の平均値をいう。また、プラズマパネル積層体20は、電極パネル30の積層方向に貫通する断面円形状の孔部27を4箇所に有している(図6~図8参照)。そして、各クランプ51,52の軸部材53は、それぞれ孔部27に挿入されており、電極パネル30の積層方向に延びている。軸部材53の外周面と孔部27の内周面との間には、隙間S1(本実施形態では0.2mm)が設けられている。なお、本実施形態では、軸部材53の形成材料をSUS430としているが、SUS430は500℃以上の温度域で熱へたりが大きくなることが知られている。このため、特に高い耐熱性(例えば、500℃以上)が求められる場合には、熱膨張係数よりも熱変形への対応を優先的に考慮して、インコネル718やインコネルX-750等の耐熱性に優れた材料を用いて軸部材53を形成することがよい。  Each clamp 51, 52 includes a shaft member 53 (clamp body), a leaf spring 54 (pressing member), and a fixing ring 55. The shaft member 53 is formed in a substantially cylindrical shape using a material such as SUS430. The thermal expansion coefficient of the shaft member 53 is about 11 to 13 ppm / ° C. The thermal expansion coefficient of the shaft member 53 is an average value of measured values between room temperature and 500 ° C. In addition, the plasma panel laminate 20 has holes 27 having a circular cross section penetrating in the laminating direction of the electrode panel 30 (see FIGS. 6 to 8). The shaft members 53 of the clamps 51 and 52 are inserted into the holes 27 and extend in the stacking direction of the electrode panel 30. A gap S1 (0.2 mm in the present embodiment) is provided between the outer peripheral surface of the shaft member 53 and the inner peripheral surface of the hole 27. In this embodiment, the material for forming the shaft member 53 is SUS430. However, it is known that SUS430 has a large heat sink in a temperature range of 500 ° C. or higher. For this reason, when particularly high heat resistance (for example, 500 ° C. or higher) is required, heat resistance such as Inconel 718 and Inconel X-750 is preferentially taken into consideration with respect to thermal deformation rather than thermal expansion coefficient. It is preferable to form the shaft member 53 using a material excellent in the above. *
図5,図7,図8に示されるように、板ばね54は、軸部材53とは別体に構成されている。板ばね54は、軸部材53の両端部に形成された小径部56にそれぞれ固定されている。詳述すると、板ばね54は、長方形状の金属板を屈曲させることによって形成されており、金属板の中央部分を占める中央部57と、金属板において中央部57の両側に位置する一対の延伸部58と、金属板において両延伸部58の外側に位置する一対の接触部59とによって構成されている(図8参照)。中央部57は、軸部材53の小径部56が貫通する部位であり、プラズマパネル積層体20のガス非通過面23,25と平行に配置されている。また、各延伸部58は、軸部材
53の小径部56を中心として互いに反対側に配置されている。各延伸部58は、板ばね54の裏面側(ガス非通過面23側またはガス非通過面25側)に曲げられており、基端部が中央部57の両端縁に接続されるとともに、先端部がガス非通過面23,25に接近する方向に延びている。さらに、各接触部59は、軸部材53の小径部56を中心として互いに反対側に配置されており、小径部56の中心軸から接触部59の基端までの距離が互いに等しくなっている。また、各接触部59は、ガス非通過面23においてガス非通過面24,26との接続部分に位置する辺、または、ガス非通過面25においてガス非通過面24,26との接続部分に位置する辺に沿って互いに離間して配置されている。各接触部59の基端部は、延伸部58の先端部に接続され、プラズマパネル積層体20の表面(具体的には、最上層の電極パネル30の第1主面31上に形成された第1パッド42、または、最下層の電極パネル30の第2主面32上に形成された第2パッド43)に接触している。即ち、板ばね54は、2箇所において電極パネル30の表面を押圧している。そして、各接触部59の先端部は、板ばね54の表面側に曲げられており、プラズマパネル積層体20の表面から離間する方向に延びている。なお、板ばね54の中央部57に小径部56が貫通した状態で、小径部56の先端部には、固定リング55が圧入されるようになっている。 
As shown in FIGS. 5, 7, and 8, the leaf spring 54 is configured separately from the shaft member 53. The leaf springs 54 are respectively fixed to small diameter portions 56 formed at both ends of the shaft member 53. More specifically, the leaf spring 54 is formed by bending a rectangular metal plate, and a central portion 57 occupying the central portion of the metal plate and a pair of stretches positioned on both sides of the central portion 57 in the metal plate. It is comprised by the part 58 and a pair of contact part 59 located in the outer side of both the extending | stretching parts 58 in a metal plate (refer FIG. 8). The central portion 57 is a portion through which the small-diameter portion 56 of the shaft member 53 passes, and is disposed in parallel with the gas non-passing surfaces 23 and 25 of the plasma panel laminate 20. Further, the extending portions 58 are disposed on the opposite sides with respect to the small diameter portion 56 of the shaft member 53. Each extending portion 58 is bent to the back surface side (the gas non-passing surface 23 side or the gas non-passing surface 25 side) of the leaf spring 54, and the base end portion is connected to both end edges of the central portion 57, and the tip The part extends in a direction approaching the gas non-passing surfaces 23 and 25. Further, the contact portions 59 are arranged on opposite sides with respect to the small diameter portion 56 of the shaft member 53, and the distances from the central axis of the small diameter portion 56 to the proximal end of the contact portion 59 are equal to each other. Further, each contact portion 59 is located on a side of the gas non-passing surface 23 which is located at a connection portion with the gas non-passing surfaces 24 or 26 or on a portion where the gas non-passing surface 25 is connected to the gas non-passing surfaces 24 and 26. They are spaced apart from each other along the side where they are located. The base end portion of each contact portion 59 is connected to the distal end portion of the extending portion 58 and is formed on the surface of the plasma panel laminate 20 (specifically, on the first main surface 31 of the uppermost electrode panel 30). The first pad 42 or the second pad 43) formed on the second main surface 32 of the lowermost electrode panel 30 is in contact. That is, the leaf spring 54 presses the surface of the electrode panel 30 at two locations. And the front-end | tip part of each contact part 59 is bent to the surface side of the leaf | plate spring 54, and is extended in the direction spaced apart from the surface of the plasma panel laminated body 20. FIG. The fixing ring 55 is press-fitted into the tip of the small diameter portion 56 with the small diameter portion 56 penetrating through the central portion 57 of the leaf spring 54.
なお、各板ばね54は、インコネル718等の材料を用いて形成されている。板ばね54の熱膨張係数は、約14ppm/℃となっている。よって、軸部材53は、板ばね54よりも熱膨張係数が低い材料(本実施形態では、熱膨張係数が約11~13ppm/℃となる材料)によって形成されている。なお、板ばね54の熱膨張係数は、常温~500℃間の測定値の平均値をいう。また、板ばね54は、金属板(ここでは、インコネル718からなる金属板)を屈曲させることによって形成されており、軸部材53よりも高い弾性を有している。  Each leaf spring 54 is formed using a material such as Inconel 718. The thermal expansion coefficient of the leaf spring 54 is about 14 ppm / ° C. Therefore, the shaft member 53 is formed of a material having a lower thermal expansion coefficient than that of the leaf spring 54 (in this embodiment, a material having a thermal expansion coefficient of about 11 to 13 ppm / ° C.). The thermal expansion coefficient of the leaf spring 54 is an average value of measured values between room temperature and 500 ° C. The plate spring 54 is formed by bending a metal plate (here, a metal plate made of Inconel 718) and has higher elasticity than the shaft member 53. *
図5,図7~図9に示されるように、各クランプ51,52を構成する両板ばね54は、プラズマパネル積層体20を構成する最上層の電極パネル30の第1主面31(ガス非通過面23)と、プラズマパネル積層体20を構成する最下層の電極パネル30の第2主面32(ガス非通過面25)とをそれぞれ押圧するようになっている。また、1つの板ばね54は、2箇所(即ち、2つの接触部59)において電極パネル30の表面(第1主面31または第2主面32)を押圧するようになっている。そして、1つの第1クランプ51を構成する両板ばね54は、ガス非通過面23(最上層の電極パネル30の第1主面31)に形成された第1パッド42と、ガス非通過面25(最下層の電極パネル30の第2主面32)に形成された第2パッド43とに圧接している。  As shown in FIG. 5 and FIG. 7 to FIG. 9, the two leaf springs 54 constituting the clamps 51 and 52 are arranged on the first main surface 31 (gas gas) of the uppermost electrode panel 30 constituting the plasma panel laminate 20. The non-passing surface 23) and the second main surface 32 (gas non-passing surface 25) of the lowermost electrode panel 30 constituting the plasma panel laminate 20 are respectively pressed. One leaf spring 54 presses the surface (first main surface 31 or second main surface 32) of the electrode panel 30 at two locations (that is, two contact portions 59). The two leaf springs 54 constituting one first clamp 51 include a first pad 42 formed on the gas non-passing surface 23 (the first main surface 31 of the uppermost electrode panel 30), and a gas non-passing surface. 25 (second main surface 32 of the lowermost electrode panel 30) is in pressure contact with a second pad 43 formed on the lowermost electrode panel 30. *
図2~図4に示されるように、プラズマリアクタ1は、一対の外部端子60,61を備えている。本実施形態の外部端子60,61は、スパークプラグと同様の構造を有している。詳述すると、外部端子60,61は、外部接続部、金属粉末を含む導電性シール、絶縁体、主体金具、滑石、パッキン類等を備えている。外部接続部は、導電性シールを介してクランプ51,52に接続されている。なお、外部端子は、本実施形態のものに限定される訳ではなく、絶縁体によって外部接続部とケース10との間が絶縁されている構造であれば、他の構造であってもよい。  As shown in FIGS. 2 to 4, the plasma reactor 1 includes a pair of external terminals 60 and 61. The external terminals 60 and 61 of this embodiment have the same structure as a spark plug. More specifically, the external terminals 60 and 61 include an external connection portion, a conductive seal containing metal powder, an insulator, a metal shell, talc, packing, and the like. The external connection portion is connected to the clamps 51 and 52 via a conductive seal. The external terminal is not limited to the one in the present embodiment, and may have another structure as long as the external connection portion and the case 10 are insulated by an insulator. *
また、外部端子60は、第1クランプ51に基端部が電気的に接続され、先端部がケース10から露出している。同様に、外部端子61は、外部端子60が接続される第1クランプ51とは別の第1クランプ51に基端部が電気的に接続され、先端部がケース10から露出している。そして、各外部端子60,61は、互いに同一方向に突出している。なお、本実施形態では、外部端子60の先端部が第1の配線6(図1参照)に接続されるとともに、外部端子61の先端部が第2の配線7(図1参照)に接続されるようになっている。  Further, the external terminal 60 is electrically connected to the first clamp 51 at the base end portion, and the distal end portion is exposed from the case 10. Similarly, the external terminal 61 is electrically connected to a first clamp 51 different from the first clamp 51 to which the external terminal 60 is connected, and the distal end is exposed from the case 10. The external terminals 60 and 61 protrude in the same direction. In the present embodiment, the tip of the external terminal 60 is connected to the first wiring 6 (see FIG. 1), and the tip of the external terminal 61 is connected to the second wiring 7 (see FIG. 1). It has become so. *
なお、図1に示されるように、本実施形態のプラズマリアクタ1は、例えば、排ガスに含まれているPMを除去するために用いられる。この場合、パルス発生電源3から互いに隣接する電極パネル30間にパルス電圧(例えば、ピーク電圧:5kV(5000V)、パルス繰返し周波数:100Hz)が印加されると、誘電体バリア放電が生じ、放電電極34間に誘電体バリア放電によるプラズマが発生する。そして、プラズマの発生により、放電電極34間を流通する排ガスに含まれるPMが酸化(燃焼)されて除去される。  In addition, as FIG. 1 shows, the plasma reactor 1 of this embodiment is used in order to remove PM contained in exhaust gas, for example. In this case, when a pulse voltage (for example, peak voltage: 5 kV (5000 V), pulse repetition frequency: 100 Hz) is applied between the electrode panels 30 adjacent to each other from the pulse generating power supply 3, dielectric barrier discharge occurs, and the discharge electrode 34 generates plasma due to dielectric barrier discharge. Due to the generation of plasma, PM contained in the exhaust gas flowing between the discharge electrodes 34 is oxidized (burned) and removed. *
次に、プラズマリアクタ1の製造方法を説明する。  Next, a method for manufacturing the plasma reactor 1 will be described. *
まず、アルミナ粉末を主成分とするセラミック材料を用いて、誘電体33となる第1~第3のセラミックグリーンシートを形成する。なお、セラミックグリーンシートの形成方法としては、テープ成形や押出成形などの周知の成形法を用いることができる。そして、各セラミックグリーンシートに対してレーザ加工を行い、スルーホール導体41用の貫通孔とクランプ51,52用の貫通孔とを形成する。なお、貫通孔の形成は、パンチング加工、ドリル加工等によって行ってもよい。  First, first to third ceramic green sheets to be the dielectric 33 are formed using a ceramic material whose main component is alumina powder. In addition, as a formation method of a ceramic green sheet, well-known shaping | molding methods, such as tape shaping | molding and extrusion molding, can be used. Then, laser processing is performed on each ceramic green sheet to form a through hole for the through-hole conductor 41 and a through hole for the clamps 51 and 52. The through hole may be formed by punching, drilling, or the like. *
次に、従来周知のペースト印刷装置(図示略)を用いて、スルーホール導体41用の貫通孔に導電性ペースト(本実施形態では、タングステンペースト)を充填し、スルーホール導体41となる未焼成のスルーホール導体部を形成する。  Next, using a conventionally known paste printing apparatus (not shown), the through hole for the through-hole conductor 41 is filled with a conductive paste (in this embodiment, a tungsten paste) to form the through-hole conductor 41. Through-hole conductors are formed. *
次に、第1のセラミックグリーンシートを支持台(図示略)に載置する。さらに、ペースト印刷装置を用いて、第1のセラミックグリーンシートの裏面上に導電性ペーストを印刷する。その結果、第1のセラミックグリーンシートの裏面上に、放電電極34となる厚さ10μmの未焼成電極が形成される。なお、第1のセラミックグリーンシートに対する未焼成電極の印刷方法としては、スクリーン印刷などの周知の印刷法を使用することができる。  Next, the first ceramic green sheet is placed on a support base (not shown). Furthermore, a conductive paste is printed on the back surface of the first ceramic green sheet using a paste printing apparatus. As a result, an unsintered electrode having a thickness of 10 μm to be the discharge electrode 34 is formed on the back surface of the first ceramic green sheet. In addition, as a printing method of the unsintered electrode with respect to the 1st ceramic green sheet, well-known printing methods, such as screen printing, can be used. *
そして、導電性ペーストを乾燥後、未焼成電極が印刷された第1のセラミックグリーンシートの裏面上に、第2のセラミックグリーンシート及び第3のセラミックグリーンシートを順番に積層し、シート積層方向に押圧力を付与する。その結果、各セラミックグリーンシートが一体化され、セラミック積層体が形成される。また、この時点で、第1~第3のセラミックグリーンシートのクランプ51,52用の貫通孔が連通し、貫通孔部28(図9参照)となる。さらに、ペースト印刷装置を用いて、第1のセラミックグリーンシートの主面上に導電性ペーストを印刷し、未焼成の第1パッド42を形成するとともに、第3のセラミックグリーンシートの裏面上に導電性ペーストを印刷し、第3のセラミックグリーンシートの裏面上に導電性ペーストを印刷し、未焼成の第2パッド43を形成する。なお、第3のセラミックグリーンシートは、凹部35の形状に合わせた打抜加工を施した後に積層される。  Then, after drying the conductive paste, the second ceramic green sheet and the third ceramic green sheet are sequentially laminated on the back surface of the first ceramic green sheet on which the unfired electrodes are printed, and in the sheet lamination direction. Apply pressing force. As a result, the ceramic green sheets are integrated to form a ceramic laminate. At this time, the through holes for the clamps 51 and 52 of the first to third ceramic green sheets communicate with each other to form the through hole portion 28 (see FIG. 9). Further, using a paste printing device, a conductive paste is printed on the main surface of the first ceramic green sheet to form the unfired first pad 42 and conductive on the back surface of the third ceramic green sheet. The conductive paste is printed, and the conductive paste is printed on the back surface of the third ceramic green sheet to form the unfired second pad 43. The third ceramic green sheet is laminated after being subjected to a punching process that matches the shape of the recess 35. *
次に、周知の手法に従って乾燥工程や脱脂工程などを行った後、セラミック積層体(セラミックグリーンシート及び未焼成電極)をアルミナ及びタングステンが焼結しうる所定の温度(例えば1400℃~1600℃程度)に加熱する同時焼成を行う。その結果、セラミックグリーンシート中のアルミナ、及び、導電性ペースト中のタングステンが同時焼結し、誘電体33、放電電極34、スルーホール導体41、第1パッド42及び第2パッド43が同時焼成によって形成され、セラミック積層体が電極パネル30となる。  Next, after performing a drying process or a degreasing process according to a known method, a predetermined temperature (for example, about 1400 ° C. to 1600 ° C.) at which the ceramic laminate (ceramic green sheet and unfired electrode) can be sintered by alumina and tungsten. ) Is simultaneously fired. As a result, alumina in the ceramic green sheet and tungsten in the conductive paste are simultaneously sintered, and the dielectric 33, the discharge electrode 34, the through-hole conductor 41, the first pad 42, and the second pad 43 are simultaneously fired. The formed ceramic laminate becomes the electrode panel 30. *
その後、積層工程を行い、得られた電極パネル30を複数積層して、プラズマパネル積層体20を形成する。この時点で、各電極パネル30の貫通孔部28が連通し、プラズマパネル積層体20を貫通する孔部27となる。次に、クランプ51,52を用いて、複数の電極パネル30を積層方向に挟み込んで固定する。詳述すると、まず、軸部材セット工程を行い、孔部27内に軸部材53を挿入する。続く固定工程では、孔部27のガス非通過面23側の開口部から露出する軸部材53の小径部56、及び、孔部27のガス非通過面25側の開口部から露出する軸部材53の小径部56のそれぞれに対して、板ばね54を取り付ける。具体的には、まず、板ばね54を構成する中央部57に対して、小径部56を挿通させる。次に、小径部56の先端部に固定リング55を固定する。本実施形態では、小径部56を固定リング55に圧入することにより、固定リング55を小径部56に固定する。なお、固定リング55は、治具等を介して小径部56に仮組みした状態で溶接を施すことにより、小径部56に固定されるものであってもよいし、小径部56を圧入した後で溶接を施すことにより、小径部56に固定されるものであってもよい。また、小径部56を固定リング55に圧入する際には、固定リング55によって板ばね54を押圧する。その結果、板ばね54の先端を小径部56の先端方向に少なくとも0.3mm以上変形させた状態で、板ばね54が固定されるため、板ばね54が第1パッド42と第2パッド43とに圧接するようになる。  Thereafter, a lamination process is performed, and a plurality of obtained electrode panels 30 are laminated to form the plasma panel laminate 20. At this point, the through-hole portions 28 of each electrode panel 30 communicate with each other and become the hole portions 27 that penetrate the plasma panel laminate 20. Next, the clamps 51 and 52 are used to sandwich and fix the plurality of electrode panels 30 in the stacking direction. More specifically, first, the shaft member setting step is performed, and the shaft member 53 is inserted into the hole 27. In the subsequent fixing step, the small diameter portion 56 of the shaft member 53 exposed from the opening portion of the hole portion 27 on the gas non-passing surface 23 side, and the shaft member 53 exposed from the opening portion of the hole portion 27 on the gas non-passing surface 25 side. A leaf spring 54 is attached to each of the small diameter portions 56. Specifically, first, the small-diameter portion 56 is inserted into the central portion 57 constituting the leaf spring 54. Next, the fixing ring 55 is fixed to the distal end portion of the small diameter portion 56. In the present embodiment, the fixing ring 55 is fixed to the small diameter portion 56 by press-fitting the small diameter portion 56 into the fixing ring 55. The fixing ring 55 may be fixed to the small diameter portion 56 by welding in a state of being temporarily assembled to the small diameter portion 56 via a jig or the like, or after the small diameter portion 56 is press-fitted. It may be fixed to the small diameter portion 56 by performing welding. Further, when the small diameter portion 56 is press-fitted into the fixing ring 55, the leaf spring 54 is pressed by the fixing ring 55. As a result, the leaf spring 54 is fixed in a state in which the distal end of the leaf spring 54 is deformed by at least 0.3 mm or more in the distal direction of the small diameter portion 56, so that the leaf spring 54 is fixed to the first pad 42 and the second pad 43. It comes in pressure contact with. *
さらに、溶接等を行うことにより、第1クランプ51を構成する軸部材53に外部端子60の基端部を電気的に接続するとともに、外部端子60と電気的に接続される第1クランプ51とは別の第1クランプ51を構成する軸部材53に外部端子61の基端部を電気的に接続する。次に、プラズマパネル積層体20の外表面を覆うようにマット8を取り付けた後、マット8の外表面を覆うようにケース10を取り付ける。その後、外部端子60の先端部に第1の配線6を接続するとともに、外部端子61の先端部に第2の配線7を接続する。以上のプロセスを経て、プラズマリアクタ1が完成する。  Further, by performing welding or the like, the first end 51 of the external terminal 60 is electrically connected to the shaft member 53 constituting the first clamp 51, and the first clamp 51 is electrically connected to the external terminal 60. Is electrically connected to the base member of the external terminal 61 to a shaft member 53 constituting another first clamp 51. Next, after attaching the mat 8 so as to cover the outer surface of the plasma panel laminate 20, the case 10 is attached so as to cover the outer surface of the mat 8. Thereafter, the first wiring 6 is connected to the distal end portion of the external terminal 60, and the second wiring 7 is connected to the distal end portion of the external terminal 61. The plasma reactor 1 is completed through the above processes. *
従って、本実施形態によれば以下の効果を得ることができる。  Therefore, according to the present embodiment, the following effects can be obtained. *
(1)本実施形態のプラズマリアクタ1では、クランプ51,52が、略円柱形状に形成されることにより比較的剛性の高い軸部材53と、金属板の折り曲げによって形成されることにより弾性を有する板ばね54とを備えている。このため、クランプ51,52を用いて複数の電極パネル30を積層方向に挟み込むようにすれば、複数の電極パネル30を安定して保持することができる。よって、ケース10とプラズマパネル積層体20との熱膨張差に起因する応力や、車両等への取付時における振動や衝撃等に起因する外力が、ケース10からプラズマパネル積層体20に対して作用したとしても、プラズマパネル積層体20の変形が板ばね54の弾性変形によって抑制される。また、板ばね54を軸部材53とは別体に構成することにより、プラズマパネル積層体20の厚さに合わせて、軸部材53に板ばね54を固定することができる。その結果、プラズマパネル積層体20の厚さのバラツキを吸収することができ、複数の電極パネル30(プラズマパネル積層体20)をクランプ51,52によって確実に挟み込んで固定することができる。ゆえに、プラズマリアクタ1の信頼性を向上させることができる。  (1) In the plasma reactor 1 of the present embodiment, the clamps 51 and 52 are formed in a substantially cylindrical shape, and thus have elasticity by being formed by bending a relatively rigid shaft member 53 and a metal plate. A leaf spring 54 is provided. For this reason, if the plurality of electrode panels 30 are sandwiched in the stacking direction using the clamps 51 and 52, the plurality of electrode panels 30 can be stably held. Therefore, the stress caused by the difference in thermal expansion between the case 10 and the plasma panel laminate 20 and the external force caused by the vibration or impact at the time of mounting on the vehicle or the like acts on the plasma panel laminate 20 from the case 10. Even so, the deformation of the plasma panel laminate 20 is suppressed by the elastic deformation of the leaf spring 54. Further, by configuring the plate spring 54 separately from the shaft member 53, the plate spring 54 can be fixed to the shaft member 53 in accordance with the thickness of the plasma panel laminate 20. As a result, variations in the thickness of the plasma panel laminate 20 can be absorbed, and the plurality of electrode panels 30 (plasma panel laminate 20) can be securely sandwiched and fixed by the clamps 51 and 52. Therefore, the reliability of the plasma reactor 1 can be improved. *
(2)本実施形態の板ばね54は、先端を小径部56の先端方向に少なくとも0.3mm以上変形させた状態で、軸部材53に固定されている。その結果、温度上昇に伴って軸部材53が電極パネル30の積層方向に膨張したとしても、板ばね54は、電極パネル30の表面(ガス非通過面23,25)側に押圧された状態に維持される。ゆえに、複数の電極パネル30を挟み込む方向に掛かる荷重の抜けが抑制されるため、プラズマリアクタ1の信頼性がよりいっそう向上する。なお、板ばね54の先端の変形量が0.3mm未満であると、軸部材53が膨張した際に、電極パネル30の表面を押圧できなくなり、必要とするクランプ力が得られなくなる可能性がある。  (2) The leaf spring 54 of the present embodiment is fixed to the shaft member 53 in a state where the tip is deformed by at least 0.3 mm in the tip direction of the small diameter portion 56. As a result, even if the shaft member 53 expands in the stacking direction of the electrode panel 30 as the temperature rises, the leaf spring 54 is pressed against the surface (gas non-passing surfaces 23, 25) side of the electrode panel 30. Maintained. Therefore, since the loss of the load applied in the direction in which the plurality of electrode panels 30 are sandwiched is suppressed, the reliability of the plasma reactor 1 is further improved. If the amount of deformation at the tip of the leaf spring 54 is less than 0.3 mm, the surface of the electrode panel 30 cannot be pressed when the shaft member 53 expands, and the required clamping force may not be obtained. is there. *
(3)本実施形態のプラズマリアクタ1では、クランプ51,52を構成する軸部材53が、プラズマパネル積層体20を貫通する孔部27内、即ち、プラズマパネル積層体20において排ガスの流路の近傍に配置されている。その結果
、排ガスによって電極パネル30が加熱されると、これに伴って軸部材53も加熱されるため、電極パネル30と軸部材53との温度差が小さくなる。よって、電極パネル30と軸部材53との熱膨張差に起因する応力が生じにくくなるため、プラズマリアクタ1の信頼性がよりいっそう向上する。 
(3) In the plasma reactor 1 of the present embodiment, the shaft member 53 that constitutes the clamps 51 and 52 is disposed in the hole portion 27 that penetrates the plasma panel stacked body 20, that is, in the plasma panel stacked body 20. It is arranged in the vicinity. As a result, when the electrode panel 30 is heated by the exhaust gas, the shaft member 53 is also heated accordingly, so that the temperature difference between the electrode panel 30 and the shaft member 53 is reduced. Therefore, stress due to the difference in thermal expansion between the electrode panel 30 and the shaft member 53 is less likely to occur, so that the reliability of the plasma reactor 1 is further improved.
(4)例えば、プラズマパネル積層体20を貫通する孔部の断面形状を、角部を有する形状(四角形状など)にすることが考えられる。しかしながら、孔部が角部を有していると、電極パネル30の焼成時に、電極パネル30が角部を起点として変形する可能性がある。また、角部には応力が集中しやすいため、電極パネル30に角部を起点としたクラック等が生じる虞もある。そこで、本実施形態では、プラズマパネル積層体20に断面円形状の孔部27を設け、孔部27に略円柱形状の軸部材53を挿入している。その結果、上記の問題が解消されるため、プラズマリアクタ1の信頼性がよりいっそう向上する。  (4) For example, the cross-sectional shape of the hole that penetrates the plasma panel laminate 20 may be a shape having a corner (such as a square shape). However, if the hole has a corner, the electrode panel 30 may be deformed starting from the corner when the electrode panel 30 is fired. Further, since stress tends to concentrate on the corners, there is a possibility that cracks or the like starting from the corners may occur in the electrode panel 30. Therefore, in this embodiment, the plasma panel laminate 20 is provided with a hole 27 having a circular cross section, and a substantially cylindrical shaft member 53 is inserted into the hole 27. As a result, since the above problem is solved, the reliability of the plasma reactor 1 is further improved. *
(5)本実施形態のプラズマリアクタ1は、第1コーン部11及び第2コーン部12を介して排気管2に取り付けられている。その結果、排気管2の上流側部分4→第1コーン部11→プラズマリアクタ1→第2コーン部12→排気管2の下流側部分5の順番に排ガスが流れる排ガス流路内の抵抗が低減されるため、排ガス流路内における圧力損失を抑えることができる。ひいては、圧力損失に伴うエンジンの出力低下も防止することができる。  (5) The plasma reactor 1 of the present embodiment is attached to the exhaust pipe 2 via the first cone portion 11 and the second cone portion 12. As a result, the resistance in the exhaust gas flow path in which the exhaust gas flows in the order of the upstream portion 4 of the exhaust pipe 2 → the first cone portion 11 → the plasma reactor 1 → the second cone portion 12 → the downstream portion 5 of the exhaust pipe 2 is reduced. Therefore, the pressure loss in the exhaust gas passage can be suppressed. As a result, it is possible to prevent the engine output from decreasing due to pressure loss. *
なお、上記実施形態を以下のように変更してもよい。  In addition, you may change the said embodiment as follows. *
・上記実施形態のクランプ51,52は、軸部材53の両端部に対して板ばね54を取り付けることにより構成されていたが、クランプの構造を変更してもよい。例えば、図10に示されるように、クランプ71を、板部材72(クランプ本体)の一方の端部(上端部)に対して板ばね73(押さえ部材)を嵌合させることにより構成してもよいし、板ばね73を嵌合させた後で溶接を施すことにより構成してもよい。このようにした場合、軸部材53を挿入するための孔部27を形成しなくても済むため、クランプ71によって複数の電極パネル30を容易に固定することができる。また、クランプ71の取付位置を容易に変更することもできる。  -The clamps 51 and 52 of the said embodiment were comprised by attaching the leaf | plate spring 54 with respect to the both ends of the shaft member 53, However, You may change the structure of a clamp. For example, as shown in FIG. 10, the clamp 71 may be configured by fitting a leaf spring 73 (pressing member) to one end (upper end) of the plate member 72 (clamp body). It may be configured by welding after the leaf spring 73 is fitted. In this case, since it is not necessary to form the hole 27 for inserting the shaft member 53, the plurality of electrode panels 30 can be easily fixed by the clamp 71. Moreover, the attachment position of the clamp 71 can also be changed easily. *
・上記実施形態のクランプ51,52は、軸部材53の両端部に対して板ばね54を取り付けることにより構成されていた。しかし、図11に示されるように、クランプ81を、軸部材82(クランプ本体)の一方の端部(上端部)のみに対して板ばね83(押さえ部材)を取り付けることにより構成してもよい。なお、軸部材82のもう一方の端部(下端部)には、係止板84が形成されており、係止板84は、プラズマパネル積層体85(セラミックパネル積層体)を構成する最下層の電極パネル86(セラミックパネル)の表面(第2主面87)に当接している。  -The clamps 51 and 52 of the said embodiment were comprised by attaching the leaf | plate spring 54 with respect to the both ends of the shaft member 53. As shown in FIG. However, as shown in FIG. 11, the clamp 81 may be configured by attaching a leaf spring 83 (pressing member) to only one end (upper end) of the shaft member 82 (clamp body). . A locking plate 84 is formed at the other end (lower end) of the shaft member 82, and the locking plate 84 is the lowest layer that constitutes the plasma panel laminate 85 (ceramic panel laminate). The electrode panel 86 (ceramic panel) is in contact with the surface (second main surface 87). *
・上記実施形態のクランプ51,52は、軸部材53の両端部に対してそれぞれ同一形状の板ばね54を取り付けることにより構成されていたが、板ばね54は必ずしも同一形状でなくてもよい。例えば、一方の板ばねを別の形状に変更することにより、板ばねのばね定数を大きくしてもよい。このようにすれば、組付治具への板ばねの取付性が向上するため、板ばねの組付効率が向上する。  -Although clamp 51,52 of the said embodiment was comprised by attaching the leaf spring 54 of the same shape with respect to the both ends of the shaft member 53, the leaf | plate spring 54 does not necessarily need to be the same shape. For example, the spring constant of the leaf spring may be increased by changing one leaf spring to another shape. In this way, the attachment efficiency of the leaf spring to the assembly jig is improved, so that the assembly efficiency of the leaf spring is improved. *
・上記実施形態のクランプ51,52では、軸部材53の小径部56の先端部に固定リング55を圧入させることにより、板ばね54と軸部材53とが固定されるようになっていたが、他の手法を用いて板ばね54と軸部材53とを固定するようにしてもよい。例えば、図12に示されるように、板ばね91(押さえ部材)の中央部92に小径部93の先端部を挿通させた状態で溶接を行うことにより、板ばね91及び軸部材94(クランプ本体)の一部の領域を、溶接部95を介して互いに固定するようにしてもよい。また、小径部の先端部をスピンカシメによって変形させることにより、板ばねと軸部材とを固定するようにしてもよい。なお、小径部の先端部をかしめる手法としては、スピンカシメに限定される訳ではなく、例えば、バーリングカシメ、ダボカシメ、Vカシメ等の手法を用いることができる。  In the clamps 51 and 52 of the above embodiment, the leaf spring 54 and the shaft member 53 are fixed by press-fitting the fixing ring 55 into the tip of the small diameter portion 56 of the shaft member 53. The leaf spring 54 and the shaft member 53 may be fixed using another method. For example, as shown in FIG. 12, the plate spring 91 and the shaft member 94 (clamp main body) can be obtained by performing welding in a state where the distal end portion of the small diameter portion 93 is inserted into the central portion 92 of the plate spring 91 (pressing member). ) May be fixed to each other via the welded portion 95. Moreover, you may make it fix a leaf | plate spring and a shaft member by deform | transforming the front-end | tip part of a small diameter part by spin caulking. The method for caulking the tip of the small diameter portion is not limited to spin caulking, and for example, methods such as burring caulking, dowel caulking, and V caulking can be used. *
・図13のクランプ101に示されるように、電極パネル30の表面(ガス非通過面23,25)を押圧する押さえ部材は、曲げ戻し構造を有する板ばね102(押さえ部材)であってもよい。即ち、板ばね102は、軸部材53の小径部56から離間する方向に延びるものの、先端部が湾曲して逆方向(小径部56側)に戻る構造であってもよい。  As shown in the clamp 101 of FIG. 13, the pressing member that presses the surface (the gas non-passing surfaces 23 and 25) of the electrode panel 30 may be a leaf spring 102 (pressing member) having a bent back structure. . In other words, the leaf spring 102 may extend in a direction away from the small diameter portion 56 of the shaft member 53, but may have a structure in which the tip portion is curved and returns to the reverse direction (the small diameter portion 56 side). *
さらに、図14のクランプ111に示されるように、板ばね112(押さえ部材)が曲げ戻し構造を有する場合、折り返し部113の曲率半径R1と電極パネル114(セラミックパネル)との接触部115の曲率半径R2とを互いに異なる大きさとなるように設定してもよい。ここでは、接触部115の曲率半径R2を折り返し部113の曲率半径R1よりも大きくすることにより、電極パネル114への応力集中を緩和することができる。なお、電極パネル114への応力集中が問題とならない場合には、接触部115の曲率半径R2を折り返し部113の曲率半径R1より小さくしてもよい。  Further, as shown in the clamp 111 of FIG. 14, when the leaf spring 112 (pressing member) has a bent back structure, the curvature radius R1 of the folded portion 113 and the curvature of the contact portion 115 between the electrode panel 114 (ceramic panel). The radius R2 may be set to have different sizes. Here, by making the curvature radius R2 of the contact portion 115 larger than the curvature radius R1 of the folded portion 113, the stress concentration on the electrode panel 114 can be alleviated. If the stress concentration on the electrode panel 114 is not a problem, the curvature radius R2 of the contact portion 115 may be smaller than the curvature radius R1 of the folded portion 113. *
また、図14に示されるように、接触部115の曲率半径R2の中心と折り返し部113の曲率半径R1の中心とを互いにずらしてもよい(図14のG1参照)。ここでは、曲率半径R2の中心が曲率半径R1の中心よりも軸部材116(クランプ本体)側にずらされている。このようにすれば、プラズマリアクタの温度上昇に伴う電極パネル114の膨張や、プラズマリアクタの温度低下に伴う電極パネル114の収縮が生じたとしても、電極パネル114と板ばね112との接触位置のずれが生じにくくなる。このため、より安定的に複数の電極パネル114を固定することができる。  Further, as shown in FIG. 14, the center of the curvature radius R2 of the contact portion 115 and the center of the curvature radius R1 of the folded portion 113 may be shifted from each other (see G1 in FIG. 14). Here, the center of the curvature radius R2 is shifted to the shaft member 116 (clamp main body) side from the center of the curvature radius R1. In this way, even if the electrode panel 114 expands as the temperature of the plasma reactor rises or the electrode panel 114 shrinks as the temperature of the plasma reactor decreases, the contact position between the electrode panel 114 and the leaf spring 112 can be reduced. Misalignment is less likely to occur. For this reason, the plurality of electrode panels 114 can be fixed more stably. *
また、図15,図16のクランプ121に示されるように、板ばね122(押さえ部材)が曲げ戻し構造を有する場合、板ばね122は、同板ばね122を厚さ方向に貫通するスリット123を有していてもよい。このようにすれば、熱膨張による板ばね122の変形を、スリット123の形成部分によって吸収することができる。  15 and 16, when the leaf spring 122 (pressing member) has a bent back structure, the leaf spring 122 has a slit 123 that penetrates the leaf spring 122 in the thickness direction. You may have. In this way, deformation of the leaf spring 122 due to thermal expansion can be absorbed by the portion where the slit 123 is formed. *
・上記実施形態のクランプ51,52では、軸部材53の小径部56の先端部に固定リング55を圧入させることにより、板ばね54が軸部材53に固定されるようになっていたが、他の手法を用いて板ばね54を軸部材53に固定するようにしてもよい。例えば、図17のクランプ131に示されるように、軸部材132(クランプ本体)の端部にネジ部133を設け、板ばね134(押さえ部材)に軸部材132を挿通させた状態で、ナット135をネジ部133に螺着させることにより、板ばね134を軸部材132に固定するようにしてもよい。  In the clamps 51 and 52 of the above embodiment, the leaf spring 54 is fixed to the shaft member 53 by press-fitting the fixing ring 55 to the tip of the small diameter portion 56 of the shaft member 53. The leaf spring 54 may be fixed to the shaft member 53 using the above method. For example, as shown in the clamp 131 of FIG. 17, a nut 135 is provided in a state in which a screw portion 133 is provided at the end of the shaft member 132 (clamp body) and the shaft member 132 is inserted through the leaf spring 134 (pressing member). The leaf spring 134 may be fixed to the shaft member 132 by screwing the screw spring 133 to the screw portion 133. *
・上記実施形態のクランプ51,52では、板ばね54が押さえ部材として用いられていたが、他の構成を押さえ部材として用いてもよい。例えば、図18のクランプ141に示されるように、押さえ部材142は、押さえ板143と圧縮コイルばね144とを備えるものであってもよい。なお、押さえ板143は、電極パネル145(セラミックパネル)の表面146に当接するものであり、表面146(具体的には、最上層の電極パネル145の第1主面31上に形成された第1パッド42、または、最下層の電極パネル145の第2主面32上に形成された第2パッド43)に圧接する接触部147を有している。また、圧縮コイルばね144は、押さえ板143と軸部材148(クランプ本体)の端部に設けられた固定リング149(固定部)との間に介在され、押さえ板143を電極パネル145の表面146側に押圧するようになっている。  -In clamp 51,52 of the said embodiment, although the leaf | plate spring 54 was used as a pressing member, you may use another structure as a pressing member. For example, as shown in the clamp 141 of FIG. 18, the pressing member 142 may include a pressing plate 143 and a compression coil spring 144. The pressing plate 143 is in contact with the surface 146 of the electrode panel 145 (ceramic panel). Specifically, the pressing plate 143 is a first surface formed on the surface 146 (specifically, the first main surface 31 of the uppermost electrode panel 145). The contact portion 147 is in pressure contact with the first pad 42 or the second pad 43) formed on the second main surface 32 of the lowermost electrode panel 145. The compression coil spring 144 is interposed between the pressing plate 143 and a fixing ring 149 (fixing portion) provided at the end of the shaft member 148 (clamp body), and the pressing plate 143 is attached to the surface 146 of the electrode panel 145. It pushes to the side. *
なお、図19のクランプ151に示されるように、押さえ板152は、上記の接触部147を省略した形状(即ち、平板状)を成していてもよい。また、図20のクランプ161に示されるように、押さえ板162は、上記の接触部147の代わりに、圧縮コイルばね163を位置決めするための位置決め突起164を有していてもよい。さらに、図21のクランプ171に示されるように、押さえ部材172は、上記の押さえ板143,152,162を備えておらず、圧縮コイルばね173が直接電極パネル174(セラミックパネル)を押圧するものであってもよい。  As shown in the clamp 151 of FIG. 19, the pressing plate 152 may have a shape (that is, a flat plate shape) in which the contact portion 147 is omitted. Further, as shown in the clamp 161 of FIG. 20, the pressing plate 162 may have a positioning protrusion 164 for positioning the compression coil spring 163 instead of the contact portion 147 described above. Further, as shown in the clamp 171 of FIG. 21, the pressing member 172 does not include the pressing plates 143, 152, 162, and the compression coil spring 173 directly presses the electrode panel 174 (ceramic panel). It may be. *
・上記実施形態では、プラズマパネル積層体20に断面円形状の孔部27が設けられ、クランプ51,52を構成する略円柱形状の軸部材53が孔部27に挿入されていたが、軸部材53や孔部27の構成は適宜変更されていてもよい。例えば、図22に示されるように、プラズマパネル積層体181(セラミックパネル積層体)に断面矩形状の孔部182を設け、クランプを構成する略四角柱形状の軸部材183(クランプ本体)を孔部182に挿入してもよい。  In the above embodiment, the hole 27 having a circular cross section is provided in the plasma panel laminate 20, and the substantially cylindrical shaft member 53 constituting the clamps 51 and 52 is inserted into the hole 27. The structure of 53 and the hole part 27 may be changed suitably. For example, as shown in FIG. 22, a hole 182 having a rectangular cross section is provided in the plasma panel laminate 181 (ceramic panel laminate), and a shaft member 183 (clamp body) having a substantially quadrangular prism shape constituting the clamp is provided as a hole. You may insert in the part 182. *
また、図23に示されるように、プラズマパネル積層体191(セラミックパネル積層体)は、溝部192や抜け止め機構193を有する構成であってもよい。ここで、溝部192は、電極パネル194(セラミックパネル)の積層方向に貫通し、軸部材195(クランプ本体)が挿入されるようになっている。また、抜け止め機構193は、溝部192の幅が開口部196において狭くなるように形成されることにより、溝部192からの軸部材195の抜けを防止するようになっている。なお、図23に示されるように、軸部材195の外周面と溝部192の内側面との間には、隙間S2が設けられていてもよい。  As shown in FIG. 23, the plasma panel laminate 191 (ceramic panel laminate) may have a groove 192 and a retaining mechanism 193. Here, the groove 192 penetrates in the stacking direction of the electrode panel 194 (ceramic panel), and the shaft member 195 (clamp main body) is inserted therein. Further, the retaining mechanism 193 is formed so that the width of the groove portion 192 becomes narrow at the opening 196, thereby preventing the shaft member 195 from coming off from the groove portion 192. As shown in FIG. 23, a gap S <b> 2 may be provided between the outer peripheral surface of the shaft member 195 and the inner surface of the groove portion 192. *
・上記実施形態のプラズマリアクタ1の製造方法では、軸部材53を孔部27に挿入した後で、孔部27のガス非通過面23側の開口部から露出する軸部材53の小径部56、及び、孔部27のガス非通過面25側の開口部から露出する軸部材53の小径部56に対して、それぞれ板ばね54を取り付けていた。しかし、一方の端部に板ばね54が取り付けられた軸部材53を孔部27に挿入した後、孔部27から突出する軸部材53のもう一方の端部に板ばね54を取り付けるようにしてもよい。  In the manufacturing method of the plasma reactor 1 of the above embodiment, the small diameter portion 56 of the shaft member 53 exposed from the opening on the gas non-passing surface 23 side of the hole 27 after the shaft member 53 is inserted into the hole 27, And the leaf | plate spring 54 was attached with respect to the small diameter part 56 of the shaft member 53 exposed from the opening part by the side of the gas non-passing surface 25 of the hole 27, respectively. However, after the shaft member 53 having the leaf spring 54 attached to one end is inserted into the hole 27, the leaf spring 54 is attached to the other end of the shaft member 53 protruding from the hole 27. Also good. *
・上記実施形態の電極パネル30は、誘電体33に放電電極34を内蔵することによって構成されていた。しかし、誘電体33の表面に放電電極34を形成することによって電極パネルを構成してもよい。  -The electrode panel 30 of the said embodiment was comprised by incorporating the discharge electrode 34 in the dielectric material 33. FIG. However, the electrode panel may be configured by forming the discharge electrode 34 on the surface of the dielectric 33. *
・上記実施形態のプラズマリアクタ1は、自動車のエンジンの排ガス浄化に用いられていたが、例えば、船舶等のエンジンの排ガス浄化に用いてもよい。また、プラズマリアクタ1は、プラズマ処理を行うものであればよく、排ガスの処理を行うものでなくてもよいし、浄化に用いるものでなくてもよい。  -Although the plasma reactor 1 of the said embodiment was used for exhaust gas purification of the engine of a motor vehicle, you may use it for exhaust gas purification of engines, such as a ship, for example. Moreover, the plasma reactor 1 should just perform a plasma process, and does not need to perform the process of waste gas, and does not need to be used for purification | cleaning. *
・上記実施形態のクランプ51,52は、プラズマリアクタ1を構成するプラズマパネル積層体20(複数の電極パネル30)を積層方向に挟み込んで固定するクランプであったが、プラズマパネル積層体20とは異なる所定のセラミックパネル積層体(複数のセラミックパネル)を積層方向に挟み込んで固定する積層体用クランプであってもよい。  The clamps 51 and 52 of the above embodiment are clamps that sandwich and fix the plasma panel laminate 20 (a plurality of electrode panels 30) constituting the plasma reactor 1 in the lamination direction. What is the plasma panel laminate 20? It may be a laminate clamp that sandwiches and fixes different predetermined ceramic panel laminates (a plurality of ceramic panels) in the lamination direction. *
次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。  Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiment described above are listed below. *
(1)上記手段1において、前記押さえ部材は、前記クランプ本体よりも高い弾性を有していることを特徴とするプラズマリアクタ。  (1) The plasma reactor according to the above means 1, wherein the pressing member has higher elasticity than the clamp body. *
(2)上記手段1において、前記電極パネルは、第1主面及び第2主面を有しており、前記電極パネルに、前記第1主面側と前記第2主面側とを導通させる導通構造が設けられ、前記導通構造は、前記第1主面及び前記第2主面を貫通するスルーホール導体と、前記第1主面に形成され、前記スルーホール導体の前記第1主面側端部に電気的に接続される第1パッドと、前記第2主面に形成され、前記スルーホール導体の前記第2主面側端部に電気的に接続される第2パッドとを備えることを特徴とするプラズマリアクタ。 (2) In the above means 1, the electrode panel has a first main surface and a second main surface, and the first main surface side and the second main surface side are electrically connected to the electrode panel. A conduction structure is provided, and the conduction structure is formed in the first main surface and the through hole conductor penetrating the first main surface and the second main surface, and the first main surface side of the through hole conductor. A first pad that is electrically connected to the end, and a second pad that is formed on the second main surface and is electrically connected to the end of the through-hole conductor on the second main surface. A plasma reactor characterized by.
1…プラズマリアクタ















20,85,181,191…セラミックパネル積層体としてのプラズマパネル積層体















27,182…孔部















30,86,114,145,174,194…セラミックパネルとしての電極パネル















31…表面としての第1主面















32…表面としての第2主面















34…放電電極















41…電気導通部材としてのスルーホール導体















42…電気導通部材としての第1パッド















43…電気導通部材としての第2パッド















51…クランプ、電気導通部材及び積層体用クランプとしての第1クランプ















52…クランプ及び積層体用クランプとしての第2クランプ















53,82,94,116,132,148,183,195…クランプ本体としての軸部材















54,73,83,91,102,112,122,134…押さえ部材としての板ばね















71,81,101,111,121,131,141,151,161,171…電気導通部材及び積層体用クランプとしてのクランプ















72…クランプ本体としての板部材















95…溶接部















123…スリット















133…ネジ部















135…ナット















142,172…押さえ部材















143,152,162…押さえ板















144,163…圧縮コイルばね















146…表面















149…固定部としての固定リング















192…溝部















193…抜け止め機構















196…開口部















S1,S2…隙間
1 ... Plasma reactor















20, 85, 181, 191 ... Plasma panel laminate as a ceramic panel laminate















27, 182 ... hole















30, 86, 114, 145, 174, 194 ... Electrode panel as a ceramic panel















31 ... 1st main surface as a surface















32 ... Second main surface as a surface















34 ... Discharge electrode















41. Through-hole conductor as an electrically conductive member















42. First pad as an electrically conductive member















43 ... Second pad as an electrically conductive member















51... First clamp as a clamp, an electrically conductive member, and a laminate clamp















52. Second clamp as clamp and laminate clamp















53, 82, 94, 116, 132, 148, 183, 195 ... Shaft member as a clamp body















54, 73, 83, 91, 102, 112, 122, 134 ... leaf springs as pressing members















71, 81, 101, 111, 121, 131, 141, 151, 161, 171... Clamps as electrical conducting members and laminate clamps















72 ... Plate member as clamp body















95 ... Welded part















123 ... Slit















133 ... Screw part















135 ... Nut















142, 172 ... holding members















143, 152, 162 ... holding plate















144, 163 ... Compression coil spring















146 ... Surface















149: Fixing ring as a fixing part















192 ... Groove















193 ... Retaining mechanism















196 ... opening















S1, S2 ... Gap

Claims (24)

  1. 放電電極を有する複数の電極パネルを積層した構造を有し、隣接する前記電極パネル間に電圧を印加することによってプラズマを発生させるプラズマパネル積層体と、































     前記複数の電極パネルを積層方向に挟み込んで固定するクランプとを備えるプラズマリアクタであって、































     前記クランプは、































     前記電極パネルの積層方向に延びるクランプ本体と、































     前記クランプ本体とは別体に構成され、前記クランプ本体の少なくとも一方の端部に取り付けられ、前記プラズマパネル積層体を構成する前記電極パネルの表面を押圧する押さえ部材とを備え、































     前記クランプ本体と前記押さえ部材とが固定されていることを特徴とするプラズマリアクタ。
    A plasma panel laminate having a structure in which a plurality of electrode panels having discharge electrodes are laminated, and generating plasma by applying a voltage between the adjacent electrode panels;































    A plasma reactor comprising a clamp that sandwiches and fixes the plurality of electrode panels in the stacking direction,































    The clamp is































    A clamp body extending in the stacking direction of the electrode panel;































    The clamp body is configured separately from the clamp body, and is attached to at least one end of the clamp body, and includes a pressing member that presses the surface of the electrode panel constituting the plasma panel laminate,































    The plasma reactor, wherein the clamp body and the pressing member are fixed.
  2. 前記クランプが複数設けられ、































     複数の前記クランプの少なくとも1つが、前記放電電極に電気的に接続される電気導通部材としての機能を有していることを特徴とする請求項1に記載のプラズマリアクタ。
    A plurality of the clamps are provided,































    2. The plasma reactor according to claim 1, wherein at least one of the plurality of clamps has a function as an electrically conductive member electrically connected to the discharge electrode.
  3. 前記押さえ部材は弾性を有していることを特徴とする請求項1または2に記載のプラズマリアクタ。 The plasma reactor according to claim 1, wherein the pressing member has elasticity.
  4. 1つの前記押さえ部材は、複数箇所において前記電極パネルの表面を押圧することを特徴とする請求項1乃至3のいずれか1項に記載のプラズマリアクタ。 The plasma reactor according to any one of claims 1 to 3, wherein one pressing member presses the surface of the electrode panel at a plurality of locations.
  5. 前記押さえ部材は、前記クランプ本体の両端部に固定されていることを特徴とする請求項1乃至4のいずれか1項に記載のプラズマリアクタ。 The plasma reactor according to claim 1, wherein the pressing member is fixed to both ends of the clamp body.
  6. 前記押さえ部材は、曲げ戻し構造を有する板ばねであることを特徴とする請求項1乃至5のいずれか1項に記載のプラズマリアクタ。 The plasma reactor according to claim 1, wherein the pressing member is a leaf spring having a bent back structure.
  7. 前記押さえ部材は、同押さえ部材を厚さ方向に貫通するスリットを有する板ばねであることを特徴とする請求項1乃至6のいずれか1項に記載のプラズマリアクタ。 The plasma reactor according to any one of claims 1 to 6, wherein the pressing member is a leaf spring having a slit penetrating the pressing member in the thickness direction.
  8. 前記クランプ本体は、棒状をなす軸部材であり、































     前記プラズマパネル積層体は、前記電極パネルの積層方向に貫通し、前記軸部材が挿入される孔部を有することを特徴とする請求項1乃至7のいずれか1項に記載のプラズマリアクタ。
    The clamp body is a rod-shaped shaft member,































    The plasma reactor according to any one of claims 1 to 7, wherein the plasma panel laminate includes a hole portion that penetrates in the stacking direction of the electrode panel and into which the shaft member is inserted.
  9. 前記軸部材の外周面と前記孔部の内周面との間に、隙間が設けられていることを特徴とする請求項8に記載のプラズマリアクタ。 The plasma reactor according to claim 8, wherein a gap is provided between an outer peripheral surface of the shaft member and an inner peripheral surface of the hole.
  10. 前記クランプ本体は、棒状をなす軸部材であり、







     前記プラズマパネル積層体は、















     前記電極パネルの積層方向に貫通し、前記軸部材が挿入される溝部を有し、







     前記溝部の幅が開口部において狭くなるように形成されることにより、前記溝部からの前記軸部材の抜けを防止する抜け止め機構を有することを特徴とする請求項1乃至7のいずれか1項に記載のプラズマリアクタ。
    The clamp body is a rod-shaped shaft member,







    The plasma panel laminate is















    It has a groove part that penetrates in the stacking direction of the electrode panel and into which the shaft member is inserted,







    8. The device according to claim 1, further comprising a retaining mechanism that prevents the shaft member from coming off from the groove by forming the groove so that the width of the groove becomes narrower at the opening. 9. A plasma reactor according to 1.
  11. 前記軸部材の外周面と前記溝部の内側面との間に、隙間が設けられていることを特徴とする請求項10に記載のプラズマリアクタ。 The plasma reactor according to claim 10, wherein a gap is provided between an outer peripheral surface of the shaft member and an inner surface of the groove portion.
  12. 前記クランプ本体は、前記押さえ部材よりも熱膨張係数が低い材料によって形成されていることを特徴とする請求項1乃至11のいずれか1項に記載のプラズマリアクタ。 The plasma reactor according to any one of claims 1 to 11, wherein the clamp body is made of a material having a lower thermal expansion coefficient than the pressing member.
  13. 前記クランプ本体の端部にネジ部が設けられ、















     前記押さえ部材に前記クランプ本体を挿通させた状態で、ナットを前記ネジ部に螺着させることにより、前記押さえ部材が前記クランプ本体に固定されることを特徴とする請求項1乃至12のいずれか1項に記載のプラズマリアクタ。
    A threaded portion is provided at the end of the clamp body,















    13. The pressing member is fixed to the clamp body by screwing a nut into the threaded portion in a state where the clamp body is inserted through the pressing member. 2. The plasma reactor according to item 1.
  14. 前記押さえ部材及び前記クランプ本体は、一部の領域が溶接部により互いに固定されていることを特徴とする請求項1乃至13のいずれか1項に記載のプラズマリアクタ。 The plasma reactor according to any one of claims 1 to 13, wherein a part of the pressing member and the clamp main body are fixed to each other by a welded portion.
  15. 前記押さえ部材は、















     前記電極パネルの表面に当接する押さえ板と、















     前記押さえ板と前記クランプ本体の端部に設けられた固定部との間に介在され、前記押さえ板を前記電極パネルの表面側に押圧する圧縮コイルばねとを備えることを特徴とする請求項1乃至14のいずれか1項に記載のプラズマリアクタ。
    The holding member is















    A pressing plate in contact with the surface of the electrode panel;















    2. A compression coil spring interposed between the pressing plate and a fixed portion provided at an end portion of the clamp body and pressing the pressing plate against the surface side of the electrode panel. The plasma reactor according to any one of 1 to 14.
  16. 複数のセラミックパネルを積層した構造を有するセラミックパネル積層体を、前記セラミックパネルの積層方向に挟み込んで固定する積層体用クランプであって、















     前記セラミックパネルの積層方向に延びるクランプ本体と、















     前記クランプ本体とは別体に構成され、前記クランプ本体の少なくとも一方の端部に取り付けられ、前記セラミックパネル積層体を構成する前記セラミックパネルの表面を押圧する押さえ部材とを備え、















     前記クランプ本体と前記押さえ部材とが固定されていることを特徴とする積層体用クランプ。
    A laminate clamp for sandwiching and fixing a ceramic panel laminate having a structure in which a plurality of ceramic panels are laminated, in the lamination direction of the ceramic panel,















    A clamp body extending in the stacking direction of the ceramic panels;















    The clamp body is configured separately from the clamp body, and is attached to at least one end of the clamp body, and includes a pressing member that presses the surface of the ceramic panel constituting the ceramic panel laminate,















    The clamp for laminated bodies, wherein the clamp body and the pressing member are fixed.
  17. 前記押さえ部材は弾性を有していることを特徴とする請求項16に記載の積層体用クランプ。 The said clamp member has elasticity, The clamp for laminated bodies of Claim 16 characterized by the above-mentioned.
  18. 前記押さえ部材は、前記クランプ本体の両端部に固定されていることを特徴とする請求項16または17に記載の積層体用クランプ。 The laminate clamp according to claim 16 or 17, wherein the pressing member is fixed to both ends of the clamp body.
  19. 前記押さえ部材は、曲げ戻し構造を有する板ばねであることを特徴とする請求項16乃至18のいずれか1項に記載の積層体用クランプ。 The clamp for a laminated body according to any one of claims 16 to 18, wherein the pressing member is a leaf spring having a bent back structure.
  20. 前記押さえ部材は、同押さえ部材を厚さ方向に貫通するスリットを有する板ばねであることを特徴とする請求項16乃至19のいずれか1項に記載の積層体用クランプ。 The laminate clamp according to any one of claims 16 to 19, wherein the pressing member is a leaf spring having a slit penetrating the pressing member in the thickness direction.
  21. 前記クランプ本体は、前記押さえ部材よりも熱膨張係数が低い材料によって形成されていることを特徴とする請求項16乃至20のいずれか1項に記載の積層体用クランプ。 The laminate body clamp according to any one of claims 16 to 20, wherein the clamp body is formed of a material having a lower thermal expansion coefficient than the pressing member.
  22. 前記クランプ本体の端部にネジ部が設けられ、















     前記押さえ部材に前記クランプ本体を挿通させた状態で、ナットを前記ネジ部に螺着させることにより、前記押さえ部材が前記クランプ本体に固定されることを特徴とする請求項16乃至21のいずれか1項に記載の積層体用クランプ。
    A threaded portion is provided at the end of the clamp body,















    The clamp member is fixed to the clamp body by screwing a nut into the threaded portion in a state where the clamp body is inserted through the clamp member. 2. The laminate clamp according to item 1.
  23. 前記押さえ部材及び前記クランプ本体は、一部の領域が溶接部により互いに固定されていることを特徴とする請求項16乃至22のいずれか1項に記載の積層体用クランプ。 The clamp for a laminated body according to any one of claims 16 to 22, wherein a part of the pressing member and the clamp body are fixed to each other by a welded portion.
  24. 前記押さえ部材は、















     前記セラミックパネルの表面に当接する押さえ板と、















     前記押さえ板と前記クランプ本体の端部に設けられた固定部との間に介在され、前記押さえ板を前記セラミックパネルの表面側に押圧する圧縮コイルばねとを備えることを特徴とする請求項16乃至23のいずれか1項に記載の積層体用クランプ。
    The holding member is















    A pressing plate that contacts the surface of the ceramic panel;















    17. A compression coil spring interposed between the pressing plate and a fixing portion provided at an end of the clamp body and pressing the pressing plate against the surface side of the ceramic panel. 24. The laminate clamp according to any one of items 23 to 23.
PCT/JP2016/085707 2015-12-11 2016-12-01 Plasma reactor and clamp for laminated body WO2017098987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-241706 2015-12-11
JP2015241706A JP2017107781A (en) 2015-12-11 2015-12-11 Plasma reactor and clamp for laminate

Publications (1)

Publication Number Publication Date
WO2017098987A1 true WO2017098987A1 (en) 2017-06-15

Family

ID=59013103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085707 WO2017098987A1 (en) 2015-12-11 2016-12-01 Plasma reactor and clamp for laminated body

Country Status (2)

Country Link
JP (1) JP2017107781A (en)
WO (1) WO2017098987A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6917813B2 (en) * 2017-07-13 2021-08-11 日本特殊陶業株式会社 Plasma reactor, air purifier
JP7417262B2 (en) 2020-05-11 2024-01-18 株式会社イー・エム・ディー plasma generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510187A (en) * 2002-12-13 2006-03-23 ブルー プラネット カンパニー リミテッド Plasma reactor and electrode plate used therefor
JP2011023244A (en) * 2009-07-16 2011-02-03 Panasonic Electric Works Co Ltd Plasma processing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100776616B1 (en) * 2006-05-04 2007-11-15 한국기계연구원 Flat type Plasma Reactor
JP2009087699A (en) * 2007-09-28 2009-04-23 Kyocera Corp Plasma generating body and method for manufacturing the same, and reaction device
JP2009087701A (en) * 2007-09-28 2009-04-23 Kyocera Corp Plasma generator and manufacturing method of plasma generator, and reactor
DE112009000131T5 (en) * 2008-01-18 2010-12-09 Kyocera Corporation Plasma generator and discharge device and reactor that uses a plasma generator
JP2011012559A (en) * 2009-06-30 2011-01-20 Acr Co Ltd Exhaust emission control device using plasma discharge
JP2016225025A (en) * 2015-05-27 2016-12-28 シャープ株式会社 Plasma generation element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510187A (en) * 2002-12-13 2006-03-23 ブルー プラネット カンパニー リミテッド Plasma reactor and electrode plate used therefor
JP2011023244A (en) * 2009-07-16 2011-02-03 Panasonic Electric Works Co Ltd Plasma processing apparatus

Also Published As

Publication number Publication date
JP2017107781A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
US8128884B2 (en) Plasma reactor
WO2017099011A1 (en) Plasma reactor and plasma electrode plate
WO2017098987A1 (en) Plasma reactor and clamp for laminated body
WO2017099175A1 (en) Plasma reactor
JP6491749B2 (en) Plasma reactor
EP1835789B1 (en) Plasma generating electrode and plasma reactor
JP6656008B2 (en) Plasma reactor
JP2020053526A (en) Electronic components
JP6738175B2 (en) Plasma reactor
JP2017157363A (en) Plasma reactor
JP7049777B2 (en) Plasma reactor
JP2017140575A (en) Plasma reactor
JP7146439B2 (en) plasma reactor
JP7101521B2 (en) Plasma reactor and its control method
JP6886349B2 (en) Plasma reactor
JP7044485B2 (en) Plasma reactor
JPWO2010024276A1 (en) Multilayer piezoelectric element
JP6867178B2 (en) Plasma reactor
JP2017174620A (en) Plasma reactor
JP2019046555A (en) Plasma reactor
JP6300255B2 (en) Piezoelectric element, piezoelectric actuator and piezoelectric transformer
JP4474278B2 (en) Plasma generating electrode and plasma reactor
JP6890045B2 (en) Plasma reactor
JP2748830B2 (en) Multilayer electrostrictive effect element
JP2003257779A (en) Electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872885

Country of ref document: EP

Kind code of ref document: A1