WO2017097557A1 - Verfahren, vorrichtung und system zum betreiben eines stickoxidsensors - Google Patents

Verfahren, vorrichtung und system zum betreiben eines stickoxidsensors Download PDF

Info

Publication number
WO2017097557A1
WO2017097557A1 PCT/EP2016/077938 EP2016077938W WO2017097557A1 WO 2017097557 A1 WO2017097557 A1 WO 2017097557A1 EP 2016077938 W EP2016077938 W EP 2016077938W WO 2017097557 A1 WO2017097557 A1 WO 2017097557A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen oxide
value
oxide sensor
characteristic value
characteristic
Prior art date
Application number
PCT/EP2016/077938
Other languages
English (en)
French (fr)
Inventor
Hong Zhang
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to CN201680072551.6A priority Critical patent/CN108368763B/zh
Priority to US16/061,267 priority patent/US10914220B2/en
Priority to EP16797892.3A priority patent/EP3387226A1/de
Publication of WO2017097557A1 publication Critical patent/WO2017097557A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method, a device and a system for operating a nitrogen oxide sensor of a vehicle having a first nitrogen oxide sensor, a second nitrogen oxide sensor and a catalytic converter, wherein one of the two nitrogen oxide sensors is arranged upstream of the catalytic converter in the exhaust gas flow direction, and the other nitrogen oxide sensor downstream of the catalytic converter Catalyst is arranged.
  • nitrogen oxide sensors are used to determine the nitrogen oxide content in the exhaust gas.
  • the object of the invention is to provide a method and a device which contribute to a very reliable operation of a nitrogen oxide sensor.
  • the invention is characterized by a method for operating a nitrogen oxide sensor of a vehicle having a first nitrogen oxide sensor, a second nitrogen oxide sensor and a catalytic converter, wherein one of the two nitrogen oxide sensors is arranged upstream of the catalytic converter in the exhaust gas flow direction, and the other nitrogen oxide sensor downstream of the catalytic converter in the exhaust gas flow direction is arranged.
  • the invention is further characterized by a device for operating the nitrogen oxide sensor, wherein the device is designed to carry out the method for operating the nitrogen oxide sensor.
  • the invention is further characterized by a system comprising the device for operating the nitrogen oxide sensor, the first nitrogen oxide sensor, the second nitrogen oxide sensor and the catalyst.
  • the system includes, for example, the vehicle.
  • a first characteristic value of the first nitrogen oxide sensor is determined.
  • a second parameter of the second nitrogen oxide sensor is determined.
  • a ratio of the first characteristic value to the second characteristic value is determined.
  • a sensor measured value of the second nitrogen oxide sensor is adapted. An adaptation of the sensor reading of the nitrogen oxide sensors is difficult, since there is a high cross-sensitivity of oxygen and NOx concentration.
  • a very large signal drift can be compensated without a signal ⁇ quality is significantly degraded, especially for an NH3-regulation and / or an SCR (selective catalytic re- production) catalyst diagnosis.
  • a signal drift arises, for example, in the case of magnesium poisoning.
  • a very high robustness of the sensor measured values of the nitrogen oxide sensors can be achieved.
  • the adaptation uses a ratio of both nitrogen oxide sensors, that is to say a characteristic value of a nitrogen oxide sensor which is arranged upstream of the catalytic converter in the exhaust gas flow direction, and a characteristic value of a nitrogen oxide sensor which is arranged downstream of the catalytic converter in the exhaust gas flow direction, cross sensitivities of oxygen and
  • Such operating states of play comprise at ⁇ a motor overrun and / or a Schubaschal- processing phase. If, for example, the concentration differences before and after determining the two characteristic values exceed a respective limit value and / or if the concentration differences between the two nitrogen oxide sensors exceed a respective limit value, the two characteristic values are not suitable for adapting the sensor measured value as a function of the ratio of the first characteristic value to the second characteristic value.
  • the adaptation of the sensor measured value here includes, in particular, a future adaptation of the sensor measured values until a new determination of the two characteristic values is carried out.
  • the ratio of the two characteristic values is stored permanently or corrected by means of the ratio of another permanently stored parameter relevant for the determination of future sensor measured values.
  • the nitrogen oxide sensor is, in particular, a nitrogen oxide sensor with two or more chambers, in which, for example, a first pumping current in a first chamber can be adjusted such that interfering gases flow out of the nitrogen oxide sensor again, so that the gas to be measured in a second chamber or further chamber can be measured. This is achieved, for example, by establishing a constant partial pressure of the oxygen contained in the exhaust gas by applying the first pumping current.
  • a second pumping current can be adjusted such that the gas to be measured is decomposed in the second chamber or a further chamber and a current can be measured in the second chamber or the further chamber proportional to the content of the to be measured Gas is in the exhaust gas and forms the Sen- sormesssignal the nitrogen oxide sensor.
  • the first and the second characteristic value are representative of a self-diagnostic value of the respective nitrogen oxide sensor.
  • the self-diagnostic value is representative of a ratio of a measured oxygen concentration value to a predetermined reference oxygen concentration value.
  • the self-diagnosis value is in particular low-pass filtered, for example with a filter constant smaller than a drift time constant.
  • the reference oxygen concentration value corresponds in particular to a further oxygen concentration value of each ⁇ ilia nitrogen oxide sensor was measured under similar conditions as the oxygen concentration value, but with the respective nitrogen oxide sensor in a new state.
  • the first and the second characteristic value are representative of a measured nitrogen oxide value for a given operating state of the vehicle.
  • the predetermined operating state includes, for example, one of the above-explained operating states.
  • the determination of the first and the second characteristic value, which are representative of a measured nitrogen oxide value takes place during a workshop visit.
  • the vehicle is operated in particular in a constant operating state, such as a NOx value of over 400 ppm.
  • a NH3 metering of the catalyst is terminated. If, in particular, both the oxygen concentration and the nitrogen oxide concentration in both nitrogen oxide sensors remain constant and approximately the same, the respective characteristic values can be determined. As a result, a very accurate adaptation of the nitrogen oxide sensors is possible.
  • the adjustment is made such that, after adjusting the ratio of the sensor measurement value of the first nitrogen oxide sensor is located to the sensor ⁇ reading of the second nitrogen oxide sensor at approximately the first For this purpose, it is not necessarily necessary to recalculate or detect sensor readings. If, theoretically, a sensor measured value of the first nitrogen oxide sensor and a sensor measured value of the second nitrogen oxide sensor were determined or detected, the ratio of the two sensor measured values would be approximately 1.
  • the corrected characteristic curve is in particular permanently ge ⁇ stores. If necessary, errors will be related to a characteristic shift is deleted if such errors already exist.
  • the adaptation is carried out by multiplying the ratio of the first characteristic value to the second characteristic value with a predetermined gradient value of the characteristic curve of the second nitrogen oxide sensor.
  • the ratio of the first characteristic value to the second characteristic value is compared with a predetermined maximum value. If the ratio of the first characteristic value to the second characteristic value is greater than the maximum value, the adaptation takes place by multiplying the maximum value by the predetermined gradient value of the characteristic curve of the second nitrogen oxide sensor. If the ratio of the first characteristic value to said second characteristic value is smaller than the Maxi ⁇ malwert, the adjustment is made oxidsensors by multiplying the ratio of the first characteristic value to said second characteristic value with the predetermined value of the slope characteristic of the second nitrogen.
  • the first nitrogen oxide sensor is arranged behind the catalytic converter, in particular in the exhaust gas flow direction, and the second nitrogen oxide sensor is arranged upstream of the catalytic converter in the exhaust gas flow direction.
  • the first characteristic value is compared with a predetermined first minimum value, and if the first characteristic value is smaller than the first mini ⁇ mal value, the first nitrogen oxide sensor is classified as defective.
  • the second characteristic value is compared with a predetermined second minimum value and if the second characteristic value is smaller than the second Mi ⁇ nimalwert, the second nitrogen oxide sensor is classified as faulty.
  • FIG. 1 shows a nitrogen oxide sensor
  • FIG. 2 shows a flowchart for operating a nitrogen oxide sensor.
  • FIG. 1 shows a nitrogen oxide sensor 10.
  • the nitrogen oxide sensor 10 is arranged in particular in an exhaust gas tract of a vehicle.
  • the vehicle has, in particular, a first nitrogen oxide sensor 10, a second nitrogen oxide sensor 10 and a catalytic converter, wherein one of the two nitrogen oxide sensors 10 is arranged upstream of the catalytic converter in the exhaust gas flow direction, and the other nitrogen oxide sensor 10 is arranged behind the catalytic converter in the exhaust gas flow direction.
  • the catalyst is in particular an SCR catalyst.
  • the nitrogen oxide sensor 10 has, for example, an inlet 25 through which exhaust gas can flow into a first chamber 11. Furthermore, the nitrogen oxide sensor 10 has a diffusion path 15 and a second chamber 13. Furthermore, the nitrogen oxide sensor 10 can have further chambers and further diffusion paths.
  • the nitrogen oxide sensor 10 has in particular for each chamber 11, 13 a pumping electrode 17 or as shown a common pumping electrode 17. In addition, it has for the first chamber 11 and the second chamber 13 individually or for both chambers together a ground electrode 19, 21. Furthermore, a measuring electrode 23 is arranged in the second chamber 13.
  • a first pumping current in the first chamber 11 can be adjusted so that disturbing gases flow out of the inlet 25 again, so that in the second chamber 13, the gas content of the gas to be measured can be measured by the diffusion path 15 passes into the second chamber 13. This is achieved, for example, by establishing a constant partial pressure of the oxygen contained in the exhaust gas by applying the first pumping current.
  • the first pump current is proportional game Tronis at ⁇ for air fuel.
  • a second pumping current can be adjusted such that the gas to be measured in the second chamber 13 is decomposed.
  • a current is measured which is proportional to the gas content to be measured in the exhaust gas. This current forms the sensor measurement signal of the nitrogen oxide sensor 10.
  • a sensor normal operation 11 has at ⁇ play, to a 0 2 content in the range of a few ppm (parts per million) the first chamber.
  • the second chamber 13 only has a very low O 2 content, such as about 10 -3 ppm, so that the sensor measurement signal is representative of a nitrogen oxide content such as a NO content, since NO is converted into, for example, 1/2 NO + 1 / 2 0 2 is decomposed.
  • a self-diagnosis operation of the stick ⁇ oxide sensor 10 may be operated such that an 0 2 content in the second chamber 13 is approximately 1000 ppm.
  • An oxygen concentration value measured in the self-diagnostic mode can then be compared with a predetermined reference oxygen concentration value for self-diagnosis.
  • the Re ference ⁇ oxygen concentration value for example, a value measured in the nitrogen oxide sensor 10 in a new state has been and is stored for example in an EEPROM of the nitrogen oxide ⁇ sensor 10.
  • the EEPROM is in this case a non-volatile, electronic memory module. Since the reference oxygen concentration value in the nitrogen oxide sensor 10 has been measured in a new state, the ratio of the oxygen concentration value to the reference oxygen concentration value should be 1 for a new nitrogen oxide sensor 10.
  • a control device 1 is designed to operate the first nitrogen oxide sensor 10 and the second nitrogen oxide sensor 10, that is, in particular to control the pump electrodes 17 of the nitrogen oxide sensors 10 and to receive the respective sensor measurement signal.
  • This is the control device 1 has in particular an arithmetic unit, a program and data memory ⁇ , as well as one or more communica ⁇ tion interface.
  • the program and data memory and / or the arithmetic unit and / or the communication ⁇ interfaces can be formed in a unit and / or distributed over several units.
  • the control device 1 may also be referred to as a device for operating a nitrogen oxide sensor 10.
  • a program for operating the nitrogen oxide sensor 10 is stored on the data and program memory of the control device 1 for this purpose.
  • FIG. 2 shows a flowchart of the program for operating the nitrogen oxide sensor 10.
  • the program is started in a step S1, in which variables can be initialized if necessary.
  • a first characteristic value of the first nitrogen oxide sensor 10 is determined.
  • a second characteristic value of the second nitrogen oxide sensor 10 is determined.
  • the first and the second characteristic value are, for example repre ⁇ sentative for a self-diagnostic value of the respective nitrogen oxide sensor 10.
  • the self-diagnostic value corresponds to Example ⁇ as a ratio of the measured in the self-diagnostic process, oxygen concentration value to the predetermined reference oxygen concentration value.
  • the first and the second characteristic value are representative of a measured nitrogen oxide value for a given operating state of the vehicle.
  • a ratio of the first characteristic value to the second characteristic value is determined.
  • a sensor measured value of the second nitrogen oxide sensor 10 is adjusted depending on the ratio of the first characteristic value to the second characteristic value.
  • the adaptation of the sensor measured value here includes, in particular, a future adaptation of the sensor measured values until a new determination of the two characteristic values is carried out.
  • the ratio of the two characteristic values is stored permanently or corrected by means of the ratio of another permanently stored parameter relevant for the determination of future sensor measured values.
  • the adjustment is made, for example, such that, if a sensor reading of the first nitrogen oxide sensor 10 and a sensor measurement value of the second nitrogen oxide sensor would be determined or detected 10 after adjusting the ratio of the two sensor ⁇ readings would be about. 1
  • the adaptation takes place by correction of a predetermined characteristic curve of the second nitrogen oxide sensor 10.
  • the adaptation takes place by multiplying the ratio of the first characteristic value to the second one Characteristic value with a predetermined slope value of the characteristic curve of the second nitrogen oxide sensor 10.
  • the adaptation is carried out such that first the ratio of the first characteristic value to the second characteristic value is compared with a predetermined maximum value. If the ratio of the first characteristic value to the second characteristic value is greater than the maximum value, the adaptation is performed by multiplying the maximum value by the predetermined slope value of the characteristic of the second nitrogen oxide sensor 10. If the ratio of the first characteristic value to the second characteristic value is smaller than that Maximum value, the adjustment is done by multiplying the ratio of the first characteristic to the second characteristic with the predetermined slope value of the characteristic of the second nitrogen oxide sensor 10.
  • the maximum value is for example 2.
  • the first characteristic value and the second characteristic value can, for example, additionally be compared with a respective minimum value.
  • the adaptation takes place in this case, for example, only if the respective characteristic value is greater than the respective minimum value. If the respective characteristic value is smaller than the respective minimum value, the respective nitrogen oxide sensor 10 is classified as defective.
  • the minimum value for the nitrogen oxide sensor 10, which is arranged downstream of the catalytic converter in the exhaust gas flow direction is for example 50%.
  • the minimum value for the nitrogen oxide sensor 10, which is arranged upstream of the catalytic converter in the exhaust gas flow direction is for example 25%.
  • the minimum value for the nitrogen oxide sensor 10 disposed downstream of the catalyst in the exhaust gas flow direction is, for example, higher than the minimum value for the nitrogen oxide sensor 10 disposed upstream of the catalyst in the exhaust gas flow direction.
  • step Sil the program is ended and, if appropriate, can be started again in step S1.
  • the nitrogen oxide sensor 10 which is arranged in the exhaust flow direction upstream of the catalyst can be adjusted.
  • the nitrogen oxide sensor 10 which is arranged behind the catalytic converter in the exhaust gas flow direction, when the second nitrogen oxide sensor 10 is arranged behind the catalytic converter in the exhaust gas flow direction and the first nitrogen oxide sensor 10 is arranged upstream of the catalytic converter in the exhaust gas flow direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Ein Verfahren zum Betreiben eines Stickoxidsensors eines Fahrzeuges mit einem ersten Stickoxidsensor, einem zweiten Stickoxidsensor und einem Katalysator, wobei einer der beiden Stickoxidsensoren in Abgasfließrichtung vor dem Katalysator angeordnet ist, und der andere Stickoxidsensor in Abgasfließrichtung hinter dem Katalysator angeordnet ist, umfasst die Schritte: Ein erster Kennwert des ersten Stickoxidsensors wird ermittelt. Ein zweiter Kennwert des zweiten Stickoxidsensors wird ermittelt. Ein Verhältnis des ersten Kennwerts zu dem zweiten Kennwert wird ermittelt. Abhängig von dem Verhältnis des ersten Kennwerts zu dem zweiten Kennwert wird ein Sensormesswert des zweiten Stickoxidsensors angepasst.

Description

Beschreibung
Verfahren, Vorrichtung und System zum Betreiben eines Stickoxidsensors
Die Erfindung betrifft ein Verfahren, eine Vorrichtung und ein System zum Betreiben eines Stickoxidsensors eines Fahrzeuges mit einem ersten Stickoxidsensor, einem zweiten Stickoxidsensor und einem Katalysator, wobei einer der beiden Stickoxidsensoren in Abgasfließrichtung vor dem Katalysator angeordnet ist, und der andere Stickoxidsensor in Abgasfließrichtung hinter dem Katalysator angeordnet ist.
Immer strengere gesetzliche Vorschriften bezüglich zulässiger Schadstoffemissionen in Kraftfahrzeugen, in denen Brennkraftmaschinen angeordnet sind, machen es erforderlich, die Schadstoffemissionen bei einem Betrieb der Brennkraftmaschine so gering wie möglich zu halten. Hierdurch ist es insbesondere für den Einsatz von Abgasnachbehandlungssystemen, wie Katalysa- toren, erforderlich die Schadstoffkomponenten im Abgastrakt sehr genau zu bestimmen.
Zur Bestimmung des Stickoxidgehalts im Abgas werden insbesondere Stickoxidsensoren eingesetzt.
Aus dem Fachbuch „Handbuch Verbrennungsmotoren", Herausgeber Richard von Basshuysen/Fred Schäfer, 2. Auflage, Juni 2002, Friedrich Vieweg & Sohn Verlagsgesellschaft mbH Braun¬ schweig/Wiesbaden, Seite 589 ff., ist ein Stickoxidsensor auf der Basis von ZrÜ2 Keramik bekannt, der zwei Kammern aufweist. In der ersten Kammer wird durch Anlegen eines Pumpstroms ein konstanter Partialdruck des im Abgas enthaltenen Sauerstoffs hergestellt. Der Pumpstrom ist beispielsweise proportional zum Luftkraft¬ stoffVerhältnis . In der zweiten Kammer wird das im Abgas enthaltene Stickoxid durch Anlegen eines weiteren Stroms zersetzt. Hieraufhin kann an einer Messelektrode in der zweiten Kammer ein Strom gemessen werden, der proportional zum Stickoxidgehalt im Abgas ist und der das Messsignal des Stickoxidsensors bildet.
Die Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zu schaffen, die zu einem sehr zuverlässigen Betrieb eines Stickoxidsensors beitragen.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung zeichnet sich aus durch ein Verfahren zum Betreiben eines Stickoxidsensors eines Fahrzeuges mit einem ersten Stickoxidsensor, einem zweiten Stickoxidsensor und einem Ka- talysator, wobei einer der beiden Stickoxidsensoren in Abgasfließrichtung vor dem Katalysator angeordnet ist, und der andere Stickoxidsensor in Abgasfließrichtung hinter dem Katalysator angeordnet ist. Die Erfindung zeichnet sich des Weiteren aus durch eine Vorrichtung zum Betreiben des Stick- oxidsensors, wobei die Vorrichtung dazu ausgebildet ist das Verfahren zum Betreiben des Stickoxidsensors auszuführen. Die Erfindung zeichnet sich des Weiteren aus durch ein System aufweisend die Vorrichtung zum Betreiben des Stickoxidsensors, den ersten Stickoxidsensor, den zweiten Stickoxidsensor und den Katalysator. Das System umfasst beispielsweise das Fahrzeug.
Bei dem Verfahren zum Betreiben eines Stickoxidsensors wird ein erster Kennwert des ersten Stickoxidsensors ermittelt. Es wird ein zweiter Kennwert des zweiten Stickoxidsensors ermittelt. Es wird ein Verhältnis des ersten Kennwerts zu dem zweiten Kennwert ermittelt. Abhängig von dem Verhältnis des ersten Kennwerts zu dem zweiten Kennwert wird ein Sensormesswert des zweiten Stickoxidsensors angepasst. Eine Anpassung des Sensormesswerts der Stickoxidsensoren ist schwierig, da eine hohe Querempfindlichkeit von Sauerstoff und NOx-Konzentration besteht. Durch das Verfahren zum Betreiben des Stickoxidsensors ist es möglich, dass bei einem Stickoxidsensor, der auch als NOx-Sensor bezeichnet werden kann, ein sehr großer Signaldrift kompensiert werden kann, ohne dass eine Signal¬ qualität signifikant verschlechtert wird, insbesondere für eine NH3-Regelung und/oder einen SCR ( selektive katalytische Re- duktion) -Katalysator Diagnose. Ein solcher Signaldrift entsteht beispielsweise bei einer Magnesiumvergiftung. Somit kann eine sehr hohe Robustheit der Sensormesswerte der Stickoxidsensoren erreicht werden. Da bei der Anpassung ein Verhältnis von beiden Stickoxidsensoren, genutzt wird, also ein Kennwert von einem Stickoxidsensor, der in Abgasfließrichtung vor dem Katalysator angeordnet ist, und ein Kennwert von einem Stickoxidsensor, der in Abgasfließrichtung hinter dem Katalysator angeordnet ist, können Querempfindlichkeiten von Sauerstoff und
NOx-Konzentration und eine Variation von Abgasgegendruck mi- nimiert werden.
Die Ermittlung des ersten und zweiten Kennwerts erfolgt ins¬ besondere in einem vorgegebenen Betriebszustand, bei dem insbesondere sowohl die Sauerstoffkonzentration als auch die Stickoxidkonzentration bei beiden Stickoxidsensoren konstant und etwa gleich ist. Solche Betriebszustände umfassen bei¬ spielsweise einen Motornachlauf und/oder eine Schubaschal- tungsphase. Falls beispielsweise die Konzentrationsunterschiede vor und nach dem Ermitteln der beiden Kennwerte einen jeweiligen Grenzwert überschreiten und/oder falls die Konzentrationsunterschiede der beiden Stickoxidsensoren zueinander einen jeweiligen Grenzwert überschreiten, so sind die beiden Kennwerte nicht geeignet für eine Anpassung des Sensormesswerts abhängig von dem Verhältnis des ersten Kennwerts zu dem zweiten Kennwert.
Die Anpassung des Sensormesswerts umfasst hierbei insbesondere eine zukünftige Anpassung der Sensormesswerte bis eine erneute Ermittlung der beiden Kennwerte durchgeführt wird. Hierfür wird beispielsweise das Verhältnis der beiden Kennwerte dauerhaft gespeichert oder mittels des Verhältnisses ein anderer für die Ermittlung zukünftiger Sensormesswerte relevanter dauerhaft gespeicherter Parameter korrigiert. Der Stickoxidsensor ist insbesondere ein Stickoxidsensor mit zwei oder mehr als zwei Kammern, bei dem beispielsweise ein erster Pumpstrom in einer ersten Kammer derart eingestellt werden kann, dass störende Gase wieder aus dem Stickoxidsensor herausströmen, sodass in einer zweiten Kammer oder weiteren Kammer das zu messende Gas gemessen werden kann. Dies wird beispielsweise erreicht, indem durch Anlegen des ersten Pumpstroms ein konstanter Partialdruck des im Abgas enthaltenen Sauerstoffs hergestellt wird. Weiterhin kann bei dem Stickoxidsensor beispielsweise ein zweiter Pumpstrom derart eingestellt werden, dass das zu messende Gas in der zweiten Kammer oder einer weiteren Kammer zersetzt wird und in der zweiten Kammer oder der weiteren Kammer ein Strom gemessen werden kann, der proportional zum Gehalt des zu messenden Gases im Abgas ist und der das Sen- sormesssignal des Stickoxidsensors bildet.
Gemäß einer vorteilhaften Ausgestaltung sind der erste und der zweite Kennwert repräsentativ für einen Selbstdiagnosewert des jeweiligen Stickoxidsensors.
Hierdurch ist eine besonders schnelle und einfache Anpassung der Stickoxidsensoren möglich, da eine Selbstdiagnose auch während einer normalen Fahrt möglich ist. Gemäß einer weiteren vorteilhaften Ausgestaltung ist der Selbstdiagnosewert repräsentativ für ein Verhältnis von einem gemessenen Sauerstoffkonzentrationswert zu einem vorgegebenen Referenzsauerstoffkonzentrationswert . Der Selbstdiagnosewert wird insbesondere tiefpassgefiltert , beispielsweise mit einer Filterkonstante kleiner als eine Driftzeitkonstante.
Der Referenzsauerstoffkonzentrationswert entspricht insbe- sondere einem weiteren Sauerstoffkonzentrationswert des je¬ weiligen Stickoxidsensors, der unter ähnlichen Bedingungen wie der Sauerstoffkonzentrationswert gemessen wurde, allerdings bei dem jeweiligen Stickoxidsensor in einem neuen Zustand. Gemäß einer weiteren vorteilhaften Ausgestaltung sind der erste und der zweite Kennwert repräsentativ für einen gemessenen Stickoxidwert bei einem vorgegebenen Betriebszustand des Fahrzeuges .
Der vorgegebene Betriebszustand umfasst beispielsweise einen der obig erläuterten Betriebszustände . Insbesondere erfolgt die Ermittlung des ersten und des zweiten Kennwert, die repräsentativ sind für einen gemessenen Stickoxidwert, bei einem Werk- stattbesuch. Hierbei wird das Fahrzeug insbesondere in einem konstanten Betriebszustand betrieben, wie beispielsweise einem NOx-Wert von über 400 ppm. Weiterhin wird insbesondere eine NH3-Dosierung des Katalysators beendet. Falls nun insbesondere sowohl die Sauerstoffkonzentration als auch die Stickoxid- konzentration bei beiden Stickoxidsensoren konstant und etwa gleich bleiben, können die jeweiligen Kennwerte ermittelt werden. Hierdurch ist eine sehr genaue Anpassung der Stickoxidsensoren möglich. Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt die Anpassung derart, dass nach Anpassung das Verhältnis des Sensormesswerts des ersten Stickoxidsensors zu dem Sensor¬ messwert des zweiten Stickoxidsensors bei ungefähr 1 liegt. Hierzu ist es nicht zwangsweise notwendig Sensormesswerte erneut zu ermitteln oder zu erfassen, es reicht, wenn theoretisch nach Anpassung ein Sensormesswert des ersten Stickoxidsensors und ein Sensormesswert des zweiten Stickoxidsensors ermittelt oder erfasst werden würde, das Verhältnis der beiden Sensormesswerte bei ungefähr 1 liegen würde.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt die
Anpassung durch Korrektur einer vorgegebenen Kennlinie des zweiten Stickoxidsensors.
Die korrigierte Kennlinie wird insbesondere dauerhaft ge¬ speichert. Gegebenenfalls werden Fehler im Zusammenhang mit einer Kennlinienverschiebung gelöscht, falls bereits solche Fehler vorhanden sind.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt die Anpassung durch Multiplikation des Verhältnisses des ersten Kennwerts zu dem zweiten Kennwert mit einem vorgegebenen Steigungswert der Kennlinie des zweiten Stickoxidsensors.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert mit einem vorgegeben Maximalwert verglichen. Falls das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert größer ist als der Maximalwert, erfolgt die Anpassung durch Multiplikation des Maximalwerts mit dem vorgegebenen Steigungswert der Kennlinie des zweiten Stickoxidsensors. Falls das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert kleiner ist als der Maxi¬ malwert, erfolgt die Anpassung durch Multiplikation des Verhältnisses des ersten Kennwerts zu dem zweiten Kennwert mit dem vorgegebenen Steigungswert der Kennlinie des zweiten Stick- oxidsensors.
Hierdurch kann ein maximaler Anpassungswert eingestellt werden, da gegebenenfalls eine noch stärkere Anpassung nicht sinnvoll wäre .
Für die weiteren Ausgestaltungen ist der erste Stickoxidsensor insbesondere in Abgasfließrichtung hinter dem Katalysator angeordnet und der zweite Stickoxidsensor in Abgasfließrichtung vor dem Katalysator angeordnet.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird der erste Kennwert mit einem vorgegebenen ersten Minimalwert verglichen und falls der erste Kennwert kleiner ist als der erste Mini¬ malwert, wird der erste Stickoxidsensor als fehlerhaft ein- gestuft.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird der zweite Kennwert mit einem vorgegebenen zweiten Minimalwert verglichen und falls der zweite Kennwert kleiner ist als der zweite Mi¬ nimalwert, wird der zweite Stickoxidsensor als fehlerhaft eingestuft . Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen näher erläutert.
Es zeigen: Figur 1 einen Stickoxidsensor und
Figur 2 ein Ablaufdiagramm zum Betreiben eines Stickoxidsensors . Figur 1 zeigt einen Stickoxidsensor 10. Der Stickoxidsensor 10 ist insbesondere in einem Abgastrakt eines Fahrzeugs angeordnet.
Das Fahrzeug weist insbesondere einen ersten Stickoxidsensor 10, einen zweiten Stickoxidsensor 10 und einen Katalysator auf, wobei einer der beiden Stickoxidsensoren 10 in Abgasfließrichtung vor dem Katalysator angeordnet ist, und der andere Stickoxidsensor 10 in Abgasfließrichtung hinter dem Katalysator angeordnet ist. Der Katalysator ist insbesondere ein SCR-Katalysator . Der Stickoxidsensor 10 weist beispielsweise einen Einlass 25 auf, durch den Abgas in eine erste Kammer 11 strömen kann. Weiterhin weist der Stickoxidsensor 10 einen Diffusionspfad 15 auf und eine zweite Kammer 13. Weiterhin kann der Stickoxidsensor 10 weitere Kammern und weitere Diffusionspfade aufweisen.
Der Stickoxidsensor 10 weist insbesondere für jede Kammer 11, 13 eine Pumpelektrode 17 auf oder wie gezeigt eine gemeinsame Pumpelektrode 17. Zusätzlich weist er für die erste Kammer 11 und die zweite Kammer 13 einzeln oder für beide Kammern gemeinsam eine Masseelektrode 19, 21 auf. Weiterhin ist in der zweiten Kammer 13 eine Messelektrode 23 angeordnet .
Mittels der Pumpelektrode 17 und der Masseelektrode 19 kann beispielsweise ein erster Pumpstrom in der ersten Kammer 11 derart eingestellt werden, dass störende Gase wieder aus dem Einlass 25 herausströmen, sodass in der zweiten Kammer 13 das Gasgehalt des zu messenden Gases gemessen werden kann, das durch den Diffusionspfad 15 in die zweite Kammer 13 gelangt. Dies wird beispielsweise erreicht, indem durch Anlegen des ersten Pumpstroms ein konstanter Partialdruck des im Abgas enthaltenen Sauerstoffs hergestellt wird. Der erste Pumpstrom ist bei¬ spielsweise proportional zum Luftkraftstoff erhältnis . Mittels der Pumpelektrode 17 und der Masseelektrode 21 kann beispielsweise ein zweiter Pumpstrom derart eingestellt werden, dass das zu messende Gas in der zweiten Kammer 13 zersetzt wird.
An der Messelektrode 23 wird ein Strom gemessen, der proportional zu dem zu messenden Gasgehalt im Abgas ist. Dieser Strom bildet das Sensormesssignal des Stickoxidsensors 10.
In einem Sensornormalbetrieb weist die erste Kammer 11 bei¬ spielsweise einen 02-Gehalt im Bereich von einigen ppm (Teile von einer Million) auf. Die zweiten Kammer 13 jedoch weist nur noch einen sehr geringen 02-Gehalt, wie etwa 10-3 ppm auf, so dass das Sensormesssignal repräsentativ ist für einen Stickoxidgehalt wie beispielsweise einem NO Gehalt, da NO beispielsweise in 1/2 NO + 1/2 02 zersetzt wird.
In einem Selbstdiagnosebetrieb kann allerdings der Stick¬ oxidsensor 10 derart betrieben werden, dass ein 02-Gehalt in der zweiten Kammer 13 bei ungefähr 1000 ppm liegt. Ein in dem Selbstdiagnosebetrieb gemessener Sauerstoffkonzentrationswert kann dann zur Selbstdiagnose mit einem vorgegebenen Referenzsauerstoffkonzentrationswert verglichen werden. Der Re¬ ferenzsauerstoffkonzentrationswert ist beispielsweise ein Wert, der bei dem Stickoxidsensor 10 in einem neuen Zustand gemessen worden ist und beispielsweise in einem EEPROM des Stickoxid¬ sensors 10 gespeichert wird. Der EEPROM ist hierbei ein nichtflüchtiger, elektronischer Speicherbaustein. Da der Referenzsauerstoffkonzentrationswert bei dem Stickoxidsensor 10 in einem neuen Zustand gemessen worden ist, sollte das Verhältnis des Sauerstoffkonzentrationswerts zu dem Referenzsauerstoff- konzentrationswert bei einem neuen Stickoxidsensor 10 bei 1 liegen . Eine Steuervorrichtung 1 ist dazu ausgebildet, den ersten Stickoxidsensor 10 und den zweiten Stickoxidsensor 10 zu betreiben, also insbesondere die Pumpelektroden 17 der Stickoxidsensoren 10 anzusteuern und das jeweilige Sensormesssignal zu empfangen. Die Steuervorrichtung 1 weist hierfür insbesondere eine Recheneinheit, einen Programm- und Daten¬ speicher, sowie beispielsweise eine oder mehrere Kommunika¬ tionsschnittstellen auf. Der Programm- und Datenspeicher und/oder die Recheneinheit und/oder die Kommunikations¬ schnittstellen können in einer Baueinheit und/oder verteilt auf mehrere Baueinheiten ausgebildet sein.
Die Steuervorrichtung 1 kann auch als Vorrichtung zum Betreiben eines Stickoxidsensors 10 bezeichnet werden. Auf dem Daten- und Programmspeicher der Steuervorrichtung 1 ist hierfür insbesondere ein Programm zum Betreiben des Stickoxidsensors 10 gespeichert.
Figur 2 zeigt ein Ablaufdiagramm des Programms zum Betreiben des Stickoxidsensors 10. Das Programm wird in einem Schritt Sl gestartet, in dem gegebenenfalls Variablen initialisiert werden können .
In einem Schritt S3 wird ein erster Kennwert des ersten Stickoxidsensors 10 ermittelt.
In einem Schritt S5 wird ein zweiter Kennwert des zweiten Stickoxidsensors 10 ermittelt. Der erste und der zweite Kennwert sind beispielsweise reprä¬ sentativ für einen Selbstdiagnosewert des jeweiligen Stickoxidsensors 10. Der Selbstdiagnosewert entspricht beispiels¬ weise einem Verhältnis von dem in dem Selbstdiagnoseverfahren gemessenen Sauerstoffkonzentrationswert zu dem vorgegebenen Referenzsauerstoffkonzentrationswert .
Alternativ oder zusätzlich sind der erste und der zweite Kennwert repräsentativ für einen gemessenen Stickoxidwert bei einem vorgegebenen Betriebszustand des Fahrzeuges.
In einem Schritt S7 wird ein Verhältnis des ersten Kennwerts zu dem zweiten Kennwert ermittelt. In einem Schritt S9 wird abhängig von dem Verhältnis des ersten Kennwerts zu dem zweiten Kennwert ein Sensormesswert des zweiten Stickoxidsensors 10 angepasst.
Die Anpassung des Sensormesswerts umfasst hierbei insbesondere eine zukünftige Anpassung der Sensormesswerte bis eine erneute Ermittlung der beiden Kennwerte durchgeführt wird. Hierfür wird beispielsweise das Verhältnis der beiden Kennwerte dauerhaft gespeichert oder mittels des Verhältnisses ein anderer für die Ermittlung zukünftiger Sensormesswerte relevanter dauerhaft gespeicherter Parameter korrigiert.
Die Anpassung erfolgt beispielsweise derart, dass falls nach Anpassung ein Sensormesswert des ersten Stickoxidsensors 10 und ein Sensormesswert des zweiten Stickoxidsensors 10 ermittelt oder erfasst werden würde, das Verhältnis der beiden Sensor¬ messwerte bei ungefähr 1 liegen würde.
Alternativ oder zusätzlich erfolgt die Anpassung durch Korrektur einer vorgegebenen Kennlinie des zweiten Stickoxidsensors 10.
Alternativ oder zusätzlich erfolgt die Anpassung durch Multiplikation des Verhältnisses des ersten Kennwerts zu dem zweiten Kennwert mit einem vorgegebenen Steigungswert der Kennlinie des zweiten Stickoxidsensors 10.
Alternativ oder zusätzlich erfolgt die Anpassung derart, dass zunächst das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert mit einem vorgegeben Maximalwert verglichen wird. Falls das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert größer ist als der Maximalwert, erfolgt die Anpassung durch Multiplikation des Maximalwerts mit dem vorgegebenen Stei- gungswert der Kennlinie des zweiten Stickoxidsensors 10. Falls das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert kleiner ist als der Maximalwert, erfolgt die Anpassung durch Multiplikation des Verhältnisses des ersten Kennwerts zu dem zweiten Kennwert mit dem vorgegebenen Steigungswert der Kennlinie des zweiten Stickoxidsensors 10. Der Maximalwert liegt beispielsweise bei 2.
Der erste Kennwert und der zweite Kennwert können beispielsweise zusätzlich mit einem jeweiligen Minimalwert verglichen werden. Die Anpassung erfolgt in diesem Fall beispielsweise nur falls der jeweilige Kennwert größer ist als der jeweilige Minimalwert. Falls der jeweilige Kennwert kleiner ist als der jeweilige Minimalwert, so wird der jeweilige Stickoxidsensor 10 als fehlerhaft eingestuft. Der Minimalwert für den Stickoxidsensor 10, der in Abgasfließrichtung hinter dem Katalysator angeordnet ist, liegt beispielsweise bei 50%. Der Minimalwert für den Stickoxidsensor 10, der in Abgasfließrichtung vor dem Katalysator angeordnet ist, liegt beispielsweise bei 25%. Somit ist der Minimalwert für den Stickoxidsensor 10, der in Abgas- fließrichtung hinter dem Katalysator angeordnet ist, liegt beispielsweise höher als der Minimalwert für den Stickoxidsensor 10, der in Abgasfließrichtung vor dem Katalysator angeordnet ist .
In einem Schritt Sil wird das Programm beendet und kann ge- gebenenfalls wieder in dem Schritt Sl gestartet werden.
Auf diese Weise kann insbesondere ein Kennliniendrift des zweiten Stickoxidsensors 10 korrigiert werden. Ist der erste Stick- oxidsensor 10 in Abgasfließrichtung hinter dem Katalysator angeordnet und der zweite Stickoxidsensor 10 in Abgasflie߬ richtung vor dem Katalysator angeordnet, so kann auf diese Weise der Stickoxidsensor 10, der in Abgasfließrichtung vor dem Katalysator angeordnet ist, angepasst werden. Es ist allerdings genauso gut möglich den Stickoxidsensor 10, der in Abgasfließrichtung hinter dem Katalysator angeordnet ist, anzupassen, wenn der zweite Stickoxidsensor 10 in Abgasfließrichtung hinter dem Katalysator angeordnet ist und der erste Stickoxidsensor 10 in Abgasfließrichtung vor dem Katalysator angeordnet ist.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Stickoxidsensors (10) eines Fahrzeuges mit einem ersten Stickoxidsensor (10), einem zweiten Stickoxidsensor (10) und einem Katalysator, wobei einer der beiden Stickoxidsensoren (10) in Abgasfließrichtung vor dem Katalysator angeordnet ist, und der andere Stickoxidsensor (10) in Abgasfließrichtung hinter dem Katalysator angeordnet ist, bei dem
- ein erster Kennwert des ersten Stickoxidsensors (10) ermittelt wird,
- ein zweiter Kennwert des zweiten Stickoxidsensors (10) er¬ mittelt wird,
- ein Verhältnis des ersten Kennwerts zu dem zweiten Kennwert ermittelt wird,
- abhängig von dem Verhältnis des ersten Kennwerts zu dem zweiten Kennwert ein Sensormesswert des zweiten Stickoxidsensors (10) angepasst wird.
2. Verfahren nach Anspruch 1, wobei der erste und der zweite Kennwert repräsentativ sind für einen Selbstdiagnosewert des jeweiligen Stickoxidsensors (10).
3. Verfahren nach Anspruch 2, wobei der Selbstdiagnosewert repräsentativ ist für ein Verhältnis von einem gemessenen
Sauerstoffkonzentrationswert zu einem vorgegebenen Referenz¬ sauerstoffkonzentrationswert .
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste und der zweite Kennwert repräsentativ sind für einen gemessenen Stickoxidwert bei einem vorgegebenen Betriebszustand des Fahrzeuges.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Anpassung derart erfolgt, dass nach Anpassung das Verhältnis des
Sensormesswerts des ersten Stickoxidsensors (10) zu dem Sen¬ sormesswert des zweiten Stickoxidsensors (10) bei ungefähr 1 liegt .
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Anpassung durch Korrektur einer vorgegebenen Kennlinie des zweiten Stickoxidsensors (10) erfolgt.
7. Verfahren nach Anspruch 6, wobei die Anpassung durch Multiplikation des Verhältnisses des ersten Kennwerts zu dem zweiten Kennwert mit einem vorgegebenen Steigungswert der Kennlinie des zweiten Stickoxidsensors (10) erfolgt.
8. Verfahren nach Anspruch 7, wobei
- das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert mit einem vorgegeben Maximalwert verglichen wird,
- falls das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert größer ist als der Maximalwert die Anpassung durch Multiplikation des Maximalwerts mit dem vorgegebenen Steigungswert der Kennlinie des zweiten Stickoxidsensors (10) erfolgt und
- falls das Verhältnis des ersten Kennwerts zu dem zweiten Kennwert kleiner ist als der Maximalwert die Anpassung durch Multiplikation des Verhältnisses des ersten Kennwerts zu dem zweiten Kennwert mit dem vorgegebenen Steigungswert der Kennlinie des zweiten Stickoxidsensors (10) erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei - der erste Stickoxidsensor (10) in Abgasfließrichtung hinter dem
Katalysator angeordnet ist und der zweite Stickoxidsensor (10) in Abgasfließrichtung vor dem Katalysator angeordnet ist,
- wobei der erste Kennwert mit einem vorgegebenen ersten Minimalwert verglichen wird und falls der erste Kennwert kleiner ist als der erste Minimalwert, der erste Stickoxidsensor (10) als fehlerhaft eingestuft wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei
- der erste Stickoxidsensor (10) in Abgasfließrichtung hinter dem Katalysator angeordnet ist und der zweite Stickoxidsensor (10) in Abgasfließrichtung vor dem Katalysator angeordnet ist,
- wobei der zweite Kennwert mit einem vorgegebenen zweiten Minimalwert verglichen wird und falls der zweite Kennwert kleiner ist als der zweite Minimalwert, der zweite Stickoxidsensor (10) als fehlerhaft eingestuft wird.
11. Vorrichtung zum Betreiben eines Stickoxidsensors (10), wobei die Vorrichtung dazu ausgebildet ist ein Verfahren nach einem der Ansprüche 1 bis 10 auszuführen.
12. System aufweisend eine Vorrichtung nach Anspruch 11, einen ersten Stickoxidsensor (10), einen zweiten Stickoxidsensor (10) und einen Katalysator, wobei einer der beiden Stickoxidsensoren (10) in Abgasfließrichtung vor dem Katalysator angeordnet ist, und der andere Stickoxidsensor (10) in Abgasfließrichtung hinter dem Katalysator angeordnet ist.
PCT/EP2016/077938 2015-12-11 2016-11-17 Verfahren, vorrichtung und system zum betreiben eines stickoxidsensors WO2017097557A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680072551.6A CN108368763B (zh) 2015-12-11 2016-11-17 用于操作氮氧化物传感器的方法、装置和系统
US16/061,267 US10914220B2 (en) 2015-12-11 2016-11-17 Method, device, and system for operating a nitrogen oxide sensor
EP16797892.3A EP3387226A1 (de) 2015-12-11 2016-11-17 Verfahren, vorrichtung und system zum betreiben eines stickoxidsensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015224935.2A DE102015224935B4 (de) 2015-12-11 2015-12-11 Verfahren, Vorrichtung und System zum Betreiben eines Stickoxidsensors
DE102015224935.2 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017097557A1 true WO2017097557A1 (de) 2017-06-15

Family

ID=57345939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/077938 WO2017097557A1 (de) 2015-12-11 2016-11-17 Verfahren, vorrichtung und system zum betreiben eines stickoxidsensors

Country Status (5)

Country Link
US (1) US10914220B2 (de)
EP (1) EP3387226A1 (de)
CN (1) CN108368763B (de)
DE (1) DE102015224935B4 (de)
WO (1) WO2017097557A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111219235A (zh) * 2018-11-23 2020-06-02 宝沃汽车(中国)有限公司 车辆排气处理方法、装置、存储介质以及车辆
DE102018222624A1 (de) * 2018-12-20 2020-06-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensorsystems zum Nachweis mindestens eines Anteils einer Messgaskomponente mit gebundenem Sauerstoff in einem Messgas
CN112983613B (zh) * 2021-03-29 2022-07-15 潍柴动力股份有限公司 一种氮氧传感器故障判断方法及相关装置
CN113671129A (zh) * 2021-08-23 2021-11-19 上海维安电子有限公司 一种用于同时操作两个氮氧化物传感器的方法、装置和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869356A2 (de) * 1997-03-28 1998-10-07 NGK Spark Plug Co. Ltd. NOx Sensor
DE102004051747A1 (de) * 2004-10-23 2006-04-27 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
EP2119897A1 (de) * 2007-03-06 2009-11-18 Toyota Jidosha Kabushiki Kaisha Anomalien-diagnosevorrichtung für einen nox-sensor
WO2011075582A1 (en) * 2009-12-16 2011-06-23 Cummins Filtration Ip, Inc. Apparatus and method to diagnose a nox sensor
DE102012019633A1 (de) * 2012-10-06 2014-04-10 Daimler Ag Verfahren zur Verarbeitung von Messwerten eines Stickoxid-Sensors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877413A (en) 1998-05-28 1999-03-02 Ford Global Technologies, Inc. Sensor calibration for catalyst deterioration detection
SE529410C2 (sv) * 2005-12-20 2007-08-07 Scania Cv Abp Förfarande och inrättning för övervakning av funktionen hos en sensor eller system
KR100999617B1 (ko) * 2007-12-14 2010-12-08 현대자동차주식회사 선택적 촉매의 모니터링장치
JP4980974B2 (ja) * 2008-03-31 2012-07-18 日本碍子株式会社 ガスセンサおよびその制御装置ならびにNOx濃度測定方法
JP4877298B2 (ja) * 2008-09-10 2012-02-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4692911B2 (ja) 2008-09-18 2011-06-01 トヨタ自動車株式会社 NOxセンサの出力較正装置及び出力較正方法
GB2481433A (en) * 2010-06-24 2011-12-28 Gm Global Tech Operations Inc Determining NOx concentration upstream of an SCR catalyst
DE102013209487B4 (de) * 2013-05-22 2020-07-02 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869356A2 (de) * 1997-03-28 1998-10-07 NGK Spark Plug Co. Ltd. NOx Sensor
DE102004051747A1 (de) * 2004-10-23 2006-04-27 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
EP2119897A1 (de) * 2007-03-06 2009-11-18 Toyota Jidosha Kabushiki Kaisha Anomalien-diagnosevorrichtung für einen nox-sensor
WO2011075582A1 (en) * 2009-12-16 2011-06-23 Cummins Filtration Ip, Inc. Apparatus and method to diagnose a nox sensor
DE102012019633A1 (de) * 2012-10-06 2014-04-10 Daimler Ag Verfahren zur Verarbeitung von Messwerten eines Stickoxid-Sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Handbuch Verbrennungsmotoren", June 2002, FRIEDRICH VIEWEG & SOHN VERLAGSGESELLSCHAFT MBH BRAUNSCHWEIG/WIESBADEN, pages: 589

Also Published As

Publication number Publication date
DE102015224935A1 (de) 2017-06-14
CN108368763B (zh) 2020-11-13
DE102015224935B4 (de) 2017-12-14
US10914220B2 (en) 2021-02-09
CN108368763A (zh) 2018-08-03
EP3387226A1 (de) 2018-10-17
US20200263593A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
DE102018215627A1 (de) Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine und Abgasnachbehandlungsanlage
DE102008024177B3 (de) Verfahren, Vorrichtung und System zur Diagnose eines NOx-Sensors für eine Brennkraftmaschine
WO2017097557A1 (de) Verfahren, vorrichtung und system zum betreiben eines stickoxidsensors
DE102007048751B4 (de) Verschlechterungsdiagnosesystem für einen Luft/Kraftstoff-Verhältnis-Sensor
DE102016204323B4 (de) Verfahren zum Ermitteln eines korrigierten Stickoxidwerts und Ammoniakwerts in einer Brennkraftmaschine
DE10254843A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE10154521B4 (de) Verfahren zum Berechnen einer Einlassluftmenge und Vorrichtung, die das Verfahren durchführt
DE102015202364A1 (de) Verfahren zum diagnostizieren eines abgassensors
DE102005045888B3 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005049870A1 (de) Verfahren und Vorrichtung zur Erkennung eines fehlerhaften Anschlusses eines Differenzdrucksensors
DE102008051961B4 (de) Einlasslufttemperatursensor-Diagnose
DE102016200158A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102011087310B3 (de) Verfahren und Vorrichtung zum Betreiben einer linearen Lambdasonde
DE102012221549A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Zusammensetzung eines Gasgemischs
WO2017207208A1 (de) Verfahren, vorrichtung zum betreiben eines stickoxidsensors, computerprogramm und computerprogrammprodukt
EP1960642B1 (de) Verfahren zur diagnose eines in einem abgasbereich einer brennkraftmaschine angeordneten katalysators und vorrichtung zur durchführung des verfahrens
DE102013207999A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102018220729A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Partikelbeladung eines Partikelfilters
DE102020215514A1 (de) Verfahren zum Betreiben einer Abgasnachbehandlungsanlage, Abgasnachbehandlungsanlage sowie Verbrennungsmotor
DE102018222249B4 (de) Verfahren und Vorrichtung zur Diagnose eines im Abgassystem einer benzinbetriebenen Brennkraftmaschine angeordneten Partikelfilters
WO2009040293A1 (de) Verfahren und vorrichtung zum bestimmen einer dynamischen eigenschaft eines abgassensors
DE102006041479B4 (de) Verfahren zur Bestimmung der Sauerstoff-Speicherfähigkeit einer Abgasreinigungsanlage
DE102014213484A1 (de) Verfahren, Vorrichtung, System, Computerprogramm und Computerprogrammprodukt zum Betreiben eines Stickoxidsensors
DE112009000324T5 (de) Verfahren und Computerprogrammprodukt zum Abgleichen eines Luftmassenflusssensors einer Motoranordnung eines Kraftfahrzeugs
DE102013202161A1 (de) Verfahren und Vorrichtung zum Betreiben einer linearen Lambdasonde

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16797892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE