WO2017096906A1 - 可穿戴电子设备的充电控制方法、装置以及智能手表 - Google Patents

可穿戴电子设备的充电控制方法、装置以及智能手表 Download PDF

Info

Publication number
WO2017096906A1
WO2017096906A1 PCT/CN2016/089983 CN2016089983W WO2017096906A1 WO 2017096906 A1 WO2017096906 A1 WO 2017096906A1 CN 2016089983 W CN2016089983 W CN 2016089983W WO 2017096906 A1 WO2017096906 A1 WO 2017096906A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
electronic device
wearable electronic
temperature
downflow
Prior art date
Application number
PCT/CN2016/089983
Other languages
English (en)
French (fr)
Inventor
孟昕
侯泽男
李兴华
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to JP2017565773A priority Critical patent/JP6532548B2/ja
Priority to US15/540,973 priority patent/US10511184B2/en
Priority to EP16872105.8A priority patent/EP3300161B1/en
Priority to DK16872105.8T priority patent/DK3300161T3/da
Priority to KR1020187001651A priority patent/KR101999493B1/ko
Publication of WO2017096906A1 publication Critical patent/WO2017096906A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • G04G19/02Conversion or regulation of current or voltage
    • G04G19/06Regulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G9/00Visual time or date indication means
    • G04G9/0064Visual time or date indication means in which functions not related to time can be displayed
    • G04G9/007Visual time or date indication means in which functions not related to time can be displayed combined with a calculator or computing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of wearable electronic devices, and in particular, to a charging control method and device for a wearable electronic device, and a smart watch.
  • the wireless charging technology in the consumer electronics field is mainly based on the WPC (Qi) standard, which is the “wireless charging” standard introduced by the world's first wireless charging technology-based wireless power consortium (WPC).
  • WPC wireless charging technology-based wireless power consortium
  • the charging efficiency of the wireless charging method based on "electromagnetic induction technology” is positively correlated with the power of the device.
  • Wearable electronic devices such as smart watches
  • the battery capacity is usually small, so the power is not large, which leads to low charging efficiency when the smart watch is wirelessly charged.
  • the low charging efficiency leads to the following problems in the application of wireless charging technology in smart watches: the charging temperature is too high, and the charging is hot.
  • too high temperature will affect the battery life; on the other hand, because the wearable device will directly contact the skin, if the temperature is too high, it will burn the skin, or the wearer feels uncomfortable, and the user experience is poor, thereby reducing the user's stickiness to the product.
  • the second solution is that if the charging temperature is too high, the charging will be temporarily stopped. This solution will cause the charging time to be too long to prolong the overall charging time, and the user experience will be poor.
  • the present invention provides a charging control method, device and smart watch for a wearable electronic device, which solves the problem that the heat generated during the wireless charging process of the wearable device causes excessive temperature, and at the same time avoids the traditional means. Lowering the temperature results in a problem that the charging time is too long and the cost is high.
  • a charging control method for a wearable electronic device comprising:
  • the wireless receiving coil of the wearable electronic device is turned on, and the charging current is generated by the wireless receiving coil to charge the wearable electronic device;
  • the temperature value of the wearable electronic device is obtained in real time
  • a charge control device for a wearable electronic device comprising:
  • a temperature range setting unit configured to set a temperature range when the wearable electronic device is charged according to a user requirement
  • a coil control unit configured to turn on a wireless receiving coil of the wearable electronic device when the charging starts, and generate a charging current by the wireless receiving coil to charge the wearable electronic device
  • a temperature monitoring unit configured to acquire a temperature value of the wearable electronic device in real time when the charging current of the wearable electronic device is detected to rise to a set constant current charging current value
  • a temperature determining unit configured to determine whether the temperature value is within a temperature range
  • a current control unit configured to maintain a current charging current value of the wearable electronic device according to the determination result of the temperature determining unit; or change a charging current of the wearable electronic device, thereby changing a temperature value of the wearable electronic device, so that the wearable electronic device The temperature value of the device falls within the temperature range.
  • a smart watch is provided, wherein the smart watch is provided with a charging control device of the above-mentioned wearable electronic device, and the charging control device causes the temperature value of the smart watch to be charged when wirelessly charging Within the specified temperature range.
  • the technical solution of the present invention is that the technical solution of the embodiment of the present invention monitors the wearable electronic device in real time by setting a temperature range in advance and increasing the charging current value of the wearable electronic device to a preset constant current charging current value.
  • the temperature of the equipment, and different control measures are taken according to the difference of the temperature value judgment results, especially when the temperature value of the wearable device exceeds the temperature range, the temperature is lowered by lowering the charging current, compared with the conventional scheme of increasing the heat conduction element, the cost It is cheaper and suitable for mass production.
  • the current of the wearable electronic device is restored when the temperature is less than or equal to the temperature range, so that it can be quickly charged, shortening the charging time, and prolonging the battery life compared with the conventional cooling scheme that temporarily stops charging. It enhances the user experience and achieves near-normal temperature and fast charging.
  • 1 is a schematic diagram of a charging curve of a lithium battery at room temperature
  • Figure 2 is a schematic diagram of a lithium battery charging curve in a higher ambient temperature or poor heat dissipation environment
  • FIG. 3 is a flow chart of a charging control method of a wearable electronic device according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a charging control method of a wearable electronic device according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a charging control device for a wearable electronic device according to an embodiment of the present invention.
  • the embodiment of the present invention proposes a solution for preventing the temperature from being too high during charging while ensuring fast charging.
  • the temperature value is obtained, and current control measures are taken to keep the temperature value within the temperature range, when the temperature value is higher than In the temperature range, the charging current value of the wearable electronic device is lowered, and when the temperature value is lower than the temperature range, the charging current value is increased. In this way, no additional heat conduction and heat dissipation components are required, and the cost is saved.
  • the technical solution of the embodiment of the present invention does not generate too high temperature, does not affect the user's wearing comfort and skin health, and does not need to stop charging, and also avoids the conventional solution to reduce the temperature suspension.
  • the problem of the overall charging time is too long.
  • FIG. 1 is a schematic diagram of a charging curve of a lithium battery at room temperature
  • FIG. 2 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment.
  • the ordinate represents temperature and the abscissa represents charging time.
  • the ordinate T usl is the upper limit of the human body tolerable temperature
  • the ordinate T lsl is the temperature lower limit value for ensuring the fast charging (fast charging) efficiency, which is set by the upper temperature limit value and the lower temperature limit value.
  • the temperature range is the temperature range.
  • Lithium battery charging processes for wearable electronic devices can generally be divided into four phases: trickle charging (low voltage precharge), constant current charging (CC), constant voltage charging (CV), and charging termination.
  • Constant current charging (CC) is a high current phase in four charging phases, and the battery temperature rises quickly.
  • the typical charging time-temperature curve at room temperature is shown in Figure 1. The temperature during charging is within a reasonable range. Curve 11 in Figure 1 is a temperature profile for charging a lithium battery. The normal charging process safety measures are not perfect. When the temperature is too high, as shown in Figure 2, with the extension of the charging time, the highest point of the temperature curve 22 has exceeded the human body's tolerable temperature upper limit value T usl . Keeping a large current charge may burn the user and even cause the battery to burn and explode. And if it is in a high-temperature state of charge for a long time, it will shorten the battery life and affect the battery life of the wearable electronic device.
  • an embodiment of the present invention provides a charging control method for a wearable electronic device.
  • 3 is a flow chart of a charging control method of a wearable electronic device according to an embodiment of the present invention. Referring to FIG. 3, the wearable electronic device The charging control method includes the following steps:
  • Step S31 setting a temperature range when the wearable electronic device is charged according to user requirements
  • Step S32 when the charging starts, the wireless receiving coil of the wearable electronic device is turned on, and the charging current is generated by the wireless receiving coil to charge the wearable electronic device;
  • Step S33 when it is detected that the charging current of the wearable electronic device increases to a set constant current charging current value, the temperature value of the wearable electronic device is obtained in real time;
  • Step S34 determining whether the temperature value is within the temperature range, if yes, performing step S35 to maintain the current charging current value of the wearable electronic device; otherwise, performing step S36, changing the charging current of the wearable electronic device, thereby changing the wearable electronic
  • the temperature value of the device causes the temperature value of the wearable electronic device to fall within the temperature range.
  • the technical solution of the present embodiment acquires real-time when the charging current of the wearable electronic device increases to a set constant current charging current value during wireless charging of the wearable electronic device.
  • the temperature value of the wearable electronic device adopts different control means according to the temperature value, so that the temperature of the wearable electronic device when charging is always within the set temperature range, thereby avoiding damage to the battery caused by excessive temperature.
  • the problem of affecting the wearing comfort of the user avoids the problem that the overall charging time is too long caused by the cooling technology of suspending charging, thereby improving the user experience and the competitiveness of the product.
  • setting the temperature range according to the user's use requirement means that the user can set different temperature ranges according to different requirements of the user for fast charging efficiency of the wearable electronic product, and different genders of the user (for example, the user is male/female), and satisfy the user's Personalized needs.
  • the upper temperature limit is a value in the range of 40 to 60 degrees Celsius
  • the lower temperature limit is a value in the range of 35 to 45 degrees Celsius.
  • the temperature range is from 37 ° C to 52 ° C.
  • the implementation process of the charging control method of the wearable electronic device of the embodiment will be specifically described by taking the wearable electronic device as a smart watch as an example. It can be understood that the application scope of the technical solution of the embodiment of the present invention is not limited to a smart watch, and may also be a smart wristband or other wearable electronic device.
  • the electronic device generally has the following features: low power, wearable, and human body when charging. skin contact.
  • FIG. 4 is a schematic flowchart of a charging control method of a wearable electronic device according to another embodiment of the present invention. As shown in FIG. 4, the process starts, and the following steps S401 to S411 are performed.
  • the wireless receiving coil built in the smart watch is turned on, and the charging current is generated by the wireless receiving coil to charge the smart watch.
  • the charging phase of the smart watch is the trickle charging phase, which is low voltage pre-charging, and the current is relatively small. At this time, the temperature is not too high, so there is no need to take measures to reduce the temperature.
  • start The control operation for lowering the charging current is performed in accordance with the change in the temperature value.
  • Step S402 Acquire a real-time temperature value of the smart watch battery; and after obtaining the real-time temperature value, proceed to step S403.
  • the voltage value of the thermistor electrically connected to the battery of the smart watch can be collected in real time; the current resistance value of the thermistor is calculated according to the voltage value of the thermistor, and the smart value is obtained according to the correspondence between the resistance value and the temperature.
  • the temperature value of the watch battery can be collected in real time; the current resistance value of the thermistor is calculated according to the voltage value of the thermistor, and the smart value is obtained according to the correspondence between the resistance value and the temperature.
  • the temperature value of the watch battery can be collected in real time; the current resistance value of the thermistor is calculated according to the voltage value of the thermistor, and the smart value is obtained according to the correspondence between the resistance value and the temperature.
  • Step S403 determining whether the acquired current temperature value is higher than an upper limit value T usl of the set temperature range
  • step S401 the process returns to step S401, the current charging current value is maintained, and charging is continued according to the set constant current charging current value. If yes, changing the charging current of the wearable electronic device, that is, when the current temperature value of the wearable electronic device is greater than the upper limit of the temperature range, controlling the reduction or the multiple advancement to reduce the charging current of the wearable electronic device value. In the present embodiment, if the temperature value is higher than the upper limit value of the set temperature range, step S404 is performed.
  • the downflow control command is sent to the processing chip that controls the wireless receiving coil, so that the processing chip reduces the voltage value of the current power pin, thereby reducing the charging current value of the smart watch.
  • the downflow control command may also be sent to the power source side, and the power source side controls the electromagnetic wave signal of the wireless transmitting coil, thereby reducing the charging current value of the smart watch. There is no limit to this.
  • the existing wireless charging technology is mainly implemented by the principle of electromagnetic induction, that is, the energy transfer is realized by the energy coupling between the wireless transmitting coil (which can generate a magnetic field) in the charger and the corresponding wireless receiving coil in the smart watch.
  • the down-flow control of the smart watch may be implemented by a processing chip that controls the wireless receiving coil in the smart watch, or may be implemented by controlling the power supply side of the wireless transmitting coil.
  • the lower limit value of the temperature range is set in the embodiment of the present invention, in order to reduce the charging current value in the multi-stage downflow control, as a stop point of the reduction operation, that is, when real time is monitored.
  • the temperature value is less than or equal to the temperature lower limit value of the set temperature range, the charging current value reduction operation is stopped, so that the appropriate current value can be restored, and the charging is completed as soon as possible.
  • the temperature condition and the time condition in step S405 are logically related, that is, when the time condition is satisfied (the time reaches the set current time threshold), it is further determined whether the temperature condition is satisfied, if The temperature condition is also satisfied (that is, the temperature value is less than or equal to the lower limit of the temperature range), then the control increases the charging current value, so that the temperature value increases, and the control here increases the charging.
  • the electric current value may be such that the current charging current value is increased to a set constant current charging current value, so that the charging efficiency of the fast charging can be ensured. If the temperature condition is not satisfied, that is, the temperature value is greater than the lower limit value of the temperature range, the control continues to decrease the current charging current value, that is, step S406 is performed.
  • Step S407 determining whether the current temperature value is less than or equal to the lower limit of the temperature range and whether the timer has not expired; if yes, returning to step S401, controlling to increase the current charging current value of the smart watch to the set constant current charging current value I CC Otherwise, the process proceeds to step S408.
  • step S408 is performed.
  • step S408 the downflow control command used by the next stage is generated, and the downflow control command is executed to further reduce the charging current value of the smart watch.
  • the content of the downflow control command is that the set charging current value is equal to a product value of the constant current charging current value I CC and the preset downflow control coefficient minimum value C lowest .
  • step S409 it is determined whether the temperature value is less than or equal to the lower limit value of the temperature range and the timer has not expired. Otherwise, the process proceeds to step S410.
  • step S410 is executed to control to turn off the wireless receiving coil to stop charging.
  • step S409 the accumulated number of downflows is equal to The preset downflow threshold is, if yes, step S410 is performed.
  • step S410 the wireless receiving coil is turned off, and charging is stopped. Proceed to step S411.
  • step S411 it is determined whether the temperature value is less than or equal to the lower limit of the temperature range and the timer has not expired. If yes, go to step S401; otherwise, go to step S410.
  • step S401 includes two sub-steps of turning on the wireless receiving coil and setting the charging current value equal to the preset constant current charging current value. In practical applications, it is required to determine whether the wireless receiving coil is turned on according to the situation. For example, if it is determined in step S405 that the temperature value is less than or equal to the set temperature range lower limit value and the timer does not expire, the control increases the charging current value, and the current The charging current value is set to the constant current charging current value, and it is not necessary to turn on the wireless receiving coil again.
  • step S411 since the step S410 is performed before the wireless receiving coil is turned off, if it is determined in step S411 that the temperature value is less than or equal to the lower limit of the temperature range and the timer has not expired, the wireless receiving coil needs to be turned back on. Then, the charging current is received and the charging current value is increased to the set constant current charging current value.
  • FIG. 5 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention.
  • the control is performed to reduce the charging current of the wearable electronic device. The case of value.
  • the currently used level downflow control coefficient is a first level downflow control coefficient C1 (C1 is a value less than 1), and the currently used downflow control instruction is generated according to the first level downflow control coefficient C1 (will be The product value of the first-order downflow control coefficient and the set constant current charging current value is set in the currently used downflow control command to indicate that the charging current value after the current level of downflow is the product value);
  • the control command is sent to a processing chip that controls the wireless receiving coil, so that the processing chip reduces the voltage value of the current power pin, thereby reducing the charging current value of the wearable electronic device.
  • the temperature of the battery of the smart watch falls back to the lower limit of the temperature range, and the battery temperature of the smart watch with the action of the downflow measure Occasionally, if you do not exceed the upper limit of the set temperature range, you do not need to take measures to reduce the charging current and lower the temperature, which can ensure fast charging and save charging time.
  • the method further includes setting a time threshold to obtain a current down time from a time when the charging current value of the wearable electronic device decreases, and if the current down time is equal to the preset current time threshold, the real time is monitored. If the temperature value is still in the temperature range, the next-level down-flow control command is generated according to the next-stage down-flow control coefficient used in the next stage, and the control continues to reduce the wearable electronic device. The value of the charging current.
  • the purpose of setting the time threshold is to lower the temperature within a set time window, which can be set according to the actual application needs. For example, in a temperature-sensitive environment, the time can be set shorter, so that in a shorter period of time, when the temperature does not fall to the set condition, further cooling measures can be taken (ie, the next level is selected). Downflow control parameters, generate the next level of downflow control commands). When in an environment that is less sensitive to temperature, the time threshold can be set longer, which can shorten the charging time.
  • FIG. 6 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention. If the first stage downflow control measure is adopted, the temperature of the smart watch is still not lower than or equal to the lower limit of the temperature range. The value, and the set timer time has arrived, then further downflow control measures are taken to further reduce the charging current value of the smart watch and thereby lower the temperature value. In the present embodiment, the case where the two-stage downflow control means is in a progressive relationship when the two-stage downflow control means is used to cool down.
  • the second-stage downflow control can be omitted. Measures.
  • the chip is processed so that the processing chip reduces the voltage value of the current power pin, thereby reducing the charging current value of the wearable electronic device, thereby reducing the temperature of the smart watch and preventing the adverse effects caused by the excessive temperature.
  • the temperature curve of the smart watch has shown a downward trend as a whole, and is no longer close to the upper limit value T usl of the temperature range. Therefore , it is no longer necessary to take downflow control measures to ensure Charging efficiency saves charging time.
  • FIG. 7 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention.
  • a three-stage drop is illustrated when a three-stage downflow control means is used to cool down.
  • the flow control means is in a progressive relationship. It can be understood that if the temperature value of the lithium battery of the smart watch has decreased to less than or equal to the lower limit of the temperature range after the first or two stages of the downflow control, the time may reach the currently set time threshold, the second or The third level of downflow control measures.
  • the downflow control command is sent to a processing chip that controls the wireless receiving coil, so that the processing chip reduces the voltage value of the current power pin, thereby reducing the charging current value of the smart watch.
  • the processing chip is caused to lower the voltage value of the current power pin, thereby reducing the charging current value of the smart watch to a predetermined minimum value.
  • the temperature value is still higher than the lower limit value Tlsl of the temperature range. It is indicated that the effect of the means for lowering the temperature is not obvious, and it is conceivable to set the charging current value of the lithium battery of the smart watch to a preset current minimum value, which is preferably a trickle current charging. The charging current value of the phase. In this way, the temperature value can be lowered as quickly as possible.
  • the real-time monitoring is determined within the time set by the third timer. Whether the temperature value is less than or equal to the lower limit of the temperature range. If the temperature value is less than or equal to the lower limit of the temperature range within the time set by the third timer, the control increases the charging current value of the smart watch lithium battery, and continues. Charge it.
  • the range of the downflow control coefficient C1 and the downflow control coefficient C2 is preferably 0.1 to 0.5.
  • the time set by the first timer, the time set by the second timer, and the time set by the third timer respectively correspond to each stage of the down-flow control command, and the times set by the three timers may be the same or different.
  • FIG. 8 is a schematic diagram of a charging curve of a lithium battery in a high ambient temperature or poor heat dissipation environment according to another embodiment of the present invention.
  • a four-stage drop is illustrated when a four-stage downflow control method is used to cool down.
  • the flow control means is in a progressive relationship. It can be understood that if the temperature value of the lithium battery of the smart watch has decreased to less than or equal to the lower limit of the temperature range after the first, second or third stage down-flow control, the time value reaches the currently set time threshold, it can be omitted. Second, third or fourth stage downflow control measures.
  • control means when the temperature value is still greater than the lower limit of the temperature range within the time set by the third timer after the three-stage downflow control means is adopted is mainly described.
  • the elapsed time is counted, and if the current down-flow time is equal to the preset current time threshold (ie, the time set by the fourth timer) If the temperature value monitored in real time is still within the temperature range, then control the wireless receiving coil of the smart watch to be turned off, stop charging, and wait for the temperature to fall.
  • the preset current time threshold ie, the time set by the fourth timer
  • Real-time monitoring of the temperature value determining whether the monitored temperature value is less than or equal to the lower limit of the temperature range within the set fourth timer time, then re-turning on the wireless receiving coil; otherwise, continuing to turn off the wireless receiving coil and stopping charging, And continue to judge the comparison between the monitored temperature and the lower limit of the temperature range.
  • the method further includes: setting a threshold of the number of downflows or setting a minimum charging current value, and when the multi-stage progressive reduction of the charging current value of the smart watch is performed, accumulating the number of downflows, when accumulated
  • the wireless receiving coil of the wearable electronic device can be controlled to be turned off, the charging is stopped, and the temperature is dropped.
  • the threshold of the number of down-flows is set to three times, in this embodiment, the number of statistics is incremented by one for each time the down-flow is performed, and it can be seen that in this embodiment, after three cumulative downflows, the set is reached.
  • the threshold of the number of down-flows can be judged regardless of whether the temperature value is lower than or equal to the lower limit of the temperature, regardless of the set time. If the monitored temperature is still higher than the lower limit, the wireless reception is directly turned off. Coil, stop charging. Or, if the control is repeated multiple times to reduce the charging current value of the smart watch, if the current charging current value is not greater than the minimum charging current value, and the real-time monitored temperature value is still in the temperature range, the control turns off the wireless reception of the smart watch. Coil.
  • FIG. 9 is a structural block diagram of a charging control device for a wearable electronic device according to an embodiment of the present invention.
  • the charging control device 90 of the wearable electronic device of the present embodiment includes:
  • a temperature range setting unit 901 configured to set a temperature range when the wearable electronic device is charged according to a user requirement
  • the coil control unit 902 is configured to: when the charging starts, turn on the wireless receiving coil of the wearable electronic device, and generate a charging current by using the wireless receiving coil to charge the wearable electronic device;
  • the temperature monitoring unit 903 is configured to acquire the temperature value of the wearable electronic device in real time when the charging current of the wearable electronic device is detected to rise to a set constant current charging current value;
  • the temperature determining unit 904 is configured to determine whether the temperature value is within a temperature range
  • the current control unit 905 is configured to maintain the current charging current value of the wearable electronic device according to the determination result of the temperature determining unit; or change the charging current of the wearable electronic device, thereby changing the temperature value of the wearable electronic device to make the wearable Electronic equipment The temperature value falls within the temperature range.
  • the temperature monitoring unit 903 is specifically configured to collect the voltage value of the thermistor electrically connected to the battery of the wearable electronic device in real time; calculate the current resistance of the thermistor according to the voltage value of the thermistor. The value, and according to the correspondence between the resistance and the temperature, the temperature value of the battery of the wearable electronic device is obtained.
  • the temperature range setting unit 901 is configured to set the temperature range to a range between the set temperature upper limit value and the temperature lower limit value;
  • the current control unit 905 is specifically configured to control, when the temperature value of the wearable electronic device is greater than the upper limit value of the temperature range, to reduce the charging current value of the wearable electronic device by one time or multiple times, so that the current is monitored in real time.
  • the temperature value is less than or equal to the temperature lower limit value; and, when the temperature value of the wearable electronic device is less than or equal to the lower limit value of the temperature range, the control increases the charging current value of the wearable electronic device.
  • the current control unit 905 is specifically configured to set one or more level downflow control coefficients, and generate a currently used downflow control command according to the corresponding level downflow control coefficient;
  • the processing chip is sent to the control wireless receiving coil to reduce the voltage value of the current power pin, thereby reducing the charging current value of the wearable electronic device.
  • the current control unit 905 is specifically configured to generate a current downflow control command according to a currently used level downflow control coefficient
  • the charging control device 90 of the wearable electronic device further includes: a time threshold setting unit for setting a time threshold, and the current control unit 905 controls to reduce the wearable electronic device according to the current downflow control instruction.
  • the charging current value causes the wearable electronic device to charge according to the reduced current value; the current down time is obtained from the time when the wearable electronic device charging current value decreases; if the current downflow time is equal to the preset current time threshold If the temperature value monitored by the temperature monitoring unit 903 is still in the temperature range, the current control unit 905 generates a next-stage downflow control command according to the next-stage downflow control coefficient used by the next stage, and the control continues to decrease. The value of the charging current of the wearable electronic device.
  • the current control unit 905 is further configured to: if the current downtime is equal to the preset current time threshold, the temperature value monitored by the temperature monitoring unit 903 is still in the temperature range, and the current control unit 905 Controlling the wireless receiving coil of the wearable electronic device; in one embodiment of the present invention, the charging control device 90 of the wearable electronic device further includes: a downflow threshold value setting unit for setting a threshold number of downflows or for The lowest charging current value setting unit that sets the minimum charging current value,
  • Temperature monitoring unit 903 monitors in real time When the temperature value is still in the temperature range, the current control unit 905 controls to turn off the wireless receiving coil of the wearable electronic device; or the current control unit 905 controls the multiple progressively to reduce the charging current value of the wearable electronic device, When the current charging current value is not greater than the minimum charging current value, and the temperature monitoring unit 903 detects that the temperature value is still in the temperature range, the current control unit 905 controls to turn off the wireless receiving coil of the wearable electronic device.
  • the current control unit 905 is specifically configured to set a first-stage down-flow control coefficient, the first-level down-flow control coefficient is a value less than 1, and generate a current according to the corresponding level-down control coefficient.
  • the downflow control command used includes: when the currently used level downflow control coefficient is the first stage downflow control coefficient, setting the product value of the first stage downflow control coefficient and the set constant current charging current value to the current use In the downflow control instruction, the charging current value indicating the current stage downflow is the product value; or the current control unit 905 is specifically configured to set the first stage downflow control coefficient and the second level downflow control coefficient,
  • the first-stage downflow control coefficient and the second-stage downflow control coefficient are both values less than one; according to the next-level down-flow control coefficient used in the next stage, the next-level down-flow control command is generated, including: the next level When the next-level down-flow control coefficient used includes the first-stage down-flow control coefficient and the second-stage down-flow control coefficient, the second
  • the charging control device of the wearable electronic device in this embodiment corresponds to the charging control method of the wearable electronic device in the foregoing embodiment, and the charging of the wearable electronic device in this embodiment
  • the implementation steps of the control device may be specifically described in the foregoing charging control method part of the wearable electronic device, and details are not described herein again.
  • a smart watch is provided, which is provided with a charging control device of a wearable electronic device according to the foregoing embodiment of the present invention, and the charging control device enables the smart watch to be wirelessly
  • the temperature value during charging falls within the set temperature range. Since the temperature of the smart watch during wireless charging is controlled within a set temperature range, the user experience is enhanced, and the competitiveness of the smart watch is greatly improved.
  • the technical solution of the embodiment of the present invention monitors the temperature value of the wearable electronic device according to real-time monitoring by setting a temperature range and increasing the charging current value of the wearable electronic device to a preset constant current charging current value.
  • the comparison of the temperature value and the temperature range takes the corresponding current control measures.
  • the temperature is lowered by lowering the charging current, which is more cost-effective than the conventional scheme of increasing the heat conducting element, and is suitable for large-scale popularization and application.
  • the current of the wearable electronic device is restored when the temperature is less than or equal to the temperature range, so that it can be quickly charged, shortening the charging time, and prolonging the battery life compared with the conventional cooling scheme that temporarily stops charging.
  • the near-normal temperature fast charging is realized, thereby improving the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种可穿戴电子设备的充电控制方法、装置和智能手表,方法包括:根据用户需求设定可穿戴电子设备充电时的温度范围(S31);充电开始时开启可穿戴电子设备的无线接收线圈,利用无线接收线圈产生充电电流为可穿戴电子设备充电(S32);当监测到可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值(S33);判断温度值是否在温度范围内(S34),是则保持可穿戴电子设备的当前的充电电流值(S35);否则改变可穿戴电子设备的充电电流大小,使可穿戴电子设备的温度值落在温度范围内(S36)。从而解决了可穿戴设备无线充电过程中的发热导致温度过高的问题,同时又避免了传统手段为降低温度而停止充电导致充电时间过长的问题。

Description

可穿戴电子设备的充电控制方法、装置以及智能手表 技术领域
本发明涉及可穿戴电子设备技术领域,具体涉及可穿戴电子设备的充电控制方法、装置以及智能手表。
背景技术
消费电子领域的无线充电技术主要基于WPC(Qi)标准,Qi是由全球首个推动无线充电技术的标准化组织-无线充电联盟(Wireless Power Consortium,简称WPC)推出的“无线充电”标准,具备便捷性和通用性两大特征,Qi标准采用的是“电磁感应技术”。基于“电磁感应技术”的无线充电方法的充电效率与设备的功率正相关。可穿戴电子设备(如智能手表),因设备尺寸的限制电池容量通常较小,因而功率不大,这就导致了智能手表无线充电时充电效率较低。充电效率低导致了无线充电技术在智能手表中的应用存在下面的问题:充电温度过高,充电时发热。
一方面温度过高会影响电池寿命;另一方面因可穿戴设备会与皮肤直接接触,温度过高会烫伤皮肤,或让穿戴者感到不适,用户体验差,进而降低了用户对产品的粘性。
针对该问题的传统解决方案之一,如采用导热、散热等技术会导致成本增加,难以推广实现。传统解决方案之二,如充电温度过高则暂时停止充电,这种方案会带来充电时间过长延长了整体充电时间的问题,也会导致用户体验较差。
发明内容
为了解决上述问题,本发明提供了一种可穿戴电子设备的充电控制方法、装置和智能手表,解决了可穿戴设备无线充电过程中的发热导致温度过高的问题,同时又避免了传统手段为降低温度而导致充电时间过长、成本高的问题。
根据本发明的一个方面,提供了一种可穿戴电子设备的充电控制方法,该方法包括:
根据用户需求设定可穿戴电子设备充电时的温度范围;
充电开始时,开启可穿戴电子设备的无线接收线圈,利用无线接收线圈产生充电电流为可穿戴电子设备充电;
当监测到可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值;
判断温度值是否在温度范围内,是则,保持可穿戴电子设备当前的充电电流值;否则,改变可穿戴电子设备的充电电流大小,进而改变可穿戴电子设备的温度值,使可穿戴电子设备的温度值落在温度范围内。
根据本发明的另一个方面,提供了一种可穿戴电子设备的充电控制装置,该装置包括:
温度范围设定单元,用于根据用户需求设定可穿戴电子设备充电时的温度范围;
线圈控制单元,用于充电开始时,开启可穿戴电子设备的无线接收线圈,利用无线接收线圈产生充电电流为可穿戴电子设备充电;
温度监测单元,用于当监测到可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值;
温度判断单元,用于判断温度值是否在温度范围内;
电流控制单元,用于根据温度判断单元的判断结果保持可穿戴电子设备当前的充电电流值;或者,改变可穿戴电子设备的充电电流大小,进而改变可穿戴电子设备的温度值,使可穿戴电子设备的温度值落在温度范围内。
根据本发明的再一个方面,提供了一种智能手表,该智能手表中设置有上述可穿戴电子设备的充电控制装置,该充电控制装置使智能手表在通过无线方式充电时的温度值落在设定的温度范围内。
本发明技术方案的有益效果是:本发明实施例的技术方案通过预先设定温度范围,并在可穿戴电子设备的充电电流值上升到预设的恒流充电电流值时,实时监测可穿戴电子设备的温度,并根据温度值判断结果的不同采取不同控制措施,尤其是在可穿戴设备的温度值超过温度范围时,通过降低充电电流实现降温,与增加导热元件这种传统方案相比,成本更加低廉,适合大规模推广生产。另外,通过实时监测温度,在温度小于等于温度范围时恢复可穿戴电子设备的电流,以使其能够快速充电,缩短充电时间,与传统的采取暂时停止充电的降温方案相比,延长了电池寿命,提升了用户体验,同时实现了近常温快速充电。
附图说明
图1是室温下锂电池充电曲线示意图;
图2较高环境温度或散热不良环境下锂电池充电曲线示意图;
图3是本发明一个实施例的一种可穿戴电子设备的充电控制方法的流程图;
图4是本发明另一个实施例提供的可穿戴电子设备的充电控制方法流程示意图;
图5是本发明又一个实施例提供的较高环境温度或散热不良环境下锂电池充电曲线示意图;
图6是本发明又一个实施例提供的较高环境温度或散热不良环境下锂电池充电曲线示意图;
图7是本发明又一个实施例提供的较高环境温度或散热不良环境下的锂电池充电曲线示意图;
图8是本发明又一个实施例提供的较高环境温度或散热不良环境下的锂电池充电曲线示意图;
图9是本发明一个实施例的一种可穿戴电子设备的充电控制装置的结构框图。
具体实施方式
本发明的技术构思是:针对现有技术中的问题,本发明实施例提出了一种防止充电时温度过高同时还能保证快速充电的解决方案。通过在可穿戴电子设备充电时(主要是达到设定的恒流充电电流值)对温度进行实时监测,获得温度值,并采取电流控制措施使得温度值保持在温度范围内,当温度值高于温度范围时降低可穿戴电子设备的充电电流值,当温度值低于温度范围时增大充电电流值,通过这种方式既不需要额外增加导热、散热元件,节省了成本。更重要的是,本发明实施例的技术方案充电时产生的温度不会过高、不影响用户佩戴舒适性和皮肤健康,并且不需要停止充电,也避免了传统方案为了降低温度暂停充电导致的整体充电时间过长的问题。
图1是室温下锂电池充电曲线示意图,图2是较高环境温度或散热不良环境下锂电池充电曲线示意图,结合图1和图2,纵坐标表示温度,横坐标表示充电时间。在图1中,纵坐标Tusl为人体可忍受温度的上限值,纵坐标Tlsl是保证快速充电(快充)效率的温度下限值,由温度上限值和温度下限值设定了温度范围。可穿戴电子设备的锂电池充电过程一般可以分为四个阶段:涓流充电(低压预充)、恒流充电(CC)、恒压充电(CV)以及充电终止。恒流充电(CC)是四个充电阶段中的大电流阶段,电池温度上升很快。在室温下典型的充电时间-温度曲线如图1所示,充电时的温度在合理的范围内,图1中曲线11为锂电池充电时的温度示意曲线。普通的充电过程安全措施不完善,当温度过高时如图2所示,随着充电时间的延长,温度曲线22最高点已经超过了人体可忍受温度上限值Tusl,此时如果再继续保持大电流充电有可能烫伤使用者,甚至发生电池燃烧爆炸等危险。并且如果长期处于高温充电状态也会缩短电池寿命,影响可穿戴电子设备的电池续航能力。
实施例一
为了解决图2中出现的问题,本发明实施例提供了一种可穿戴电子设备的充电控制方法。图3是本发明一个实施例的一种可穿戴电子设备的充电控制方法的流程图,参见图3,可穿戴电子设备的 充电控制方法包括如下步骤:
步骤S31,根据用户需求设定可穿戴电子设备充电时的温度范围;
步骤S32,充电开始时,开启可穿戴电子设备的无线接收线圈,利用无线接收线圈产生充电电流为可穿戴电子设备充电;
步骤S33,当监测到可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值;
步骤S34,判断温度值是否在温度范围内,是则,执行步骤S35保持可穿戴电子设备当前的充电电流值;否则,执行步骤S36,改变可穿戴电子设备的充电电流大小,进而改变可穿戴电子设备的温度值,使可穿戴电子设备的温度值落在温度范围内。
由图3所示的方法可知,本实施例的技术方案在可穿戴电子设备无线充电过程中,当监测到可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值,根据温度值的不同采取不同的控制手段,使得可穿戴电子设备充电时的温度始终在设定的温度范围内,这样既避免了温度过高时带来的损坏电池、影响用户佩戴舒适性的问题又避免了暂停充电的降温技术导致的整体充电时间过长的问题,提高了用户使用体验和产品的竞争力。
具体的,根据用户的使用需求设定温度范围指可以根据用户对可穿戴电子产品快充效率的要求不同、用户的性别不同(例如用户为男/女)设定不同的温度范围,满足用户的个性化需求。举例而言,根据人体可耐受的温度,温度上限值取40~60摄氏度范围内的一个值,而温度下限值取35~45摄氏度范围内的一个值。如温度范围为37℃~52℃。
以下以可穿戴电子设备为智能手表为例具体说明本实施例可穿戴电子设备的充电控制方法的实现过程。可以理解,本发明实施例的技术方案的应用范围不限于智能手表也可以是智能手环或者其他可穿戴的电子设备,这类电子设备通常具备如下特点:功率小、可穿戴、充电时与人体皮肤接触。
图4是本发明另一个实施例提供的可穿戴电子设备的充电控制方法流程示意图,如图4所示,流程开始,执行如下步骤S401至步骤S411。
步骤S401,开启无线接收线圈,充电电流值上升,并达到设定的恒流充电电流值(I=ICC),进入步骤S402。
当智能手表需要无线充电时,开启智能手表内置的无线接收线圈,利用无线接收线圈产生充电电流为智能手表充电,智能手表刚开始的充电阶段为涓流充电阶段,是低压预充,电流比较小,这时的温度也不太高所以不需要采取降低温度措施,当智能手表中电池的充电电流值上升到恒流充电阶段 设定的恒流充电电流值时(即I=ICC),开始根据温度值的变化执行相应降低充电电流的控制操作。
步骤S402,获取智能手表电池的实时温度值;并在获取到实时温度值后进入步骤S403。
具体的,可通过实时采集与智能手表电池电连接的热敏电阻的电压值;根据热敏电阻的电压值计算出热敏电阻当前的阻值,并根据阻值与温度的对应关系,得到智能手表电池的温度值。
步骤S403,判断获取的当前温度值是否高于设定的温度范围的上限值Tusl
若否,则返回步骤S401,保持当前的充电电流值,继续按照设定的恒流充电电流值进行充电。若是,则改变可穿戴电子设备的充电电流大小,即当可穿戴电子设备的当前温度值大于温度范围的上限值时,控制一次减小或多次递进减小可穿戴电子设备的充电电流值。在本实施例中,如果温度值高于设定的温度范围的上限值,则执行步骤S404。
步骤S404,选择降流控制系数(C1),生成当前使用的降流控制指令(I=Icc*C1),降低充电电流值;在降低充电电流的大小后,进入步骤S405。
本实施例中,将降流控制指令发送给控制无线接收线圈的处理芯片,以使得该处理芯片降低电流功率引脚的电压数值,从而减小智能手表的充电电流值。在本发明其他实施例中,也可以将降流控制指令发送给电源侧,由电源侧控制无线发射线圈的电磁波信号,进而减小智能手表的充电电流值。对此不作限制。
现有无线充电技术,主要采用电磁感应原理实现,即利用充电器中的无线发射线圈(可产生磁场)和智能手表中对应设置的无线接收线圈之间的能量耦合实现能量的传递。基于此,本实施例中,智能手表的降流控制,具体可以由智能手表中的控制无线接收线圈的处理芯片来实现,也可以由控制无线发射线圈的电源侧来实现。
步骤S405,判断温度值是否小于等于温度范围下限值且定时器是否到时,是则,返回步骤S401,控制增大智能手表的充电电流值至设定的恒流充电电流ICC,否则,执行步骤S406,选择下一级降流控制系数(C1和C2),生成下一级使用的降流控制指令(I=C2*C1*ICC)进一步降低充电电流值。
需要说明的是,本发明实施例中设置温度范围的下限值,是为了在多级降流控制,减小充电电流值的操作中,作为一个减小操作的中止点,即当监测到实时温度值小于等于设置的温度范围的温度下限值时,停止充电电流值减小操作,以便能够恢复到合适的电流值,尽快完成充电。
需要说明的是,步骤S405中的温度条件和时间条件之间是逻辑和的关系,也就是说,在时间条件满足的时候(时间达到设定的当前时间阈值)进一步判断温度条件是否满足,如果温度条件也满足(即温度值小于等于温度范围下限值)则控制增大充电电流值,使得温度值升高,这里的控制增大充 电电流值可以是将当前的充电电流值增大到设定的恒流充电电流值,这样可以保证快速充电的充电效率。如果温度条件不满足,即温度值大于温度范围的下限值,则控制继续减小当前的充电电流值,即执行步骤S406。
步骤S406,选择下一级降流控制系数(C1和C2),生成下一级使用的降流控制指令(I=C2*C1*Icc),降低充电电流值;在降低充电电流值后进入步骤S407。
步骤S407,判断当前温度值是否小于等于温度范围下限值并且定时器是否未到时;是则,返回步骤S401,控制增大智能手表当前充电电流值至设定的恒流充电电流值ICC,否则进入步骤S408。
在步骤S407中,判断经过步骤S406的降流之后实时获取的锂电池的温度值与温度下限值的比较结果,当温度值小于等于设定的温度范围的下限值TIsl,且定时器未到时时,控制增大锂电池的充电电流值到设定的恒流充电电流值即令I=Icc。当温度值大于设定的温度范围的下限值TIsl,且定时器已到时时,则执行步骤S408。
步骤S408,选择降流控制系数,生成下一级使用的降流控制指令(I=Icc*Clowest),降低充电电流值,在降低充电电流值后,进入步骤S409。
在步骤S408中,通过生成下一级使用的降流控制指令,并执行该降流控制指令以进一步降低智能手表的充电电流值。具体的,本步骤中,降流控制指令的内容是设置充电电流值等于恒流充电电流值ICC与预设降流控制系数最小值Clowest的乘积值。
步骤S409,判断温度值是否小于等于温度范围的下限值并且定时器是否未到时,否,则进入步骤S410。
在步骤S409中,判断经过步骤S408降流之后实时获取的锂电池的温度值与温度下限值的比较结果,当温度值小于等于设定的温度范围的下限值TIsl,且定时器未到时时,则返回步骤S401,控制增大智能手表的充电电池到设定的恒流充电电流值I=Icc,继续充电。当温度值大于设定的温度范围的下限值TIsl,且定时器已到时时,执行步骤S410控制关闭无线接收线圈,停止充电。
需要说明的是,在本实施例中,只示意了利用降流控制系数的最小值控制降流的手段。在其他实施例中,还可以对每次降流的次数进行统计,利用降流次数与预设降流次数阈值的比较结果,确定是否关闭无线接收线圈。继续以图4所示为例,本实施例中进行了三次降流,分别在步骤S404、S406和S408,当执行步骤S408的降流之后,可在步骤S409中判断累计的降流次数是否等于预设降流次数阈值,如果等于,则执行步骤S410。
步骤S410,关闭无线接收线圈,停止充电。进入步骤S411中。
步骤S411,判断温度值是否小于等于温度范围下限值并且定时器是否未到时。是则执行步骤S401,否则,执行步骤S410。
在步骤S411中,判断停止充电后智能手表锂电池当前的温度值是否小于等于温度范围下限值,如果温度值已经小于或等于温度范围的下限值,则可以控制重新开启无线接收线圈,增大智能手表的充电电流值到设定的恒流充电电流值I=Icc,继续充电,以尽快完成充电过程。如果温度值已经大于温度范围的下限值,则继续关闭无线接收线圈,保持停止充电状态,并实时判断温度值与温度范围的下限值的比较结果,待温度值回落到温度范围下限值时再开启无线接收线圈,继续充电。
需要说明的是,步骤S401中包括开启无线接收线圈和将充电电流值设置为等于预设的恒流充电电流值两个子步骤。在实际应用中需要根据情况判断无线接收线圈是否开启,例如,在步骤S405中判断出温度值小于等于设定的温度范围下限值并且定时器没有到时时,控制增大充电电流值,将当前的充电电流值设定为恒流充电电流值即可,不必重新开启无线接收线圈。而在步骤S411中,由于在此之前执行了步骤S410,关闭了无线接收线圈,如果步骤S411中判断出温度值小于等于温度范围下限值并且定时器未到时时,则需要重新开启无线接收线圈,再接收充电电流并将充电电流值增大到设定的恒流充电电流值。
实施例二
图5是本发明又一个实施例提供的较高环境温度或散热不良环境下锂电池充电曲线示意图,参见图5,在本实施例中,示意出了控制一次减小可穿戴电子设备的充电电流值的情况。具体的,当前使用的等级降流控制系数为第一等级降流控制系数C1(C1是一个小于1的数值),根据第一等级降流控制系数C1生成当前使用的降流控制指令(将第一级降流控制系数与设定的恒流充电电流值的乘积值设置在当前使用的降流控制指令中,以指示当前等级降流后的充电电流值为该乘积值);将这个降流控制指令发送至控制无线接收线圈的处理芯片,使该处理芯片降低电流功率引脚的电压数值,从而减小可穿戴电子设备的充电电流值。
参见图5中的电池温度随时间变化曲线55,采取一次降流措施后,智能手表的电池的温度回落到温度范围的下限值附近,并随着降流措施的作用,智能手表的电池温度偶有升高,但是只要不超过设定的温度范围的上限值就不必采取降低充电电流的措施并降低温度,这样可以保证快速充电,节省充电时间。
本实施例中,该方法还包括设置时间阈值,从可穿戴电子设备充电电流值减小时起计时,得到当前降流时间;若当前降流时间等于预设的当前时间阈值时,实时监测到的温度值仍然位于温度范围,则根据下一级使用的下一级降流控制系数,生成下一级降流控制指令,控制继续减小可穿戴电子设备 的充电电流值。
设定时间阈值的作用是为了在一个设定的时间窗口内将温度降下来,时间阈值可以根据实际应用需要设置。例如,在对温度比较敏感的环境下可以将时间设定的短一些,这样当在较短的时间内,温度没有降到设定的条件时可以采取进一步的降温措施(即,选择下一级降流控制参数,生成下一级降流控制指令)。当处于对温度不太敏感的环境时,可以将时间阈值设定的长一些,这样可以缩短充电时间。
实施例三
图6是本发明又一个实施例提供的较高环境温度或散热不良环境下锂电池充电曲线示意图,如果采取第一级降流控制措施后,智能手表的温度仍没有小于等于温度范围的下限值,并且设定的定时器时间已经到达,则采取进一步的降流控制措施,以进一步降低智能手表的充电电流值进而降低温度值。在本实施例中,示意出了在采取两级降流控制手段降温时,两级降流控制手段之间呈递进关系的情况。可以理解,如果经过一级降流控制后,在时间到达当前设定的时间阈值时智能手表锂电池的温度值已经下降到小于等于温度范围的下限值,则可以省略第二级降流控制措施。
具体的,参见图6中电池温度随时间变化的曲线66,当智能手表的充电电流值达到设定的恒流充电电流值,即I=Icc时,根据第一级降流控制系数,控制生成第一级降流控制指令(即设置充电电流I=Icc*C1),根据对当前温度进行监测的结果,如果当前温度值仍然较高(如,没有小于等于温度范围的下限值)则选择下一级降流控制系数(C2,C2小于1),控制生成下一级降流控制指令(即设置充电电流I=Icc*C1*C2),将降流控制指令发送至控制无线接收线圈的处理芯片,以使该处理芯片降低电流功率引脚的电压数值,从而减小可穿戴电子设备的充电电流值,进而降低智能手表的温度,防止温度过高带来不良后果。
如图6所示,经过两级递减降流后,智能手表的温度曲线已经整体呈现下降趋势,不再接近温度范围的上限值Tusl,如此,可不必再采取降流控制措施,以保证充电效率,节省充电时间。
实施例四
图7是本发明又一个实施例提供的较高环境温度或散热不良环境下的锂电池充电曲线示意图,在本实施例中,示意出了在采取三级降流控制手段降温时,三级降流控制手段之间呈递进关系的情况。可以理解,如果经过一级或者两级降流控制后,在时间达到当前设定的时间阈值时智能手表锂电池的温度值已经下降到小于等于温度范围的下限值,则可以省略第二或者第三级降流控制措施。
参见图7中电池温度随时间变化的曲线77,当智能手表锂电池处于涓流充电阶段时,温度较低,当智能手表的锂电池的充电电流值上升到设定的恒流充电电流值时,即I=Icc时,温度上升很快,这 里根据实时监测到的温度值,选择一个第一级降流控制系数(即C1),根据第一级降流控制系数C1生成第一级降流控制指令(即令I=Icc*C1),将这个降流控制指令发送至控制无线接收线圈的处理芯片,使该处理芯片降低电流功率引脚的电压数值,从而减小智能手表的充电电流值。
如图7中的曲线77所示,在第一个定时器设定的时间内经过一级降流后,实时采集到的锂电池的温度值依然较高(如,高于温度范围的下限值),则选择下一级降流控制系数(C2,C2小于1),根据下一级降流控制系数C1和C2控制生成下一级降流控制指令(即令充电电流I=Icc*C1*C2),将降流控制指令发送至控制无线接收线圈的处理芯片,以使该处理芯片降低电流功率引脚的电压数值,从而减小可穿戴电子设备的充电电流值,进而降低智能手表的温度。
在第二个定时器设定的时间内经过两级降流后,实时采集到的温度值依然较高(如高于温度范围的下限值),则选择下一级降流控制系数(Clowest),根据下一级降流控制系数Clowest控制生成下一级降流控制指令(即令充电电流I=Icc*Clowest),将降流控制指令发送至控制无线接收线圈的处理芯片,以使该处理芯片降低电流功率引脚的电压数值,从而将智能手表的充电电流值降至预定的最小值。
这里需要说明的是,在根据第一级降流控制系数和第二级降流控制系数分别生成降流控制指令的降流后,如果温度值依然高于温度范围的下限值Tlsl,,则说明采取的降低温度的手段带来的效果不明显,可以考虑将智能手表的锂电池的充电电流值设定为预设的电流最小值,该预设的电流最小值优选地取涓流充电阶段的充电电流值。如此,能尽快的降低温度值。
在根据下一级降流控制系数Clowest控制生成下一级降流控制指令(即令充电电流I=Icc*Clowest)进行降流后,在第三定时器设定的时间内,判断实时监测的温度值是否小于等于温度范围的下限值,如果在第三定时器设定的时间内,温度值小于等于温度范围的下限值,则控制增大智能手表锂电池的充电电流值,继续进行充电。
需要说明的是,本实施例中,降流控制系数C1和降流控制系数C2的取值范围优选为0.1~0.5。第一定时器设定的时间、第二定时器设定的时间和第三定时器设定的时间分别对应每一级降流控制指令,这三个定时器设定的时间可以相同或者不同。
实施例五
图8是本发明又一个实施例提供的较高环境温度或散热不良环境下的锂电池充电曲线示意图,在本实施例中,示意出了在采取四级降流控制手段降温时,四级降流控制手段之间呈递进关系的情况。可以理解,如果经过一级、两级或者三级降流控制后,在时间达到当前设定的时间阈值时智能手表锂电池的温度值已经下降到小于等于温度范围的下限值,则可以省略第二、第三或者第四级降流控制措施。
参见图8中的电池温度随时间变化的曲线88,需要说明的是,本实施例中前三级降流控制措施和实施例三中的三级降流控制指令相同,可以参见前述实施例三的说明,这里不再赘述。
本实施例中重点描述在采取三级降流控制手段后,在第三定时器设定的时间内,温度值仍然大于温度范围的下限值时的控制手段。
具体的,参见图8,从第三级降流措施执行时起对降流经过的时间进行计时,若当前降流时间等于预设的当前时间阈值(即第四定时器设定的时间)时,实时监测到的温度值仍然位于温度范围内,则控制关闭智能手表的无线接收线圈,停止充电,待温度回落。实时监测温度值,在设定的第四定时器时间内判断监测到的温度值是否小于等于温度范围的下限值,是则重新开启无线接收线圈,否则,继续关闭无线接收线圈,停止充电,并继续判断监测到的温度与温度范围下限值之间的比较结果。
在本实施例中,该方法还包括:设定降流次数阈值或设置最低充电电流值,当采取多级递进减小智能手表的充电电流值时,对降流次数进行累计,当累计的次数达到设定的降流次数阈值时,也可以控制关闭可穿戴电子设备的无线接收线圈,停止充电,待温度回落。例如,将降流次数阈值设定为三次,在本实施例中,每经过一次降流,统计次数加1进行累计,可以看出本实施例中,累计经过了三次降流,即达到了设定的降流次数阈值,则可以不考虑设定时间而只根据温度值是否小于等于温度下限值这一个条件来判断,如果监测到的温度值依然高于下限值,则直接关闭无线接收线圈,停止充电。或者,若控制多次递进减小智能手表的充电电流值,则若当前充电电流值不大于最低充电电流值,而实时监测到的温度值仍然位于温度范围时,控制关闭智能手表的无线接收线圈。
实施例六
图9是本发明一个实施例的一种可穿戴电子设备的充电控制装置的结构框图,参见图9,本实施例的可穿戴电子设备的充电控制装置90包括:
温度范围设定单元901,用于根据用户需求设定可穿戴电子设备充电时的温度范围;
线圈控制单元902,用于充电开始时,开启可穿戴电子设备的无线接收线圈,利用无线接收线圈产生充电电流为可穿戴电子设备充电;
温度监测单元903,用于当监测到可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值;
温度判断单元904,用于判断温度值是否在温度范围内;
电流控制单元905,用于根据温度判断单元的判断结果保持可穿戴电子设备当前的充电电流值;或者,改变可穿戴电子设备的充电电流大小,进而改变可穿戴电子设备的温度值,使可穿戴电子设备 的温度值落在温度范围内。
在本发明的一个实施例中,温度监测单元903,具体用于实时采集与可穿戴电子设备电池电连接的热敏电阻的电压值;根据热敏电阻的电压值计算出热敏电阻当前的阻值,并根据阻值与温度的对应关系,得到可穿戴电子设备电池的温度值。
在本发明的一个实施例中,温度范围设定单元901用于将温度范围为设定的温度上限值和温度下限值之间的范围;
电流控制单元905,具体用于当可穿戴电子设备的温度值大于温度范围的上限值时,控制一次减小或多次递进减小可穿戴电子设备的充电电流值,使得实时监测到的温度值小于等于温度下限值;以及,当可穿戴电子设备的温度值小于等于温度范围的下限值时,控制增大可穿戴电子设备的充电电流值。
在本发明的一个实施例中,电流控制单元905,具体用于设置一个或多个等级降流控制系数,根据相应的等级降流控制系数生成当前使用的降流控制指令;将降流控制指令发送至控制无线接收线圈的处理芯片,以使该处理芯片降低电流功率引脚的电压数值,从而减小可穿戴电子设备的充电电流值。
在本发明的一个实施例中,电流控制单元905,具体用于根据当前使用的等级降流控制系数,生成当前降流控制指令;
在本发明的一个实施例中,可穿戴电子设备的充电控制装置90还包括:时间阈值设置单元,用于设置时间阈值,电流控制单元905根据当前降流控制指令控制减小可穿戴电子设备的充电电流值使得可穿戴电子设备按照减小后的电流值进行充电;从可穿戴电子设备充电电流值减小时起计时,得到当前降流时间;若当前降流时间等于预设的当前时间阈值时,温度监测单元903实时监测到的温度值仍然位于温度范围,则该电流控制单元905根据下一级使用的下一级降流控制系数,生成下一级降流控制指令,控制继续减小可穿戴电子设备的充电电流值。
在本发明的一个实施例中,电流控制单元905,还用于若当前降流时间等于预设的当前时间阈值时,温度监测单元903实时监测到的温度值仍然位于温度范围,电流控制单元905,控制关闭可穿戴电子设备的无线接收线圈;在本发明的一个实施例中,可穿戴电子设备的充电控制装置90还包括:用于设置降流次数阈值的降流次数阈值设置单元或用于设置最低充电电流值的最低充电电流值设置单元,
电流控制单元905控制多次递进减小可穿戴电子设备的充电电流值时,对降流次数进行累计,当累计的降流次数达到降流次数阈值设置单元设定的降流次数阈值,而且温度监测单元903实时监测 到的温度值仍然位于所述温度范围时,电流控制单元905控制关闭可穿戴电子设备的无线接收线圈;或电流控制单元905控制多次递进减小可穿戴电子设备的充电电流值时,若当前充电电流值不大于最低充电电流值,而温度监测单元903实时监测到的温度值仍然位于温度范围时,电流控制单元905控制关闭可穿戴电子设备的无线接收线圈。
在本发明的一个实施例中,电流控制单元905,具体用于设置第一级降流控制系数,第一级降流控制系数为一个小于1的数值;根据相应的等级降流控制系数生成当前使用的降流控制指令包括:当前使用的等级降流控制系数为第一级降流控制系数时,将第一级降流控制系数与设定的恒流充电电流值的乘积值设置在当前使用的降流控制指令中,以指示当前级降流后的充电电流值为该乘积值;或,电流控制单元905,具体用于设置第一级降流控制系数和第二级降流控制系数,第一级降流控制系数和第二级降流控制系数均为小于1的数值;根据下一级使用的下一级降流控制系数,生成下一级降流控制指令,包括:下一级使用的下一级等级降流控制系数包括第一级降流控制系数和第二级降流控制系数时,将第二级降流控制系数、第一级降流控制系数与设定的恒流充电电流值的乘积值设置在下一级降流控制指令中,以指示下一级降流后的充电电流值为该乘积值。
需要说明的是,本实施例中的这种可穿戴电子设备的充电控制装置是和前述实施例中的可穿戴电子设备的充电控制方法相对应的,本实施例中的可穿戴电子设备的充电控制装置的实现步骤可以具体参见前述可穿戴电子设备的充电控制方法部分的说明,这里不再赘述。
此外,本发明再一个实施例中还提供了一种智能手表,该智能手表中设置有如本发明前述实施例中的可穿戴电子设备的充电控制装置,该充电控制装置使智能手表在通过无线方式充电时的温度值落在设定的温度范围内。由于该智能手表无线充电时的温度控制在设定的温度范围内,因而增强了用户使用体验,大大提高了智能手表的竞争力。
综上可知,本发明实施例的技术方案通过设定温度范围,并在可穿戴电子设备的充电电流值上升到预设的恒流充电电流值时,根据实时监测可穿戴电子设备的温度值以及温度值与温度范围的比较结果,采取相应的电流控制措施。尤其是在温度值超过温度范围时,通过降低充电电流来降低温度,与增加导热元件这种传统方案相比,成本更加低廉,适合大规模推广应用。
另外,通过实时监测温度,在温度小于等于温度范围时恢复可穿戴电子设备的电流,以使其能够快速充电,缩短充电时间,与传统的采取暂时停止充电的降温方案相比,延长了电池寿命,同时实现了近常温快速充电,从而提升了用户体验。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (15)

  1. 一种可穿戴电子设备的充电控制方法,其中,所述方法包括:
    根据用户需求设定所述可穿戴电子设备充电时的温度范围;
    充电开始时,开启所述可穿戴电子设备的无线接收线圈,利用所述无线接收线圈产生充电电流为所述可穿戴电子设备充电;
    当监测到所述可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值;
    判断所述温度值是否在所述温度范围内,是则,保持所述可穿戴电子设备当前的充电电流值;否则,改变所述可穿戴电子设备的充电电流大小,进而改变所述可穿戴电子设备的温度值,使所述可穿戴电子设备的温度值落在所述温度范围内。
  2. 根据权利要求1所述的方法,其中,所述实时获取可穿戴电子设备的温度值包括:
    实时采集与所述可穿戴电子设备电池电连接的热敏电阻的电压值;
    根据所述热敏电阻的电压值计算出所述热敏电阻当前的阻值,并根据阻值与温度的对应关系,得到所述可穿戴电子设备电池的温度值。
  3. 根据权利要求1所述的方法,其中,所述温度范围为设定的温度上限值和温度下限值之间的范围,所述改变可穿戴电子设备的充电电流大小包括:
    当所述可穿戴电子设备的温度值大于所述温度范围的上限值时,控制一次减小或多次递进减小所述可穿戴电子设备的充电电流值,使得实时监测到的温度值小于等于温度下限值;
    以及,当所述可穿戴电子设备的温度值小于等于所述温度范围的下限值时,控制增大所述可穿戴电子设备的充电电流值。
  4. 根据权利要求3所述的方法,其中,所述控制一次减小或多次递进减小所述可穿戴电子设备的充电电流值包括:
    设置一个或多个等级降流控制系数,根据相应的等级降流控制系数生成当前使用的降流控制指令;
    将所述降流控制指令发送至控制无线接收线圈的处理芯片,以使该处理芯片降低电流功率引脚的电压数值,从而减小所述可穿戴电子设备的充电电流值。
  5. 根据权利要求4所述的方法,其中,所述根据相应的等级降流控制系数生成当前使用的降流 控制指令包括:根据当前使用的等级降流控制系数,生成当前降流控制指令;
    所述方法还包括设置时间阈值;
    所述控制一次减小或多次递进减小所述可穿戴电子设备的充电电流值,使实时监测到的温度值小于等于温度下限值包括:
    根据当前降流控制指令控制减小所述可穿戴电子设备的充电电流值使得所述可穿戴电子设备按照减小后的电流值进行充电;
    从所述可穿戴电子设备充电电流值减小时起计时,得到当前降流时间;
    若所述当前降流时间等于预设的时间阈值时,实时监测到的温度值仍然位于所述温度范围,则根据下一级使用的下一级降流控制系数,生成下一级降流控制指令,控制继续减小所述可穿戴电子设备的充电电流值。
  6. 根据权利要求5所述的方法,其中,所述控制一次减小或多次递进减小所述可穿戴电子设备的充电电流值使实时监测到的温度值小于等于温度下限值还包括:若当前降流时间等于预设的时间阈值时,实时监测到的温度值仍然位于所述温度范围,则控制关闭所述可穿戴电子设备的无线接收线圈;
    所述方法还包括:设置降流次数阈值或设置最低充电电流值;
    若控制多次递进减小所述可穿戴电子设备的充电电流值,则对降流次数进行累计,当累计的降流次数达到设定的所述降流次数阈值,而实时监测到的温度值仍然位于所述温度范围时,控制关闭所述可穿戴电子设备的无线接收线圈;或在控制多次递进减小所述可穿戴电子设备的充电电流值时,若当前充电电流值不大于最低充电电流值,而实时监测到的温度值仍然位于所述温度范围时,控制关闭所述可穿戴电子设备的无线接收线圈。
  7. 根据权利要求6所述的方法,其中,
    所述设置一个或多个等级降流控制系数包括:设置一个第一级降流控制系数,所述第一级降流控制系数为一个小于1的数值;
    所述根据相应的等级降流控制系数生成当前使用的降流控制指令包括:
    当前使用的等级降流控制系数为第一级降流控制系数时,将第一级降流控制系数与设定的恒流充电电流值的乘积值设置在当前使用的降流控制指令中,以指示当前级降流后的充电电流值为该乘积值;或,
    所述设置一个或多个等级降流控制系数包括:设置一个第一级降流控制系数和一个第二级降流控制系数,所述第一级降流控制系数和所述第二级降流控制系数均为小于1的数值;
    所述根据下一级使用的下一级降流控制系数,生成下一级降流控制指令,包括:
    下一级使用的下一级等级降流控制系数包括第一级降流控制系数和第二级降流控制系数时,将第二级降流控制系数、第一级降流控制系数与设定的恒流充电电流值的乘积值设置在下一级降流控制指令中,以指示下一级降流后的充电电流值为该乘积值。
  8. 一种可穿戴电子设备的充电控制装置,其中,所述装置包括:
    温度范围设定单元,用于根据用户需求设定所述可穿戴电子设备充电时的温度范围;
    线圈控制单元,用于充电开始时,开启所述可穿戴电子设备的无线接收线圈,利用所述无线接收线圈产生充电电流为所述可穿戴电子设备充电;
    温度监测单元,用于当监测到所述可穿戴电子设备的充电电流大小上升至设定的恒流充电电流值时,实时获取可穿戴电子设备的温度值;
    温度判断单元,用于判断所述温度值是否在所述温度范围内;
    电流控制单元,用于根据温度判断单元的判断结果保持所述可穿戴电子设备当前的充电电流值;或者,改变所述可穿戴电子设备的充电电流大小,进而改变所述可穿戴电子设备的温度值,使所述可穿戴电子设备的温度值落在所述温度范围内。
  9. 根据权利要求8所述的装置,其中,所述温度监测单元,具体用于实时采集与所述可穿戴电子设备电池电连接的热敏电阻的电压值;根据所述热敏电阻的电压值计算出所述热敏电阻当前的阻值,并根据阻值与温度的对应关系,得到所述可穿戴电子设备电池的温度值。
  10. 根据权利要求8所述的装置,其中,所述温度范围为设定的温度上限值和温度下限值之间的范围,
    所述电流控制单元,具体用于当所述可穿戴电子设备的温度值大于所述温度范围的上限值时,控制一次减小或多次递进减小所述可穿戴电子设备的充电电流值,使得实时监测到的温度值小于等于温度下限值;以及,当所述可穿戴电子设备的温度值小于等于所述温度范围的下限值时,控制增大所述可穿戴电子设备的充电电流值。
  11. 根据权利要求10所述的装置,其中,所述电流控制单元,具体用于设置一个或多个等级降流控制系数,根据相应的等级降流控制系数生成当前使用的降流控制指令;
    将所述降流控制指令发送至控制无线接收线圈的处理芯片,以使该处理芯片降低电流功率引脚的电压数值,从而减小所述可穿戴电子设备的充电电流值。
  12. 根据权利要求11所述的装置,其中,所述电流控制单元,根据当前使用的等级降流控制系数,生成当前降流控制指令;
    该装置还包括:时间阈值设置单元,用于设置时间阈值,
    所述电流控制单元,根据当前降流控制指令控制减小所述可穿戴电子设备的充电电流值使得所述可穿戴电子设备按照减小后的电流值进行充电;从所述可穿戴电子设备充电电流值减小时起计时,得到当前降流时间;
    若所述当前降流时间等于所述时间阈值设置单元预设的时间阈值时,所述温度监测单元实时监测到的温度值仍然位于所述温度范围,则所述电流控制单元根据下一级使用的下一级降流控制系数,生成下一级降流控制指令,控制继续减小所述可穿戴电子设备的充电电流值。
  13. 根据权利要求12所述的装置,其中,所述电流控制单元还用于,若所述当前降流时间等于所述时间阈值设置单元预设的当前时间阈值时,所述温度监测单元实时监测到的温度值仍然位于所述温度范围,控制关闭所述可穿戴电子设备的无线接收线圈;
    该装置还包括:用于设置降流次数阈值的降流次数阈值设置单元或用于设置最低充电电流值的最低充电电流值设置单元,
    所述电流控制单元控制多次递进减小所述可穿戴电子设备的充电电流值时,对降流次数进行累计,当累计的降流次数达到所述降流次数阈值设置单元设置的所述降流次数阈值,且所述温度监测单元实时监测到的温度值仍然位于所述温度范围时,所述电流控制单元控制关闭所述可穿戴电子设备的无线接收线圈;或所述电流控制单元控制多次递进减小所述可穿戴电子设备的充电电流值时,若当前充电电流值不大于所述最低充电电流值设置单元设置的最低充电电流值,且所述温度监测单元实时监测到的温度值仍然位于所述温度范围时,所述电流控制单元控制关闭所述可穿戴电子设备的无线接收线圈。
  14. 根据权利要求13所述的装置,其中,所述设置一个或多个等级降流控制系数包括:设置一个第一级降流控制系数,所述第一级降流控制系数为一个小于1的数值;
    所述根据相应的等级降流控制系数生成当前使用的降流控制指令包括:
    当前使用的等级降流控制系数为第一级降流控制系数时,将第一级降流控制系数与设定的恒流充电电流值的乘积值设置在当前使用的降流控制指令中,以指示当前级降流后的充电电流值为该乘积值;
    所述设置一个或多个等级降流控制系数包括:设置一个第一级降流控制系数和一个第二级降流 控制系数,所述第一级降流控制系数和所述第二级降流控制系数均为小于1的数值;
    所述根据下一级使用的下一级降流控制系数,生成下一级降流控制指令,包括:
    下一级使用的下一级等级降流控制系数包括第一级降流控制系数和第二级降流控制系数时,将第二级降流控制系数、第一级降流控制系数与设定的恒流充电电流值的乘积值设置在下一级降流控制指令中,以指示下一级降流后的充电电流值为该乘积值。
  15. 一种智能手表,其中,所述智能手表中设置有如权利要求8-14中任一所述的可穿戴电子设备的充电控制装置,该充电控制装置使智能手表在通过无线方式充电时的温度值落在设定的温度范围内。
PCT/CN2016/089983 2015-12-09 2016-07-14 可穿戴电子设备的充电控制方法、装置以及智能手表 WO2017096906A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017565773A JP6532548B2 (ja) 2015-12-09 2016-07-14 ウェアラブル電子機器の充電制御方法及び充電制御装置並びにスマートウォッチ
US15/540,973 US10511184B2 (en) 2015-12-09 2016-07-14 Charging control method and apparatus for wearable electronic device, and smart watch
EP16872105.8A EP3300161B1 (en) 2015-12-09 2016-07-14 Charging control method and apparatus for wearable electronic device, and smart watch
DK16872105.8T DK3300161T3 (da) 2015-12-09 2016-07-14 Ladningsstyringsfremgangsmåde og apparat til bærbar elektronisk indretning, og smartwatch
KR1020187001651A KR101999493B1 (ko) 2015-12-09 2016-07-14 웨어러블 전자 설비의 충전 제어 방법, 장치 및 스마트 손목시계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510907791.0 2015-12-09
CN201510907791.0A CN105552988B (zh) 2015-12-09 2015-12-09 可穿戴电子设备的充电控制方法、装置以及智能手表

Publications (1)

Publication Number Publication Date
WO2017096906A1 true WO2017096906A1 (zh) 2017-06-15

Family

ID=55831999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089983 WO2017096906A1 (zh) 2015-12-09 2016-07-14 可穿戴电子设备的充电控制方法、装置以及智能手表

Country Status (7)

Country Link
US (1) US10511184B2 (zh)
EP (1) EP3300161B1 (zh)
JP (1) JP6532548B2 (zh)
KR (1) KR101999493B1 (zh)
CN (1) CN105552988B (zh)
DK (1) DK3300161T3 (zh)
WO (1) WO2017096906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162158A (zh) * 2019-05-28 2019-08-23 努比亚技术有限公司 充电散热电路、方法、可穿戴设备及计算机可读存储介质

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552988B (zh) 2015-12-09 2018-07-03 歌尔股份有限公司 可穿戴电子设备的充电控制方法、装置以及智能手表
CN105826982B (zh) * 2016-05-11 2018-07-17 Tcl移动通信科技(宁波)有限公司 一种移动终端的充电控制方法及系统
CN105896666A (zh) * 2016-05-19 2016-08-24 北京小米移动软件有限公司 终端的充电方法、装置及终端
CN105977563A (zh) * 2016-06-28 2016-09-28 努比亚技术有限公司 一种充电方法、充电设备及终端
CN106356928B (zh) * 2016-09-20 2019-08-20 Tcl通讯(宁波)有限公司 一种双电池移动终端及其无线充电系统
CN106340925B (zh) * 2016-09-29 2019-04-16 Oppo广东移动通信有限公司 一种充电控制方法、装置及终端
WO2018125894A1 (en) * 2016-12-29 2018-07-05 Witricity Corporation Wireless power transmission system having power control
CN106549460A (zh) * 2016-12-29 2017-03-29 上海掌门科技有限公司 一种电子设备无线充电温度控制方法及系统
US10707672B2 (en) * 2017-05-04 2020-07-07 Intel Corporation Methods and apparatus for battery current monitoring
CN107959085B (zh) * 2017-11-13 2020-07-24 河南森源电气股份有限公司 一种电池储能设备的温度调节方法及系统
CN108628217B (zh) * 2018-05-30 2022-03-11 努比亚技术有限公司 穿戴设备功耗控制方法、穿戴设备及计算机可读存储介质
CN110673667B (zh) * 2018-07-03 2021-12-21 郑州宇通客车股份有限公司 一种车用充电连接装置的智能温控方法及装置
CN110838739B (zh) * 2018-08-17 2023-03-14 群光电能科技(苏州)有限公司 充电装置及其操作方法
CN109038758A (zh) * 2018-09-05 2018-12-18 广东小天才科技有限公司 一种智能手表及其充电装置
CN109066933B (zh) * 2018-09-11 2021-09-21 上海润欣科技股份有限公司 一种网络摄像机的无线充电方法及装置
JP7010191B2 (ja) * 2018-10-23 2022-02-10 トヨタ自動車株式会社 二次電池システムおよび二次電池の充電制御方法
CN109634347B (zh) * 2018-10-25 2021-01-08 惠州Tcl移动通信有限公司 防止可穿戴设备过热的方法、可穿戴设备及存储装置
WO2020097917A1 (zh) * 2018-11-16 2020-05-22 深圳市欢太科技有限公司 充电方法、装置、移动终端及计算机可读存储介质
CN112889199A (zh) * 2018-12-27 2021-06-01 Oppo广东移动通信有限公司 充电方法和装置、待充电设备、存储介质及芯片系统
CN110190349B (zh) * 2019-04-30 2022-09-27 蜂巢能源科技有限公司 一种电池多阶段控温放电方法、装置及系统
US10687182B1 (en) * 2019-05-31 2020-06-16 Apple Inc. Accessory device texting enhancements
TWI707521B (zh) * 2019-07-01 2020-10-11 飛宏科技股份有限公司 智慧型交流/直流最大功率電池充電管理方法
CN112701741B (zh) * 2019-10-23 2024-03-12 北京小米移动软件有限公司 充电控制方法、装置及存储介质
CN112865207A (zh) * 2019-11-28 2021-05-28 北京小米移动软件有限公司 充电控制方法及装置、移动终端及存储介质
CN110729800B (zh) * 2019-11-28 2021-06-29 Oppo广东移动通信有限公司 一种充电控制方法、装置及存储介质和终端设备
CN110943512B (zh) * 2019-11-29 2021-06-01 歌尔科技有限公司 一种无线充电方法、系统及电子设备
CN111244565A (zh) * 2020-01-19 2020-06-05 威海安屯尼智能电子科技有限公司 一种锂离子电池延长寿命防止极板堆积的充电方法及充电器
CN111538390B (zh) * 2020-03-27 2022-09-27 努比亚技术有限公司 一种控制终端温度的方法、终端及计算机可读存储介质
CN111655000B (zh) * 2020-05-29 2022-11-18 维沃移动通信有限公司 电子设备散热方法、装置及存储介质
US11637441B2 (en) * 2020-11-02 2023-04-25 Aira, Inc. Thermal regulation for wireless charging pad
CN112713325A (zh) * 2021-01-28 2021-04-27 格力博(江苏)股份有限公司 充电方法及充电设备
KR20220151381A (ko) * 2021-05-06 2022-11-15 삼성전자주식회사 전자 장치, 웨어러블 장치, 및 전자 장치와 웨어러블 장치를 포함하는 시스템
WO2023277300A1 (ko) * 2021-06-28 2023-01-05 삼성전자 주식회사 발열 제어에 기반한 충전 방법, 이를 위한 전자 장치
KR20230024553A (ko) * 2021-08-12 2023-02-21 삼성전자주식회사 내부 온도에 기초한 배터리 충전을 위한 전자 장치
CN114865733A (zh) * 2022-04-15 2022-08-05 合肥龙旗智能科技有限公司 可穿戴电子设备的充电控制方法、装置、设备及介质
CN116054298B (zh) * 2022-06-13 2023-10-20 荣耀终端有限公司 一种充电方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135440A (zh) * 2013-02-25 2013-06-05 无锡威峰科技有限公司 蓝牙智能手表
CN103855772A (zh) * 2014-03-18 2014-06-11 深圳市中兴移动通信有限公司 移动终端及其充电控制方法
CN103872732A (zh) * 2014-03-14 2014-06-18 深圳市中兴移动通信有限公司 移动终端及其充电控制方法
US20140177399A1 (en) * 2012-12-24 2014-06-26 Hon Hai Precision Industry Co., Ltd. Electronic wrist watch having wireless charging function
CN104901436A (zh) * 2015-06-03 2015-09-09 北京有感科技有限责任公司 一种无线充电电路、无线充电装置和无线充电方法
CN105552988A (zh) * 2015-12-09 2016-05-04 歌尔声学股份有限公司 可穿戴电子设备的充电控制方法、装置以及智能手表

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2616297C2 (de) * 1975-04-17 1984-10-31 The Johns Hopkins University, Baltimore, Md. Aufladbarer elektrischer Körpergewebestimulator
JPH11176491A (ja) * 1997-10-07 1999-07-02 Seiko Instruments Inc 電子機器の充電システム
JP2005245078A (ja) * 2004-02-25 2005-09-08 Citizen Watch Co Ltd 電磁誘導充電回路
JPWO2009031639A1 (ja) * 2007-09-06 2010-12-16 昭和電工株式会社 非接触充電式蓄電源装置
JP4660523B2 (ja) * 2007-09-19 2011-03-30 レノボ・シンガポール・プライベート・リミテッド 電池セルの表面温度で充電制御する充電システム
JP5064244B2 (ja) 2008-01-10 2012-10-31 ヤマハモーターエレクトロニクス株式会社 急速充電方法及びこれに用いる充電器
WO2013136721A1 (ja) * 2012-03-12 2013-09-19 パナソニック株式会社 生体情報測定器用充電装置およびそれによって充電する生体情報測定器
US9225190B2 (en) 2012-09-07 2015-12-29 Manufacturers And Traders Trust Company Implant current controlled battery charging based on temperature
JP6185228B2 (ja) 2012-10-16 2017-08-23 ローム株式会社 受電制御回路、ワイヤレス受電装置の制御方法、電子機器
CN103812199B (zh) * 2014-03-05 2017-03-01 联想(北京)有限公司 充电控制方法和充电控制设备
CN104052138B (zh) * 2014-05-28 2017-07-11 惠州Tcl移动通信有限公司 一种智能移动终端及其充电时温度的控制方法
US10002709B2 (en) * 2014-05-30 2018-06-19 Corning Incorporated Wireless charging device for an electronic device
US9678547B1 (en) * 2014-09-12 2017-06-13 Verily Life Sciences Llc Performing a power cycle reset in response to a change in charging power applied to an electronic device
KR101503221B1 (ko) * 2014-10-06 2015-03-17 (주)디아이디 웨어러블 디바이스의 공진형 무선충전을 위한 2중 스파이럴 안테나 모듈
US9929584B2 (en) * 2014-10-30 2018-03-27 Boston Scientific Neuromodulation Corporation External charging coil assembly for charging a medical device
CN104868530B (zh) * 2015-04-30 2018-04-27 青岛歌尔声学科技有限公司 一种可穿戴电子设备及其充电方法及装置
US10216236B1 (en) * 2017-08-31 2019-02-26 Snap Inc. Systems and methods for temperature management in wearable devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177399A1 (en) * 2012-12-24 2014-06-26 Hon Hai Precision Industry Co., Ltd. Electronic wrist watch having wireless charging function
CN103135440A (zh) * 2013-02-25 2013-06-05 无锡威峰科技有限公司 蓝牙智能手表
CN103872732A (zh) * 2014-03-14 2014-06-18 深圳市中兴移动通信有限公司 移动终端及其充电控制方法
CN103855772A (zh) * 2014-03-18 2014-06-11 深圳市中兴移动通信有限公司 移动终端及其充电控制方法
CN104901436A (zh) * 2015-06-03 2015-09-09 北京有感科技有限责任公司 一种无线充电电路、无线充电装置和无线充电方法
CN105552988A (zh) * 2015-12-09 2016-05-04 歌尔声学股份有限公司 可穿戴电子设备的充电控制方法、装置以及智能手表

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162158A (zh) * 2019-05-28 2019-08-23 努比亚技术有限公司 充电散热电路、方法、可穿戴设备及计算机可读存储介质

Also Published As

Publication number Publication date
JP2018523958A (ja) 2018-08-23
JP6532548B2 (ja) 2019-06-19
EP3300161A1 (en) 2018-03-28
DK3300161T3 (da) 2021-02-15
CN105552988A (zh) 2016-05-04
CN105552988B (zh) 2018-07-03
EP3300161A4 (en) 2018-06-13
US20170366035A1 (en) 2017-12-21
KR20180019202A (ko) 2018-02-23
EP3300161B1 (en) 2020-12-30
US10511184B2 (en) 2019-12-17
KR101999493B1 (ko) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2017096906A1 (zh) 可穿戴电子设备的充电控制方法、装置以及智能手表
EP3046211B1 (en) Battery charger and method of charging a battery
CN102761666B (zh) 一种手机及其温度的控制方法
JP6500911B2 (ja) 電池装置、充電制御装置および充電制御方法
TWI483444B (zh) 電池組充電管理方法和裝置、充電器和電池組管理系統
JP5219485B2 (ja) 充電方法
US6172487B1 (en) Method and apparatus for charging batteries
TWI547058B (zh) 充電器、電池模組及充電器識別監控系統與方法
US5329219A (en) Method and apparatus for charging a battery
CN103227488B (zh) 一种移动终端充电电压的控制方法及充电转换装置
CN110994734B (zh) 电池充电方法、装置及电子辅助设备
EP3806274A2 (en) Charging integrated circuit and operating method
CN104901436A (zh) 一种无线充电电路、无线充电装置和无线充电方法
TW201624872A (zh) 充電方法及其適用之充電裝置
WO2022206326A1 (zh) 无线充电方法及装置、设备、存储介质
WO2017063446A1 (zh) 一种充电方法及移动终端、存储介质
KR20170022778A (ko) 배터리의 충전 방법 및 이에 따른 배터리 팩
CN101867207A (zh) 电力蓄电池恒流放电装置
JP2007097269A (ja) 二次電池の充電方法
WO2015123880A1 (zh) 电池管理装置、移动电源和电池管理方法
TW202135420A (zh) 電池保護充電方法及其系統
CN111711238A (zh) 充电控制方法、电子设备及计算机可读存储介质
CN115719994B (zh) 一种无线供电方法及系统
JP2016082772A (ja) 充電器、蓄電装置、及び電流制御方法
JP2019092321A (ja) 充電装置及び充電方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15540973

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565773

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016872105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187001651

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE