WO2017094803A1 - 磁力選別装置、磁力選別方法および鉄源の製造方法 - Google Patents

磁力選別装置、磁力選別方法および鉄源の製造方法 Download PDF

Info

Publication number
WO2017094803A1
WO2017094803A1 PCT/JP2016/085631 JP2016085631W WO2017094803A1 WO 2017094803 A1 WO2017094803 A1 WO 2017094803A1 JP 2016085631 W JP2016085631 W JP 2016085631W WO 2017094803 A1 WO2017094803 A1 WO 2017094803A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
roll
magnet
conveyor belt
granular material
Prior art date
Application number
PCT/JP2016/085631
Other languages
English (en)
French (fr)
Inventor
石田 匡平
勇輝 ▲高▼木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to AU2016362141A priority Critical patent/AU2016362141B2/en
Priority to US15/778,225 priority patent/US10857548B2/en
Priority to JP2017505683A priority patent/JP6399203B2/ja
Priority to CA3002928A priority patent/CA3002928C/en
Priority to EP16870740.4A priority patent/EP3384991B1/en
Priority to KR1020187014666A priority patent/KR102122190B1/ko
Priority to CN201680069413.2A priority patent/CN108290164A/zh
Priority to BR112018009650-4A priority patent/BR112018009650B1/pt
Publication of WO2017094803A1 publication Critical patent/WO2017094803A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • B03C1/20Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation in the form of belts, e.g. cross-belt type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/04General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/22Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/22Details of magnetic or electrostatic separation characterised by the magnetical field, special shape or generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a technology for magnetic separation (separation) of ferromagnetic particles from powders including ferromagnetic particles, for example, separation of iron from slag, which is a byproduct of the iron making process.
  • the present invention relates to a magnetic separator, a magnetic separator method, and a method of manufacturing an iron source.
  • slag steel slag
  • Slag is generated as a by-product in the hot metal pretreatment and converter decarburization process. Slag is obtained by reacting and generating these impurities and unnecessary elements with a calcium-based additive added to remove impurities and unnecessary elements in the hot metal and molten steel. The slag contains a lot of iron in addition to the removed impurities and unnecessary elements.
  • ⁇ Separation and recovery of iron is performed to recycle iron in slag.
  • iron is separated and collected according to the following steps.
  • the slag is sieved to remove a large (several hundred mm diameter) lump contained in the slag. Since the iron and slag are firmly attached to the small lump that has passed through the sieve, rough crushing (rough crushing) is performed with a hammer crusher, rod mill, etc., and the size is set to several tens of ⁇ m to several tens of mm. , Promote single separation (separation of slag and iron: liberation). Thereafter, iron is separated using a magnetic separator.
  • the magnetic sorting device generally, suspended type (suspended type electro magnetics), drum type (magnetic type drum separators), pulley type (magnetic type pullleys) and the like are used.
  • the diameter may be reduced by heat treatment.
  • a magnetic sorting apparatus as shown in FIG. 1 is conventionally used (for example, Non-Patent Document 1).
  • This device is a pulley type (belt conveyor type) magnetic force sorting device.
  • This apparatus supplies powder particles a containing ferromagnetic particles and non-magnetic particles from the supply device 100 onto the conveyor belt 101, and when the powder particles a are discharged from the conveyor terminal portion 102, non-ferromagnetic particles and non-magnetic particles are non-conductive. It separates magnetic particles.
  • the guide roll 103 on the conveyor terminal end 102 side has a hollow structure, and a plurality of magnets 104 are arranged so as to face the arc portion of the inner peripheral wall of the roll.
  • the magnet 104 is provided in an arrangement in which adjacent magnetic poles are different in the circumferential direction of the inner peripheral wall of the guide roll 103.
  • the magnet 104 is a fixed magnet that is installed separately from the inner peripheral wall of the guide roll 103.
  • the magnetic force of the magnet 104 inside the guide roll 103 acts on the granular material a on the conveyor belt 101 at the conveyor terminal portion 102, and the nonmagnetic particles that are not attracted to the magnet 104 are first applied.
  • the ferromagnetic particles that fall and are collected by the non-magnetized substance collection unit 105 and adsorbed by the magnet 104 pass through the partition plate 106 provided below the guide roll 103 and fall at a position where the magnetic force is weakened, and the magnetized substance. It has a structure that is recovered by the recovery unit 107.
  • JP 2006-142136 A Japanese Patent Laid-Open No. 10-130041
  • the ferromagnetic particles are embracing the non-magnetic particles, and the ferromagnetic particles and the non-magnetic particles are attracted to the magnet 104 at the same time. Are difficult to separate. This is more conspicuous as the particle size of the granular material a becomes smaller.
  • the agglomeration phenomenon due to atomization is added and the layer of the granular material a on the conveyor belt 101 becomes thicker, as shown in FIG. As a result, the ferromagnetic particles cannot be properly selected.
  • the supply amount of the granular material a is reduced using a vibration feeder 108 or the like as shown in FIG. 2, and the thickness of the granular material layer on the conveyor belt 101 is, for example, It is necessary to take measures such as reducing the thickness to about one or two particles.
  • the processing speed is slowed although the performance of selecting the ferromagnetic particles is ensured.
  • magnetic separation of slag since it is necessary to process several tons to several tens of tons per hour, it is essential to perform a large amount of magnetic separation in a short time. Therefore, it is difficult to magnetically sort a large amount of powder particles a in a short time with the conventional magnetic sorting apparatus as described above.
  • Patent Document 1 proposes a method for separating foreign matter without excessively crushing slag by passing through a plurality of specific steps, but there is a problem that a complicated separation flow occurs and processing costs increase. is there. Moreover, as shown in Patent Document 2, a wet process is generally applied in order to avoid agglomeration, but there is a problem that the waste liquid treatment cost becomes enormous.
  • the object of the present invention is to solve the problems of the prior art as described above, even when processing a large amount of powder containing ferromagnetic particles or when the layer of supplied powder is thick,
  • An object of the present invention is to provide a magnetic separation device and a magnetic separation method that can efficiently separate ferromagnetic particles and perform magnetic separation at low cost without requiring complicated processes and waste liquid treatment.
  • another object of the present invention is to provide a solution to the following problem specific to the belt conveyor type magnetic separator shown in FIGS. That is, in the belt conveyor type magnetic force sorting apparatus, when ferromagnetic particles such as iron powder adhere to the inside of the conveyor belt for some reason, the ferromagnetic particles are attracted and adhered by the magnet arrangement portion of the guide roll. Alternatively, even when the ferromagnetic particles flying in the air come near the guide roll, they are attracted directly to the magnet arrangement portion and attached. Once such ferromagnetic particles are attracted and adhered to the guide roll, they will continue to be sandwiched between the belt and the guide roll, and the life of the belt will be significantly reduced. Furthermore, in the case of a magnetic separator, the adsorbed ferromagnetic particles themselves are excited to generate heat. This also significantly reduces the belt life.
  • This change in attractive force has an effect similar to vibration on the granular material, and the change in the strength of the magnetic field is repeated, thereby eliminating the pinching / embracing state of the nonmagnetic particles by the ferromagnetic particles. As a result, separation between ferromagnetic particles and nonmagnetic particles is promoted. Further, since the rotational force is applied to the ferromagnetic particles due to the change in the direction of the magnetic field, the ferromagnetic particles move to the magnet side while rotating between the nonmagnetic particles. Due to these two effects, many ferromagnetic particles gradually gather near the magnet, and the non-magnetic particles move to the side farther from the magnet. In this way, the ferromagnetic particles and the nonmagnetic particles can be separated by utilizing the change in the magnitude and direction of the magnetic field.
  • FIGS. 3A to 3D schematically show the above action.
  • the magnetic poles of the portion of the magnet facing the granular material are represented as an N pole and an S pole.
  • the magnet moves from the state where the ferromagnetic particles on the conveyor belt b are attracted by the N pole, and the gap between the N pole and the S pole as shown in FIG.
  • the magnitude of the attractive force acting on the ferromagnetic particles changes due to the change in the magnitude of the magnetic field.
  • the ferromagnetic particles are attracted in the direction of the arrow and move to the magnet side while rolling. Thereafter, as shown in FIG. 3C, the ferromagnetic particles are attracted to the south pole and further moved to the magnet side.
  • the ferromagnetic particles initially distributed over the entire granular layer are collected on the closest side of the granular layer to the magnet as shown in FIG. Become.
  • This phenomenon always occurs when at least one of the magnet and the granular material a is moving, and is the same even when the magnet is fixed and only the granular material a is moving.
  • 3A to 3D show the case where the magnet moves from the right side to the left side in the figure, but the principle is the same even when the magnet moves from the left side to the right side in the figure. .
  • the present inventors apply the above-described mechanism to a belt conveyor type magnetic sorting device, and inside the guide roll on the conveyor end side, along the circumferential direction of the guide roll, Provided are magnets that are arranged so that adjacent magnetic poles are different from each other and that the adjacent magnetic poles in the guide roll axial direction of the portion facing the granular material are the same, and the magnetic field formed by this magnet It has been found that the magnetic particles can be efficiently magnetically sorted by moving the powder particles. Furthermore, it has also been found that the effect is enhanced if the magnitude and direction of the magnetic field acting on the ferromagnetic particles are changed at high speed by rotating the magnet in the circumferential direction.
  • the inventors have also intensively investigated the problem of adhesion of ferromagnetic particles that enter between the guide roll and the belt.
  • the problematic ferromagnetic particles a 1 mainly fly from the feeder 108 and the conveyor belt 101, and the conveyor belt 101 of the guide roll 103 forms from the space in the width direction end side of the conveyor belt 101. It came to discover that it reached
  • ferromagnetic particles are removed from the powder particles containing ferromagnetic particles once. Separation can be performed efficiently in the separation step, and magnetic separation can be performed at low cost without requiring complicated steps or waste liquid treatment.
  • the magnetic force sorting apparatus and the magnetic force sorting method according to the present invention are for separating ferromagnetic particles by magnetic force from a granular material containing ferromagnetic particles.
  • a magnetic separator according to the present invention includes at least one pair of guide rolls, and a conveyor belt that is stretched between the pair of guide rolls and conveys a granular material containing ferromagnetic particles. Either one is a hollow roll, and a magnet roll in which a plurality of magnets are arranged in a row in the hollow portion along the inner peripheral surface of the guide roll at intervals in the circumferential direction.
  • a shielding wall that covers an arc region excluding the arc region around which the conveyor belt is wound on the outer peripheral surface of any one of the guide rolls and shields the lines of magnetic force from the magnet.
  • the ferromagnetic particles are separated by magnetic force from the granular material containing the ferromagnetic particles using the magnetic force sorting apparatus configured as described above.
  • the magnetic field change frequency F that indicates the change in the magnitude of the magnetic field that acts on the granular material from the magnet roll, defined by the following equation (1): , 30 Hz or more.
  • the magnetic field change frequency F is 50 Hz or more and 160 Hz or less, more preferably 50 Hz or more and 100 Hz or less.
  • the magnetic field change frequency F (Hz) By setting the magnetic field change frequency F (Hz) to 30 Hz or more, it is possible to cause a high-speed change in the magnitude and direction of the magnetic field acting on the granular material, and the ferromagnetic particles contained in the granular material can be accurately obtained. It becomes possible to separate.
  • FIG. 5 is an explanatory view showing the magnetic force sorting apparatus according to Embodiment 1 of the present invention.
  • reference numeral 1 denotes a conveyor belt that conveys the granular material a.
  • the conveyor belt 1 is stretched between a pair of guide rolls 2 and 3 and is guided by the guide rolls 2 and 3. Rotate and convey the granular material a in one direction.
  • One of the guide rolls 2 and 3, that is, the guide roll 2 on the end side in the conveying direction of the granular material a of the conveyor belt 1 is a hollow roll, and extends along the inner peripheral surface of the guide roll to the hollow portion.
  • a rotatable magnet roll 20 in which a plurality of magnets 4 are arranged in a row in which different magnetic poles are alternately arranged at intervals in the circumferential direction.
  • the magnet roll 20 is provided coaxially with the guide roll 2 inside the hollow guide roll 2, and can rotate independently of the guide roll 2.
  • the magnet roll 20 is formed by fixing, for example, a magnet 4, which is a permanent magnet, on its circumferential surface in an arrangement in which magnetic poles are alternately different in the circumferential direction.
  • reference numeral 21 denotes a rotation shaft of the guide roll 2
  • the rotation shaft 22 at both ends of the magnet roll 20 is externally mounted on the rotation shaft 21, and a bearing 23 (for example, a metal bearing). , A bearing bearing, etc.).
  • the guide roll 2 and the magnet roll 20 can rotate independently of each other.
  • the form of the roll shafts 21 and 22 can take various forms.
  • the magnet roll 20 is a roll that is rotated by means such as a motor, and the rotation direction thereof may be either the same direction as the guide roll 2 or the opposite direction, but is preferably rotated in the opposite direction.
  • the magnet roll 20 is preferably rotated at a higher speed than the guide roll 2.
  • the rotation direction of the magnet roll 20 is (i) the opposite direction to the traveling direction of the conveyor belt 1 (rotating direction of the guide roll 2), and (ii) the same direction as the traveling direction of the conveyor belt 1 (rotating direction of the guide roll 2), Either of these may be used.
  • the ferromagnetic particles have a transport force that tends to move in the direction opposite to the direction of rotation of the magnet roll 20 by the action of the magnetic field of the rotating magnet roll 20.
  • the conveying force to the ferromagnetic particles by the magnetic field and the frictional force between the conveyor belt 1 and the ferromagnetic particles are in the same direction.
  • the conveying force and the frictional force are in opposite directions. However, in this case, since the frictional force is larger, the ferromagnetic particles are conveyed in the traveling direction of the conveyor belt 1.
  • the magnetic poles of one magnet 4 are arranged to be different magnetic poles on the inner side and the outer side in the radial direction of the magnet roll 20, but naturally different magnetic poles of one magnet 4 are
  • the magnets 4 may be installed so as to be aligned in the circumferential direction of the magnet roll 20. Even in this case, since the N pole and the S pole are alternately arranged, the separation of the ferromagnetic particles is performed efficiently. N and S poles may be installed across the gap between the magnets, and N poles and S poles may be installed across the gap. Although there is no particular restriction on the width of the gap between the magnets 4 adjacent in the roll circumferential direction, it is appropriate to set the width to about 1 to 50 mm in order to obtain the above effect.
  • the gap between the magnets 4 may be filled with resin or the like.
  • the size of the magnet 4 is not particularly limited as long as a predetermined number of magnets 4 can be arranged.
  • a cover that covers the magnet 4 of the magnet roll 20 may be attached.
  • the magnets 4 are arranged in the roll axis direction within the width of the conveyor belt 1. Thus, it is preferable to prevent the ferromagnetic particles from adhering to the portion of the roll 2 that is not in contact with the conveyor belt 1.
  • a shielding wall 5 is provided which covers the arc region except the arc region around which the conveyor belt 1 is wound on the outer peripheral surface of the guide roll 2 and extends in the axial direction of the guide roll 2 over the entire width of the roll. It is important that the shielding wall 5 has a function for blocking the magnetic lines of force from the magnet 4 of the magnet roll 20. Therefore, in the example shown in FIG. 5, the back surface 5 a of the shielding wall 5 needs to be separated from the peripheral surface of the magnet roll 20 by a distance that is not affected by the lines of magnetic force, and has a thickness for that purpose. With the shielding wall 5 having such a structure, the flying ferromagnetic particles described in FIG. 4 can be reliably prevented from adhering to the magnet roll 20.
  • the thickness of the shielding wall 5, that is, the distance not affected by the magnetic lines of force is that the back surface 5a is separated from the guide roll surface by a distance of 30 mm or more, preferably 50 mm or more, to sufficiently reduce the influence of the magnetic lines of force. It is preferable in order to block magnetic field lines.
  • the shielding wall 5 since it exceeds 200 mm, since it receives restrictions on installation, it is preferable to set it as 200 mm or less.
  • the length of the shielding wall 5 along the axial direction of the guide roll 2 preferably extends over the entire width of the guide roll 2, but the RT range shown in FIG. If it is within the range of the starting end of the four rows of magnets, it functions sufficiently.
  • the feed speed of the conveyor belt 1 may be set to a speed necessary for the processing process.
  • the rotational speed of the magnet roll 20 is determined so that the change of the magnetic field is sufficiently high with respect to the belt feed speed.
  • the rotational speed of the magnet roll 20 is preferably set so as to satisfy the condition of the above-described formula (1).
  • the granular material a containing ferromagnetic particles is supplied from the supply device 100 to the moving conveyor belt 1 with a sufficient thickness, and this granular material a It is conveyed to the guide roll 2 side of the conveyor belt 1.
  • the granular material a conveyed by the conveyor belt 1 is exposed to the magnetic field of the magnet roll 20 when it reaches the area where the conveyor belt 1 contacts the guide roll 2.
  • the ferromagnetic particles a 1 in the granular material a are subjected to the action of the magnetic field of the magnet 4 included in the magnet roll 20.
  • the strength of the magnetic field is instantaneously switched from strong ⁇ weak ⁇ strong ⁇ weak ⁇ .
  • the effect of aggregation ⁇ dispersion ⁇ aggregation ⁇ dispersion ⁇ ... Is repeated and adhesion of the ferromagnetic particles is maintained.
  • Nonmagnetic particles fall off the conveyor belt 1 due to gravity.
  • the magnet roll 20 is arranged inside the guide roll 2 and the magnet roll 20 to which the magnet 4 is fixed is rotated independently from the guide roll 2.
  • a magnetically high-speed magnetic field change is generated by rotating the magnet roll 20,
  • the granular material a is supplied with a sufficient layer thickness into the changing magnetic field,
  • Magnetic field The ferromagnetic particles move to the magnet 4 side while eliminating the entanglement / embracing of the non-magnetic particles by the change, and the non-magnetic particles are removed away from the magnet 4 (4)
  • the magnetic particles fall by gravity at the reversing part of the conveyor belt 1, and the ferromagnetic particles are carried while being adsorbed and held on the conveyor belt 1, and are separated from the conveyor belt 1 and discharged at a position where no magnetic force is exerted.
  • the ferromagnetic particles can be efficiently magnetically selected. That is, it is possible to magnetic separation efficiently and quickly ferromagnetic particles a 1 from granular material a.
  • the magnet roll 20 by rotating the magnet roll 20 in the magnet roll structure shown in FIG. 6, it is possible to easily change the strength and direction of the magnetic field, for example, 100 times or more while the granular material a is being conveyed. It is. Further, since the behavior of the ferromagnetic particles in the magnetic field varies depending on the target granular material a, it is preferable to adjust the rotational speed of the magnet roll 20 so as to obtain appropriate performance.
  • the magnetic roll 20 defined by the following equation (1)
  • the magnetic field change frequency F (Hz) is preferably 30 Hz or more. More preferably, the magnetic field change frequency is 50 Hz or more and 160 Hz or less.
  • the rotation speed of the magnet roll 20 when a magnet (for example, a neodymium magnet) having 12 poles in the circumferential direction (counted as one magnetic pole in a pair of N poles and S poles) is disposed, if the rotation speed of the magnet roll 20 is 150 rpm, the magnetic field changes. The frequency is 30 Hz. Further, when a magnet having 24 poles in the circumferential direction (counted as one magnetic pole in a pair of N poles and S poles) is arranged and the magnetic field change frequency is set to 30 Hz in the same manner, the rotational speed of the magnet roll 20 may be 75 rpm. .
  • the upper limit of the magnetic field change frequency is about 160 Hz because the rotational speed of the magnet roll 20 has a mechanical upper limit and the effect of the magnetic field change may be saturated even if the frequency is increased.
  • the magnetic force sorting apparatus can efficiently sort the ferromagnetic particles from the granular material a as described above, in the magnetic force sorting of the granular material a using this apparatus, FIG. As shown in FIG. 5, the granular material is supplied from the supply device 100 onto the conveyor belt 1 with a layer thickness larger than the diameter of the minimum particle contained in the granular material a and a layer thickness at which the magnetic force acts sufficiently. Is desirable. Specifically, the thickness of the granular material is 20 to 30 mm.
  • slag such as iron slag and iron ore tailing.
  • iron slag and iron ore tailing.
  • it is particularly suitable for magnetic selection of slag.
  • iron slag is atomized. If the atomization is insufficient, the iron recovery rate is not improved.
  • the particle size of the slag after atomization is determined according to the slag, but it is often necessary to atomize to about several tens of ⁇ m to 1 mm depending on the form of iron contained.
  • pulverization is common. After crushing with jaw crusher or hammer crusher as coarse crushing, ball mill, rodmill, jet mill, pin mill for further pulverization Crush using an impact mill.
  • magnetic field sorting is performed by the magnetic field sorting apparatus of the present invention for the atomized slag.
  • iron can be efficiently separated and recovered from slag.
  • the magnets 4 are arranged so that the magnetic poles of the portions facing the granular material a are the same over the axial direction of the magnet roll 20. ing.
  • the same magnetic pole is arranged in the width direction, a uniform magnetic field is formed, and the force acting on the ferromagnetic particles is also uniform.
  • the conveyor belt 1 and the guide roll 2 of this embodiment, and also the shielding wall 5 are comprised with nonmetals, such as resin and a ceramic.
  • the shielding wall 5 is replaced with a thick wall structure, and as shown in FIG. 9, a shielding wall 50 having a cover structure with a recess inside is provided. It is also possible. That is, by making the shielding wall 50 have a cover structure, the back surface 50a of the shielding wall 50 can be separated from the peripheral surface of the magnet roll 2 through a space to a position not affected by the magnetic field. This separation distance is approximately the same as the thickness of the shielding wall 5 described above.
  • At least one conduit 6 penetrating from the back surface of the shielding wall 5 to the guide roll 2 side is provided, and three in the illustrated example.
  • air is ejected from the gap between the shielding wall 5 and the guide roll 2, and the ferromagnetic particles are prevented from flying and entering these minute gaps.
  • the gap between the shielding wall 5 and the guide roll 2 is about 0.5 mm to 10 mm, which is effective for suppressing the entry of the ferromagnetic particles by the above-described air ejection.
  • the third embodiment can be realized as shown in FIG. In this form 4, the air filled inside the shielding wall 50 leaks from the gap between the side edge of the shielding wall 50 and the guide roll 2, and the flow velocity of the air ejected from the gap can be made uniform. .
  • This gap is also preferably about 0.5 mm to 10 mm as described above.
  • the apparatus according to the fifth embodiment shown in FIG. 12 is a first belt conveyor A that conveys the granular material a, and the powder that is located above the first belt conveyor A and has been conveyed by the belt conveyor A.
  • a second belt conveyor B that adsorbs and separates ferromagnetic particles from the particles a by magnetic force is provided.
  • first belt conveyor A 8 is a conveyor belt different from the conveyor belt 1 in the first to fourth embodiments, 81 is a guide roll on the conveyor start end 82 side, and 83 is on the conveyor end end 84 side. It is a guide roll.
  • a conveyor belt 8 is formed by stretching the conveyor belt 8 between the guide rolls 81 and 83.
  • the second belt conveyor B 1 is a conveyor belt similar to the conveyor belt 1 in the first to fourth embodiments, 2 is a guide roll on the conveyor start end 11 side, and 3 is a guide roll on the conveyor end end 12 side.
  • the conveyor belt 1 is stretched between the guide rolls 2 and 3, and the belt conveyor B is comprised.
  • the guide roll 2 is configured to have a larger diameter than the guide roll 3, and the rotation axis of the guide roll 3 is positioned higher than the rotation axis of the guide roll 2, whereby the upper surface of the conveyor belt 1 (guide The upper belt portion between the roll 2 and the guide roll 3 is substantially horizontal. However, the upper surface of the conveyor belt 1 may be lowered toward the guide roll 3.
  • a supply device 100 for supplying the granular material a containing ferromagnetic particles on the conveyor belt 1 is disposed.
  • the ferromagnetic particles adsorbed and held on the belt conveyor B side are transported by the belt conveyor B and then discharged from the conveyor terminal portion 12. Below the conveyor terminal portion 12 of the belt conveyor B, a magnetic deposit recovery unit 70 is provided below the conveyor terminal portion 12 of the belt conveyor B. On the other hand, since the nonmagnetic particles fall below the conveyor start end 11 of the belt conveyor B, a non-magnetized substance recovery unit 71 is provided at that position.
  • the conveyor start end 11 of the belt conveyor B is located close to the conveyor terminal end 84 of the belt conveyor A. Further, the guide rolls 81 and 83 of the belt conveyor A and the guide rolls 2 and 3 of the belt conveyor B are rotated in the opposite directions, and at the conveyor terminal end 84 of the belt conveyor A and the conveyor start end 11 of the belt conveyor B, The conveyor belts 1 and 8 are moving in the same direction.
  • one of the guide rolls 2 and 3 is driven by a driving means such as a motor.
  • a driving means such as a motor.
  • the guide roll 3 is a drive roll and the guide roll 2 is a non-drive roll.
  • the magnet roll 20 having the plurality of magnets 4 is provided inside the guide roll 2 as described above.
  • the magnet roll 20 is configured to be rotatable independently of the guide roll 2.
  • the magnet roll 20 has a plurality of magnets 4 arranged at predetermined intervals in the circumferential direction and the axial direction of the roll.
  • a plurality of magnets 4 are arranged so that adjacent magnetic poles are alternately N poles and S poles over the roll circumferential direction 360 ° C. of the magnet roll 20.
  • the plurality of magnets 4 are arranged so as to have the same magnetic pole.
  • the magnet 4 is usually selected so that it is about 0.01 to 0.5 T at the conveyor belt portion in contact with the guide roll 2 depending on the object. preferable. If the magnetic field is too weak, the effect of the magnet roll 20 cannot be sufficiently obtained. On the other hand, if the magnetic field is too strong, the attractive force acting on the ferromagnetic particles is too strong and the separation of the ferromagnetic particles may be hindered. .
  • the magnetic field is strong ⁇ weak ⁇ strong ⁇ weak ⁇ ...
  • the effect of aggregation ⁇ dispersion ⁇ aggregation ⁇ dispersion ⁇ ... Is repeated for the ferromagnetic particles in the granular material layer.
  • the width of the gap between the magnets 4 adjacent in the roll circumferential direction it is appropriate to set the width to about 1 to 50 mm in order to obtain the above effect.
  • the magnetic field applied by the magnet roll 20 preferably changes as fast as possible (high-speed change in the strength and direction of the magnetic field).
  • the magnet roll 20 defined by the above formula (1).
  • the magnetic field change frequency F is preferably 30 Hz or more as described above.
  • the feed speed of the conveyor belt 1 may be set to a speed necessary for the processing process.
  • the rotational speed of the magnet roll 20 is determined so that the change of the magnetic field is sufficiently high with respect to the belt feed speed.
  • the rotational speed of the magnet roll 20 is preferably set so as to satisfy the condition of the above-described formula (1).
  • the granular material a containing ferromagnetic particles is supplied from the supply device 100 onto the conveyor belt 8 which is moving the belt conveyor A with a sufficient thickness.
  • the granular material a is conveyed to the conveyor terminal part 84.
  • the granular material a conveyed by the conveyor belt 8 has its upper surface in contact with the lower surface of the conveyor start end 11 of the belt conveyor B in the vicinity of the conveyor terminal end 84, and the granular material a is in contact with the conveyor terminal end 84 of the belt conveyor A.
  • the belt conveys between the conveyor start end portions 11 of the belt conveyor B. At this time, the magnetic field of the magnet roll 2 of the belt conveyor B is exerted on the granular material a.
  • the ferromagnetic particles in the granular material a are attached to the lower surface side of the belt conveyor B by the magnetic force of the magnet roll 20 so as to embrace the nonmagnetic particles. It is carried by the conveyor belt 1.
  • the ferromagnetic particles in the powder a are subjected to the action of the magnetic field of the magnet 4 included in the magnet roll 20. At this time, the strength of the magnetic field is instantaneously switched from strong ⁇ weak ⁇ strong ⁇ weak ⁇ .
  • the effect of aggregation ⁇ dispersion ⁇ aggregation ⁇ dispersion ⁇ ... Is repeated for the ferromagnetic particles in the granular layer.
  • the magnet roll 20 rotates independently from the guide roll 2 as shown in FIG. 6, (1) mechanically high-speed magnetic field change is generated by rotating the magnet roll 20 (2)
  • the granular material a is supplied with a sufficient layer thickness in the changing magnetic field.
  • the ferromagnetic particles are removed from the magnet roll 20 while eliminating the inclusion / embracing of the nonmagnetic particles by the ferromagnetic particles by changing the magnetic field.
  • the non-magnetic particles are removed to the side far from the magnet roll 20, and (4) the non-magnetic particles fall by gravity at the conveyor start end 11 of the belt conveyor B, and the ferromagnetic particles are removed from the belt conveyor B.
  • the belt is conveyed while being adsorbed and held at the conveyor terminal portion 12 of the belt conveyor B.
  • the ferromagnetic particles can be efficiently magnetically selected.
  • the ferromagnetic particles can be magnetically selected from the granular material a efficiently and quickly.
  • the magnetic force sorting apparatus can efficiently sort the ferromagnetic particles from the powder particles a as described above, in the magnetic force sorting of the powder particles a using this device, FIG.
  • the granular material has a layer thickness larger than the diameter of the smallest particle contained in the granular material a and a layer thickness at which the magnetic force acts sufficiently. It is desirable to supply Specifically, the thickness of the granular material is 20 to 30 mm.
  • the apparatus which concerns on this Embodiment 5 is the magnet provided in the inside of the guide roll 2 by the side of the conveyor starting end part 11 of the belt conveyor B to the granular material a (powder body layer) conveyed by the belt conveyor A.
  • No. 4 magnetic field is applied to attract the ferromagnetic particles in the granular material a and move it to the lower surface side of the belt conveyor B to separate the ferromagnetic particles. Therefore, the distance between the conveyor end portion 84 of the belt conveyor A and the conveyor start end portion 11 of the belt conveyor B may be a size that allows the magnetic force of the magnet roll 20 to sufficiently act on the ferromagnetic particles in the granular material a.
  • the upper surface of the layer of the granular material a conveyed by the conveyor belt 8 of the belt conveyor A is in contact with the conveyor starting end 11 of the belt conveyor B, that is, the granular material layer is the conveyor terminal end of the belt conveyor A. It is preferable to set it to a size that can be carried between 84 and the conveyor start end 11 of the belt conveyor B.
  • the positional relationship between the belt conveyor A and the belt conveyor B is different from the example in FIG. That is, the conveyor starting end 11 of the belt conveyor B is positioned close to the conveyor terminal end 84 of the belt conveyor A in the same manner as shown in FIG. The positional relationship with the terminal portion 12 is reversed from that in FIG. As a result, the guide rolls 81 and 83 of the belt conveyor A and the guide roll 2 and the guide roll 3 of the belt conveyor B rotate in the same direction. Further, the conveyor belts 1 and 8 are moving in the opposite directions at the conveyor terminal end 84 of the belt conveyor A and the conveyor start end 11 of the belt conveyor B.
  • the configuration is substantially the same as the configuration of the fifth embodiment in FIG.
  • the guide roll 2 is constituted by a sleeve body having a hollow inside and is rotatably supported. Inside the guide roll 2, there is provided a magnet roll 20 having a plurality of magnets 4 arranged at a predetermined interval corresponding to the arc portion of the guide roll inner peripheral surface contacting the conveyor belt.
  • the guide roll 2 according to the seventh embodiment is different from the guide roll 2 according to the fifth embodiment, and the magnet roll 20 including the magnet 4 is fixedly provided.
  • the magnet 4 is a stationary magnet that is installed independently from the guide roll 2 and does not rotate.
  • the magnets 4 are arranged so that the adjacent magnetic poles are different in the roll circumferential direction, and are arranged so that the adjacent magnetic poles are the same in the roll width direction.
  • the range in the roll circumferential direction in which the magnet 4 is arranged is at least from the lower end position of the magnet roll 20 (position facing the conveyor terminal portion 84 of the belt conveyor A). It is a range of about 180 ° (half circumference of the magnet roll 20) to the top position of the roll 20.
  • the range in which the magnet 4 is installed can be reduced.
  • the ferromagnetic particles in the granular material a are attracted by the fixed magnet 4, and the granular material a (or the magnetic particle a) A part) is attached (held) to the lower surface side of the belt conveyor B and is conveyed by the conveyor belt 1.
  • This device is also less effective than the magnet roll 20 of FIG. 12, but the ferromagnetic particles in the granular material a are subjected to the magnetic force of the magnet 4 and have a magnetic field in the process of being conveyed by the conveyor belt 1.
  • the ferromagnetic particles in the granular material a are also repeatedly assembled ⁇ dispersed ⁇ aggregated ⁇ dispersed ⁇ ... Sorting becomes possible.
  • the magnetic field does not change at a high speed like the magnet roll 20 of FIG. 12, the magnetic force selection performance and the processing speed are smaller than those of the fifth embodiment of FIG.
  • the magnetic force sorting apparatus causes (i) a magnetic field generated by the magnet 4 included in the second belt conveyor B to act on the granular material a discharged from the first belt conveyor A from above, Adopting the basic method of adsorbing the ferromagnetic material contained in the powder a and moving it to the belt conveyor B side, it is possible to reduce the inclusion and entrainment of non-magnetic particles by ferromagnetic particles as compared with the conventional device. ii) Further, an effect is obtained that the entrainment / embracing of the nonmagnetic particles by the ferromagnetic particles is eliminated by the magnetic field change by the magnet 4.
  • FIG. 15 is a perspective view showing the structure of the magnet roll 2 according to the seventh embodiment of FIG.
  • the magnet 4 installed here is the same as the case of FIG. 6 in that a plurality of magnets 4 are provided so that the magnetic poles are alternately different in the circumferential direction along the circumferential direction of the magnet roll 20. Is provided as an integral and continuous magnet.
  • the magnet roll 20 is fixed and does not rotate.
  • an eighth embodiment which is a modification of the shielding wall 50 described above, will be described with reference to FIG. That is, as shown in FIG. 16, in the second embodiment shown in FIG. 9, the side surface portion of the shielding wall 50 can be further extended to cover almost half of the end surface of the guide roll 2. Further, as shown in FIG. 16, an auxiliary device 9 is provided between the pair of guide rolls 2 and 3 and into the space inside the conveyor belt 1 to eject air toward the space or suck air in the space. It is also possible to provide it.
  • the recovery of the ferromagnetic particles hitting the shielding wall 50 by the auxiliary device 9 is effective for preventing the ferromagnetic particles from adhering to the guide roll 2, and of course, it is possible to apply it to the pair of guide rolls 3. It is also effective in preventing the adhesion of ferromagnetic particles.
  • the various shielding walls described above can be provided on the guide roll 2.
  • Magnetic separation of the steelmaking slag was performed using the magnetic separation apparatus according to Embodiment 1 shown in FIG. That is, after pulverized steelmaking slag was passed through a 400 ⁇ m sieve, the slag that passed through the sieve mesh was used as the target granular material for magnetic selection.
  • the iron concentration of this granular material was 54 mass%.
  • the thickness of the supply layer of the granular material on the conveyor belt 1 was 7 mm.
  • the outer diameter of the magnet roll 2 is 200 mm
  • the number of magnetic poles of the magnet 4 is 12 poles (however, a pair of N poles and S poles is one magnetic pole)
  • the feed speed of the conveyor belt 1 is 0.5 m / s
  • the magnet roll 20 The rotation speed was 31.9 rpm
  • the magnetic field strength at the conveyor belt portion in contact with the magnet roll 20 was 0.2T.
  • the shielding wall 5 is made of resin, and its thickness is 100 mm.
  • the magnetic force on the back surface 5a of the shielding wall 5 was 100 gauss or less.
  • the iron concentration of the magnetically collected material and the iron recovery rate from the slag were examined. Moreover, the adhesion amount of the iron powder in a guide roll was investigated. The amount of iron powder adhered was compared between when the shielding wall 5 was installed and when it was not installed.
  • the magnetized recovered material in the case of using the drum magnetic separator X had a low iron concentration because a non-ferrous component was involved, and the iron recovery rate was low because iron was released to the non-magnetic side.
  • the pulley magnetic separator Y is used, almost the entire amount of the granular material is entrained, so the recovery rate is certainly good, but the iron concentration of the magnetically collected magnetic substance is the same as the granular material before magnetic separation. Almost unchanged.
  • a high value is obtained for both the iron concentration of the magnetically collected material and the iron recovery rate of the slag.
  • the magnetic field change frequency of the magnet roll 2 is 30 Hz or higher, the magnetic material is recovered. High values were obtained for both the iron concentration of the product and the iron recovery rate of the slag.
  • the amount of iron powder adhered in the above operation was compared with the case where the shielding wall 5 was installed and the case where it was not installed. As a result, it was confirmed that, when the shielding wall 5 was not installed, the adhesion amount was 100 g / h, but when the shielding wall 5 was installed, the amount decreased to 0.5 g / h or less.
  • the same operation as described above was performed with the shielding walls as the respective forms.
  • the shielding wall 5 or the shielding wall 50 (the distance from the magnet roll 2 to the back surface 5a of the shielding wall 5). : 100 mm)
  • the adhesion amount was 100 g / h, but when the shielding wall 5 was installed, it was confirmed that it decreased to 0.5 g / h or less.
  • the iron powder adhesion amount decreased to 0.3 g / h or less.
  • the magnetic separation of steelmaking slag was performed using the magnetic separation device according to Embodiment 5 shown in FIG. After pulverized steelmaking slag was passed through a 400 ⁇ m sieve, the slag that passed through the sieve mesh was used as the target granular material for magnetic separation. The iron concentration of this granular material was 54 mass%. The supply layer thickness of the granular material on the conveyor belt 1 of the belt conveyor A was 7 mm.
  • the outer diameter of the guide roll 3 of the belt conveyor B is 300 mm
  • the number of magnetic poles of the magnet roll 20 is 12 poles (however, one pole is a pair of N poles and S poles)
  • the conveyor belt feed speed of the belt conveyors A and B was 0.5 m / s
  • the rotation speed of the magnet roll 02 was 31.9 rpm
  • the magnetic field strength at the conveyor belt portion in contact with the magnet roll 20 was 0.2 T.
  • the shielding wall 5 is made of resin, and its thickness is 100 mm.
  • the magnetic force on the back surface 5a of the shielding wall 5 was 100 gauss or less.
  • the iron concentration of the magnetically collected material and the iron recovery rate from the slag were examined. Moreover, the adhesion amount of the iron powder in a magnet roll was investigated. The amount of iron powder adhered was compared between when the shielding wall 5 was installed and when it was not installed.
  • the iron concentration is low, and the iron recovery rate is low because iron is released to the non-magnetically bonded side.
  • the pulley magnetic separator Y since almost all of the powder particles are entrained, the iron recovery rate is certainly good, but the iron concentration of the magnetically recovered material is the powder particles before the magnetic selection. And almost the same.
  • a high value is obtained for both the iron concentration of the magnetically collected material and the iron recovery rate of the slag.
  • the magnetic field change frequency of the magnet roll 2 is 30 Hz or higher, the magnetic material is recovered. High values were obtained for both the iron concentration of the product and the iron recovery rate of the slag.
  • the amount of iron powder adhered in the above operation was compared with the case where the shielding wall 5 was installed and the case where it was not installed. As a result, it was confirmed that, when the shielding wall 5 was not installed, the adhesion amount was 100 g / h, but when the shielding wall 5 was installed, the amount decreased to 0.5 g / h or less.

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Electrostatic Separation (AREA)
  • Rollers For Roller Conveyors For Transfer (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

強磁性粒子を含む粉粒体を大量に処理する場合や供給される粉粒体の層が厚い場合でも、粉粒体から強磁性粒子を効率よく分離し、かつ複雑な工程や廃液処理などを必要とせずに低コストで磁力選別することができ、さらには、ベルトコンベア式の磁力選別装置に特有の、強磁性粒子の付着の問題を解消し得る、磁力選別装置を提供する。 少なくとも1対のガイドロールと、前記ロール対間に張り渡され強磁性粒子を含む粉粒体を搬送するコンベアベルトと、を有し、前記ガイドロールのいずれか一方は中空ロールであって、該中空部に、前記ガイドロールの内周面に沿って複数の磁石を周方向に間隔を置いて異磁極が交互に並ぶ列状に配置した、磁石ロールを有し、前記ガイドロールのいずれか一方の外周面における、前記コンベアベルトが巻き回される円弧領域を除く円弧領域を覆って前記磁石からの磁力線を遮断する、遮蔽壁を備える。

Description

磁力選別装置、磁力選別方法および鉄源の製造方法
 本発明は、強磁性粒子(ferromagnetic particles)を含む粉粒体から強磁性粒子を磁力選別(分離)するための技術に関し、例えば、製鉄プロセスの副生成物であるスラグ(slag)から鉄分を分離するのに好適な磁力選別装置(magnetic separator)及び磁力選別方法(magnetic separate method)並びに鉄源の製造方法に関する。
 製鉄プロセスにおいて、溶銑予備処理や転炉脱炭工程では、副生成物としてスラグ(製鋼スラグ)が発生する。スラグは、溶銑や溶鋼中の不純物や不要元素を除去するために加えられるカルシウム系添加剤が、これらの不純物や不要元素と反応・生成したものである。スラグ中には除去された不純物や不要元素以外に、鉄分も多く含まれる。
 スラグ中の鉄分の再資源化のために、鉄分を分離・回収することが行われている。通常、次の工程に従って鉄分の分離・回収が行われる。まず、スラグを篩い(sieve)にかけ、スラグに含まれる大型(数百mm径)の塊を取り除く。篩いを通過した小型の塊は鉄分とスラグ分が固着しているため、ハンマークラッシャ(hammer crusher)やロッドミル(rod mill)等で粗破砕(rough crushing)を行って数10μm~数10mmの大きさとし、単体分離(スラグ分と鉄分の分離:liberation)を促進させる。その後、磁力選別装置(magnetic separator)を用いて鉄分を分離する。磁力選別装置としては、一般に、吊下げ型(suspended electro magnets)、ドラム型(magnetic drum separators)、プーリ型(magnetic pulleys)などが用いられる。
 また、鉄分を単体で分離させるために、スラグを加熱して適当な時間冷却した後、破砕する場合もある。冷却時間によっては、鉄塊を破砕せずに固着したスラグ分のみを分離させることや、スラグを数10μm程度に微粉化させることが可能である。
 いずれの方法でもスラグの微粉化が進めば、単体分離化が進むことは言うまでもない。
 一般に、鉄分の回収率を向上させるためには単体分離化を進める必要があるため、機械的破砕を繰り返して、スラグの粒径を小さくする。或いは、熱処理によって小径化させる場合もある。
 鉄分の回収のために磁力選別を行う場合、従来は例えば図1に示すような磁力選別装置が使用されている(例えば、非特許文献1)。この装置はプーリ型(ベルトコンベア式)の磁力選別装置である。この装置は、強磁性粒子及び非磁性粒子を含む粉粒体aを供給装置100からコンベアベルト101上に供給し、粉粒体aをコンベア終端部102から排出する際に、強磁性粒子と非磁性粒子とを分離するものである。この装置は、コンベア終端部102側のガイドロール103が中空構造を有し、該ロール内周壁の円弧部分に対向させて複数の磁石104が配置されている。磁石104は、ガイドロール103の内周壁の周方向で隣接する磁極が異なる磁性となる配置で設けられている。磁石104は、ガイドロール103の内周壁から離間して独立に設置される固定磁石である。
 この磁力選別装置は、コンベア終端部102において、コンベアベルト101上の粉粒体aに対して、ガイドロール103の内側の磁石104の磁力が作用し、磁石104に吸着されない非磁性粒子が先に落下して非磁着物回収部105に回収され、磁石104に吸着される強磁性粒子はガイドロール103の下方に設けられた仕切板106を通過し、磁力が弱まった位置で落下して磁着物回収部107で回収される、構造を有する。
特開2006-142136号公報 特開平10-130041号公報
J.Svoboda, Magnetic Techniques for the Treatment of Mate2rials, pp.70-72,Kluwer Academic Publishers, 2004
 しかし、図1に示す、従来の磁力選別装置に対して、大量の粉粒体aが供給され、粉粒体aの層が厚くなる場合、次のような問題が生じる。微粒化された粉粒体aでは、強磁性粒子が非磁性粒子を抱き込んだ状態にあり、磁石104には強磁性粒子と非磁性粒子が同時に引き寄せられるため、強磁性粒子と非磁性粒子とが分離され難くなる。これは粉粒体aの粒径が小さくなるほど顕著である。さらに微粒化による凝集現象も加わり、コンベアベルト101上の粉粒体aの層が厚くなった場合は、図1に示されるように、磁着物回収部107に非磁性粒子が強磁性粒子に混入して、強磁性粒子を適切に選別できなくなる。
 このような問題に対して、通常は、図2に示すように振動フィーダ108などを利用して粉粒体aの供給量を減らし、コンベアベルト101上の粉粒体層の厚さを、例えば粒子1個~2個分程度の厚さにまで薄くする、などの対応が必要となる。しかし、粉粒体aの供給量を少なくすれば、強磁性粒子を選別する性能は確保されるものの、処理速度が遅くなってしまう。スラグの磁力選別の場合には、時間当たり数トン~数10トンを処理する必要があるため、短時間で大量の磁力選別を行うことが必須である。したがって、上記のような従来の磁力選別装置では、短時間で大量の粉粒体aを磁力選別することは難しい。
 一方、特許文献1には、特定の複数の工程を経ることで、スラグを過破砕することなく異物を分離する方法が提案されているが、複雑な分離フローとなり、処理コストが高くなる問題がある。また、特許文献2に示されるように、凝集を避けるため湿式プロセスも一般に適用されるが、廃液処理費用が莫大となる問題がある。
 本発明の目的は、上記のような従来技術の課題を解決し、強磁性粒子を含む粉粒体を大量に処理する場合や供給される粉粒体の層が厚い場合でも、粉粒体から強磁性粒子を効率よく分離し、かつ複雑な工程や廃液処理などを必要とせずに低コストで磁力選別することができる磁力選別装置及び磁力選別方法を提供することにある。
 また、本発明の別の目的は、上記の図1及び2に示した、ベルトコンベア式の磁力選別装置に特有の以下の課題についても、その解決手段を与えることにある。すなわち、ベルトコンベア式の磁力選別装置では、鉄粉などの強磁性粒子が何らかの原因でコンベアベルトの内側に付着した場合、ガイドロールの磁石配置部分で強磁性粒子が吸引されて付着する。あるいは、空気中を飛来してきた強磁性粒子がガイドロールの近傍に来た場合も、磁石配置部分に直接吸引されて付着する。このような強磁性粒子が一旦ガイドロールに吸引されて付着すると、ベルトとガイドロールとの間に挟まれ続けることになり、ベルトの寿命を著しく低下させることになる。さらには、磁力選別装置の場合、吸着した強磁性粒子自身にも渦電流が励起されて発熱する。この場合もベルトの寿命を著しく低下させる。
 図1及び2に示した、ガイドロールの回転軸とベルトプーリーの回転軸が一致する同芯型の構造においては、強磁性粒子の付着を防止することは困難であり、定期的に人が手作業で除去することが必要である。とりわけ、上述の通り強磁性粒子の微粒化は分離の促進に有利であり、図1及び2に示した、ベルトコンベア式の磁力選別装置においても、供給される強磁性粒子の微粒化が進められている中、強磁性粒子付着の問題を解消することが希求されている。
 まず、本発明の磁力選別装置の構成を導くに到った、磁力選別に関する知見について、以下に述べる。
 強磁性粒子と非磁性粒子が混合された粉粒体から、移動する磁石を用いて強磁性粒子を選別する場合、各粒子の動きを観察すると、まず強磁性粒子が磁石に引き寄せられるように動く。磁石の移動にともなう磁場強度の変化により、強磁性粒子に作用する引力が変化する。磁場が強いときは、強磁性粒子は引力により互いに集合するようになり、反対に磁場が弱いときは分散する傾向になる。
 この引力の変化は、粉粒体に対して振動に似た効果をもたらし、磁場の強度の変化が繰り返されることで、強磁性粒子による非磁性粒子の挟み込み・抱き込み状態が解消される。その結果、強磁性粒子と非磁性粒子との分離が促進される。さらに、磁場の向きの変化により、強磁性粒子には回転力も加わるので、強磁性粒子は非磁性粒子の間を回転しながら磁石側へ移動していく。この2つの効果により、磁石付近には次第に強磁性粒子が多く集まり、非磁性粒子は反対に磁石から遠い側へと移動していく。このように、磁場の大きさおよび向きの変化を利用することで、強磁性粒子と非磁性粒子を分離することができる。
 以上の作用を模式的に示したのが、図3(A)~(D)である。図3(A)~(D)では、粉粒体に相対する部分の磁石の磁極を、N極、S極と表している。図3(A)に示すように、N極によりコンベアベルトb上の強磁性粒子が引き寄せられた状態から、磁石が移動して図3(B)のようにN極・S極間の間隙部kが粉粒体に相対する状態になると、磁場の大きさの変化により、強磁性粒子に作用する引力の大きさが変化する。また、磁極のN極からS極への変化のため、強磁性粒子は矢印方向に吸引されて、転動しながら磁石側に移動していく。その後、図3(C)のように強磁性粒子はS極に引き寄せられ、さらに磁石側に移動する。以上の作用が繰り返されることにより、最初は粉粒体層全体に分布していた強磁性粒子は、図3(D)に示すように粉粒体層の最も磁石に近い側に集められることになる。
 この現象は、磁石と粉粒体aのうちの少なくとも一方が移動していれば必ず発生するものであり、磁石が固定され粉粒体aのみが移動している場合でも、同じである。
 同じ磁極の磁石が並んで移動している場合は、磁場の大きさの変化による強磁性粒子の移動はあるものの、強磁性粒子に磁場の向きの変化による力が加わらないので、強磁性粒子の移動量が少なくなり、結果として選別効率が低くなってしまう。
 なお、図3(A)~(D)は、磁石が図の右側から左側に移動する場合を示しているが、磁石が図の左側から右側に移動する場合でも、原理的には同じである。
 本発明者らは、上記の仕組みをベルトコンベア式の磁力選別装置に適用して、コンベア終端部側のガイドロールの内側に、ガイドロールの周方向に沿って、粉粒体と相対する部分の隣接する磁極が互いに異なるように配置され、かつ、粉粒体と相対する部分のガイドロール軸方向に隣接する磁極が同一であるように配置される磁石を設け、この磁石によって形成される磁場の中を粉粒体が移動することで、強磁性粒子を効率よく磁力選別できることを見出した。さらに、周方向へ磁石を回転させることによって、強磁性粒子に作用する磁場の大きさおよび向きを高速で変化させるようにすれば、効果がより高くなることも見出した。
 また、ガイドロールとベルトとの間に入り込む強磁性粒子の付着問題についても、鋭意究明した。その結果、図4に示すように、問題となる強磁性粒子aは主にフィーダ108およびコンベアベルト101から飛翔し、コンベアベルト101の幅方向端側の空間からガイドロール103のコンベアベルト101が接触していないロール円弧部分に到達していることを見出すに到った。すなわち、このロール円弧部分に至る到達経路を遮断することが、強磁性粒子のロールへの付着問題を解消するのに有効であるとの知見を得ることができた。
 本発明は、上記の知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]少なくとも1対のガイドロールと、
 前記ガイドロール対間に張り渡され、強磁性粒子を含む粉粒体を搬送するコンベアベルトと、を有し、
 前記ガイドロールのいずれか一方は中空ロールであって、該中空部に、前記ガイドロールの内周面に沿って複数の磁石を周方向に間隔を置いて異磁極が交互に並ぶ列状に配置した、磁石ロールを有し、
 前記ガイドロールのいずれか一方の外周面における、前記コンベアベルトが巻き回される円弧領域を除く円弧領域を覆って前記磁石からの磁力線を遮断する、遮蔽壁を備えることを特徴とする磁力選別装置。
[2]前記ベルトコンベアの下方に、強磁性粒子を含む粉粒体を搬送する別のコンベアベルトを設け、前記別のコンベアベルトの粉粒体搬送下流側に、前記コンベアベルトの前記磁石ロール側が近接して位置する前記[1]に記載の磁力選別装置。
[3]前記遮蔽壁の背面から前記ガイドロール側に貫通し、前記遮蔽壁と前記ガイドロールとの隙間に空気を供給する、管路を少なくとも1本は有する前記[1]または[2]に記載の磁力選別装置。
[4]前記磁石ロールは、前記ガイドロールのいずれか一方から独立して回転可能である前記[1]、[2]または[3]に記載の磁力選別装置。
[5]下記(1)式で定義される、前記磁石から前記粉粒体に作用する磁極の変化数を示す磁場変化周波数F(Hz)が、30Hz以上である前記[1]から[4]のいずれかに記載の磁力選別装置。
           記
 F=(x・P)/60 …(1)
 ここで、x:磁石ロールの回転数(rpm)
     P:磁石ロールが備える磁極数(但し、磁極数は、磁石ロールの粉粒体と対向
      する面の周方向に並列するN極・S極のペアを、1磁極としてカウントする。)
[6]前記磁石ロールの軸方向に隣接する前記磁石の磁極が同じである前記[1]から[5]のいずれかに記載の磁力選別装置。
[7]前記磁石ロールの軸方向に隣接する前記磁石の磁極が異なる前記[1]から[5]のいずれかに記載の磁力選別装置。
[8]前記ガイドロールのいずれか一方と前記磁石ロールとの回転方向が同じである前記[1]から[7]のいずれかに記載の磁力選別装置。
[9]前記ガイドロールのいずれか一方と前記磁石ロールとの回転方向が逆である前記[1]から[7]のいずれかに記載の磁力選別装置。
[10]前記コンベアベルトと前記別のコンベアベルトとの輪転方向が同じである前記[2]から[9]のいずれかに記載の磁力選別装置。
[11]前記コンベアベルトと前記別のコンベアベルトとの輪転方向が逆である前記[2]から[9]のいずれかに記載の磁力選別装置。
[12]前記コンベアベルトと前記ガイドロールのいずれか一方とが非金属製である前記[1]から[11]のいずれかに記載の磁力選別装置。
[13]前記ガイドロール対のいずれかが非駆動である前記[1]から[12]のいずれかに記載の磁力選別装置。
[14]前記[1]から[13]のいずれかに記載の磁力選別装置を用いて、強磁性粒子を含む粉粒体から該強磁性粒子を選別する磁力選別方法であって、
 前記コンベアベルト上に、前記粉粒体に含まれる最小粒子の直径よりも大きい厚みにて前記粉粒体を供給する磁力選別方法。
[15]前記[1]から[14]のいずれかに記載の磁力選別装置または磁力選別方法を用いて、製鉄プロセスの副生成物から鉄源を製造する鉄源の製造方法。
 本発明によれば、強磁性粒子を含む粉粒体を大量に処理する場合や供給される粉粒体の層が厚い場合でも、強磁性粒子を含む粉粒体から強磁性粒子を、一度の分離工程で効率よく分離し、かつ複雑な工程や廃液処理などを必要とせずに低コストで磁力選別することができる。
 さらに、ガイドロールのコンベアベルトと接触しない周面を磁力の及ばない厚みをもって覆う、遮蔽材を設けたことによって、ガイドロールとコンベアベルトとの間に入り込む強磁性粒子の付着を回避することができる。
従来の磁力選別装置と、この装置を用いて粉粒体を少量処理する場合の使用状態を示す説明図である。 従来の磁力選別装置と、この装置を用いて粉粒体を大量処理する場合の使用状態を示す説明図である。 本発明に係る磁力選別装置の作用を模式的に示した説明図である。 強磁性粒子が磁石ロールへ付着する原因を説明する図である。 本発明の実施の形態1に係る磁力選別装置を示す説明図である。 本発明の磁石ロールの構造を示す斜視図である。 磁石の配列長さとコンベアベルトの幅との関係を示す図である。 本発明の別の磁石ロールの構造を示す斜視図である。 本発明の実施の形態2に係る磁力選別装置を示す説明図である。 本発明の実施の形態3に係る磁力選別装置を示す説明図である。 本発明の実施の形態4に係る磁力選別装置を示す説明図である。 本発明の実施の形態5に係る磁力選別装置を示す説明図である。 本発明の実施の形態6に係る磁力選別装置を示す説明図である。 本発明の実施の形態7に係る磁力選別装置を示す説明図である。 本発明の他の磁石ロールの構造を示す斜視図である。 本発明の実施の形態8に係る磁力選別装置を示す説明図である。
 本発明に係る磁力選別装置及び磁力選別方法は、強磁性粒子を含む粉粒体から磁力により強磁性粒子を分離するものである。
 本発明に係る磁力選別装置は、少なくとも1対のガイドロールと、前記ガイドロール対間に張り渡され、強磁性粒子を含む粉粒体を搬送するコンベアベルトと、を有し、前記ガイドロールのいずれか一方は中空ロールであって、該中空部に、ガイドロールの内周面に沿って複数の磁石を周方向に間隔を置いて異磁極が交互に並ぶ列状に配置した、磁石ロールを有し、前記ガイドロールのいずれか一方の外周面における、前記コンベアベルトが巻き回される円弧領域を除く円弧領域を覆って前記磁石からの磁力線を遮断する、遮蔽壁を備えている。上記の磁石ロールによって、均一な磁場が形成され、強磁性粒子に作用する力も均一になり、強磁性粒子の分離効率を高めることができる。さらには、遮蔽壁を備えているため、ガイドロールとコンベアベルトとの間に入り込む強磁性粒子の付着を回避することができる。
 また、本発明に係る磁力選別方法は、上記のように構成された磁力選別装置を用いて、強磁性粒子を含む粉粒体から、磁力により強磁性粒子を分離する。
 さらに、本発明に係る磁力選別装置及び磁力選別方法では、下記(1)式で定義される、磁石ロールから粉粒体に作用する磁場の大きさの変化を示す磁場変化周波数F(Hz)を、30Hz以上としている。好ましくは、磁場変化周波数Fは50Hz以上160Hz以下より好ましくは、50Hz以上100Hz以下である。
          記
 F=(x・P)/60 …(1)
 ここで、x:磁石ロールの回転数(rpm)
     P:磁石ロールが備える磁極数(但し、磁極数は、磁石ロールの粉粒体と対向
      する面の周方向に並列するN極・S極のペアを、1磁極としてカウントする。)
 例えば、N極(a)、S極(b)、N極(c)と周方向に並んでいる場合には、N極(a)とS極(b)のペアで1磁極、S極(b)とN極(c)のペアで1磁極とカウントする。
 この磁場変化周波数F(Hz)を30Hz以上とすることによって、粉粒体に作用する磁場の大きさおよび向きの高速変化を生じさせることができ、粉粒体に含まれる強磁性粒子を精度よく分離することが可能となる。
 次に、本発明について、実施の形態毎に詳しく説明する。
[実施の形態1]
 図5は、本発明の実施の形態1に係る磁力選別装置を示す説明図である。同図において、符号1は、粉粒体aを搬送するコンベアベルトであり、該コンベアベルト1は1対のガイドロール2及び3の間に張り渡され、これらガイドロール2及び3に案内されて輪転し、粉粒体aを一方向へ搬送する。ガイドロール2及び3のいずれか一方、すなわちコンベアベルト1の粉粒体aの搬送方向終端側にあるガイドロール2は、中空ロールであって、該中空部に、ガイドロールの内周面に沿って複数の磁石4を周方向に間隔を置いて異磁極が交互に並ぶ列状に配置した、回転可能の磁石ロール20を有する。
 磁石ロール20は、図6に示すように、中空のガイドロール2の内側に該ガイドロール2と同軸に設けられ、ガイドロール2から独立して回転可能になる。磁石ロール20は、その周面に例えば永久磁石である磁石4を周方向に磁極が交互に異なる配置にて固定してなる。かような構造の磁石ロール20によって、上述の図2に示した作用を粉粒体aに与えることができ、強磁性粒子の選別を確実に行うことできる。
 なお、磁石ロール20の構造を示す図6において、符号21はガイドロール2の回転軸であり、この回転軸21に磁石ロール20の両端の回転軸22が外装され、軸受23(例えば、メタル軸受、ベアリング軸受など)を介して回転軸21に取り付けられている。ただし、ガイドロール2と磁石ロール20とはそれぞれ独立して回転することが可能である。なお、ロール軸21及び22の形態は、多様な形を取り得る。
 磁石ロール20は、モーター等の手段によって回転するロールであり、その回転方向はガイドロール2と同一方向または反対方向のいずれでもよいが、好ましくは反対方向に回転させる。また、磁石ロール20はガイドロール2よりも高速で回転させることが好ましい。
 磁石ロール20の回転方向は、(i)コンベアベルト1の進行方向(ガイドロール2の回転方向)と逆方向、(ii)コンベアベルト1の進行方向(ガイドロール2の回転方向)と同一方向、のいずれでもよい。強磁性粒子には、回転する磁石ロール20の磁場の作用で磁石ロール20の回転方向と逆方向へ動かそうとする運搬力が働く。上記(i)の場合には、磁場による強磁性粒子への運搬力と、コンベアベルト1と強磁性粒子との摩擦力が同一方向となる。一方、上記(ii)の場合には、前記運搬力と摩擦力とが逆方向となる。ただし、この場合には、摩擦力の方が大きいので、強磁性粒子はコンベアベルト1の進行方向へ運搬されていく。
 上記の(i)と(ii)を較べると、(ii)の場合は、磁場による強磁性粒子の運搬力とコンベアベルト1と強磁性粒子との摩擦力が逆方向となるので、強磁性粒子がコンベアベルト1上に滞留することがあるが、より効率よく強磁性粒子を分離できる。一方(i)の場合は、強磁性粒子の分離効率は(ii)の場合よりもやや劣るが、強磁性粒子がコンベアベルト1上に滞留することはなく、粒子をスムーズに運搬できる利点がある。
 なお、図6では、1つの磁石4の磁極が、磁石ロール20の径方向の内側と外側とで異なる磁極となるように配置しているが、当然ながら、1つの磁石4の異なる磁極が、磁石ロール20の周方向に並ぶように磁石4を設置してもよい。この場合でも、N極、S極が交互に設置されるので、強磁性粒子の分離が効率よく行われることになる。磁石相互の間隙部をはさんでN極とS極が設置されてもよく、また間隙部をはさんでN極どうし、S極どうしが設置されてもよい。なお、ロール周方向で隣接する磁石4間の間隙部の広さに特別な制限はないが、上記の効果を得るために1~50mm程度とするのが適当である。磁石4間の間隙部が樹脂等で埋められていてもよい。
 また、磁石4の大きさも特に制限はなく、所定の数の磁石4を配置できる大きさであればよい。磁石ロール20の磁石4を覆うカバーがつけられていてもよい。
 さらに、図7に示すように、磁石4をロール軸方向の配列は、コンベアベルト1の幅内に収めることが好ましい。これによって、コンベアベルト1と接触していないロール2部分に強磁性粒子が付着するのを回避することが好ましい。
 さらに、ガイドロール2の外周面におけるコンベアベルト1が巻き回される円弧領域を除く、円弧領域を覆ってガイドロール2の軸方向にロール全幅にわたって延びる、遮蔽壁5を備える。この遮蔽壁5は、磁石ロール20の磁石4からの磁力線を遮断するための機能を有することが肝要である。従って、図5に示す例では、遮蔽壁5の背面5aが磁石ロール20の周面から磁力線の影響を受けない距離をもって隔てる必要があり、そのための厚みを有している。かような構造の遮蔽壁5によって、上述の図4にて説明した飛翔する強磁性粒子の磁石ロール20への付着を確実に回避することできる。
 ここで、遮蔽壁5の厚み、すなわち磁力線の影響を受けない距離としては、背面5aがガイドロール表面から30mm以上、好ましくは50mm以上の距離で隔てることが、磁力線の影響を十分に低減して磁力線を遮断するために好ましい。一方、遮蔽壁5を厚くすることの制限は特にないが、200mmを超えると設備的な制約を受けることから、200mm以下とすることが好ましい。
 また、遮蔽壁5のガイドロール2の軸方向に沿う長さは、上記したように、ガイドロール2の全幅にわたることが好ましいが、図6に示すRTの範囲、すなわちガイドロール2の端縁と磁石4列の始端との範囲内にあれば十分に機能する。
 以下、図5に示した磁力選別装置の機能・作用に併せて、この装置を用いた磁力選別方法について説明する。
 この磁力選別装置を用いて磁力選別を行うに当って、コンベアベルト1の送り速度は、その処理プロセスに必要な速度にすればよい。このベルト送り速度に対して、磁場の変化が十分高速となるように、磁石ロール20の回転速度を決める。特に、この磁石ロール20の回転速度は、上述した(1)式の条件を満足するように設定することが好ましい。
 さて、コンベアベルトが輪転している状態にて、強磁性粒子を含む粉粒体aが、供給装置100から移動中のコンベアベルト1上に十分な厚さで供給され、この粉粒体aはコンベアベルト1のガイドロール2側へと搬送される。
 コンベアベルト1で搬送された粉粒体aは、コンベアベルト1がガイドロール2と接触する領域に達すると、磁石ロール20の磁場に晒される。
 ここで、図5の磁力選別装置の場合には、磁石ロール20の磁力により粉粒体a内の強磁性粒子が非磁性粒子を抱き込むような形でコンベアベルト1に付着して運ばれる過程において、粉粒体a中の強磁性粒子aは、磁石ロール20が備える磁石4の磁場の作用を受ける。その際、磁石ロール20の回転により、磁場の強度は強→弱→強→弱→・・・と瞬時に切り替わる。粉粒体層中の強磁性粒子に対しては、図3に示したように、集合→分散→集合→分散→・・・の効果が繰り返され、強磁性粒子の付着が維持される一方、非磁性粒子は重力にてコンベアベルト1から離れて落下する。
 特に、図5および6に示した実施形態のように、ガイドロール2の内側に磁石ロール20を配置し、磁石4を固定した磁石ロール20をガイドロール2から独立して回転する構造とすれば、(1)磁石ロール20を回転させることで機械的に高速な磁場変化を生み出す、(2)この変化している磁場内へ十分な層厚をもって粉粒体aを供給する、(3)磁場変化によって強磁性粒子による非磁性粒子の巻き込み・抱き込みを解消しながら、強磁性粒子が磁石4側へ移動し、非磁性粒子は磁石4から遠い側へと排除されていく、(4)非磁性粒子はコンベアベルト1の反転部で重力によって落下し、強磁性粒子はコンベアベルト1に吸着保持されたまま運ばれて、磁力が及ばない位置でコンベアベルト1から離脱して排出される。この作用により、図5に示すようにコンベアベルト1に供給する粉粒体aを十分に厚くしても、効率よく強磁性粒子を磁力選別することができる。すなわち、粉粒体aから効率よくかつ迅速に強磁性粒子aを磁力選別することができる。
 なお、図6に示した磁石ロール構造において磁石ロール20を回転させることによって、粉粒体aが搬送される間に、例えば100回以上の磁場の強度および向きの変化を容易に与えることが可能である。また、強磁性粒子の磁場中での挙動は対象とする粉粒体aによって変化するため、適切な性能が得られるように磁石ロール20の回転数を調整することが好ましい。
 本実施の形態1では、できるだけ高速な磁場変化(磁場の強度及び向きの高速変化)が生じることが好ましく、具体的には、上述の通り、下記(1)式で定義される磁石ロール20の磁場変化周波数F(Hz)が30Hz以上であることが好ましい。より好ましくは、磁場変化周波数は50Hz以上160Hz以下である。
          記
 F=(x・P)/60 …(1)
 ここで、x:磁石ロールの回転数(rpm)
     P:磁石ロールが備える磁極数(但し、磁極数は、磁石ロールの粉粒体と対向
      する面の周方向に並列するN極・S極のペアを、1磁極としてカウントする。)
 例えば、N極(a)、S極(b)、N極(c)と周方向に並んでいる場合には、N極(a)とS極(b)のペアで1磁極、S極(b)とN極(c)のペアで1磁極とカウントする。すなわち、周方向で12極(N極・S極のペアで1磁極と数える)の磁石(例えば、ネオジウム磁石)を配設した場合には、磁石ロール20の回転速度を150rpmとすると、磁場変化周波数は30Hzとなる。また、周方向で24極(N極・S極のペアで1磁極と数える)の磁石を配置して、同じように磁場変化周波数を30Hzとする場合、磁石ロール20の回転速度は75rpmでよい。
 磁場変化周波数の上限は、磁石ロール20の回転数に機械的な上限があることや、周波数をあげても磁場変化の効果が飽和してしまうことがあるため、160Hz程度になる。
 本実施の形態1に係る磁力選別装置は、上述したように粉粒体aから効率よく強磁性粒子を磁力選別することができるので、この装置を用いた粉粒体aの磁力選別では、図5に示すように供給装置100からコンベアベルト1上に、粉粒体aに含まれる最小粒子の直径よりも大きい層厚で、且つ磁力が十分に作用する層厚で粉粒体を供給することが望ましい。具体的には、粉粒体の厚さが20~30mmである。
 なお、磁力選別の対象となる粉粒体に特別な制限はないが、製鉄スラグ等のスラグ、鉄鉱石テーリング(tailing ore)などが挙げられる。このなかでも特にスラグの磁力選別に好適である。
 スラグからの鉄分回収においては、まず、製鉄スラグを微粒化する。微粒化が不十分であると、鉄分の回収率が向上しない。製鉄スラグが発生する製銑・製鋼プロセスにはさまざまな工程があるため、発生するスラグも多様である。微粒化後のスラグ粒径はスラグに応じて決定されるが、含有されている鉄の形態に応じて、数10μm~1mm程度まで微粒化する必要があることが多い。微粒化の方法としては、粉砕が一般的である。粗粉砕としてジョークラッシャ(jaw crusher)やハンマークラッシャ(hammer crusher)で粉砕したあと、さらに微粉化のためにボールミル(ball mill)、ロッドミル(rodmill)、ジェットミル(jet mill)、ピンミル(pin mill)、インパクトミル(impact mill)などを用いて粉砕する。他の方法として、1000~1300℃程度に加熱後、徐冷する方法もある。
 そして、微粒化したスラグを対象として、本発明の磁力選別装置による磁力選別を行う。本発明によりスラグから鉄分を効率よく分離・回収することができる。
 なお、図5に示される実施の形態1では、図6に示したように、磁石ロール20の軸方向にわたって、粉粒体aと相対する部分の磁極が同一となるように磁石4を配している。幅方向で同じ磁極が配置される場合は、均一な磁場が形成され、強磁性粒子に作用する力も均一になる。
 一方、図8に示すように、磁石ロール20の軸方向に異なる磁極となるように磁石4を配置すると、磁場変化の向きが複雑になるため、磁石ロールが低回転であっても十分な磁力選別効果が得られる。
 回転する磁石ロール周辺の部材は、変化する磁場による渦電流効果の影響を受け、金属部材は非磁性物であっても渦電流によって加熱される。このため、本実施形態のコンベアベルト1およびガイドロール2、さらに遮蔽壁5は、樹脂やセラミックなどの非金属で構成されることが好ましい。
[実施の形態2]
 また、図5に示した実施の形態1において、遮蔽壁5を厚みのある壁構造とすることに替えて、図9に示すように、内側が凹所となるカバー構造の遮蔽壁50とすることも可能である。すなわち、遮蔽壁50をカバー構造とすることによって、磁石ロール2の周面に対して空間を介して遮蔽壁50の背面50aを磁場の影響を受けない位置まで隔てることができる。この離隔する距離は、上述した遮蔽壁5の厚みと同程度である。
[実施の形態3]
 さらに、図5に示した実施の形態1において、図10に示すように、遮蔽壁5の背面からガイドロール2側に貫通する管路6を少なくとも1本、図示例で3本設ける。これらの管路6に空気7を供給することによって、遮蔽壁5とガイドロール2との隙間から空気を噴出させ、これらの微小隙間に強磁性粒子が飛翔して入り込むことを防止する。ここで、遮蔽壁5とガイドロール2との隙間は、0.5mmから10mm程度であることが、上記した空気噴出によって強磁性粒子の入り込みを抑制するのに有効である。
[実施の形態4]
 上記の形態3は、図9に示した形態2においても同様に、図11に示すように実現することが可能である。この形態4では、遮蔽壁50の内側に充満した空気が遮蔽壁50側面縁とガイドロール2との隙間から漏れ出ることになって、該隙間から噴出する空気の流速を均等にすることができる。この隙間についても、上記と同様に0.5mmから10mm程度であることが好ましい。
[実施の形態5]
 図12に示す実施の形態5に係る装置は、粉粒体aを搬送する第1のベルトコンベアAと、この第1のベルトコンベアAの上方に位置し、ベルトコンベアAで搬送されてきた粉粒体aから磁力により強磁性粒子を吸着して分離する第2のベルトコンベアBを備えている。
 第1のベルトコンベアAにおいて、8は上記した実施の形態1から4におけるコンベアベルト1とは別のコンベアベルトであり、81はコンベア始端部82側のガイドロール、83はコンベア終端部84側のガイドロールである。コンベアベルト8をガイドロール81及び83間に張設して、ベルトコンベアAが構成される。
 第2のベルトコンベアBにおいて、1は上記した実施の形態1から4におけるコンベアベルト1と同様のコンベアベルト、2はコンベア始端部11側のガイドロール、3はコンベア終端部12側のガイドロールであり、コンベアベルト1がガイドロール2及び3間に張設されて、ベルトコンベアBが構成される。この実施形態5では、ガイドロール2はガイドロール3よりも大径に構成され、ガイドロール3の回転軸がガイドロール2の回転軸よりも上方に位置することにより、コンベアベルト1の上面(ガイドロール2及びガイドロール3間の上部ベルト部分)はほぼ水平となっている。ただし、コンベアベルト1の上面は、ガイドロール3に向かって下がっていてもよい。
 ベルトコンベアAのコンベア始端部82寄りの位置には、コンベアベルト1上に強磁性粒子を含む粉粒体aを供給する供給装置100が配置されている。
 ベルトコンベアB側に吸着保持された強磁性粒子は、ベルトコンベアBで搬送された後、コンベア終端部12から排出される。このベルトコンベアBのコンベア終端部12の下方には、磁着物回収部70が設けられている。一方、非磁性粒子は、ベルトコンベアBのコンベア始端部11の下方に落下するため、その位置に非磁着物回収部71が設けられている。
 図12の実施の形態5では、ベルトコンベアAのコンベア終端部84の上方にベルトコンベアBのコンベア始端部11が近接して位置している。また、ベルトコンベアAのガイドロール81及び83とベルトコンベアBのガイドロール2及び3とは、互いに逆回転しており、ベルトコンベアAのコンベア終端部84およびベルトコンベアBのコンベア始端部11において、コンベアベルト1と8とは同じ方向に移動している。
 ベルトコンベアBは、ガイドロール2及び3のいずれかがモーター等の駆動手段により駆動される。通常、ガイドロール3が駆動ロール、ガイドロール2が非駆動ロールとなる。
 実施の形態5において、ガイドロール2の内側に、複数の磁石4を有する磁石ロール20を備えているのは上述したとおりである。磁石ロール20は、ガイドロール2から独立して回転可能に構成されている。
 磁石ロール20は、図6に示したように、ロールの周方向および軸方向において、所定の間隔を置いて複数の磁石4が配されている。磁石ロール20のロール周方向360℃にわたって、隣接する磁極が、N極、S極交互になるように複数の磁石4が配されている。また、磁石ロール20の軸方向において、複数の磁石4が、同一の磁極となるように配されている。なお、磁石ロール20の軸方向において、図8に示したように異なる磁極となるように磁石4を配置することも可能である。
 ロール周方向に配置される磁石4の数や磁石4の間隔などに特別な制限はないが、磁石4の数を多くし、或いは磁石4の間隔を小さくすれば、より速い磁場の大きさおよび向きの変化が得られる。換言すれば、磁石ロール20の回転速度が遅くても、高速な磁場変化が得られる。
 磁石4による磁場の強さに特別な制限はないが、通常、対象物に応じてガイドロール2と接するコンベヤベルト部分で0.01~0.5T程度となるように磁石4を選択することが好ましい。磁場が弱すぎると磁石ロール20による効果が十分に得られず、一方、磁場が強すぎると、強磁性粒子に作用する吸引力が強すぎ、強磁性粒子の分離が却って阻害されるおそれがある。
 また、本実施の形態5に係る装置では、所定の間隔で配置される複数の磁石4と、隣接する磁石4との間の間隙部により、磁場が強→弱→強→弱→・・・と切り替わり、粉粒体層中の強磁性粒子に対して、集合→分散→集合→分散→・・・の効果が繰り返される。ロール周方向で隣接する磁石4間の間隙部の広さに特別な制限はないが、上記の効果を得るために1~50mm程度とするのが適当である。
 また、磁石ロール20によって与える磁場は、できるだけ高速で変化(磁場の強度及び向きの高速変化)することが好ましく、具体的には、上述の通り、上記(1)式で定義される磁石ロール20の磁場変化周波数Fを30Hz以上とすることが好ましいのは、上記したとおりである。
 以下、図12に示した磁力選別装置の機能・作用に併せて、この装置を用いた磁力選別方法について説明する。
 この磁力選別装置を用いて磁力選別を行うに当って、コンベアベルト1の送り速度は、その処理プロセスに必要な速度にすればよい。このベルト送り速度に対して、磁場の変化が十分高速となるように、磁石ロール20の回転速度を決める。特に、この磁石ロール20の回転速度は、上述した(1)式の条件を満足するように設定することが好ましい。
 ベルトコンベアA、Bが稼動している状態にて、強磁性粒子を含む粉粒体aが、供給装置100からベルトコンベアAの移動中のコンベアベルト8上に十分な厚さで供給され、この粉粒体aはコンベア終端部84まで搬送される。コンベアベルト8で搬送された粉粒体aは、コンベア終端部84付近でその上面がベルトコンベアBのコンベア始端部11の下面に接触し、粉粒体aがベルトコンベアAのコンベア終端部84とベルトコンベアBのコンベア始端部11の間にもぐりこむ。この時、粉粒体aにベルトコンベアBの磁石ロール2の磁場が及ぼされる。
 ここで、図12の磁力選別装置の場合には、磁石ロール20の磁力により粉粒体a内の強磁性粒子が非磁性粒子を抱き込むような形でベルトコンベアBの下面側に付着してコンベアベルト1で運ばれる。粉粒体a中の強磁性粒子は、磁石ロール20が備える磁石4の磁場の作用を受ける。その際、磁石ロール20の回転により、磁場の強度は強→弱→強→弱→・・・と瞬時に切り替わる。粉粒体層中の強磁性粒子に対しては、集合→分散→集合→分散→・・・の効果が繰り返される。
 また、図6に示したように磁石ロール20がガイドロール2から独立して回転するために、(1)磁石ロール20を回転させることで機械的に高速な磁場変化を生み出す、(2)この変化している磁場内へ十分な層厚をもって粉粒体aを供給する、(3)磁場変化によって強磁性粒子による非磁性粒子の巻き込み・抱き込みを解消しながら、強磁性粒子が磁石ロール20側へ移動し、非磁性粒子は磁石ロール20から遠い側へと排除されていく、(4)非磁性粒子はベルトコンベアBのコンベア始端部11で重力によって落下し、強磁性粒子はベルトコンベアBに吸着保持されたまま運ばれて、ベルトコンベアBのコンベア終端部12で排出される。従って、図12に示すようにコンベアベルト1に供給する粉粒体aを十分に厚くしても、効率よく強磁性粒子を磁力選別することができる。すなわち、粉粒体aから効率よくかつ迅速に強磁性粒子を磁力選別することができる。
 なお、図12の実施の形態5の装置では、磁石ロール20がガイドロール2から独立して回転するため、粉粒体aがベルトコンベアBのガイドロール2に沿って搬送される間に、100回以上の磁場の強度および向きの変化が容易に与えられる。また、強磁性粒子の磁場中での挙動は対象とする粉粒体aによって変化するため、適切な性能が得られるように磁石ロール20の回転数を調整することができる。
 図1に示したような従来装置でも、磁石の個数分だけの磁場の強度および向きの変化があるため、粉粒体aの強磁性粒子の分離効果は生じるが、固定式の磁石であるため磁場の変化の回数は限られたものとなり(数回~10数回)、強磁性粒子の分離効果は小さい。これに対して本実施の形態に係る装置では、磁石ロール20がガイドロール2から独立して回転するため、コンベアベルト1に沿って粉粒体が搬送される間に、100回以上の磁場の変化が容易に与えられる。
 本実施の形態5に係る磁力選別装置は、上述したように粉粒体aから効率よく強磁性粒子を磁力選別することができるので、この装置を用いた粉粒体aの磁力選別では、図12に示すように供給装置6からベルトコンベアAのコンベアベルト1上に、粉粒体aに含まれる最小粒子の直径よりも大きい層厚で、且つ磁力が十分に作用する層厚で粉粒体を供給することが望ましい。具体的には、粉粒体の厚さが20~30mmである。
 本実施の形態5に係る装置は、ベルトコンベアAで搬送されてきた粉粒体a(粉粒体層)に、ベルトコンベアBのコンベア始端部11側のガイドロール2の内側に設けられた磁石4の磁場を作用させ、粉粒体a中の強磁性粒子を吸引してベルトコンベアBの下面側に移行させ、強磁性粒子を分離するものである。したがって、ベルトコンベアAのコンベア終端部84とベルトコンベアBのコンベア始端部11との間隔は、磁石ロール20の磁力が粉粒体a中の強磁性粒子に十分作用する大きさであればよいが、一般的は、ベルトコンベアAのコンベアベルト8で搬送される粉粒体aの層の上面がベルトコンベアBのコンベア始端部11と接触する、すなわち粉粒体層がベルトコンベアAのコンベア終端部84とベルトコンベアBのコンベア始端部11の間にもぐりこむことができる大きさとすることが好ましい。
[実施の形態6]
 次に、上記の実施の形態5の変形例である実施の形態6について、図13を参照して説明する。
 実施の形態6は、ベルトコンベアAとベルトコンベアBの位置関係を、図12の例とは異なる形としたものである。すなわち、ベルトコンベアAのコンベア終端部84の上方にベルトコンベアBのコンベア始端部11が近接して位置させるのは図12に示した場合と同様であるが、ベルトコンベアBのコンベア始端部11と終端部12との位置関係を図12の場合とは逆にしている。その結果、ベルトコンベアAのガイドロール81及び83とベルトコンベアBのガイドロール2及びガイドロール3とは、同じ方向に回転している。また、ベルトコンベアAのコンベア終端部84およびベルトコンベアBのコンベア始端部11において、コンベアベルト1と8とは逆方向に移動している。
 このような配置としても、強磁性粒子の分離が確実に行えることは言うまでもない。なお、ベルトコンベアAとBとの位置関係以外は、図12の実施の形態5の構成と略同一構成であるため、その説明を省略する。
[実施の形態7]
 さらに、上記の実施の形態5の別の変形例である実施の形態7について、図14を参照して説明する。
 実施の形態7では、ガイドロール2は、内部が中空のスリーブ体で構成され、回転可能に支持されている。ガイドロール2の内側には、ガイドロール内周面のコンベアベルトが接触する円弧部分に対応して、所定の間隔をおいて配置される複数の磁石4を有する磁石ロール20を備えている。
 実施の形態7のガイドロール2は、実施の形態5のガイドロール2と異なり、磁石4を備える磁石ロール20は固定して設けてある。換言すれば、磁石4は、ガイドロール2から独立して設置される、回転しない固定磁石である。なお、磁石4は、図14に示したように、ロール周方向で隣接する磁極が異なるように配されており、かつ、ロール幅方向で隣接する磁極が同一となるように配されている。
 図14に示すように、実施の形態7において、磁石4が配置されるロール周方向の範囲は、少なくとも、磁石ロール20の下端位置(ベルトコンベアAのコンベア終端部84と対向する位置)から磁石ロール20の頂部位置までの約180°(磁石ロール20の半周)の範囲である。このように、磁石4を回転しないよう固定して設置した場合は、磁石4を設置する範囲を小さくすることができる。
 実施の形態7に係る磁力選別装置は、固定磁石4により粉粒体a中の強磁性粒子が吸引され、この強磁性粒子が非磁性粒子を抱き込むような形で粉粒体a(またはその一部)がベルトコンベアBの下面側に付着して(保持されて)コンベアベルト1で運ばれる。この装置の場合も、図12の磁石ロール20に較べて効果は小さいが、粉粒体a中の強磁性粒子は、磁石4の磁力の作用を受け、コンベアベルト1で運ばれる過程で磁場が強→弱→強→弱→・・・と切り替わって行くため、粉粒体a中の強磁性粒子に対しても、集合→分散→集合→分散→・・・が繰り返されて強磁性粒子の選別が可能になる。ただし、図12の磁石ロール20のように磁場が高速で変化するものではないので、磁力選別性能や処理速度は図12の実施形態5に較べて小さい。
 実施の形態7の磁力選別装置は、(i)第1のベルトコンベアAから排出される粉粒体aに対して、その上方から第2のベルトコンベアBが備える磁石4による磁場を作用させ、粉粒体aに含まれる強磁性体を吸着して、ベルトコンベアB側に移動させる基本方式を採るため、従来装置に較べて強磁性粒子による非磁性粒子の抱き込み・巻き込みを少なくできる、(ii)さらに、磁石4による磁場変化によって強磁性粒子による非磁性粒子の巻き込み・抱き込みが解消される、という作用効果が得られる。
 図15は、図14の実施の形態7に係る磁石ロール2の構造を示す斜視図である。図15に示すように、ここで設置する磁石4は、磁石ロール20の周方向に沿って磁極が周方向で交互に異なるよう複数設けるのは図6の場合と同様であるが、ロール軸方向には一体で連続する磁石として設けられている。なお、この磁石ロール20は、固定されて回転しない構成となっている。
[実施の形態8]
 また、上記した遮蔽壁50の変形例である実施の形態8について、図16を参照して説明する。すなわち、図16に示すように、図9に示した実施の形態2において、遮蔽壁50の側面部分をさらに延長してガイドロール2の端面のほぼ半分を覆う構造とすることも可能である。
 さらに、図16に示すように、1対のガイドロール2および3間かつコンベアベルト1の内側空間内に、当該空間に向けて空気を噴出する、或いは当該空間の空気を吸引する補助装置9を設けることも可能である。この補助装置9によって、遮蔽壁50に当たった強磁性粒子の回収をはかることが、ガイドロール2への強磁性粒子の付着防止に有効であることは勿論、これと対のガイドロール3への強磁性粒子の付着防止にも有効である。なお、ガイドロール2への強磁性粒子の付着防止の観点から、該ガイドロール2に対して上述した各種の遮蔽壁を設けることも可能である。
 図5に示した実施の形態1に係る磁力選別装置を用いて製鋼スラグの磁力選別を行った。
 すなわち、製鋼スラグの粉砕物を400μmの篩にかけた後、篩の目を通過したスラグを磁力選別の対象粉粒体とした。この粉粒体の鉄濃度は54mass%であった。コンベアベルト1上への粉粒体の供給層厚は7mmとした。磁石ロール2の外径は200mm、磁石4の磁極数は12極(ただし、N極・S極のペアで1磁極とする)、コンベアベルト1の送り速度は0.5m/s、磁石ロール20の回転速度は31.9rpm、磁石ロール20と接するコンベヤベルト部分での磁場強度は0.2Tとした。また、磁石ロール20の回転速度の効果を調べるため、磁石ロール20の回転速度は、100rpm(磁場変化周波数F=20Hz)、150rpm(磁場変化周波数F=30Hz)、500rpm(磁場変化周波数F=100Hz)、850rpm(磁場変化周波数F=170Hz)、1200rpm(磁場変化周波数F=240Hz)とした。
 また、遮蔽壁5は樹脂製として、その厚みを100mmとした。この遮蔽壁5の背面5aでの磁力は100ガウス以下であった。
 比較のため、従来一般的に使用されているドラム磁選機X(ドラム面上での磁場強度:0.16T)と、プーリ磁選機Y(ガイドロールと接するコンベヤベルト部分での磁場強度:0.2T)を用い、同じ製鋼スラグの粉粒体を送り速度0.5m/sで磁力選別した。
 上記各実施例において、磁着回収物の鉄濃度とスラグからの鉄回収率を調べた。また、ガイドロールにおける鉄粉の付着量を調査した。鉄粉の付着量調査は、遮蔽壁5を設置した場合と設置しない場合とを比較した。
 まず、ドラム磁選機Xを使用した場合の磁着回収物は、非鉄成分を巻き込んでいるため鉄濃度が低く、また非磁着側へ鉄を逃しているため鉄回収率も低くかった。また、プーリ磁選機Yを使用した場合は、粉粒体のほぼ全量が巻き込まれたため、確かに回収率は良いが、肝心の磁着回収物の鉄濃度は、磁力選別前の粉粒体とほとんど変わらなかった。
 これに対して本発明例では、磁着回収物の鉄濃度、スラグの鉄回収率ともに高い値が得られており、特に、磁石ロール2の磁場変化周波数が30Hz以上であれば、磁着回収物の鉄濃度、スラグの鉄回収率ともにより高い値が得られた。
 また、上記の操業における鉄粉の付着量について、遮蔽壁5を設置した場合と設置しない場合とを比較した。その結果、遮蔽壁5を設置しない場合の付着量が100g/hであったのに対して、遮蔽壁5を設置すると、0.5g/h以下まで減少することが確認された。
 なお、実施の形態2~4についても、遮蔽壁をそれぞれの形態として、上記と同様の操業を行ったところ、遮蔽壁5又は遮蔽壁50(磁石ロール2から遮蔽壁5の背面5aまでの距離:100mm)を設置しない場合の付着量が100g/hであったのに対して、遮蔽壁5を設置すると、0.5g/h以下まで減少することが確認された。さらに、遮蔽壁5又は遮蔽壁50に空気を5MPaにて供給したところ、鉄粉付着量は0.3g/h以下に減少した。
 図11に示した実施の形態5に係る磁力選別装置を用い、製鋼スラグの磁力選別を行った。
 製鋼スラグの粉砕物を400μmの篩にかけた後、篩の目を通過したスラグを磁力選別の対象粉粒体とした。この粉粒体の鉄濃度は54mass%であった。ベルトコンベアAのコンベアベルト1上への粉粒体の供給層厚は7mmとした。ベルトコンベアBのガイドロール3の外径は300mm、磁石ロール20の磁極数は12極(ただし、N極・S極のペアで1磁極とする)、ベルトコンベアA、Bのコンベヤベルトの送り速度は0.5m/s、磁石ロール02の回転速度は31.9rpm、磁石ロール20と接するコンベヤベルト部分での磁場強度は0.2Tとした。また、ベルトコンベアBの磁石ロール20の回転速度の効果を調べるため、磁石ロール20の回転速度は、100rpm(磁場変化周波数F=20Hz)、150rpm(磁場変化周波数F=30Hz)、500rpm(磁場変化周波数F=100Hz)、850rpm(磁場変化周波数F=170Hz)、1200rpm(磁場変化周波数F=240Hz)とした。
 また、遮蔽壁5は樹脂製として、その厚みを100mmとした。この遮蔽壁5の背面5aでの磁力は100ガウス以下であった。
 比較のため、従来一般的に使用されているドラム磁選機X(ドラム面上での磁場強度:0.16T)と、プーリ磁選機Y(ガイドロールと接するコンベヤベルト部分での磁場強度:0.2T)を用い、同じ製鋼スラグの粉粒体を送り速度0.5m/sで磁力選別した。
 上記各実施例において、磁着回収物の鉄濃度とスラグからの鉄回収率を調べた。また、磁石ロールにおける鉄粉の付着量を調査した。鉄粉の付着量調査は、遮蔽壁5を設置した場合と設置しない場合とを比較した。
 まず、ドラム磁選機Xを使用した場合の磁着回収物は、非鉄成分を巻き込んでいるため鉄濃度が低く、また非磁着側へ鉄を逃しているため鉄回収率も低い。また、プーリ磁選機Yを使用した場合は、粉粒体のほぼ全量が巻き込まれたため、確かに鉄回収率は良いが、肝心の磁着回収物の鉄濃度は、磁力選別前の粉粒体とほとんど変わらない。
 これに対して本発明例では、磁着回収物の鉄濃度、スラグの鉄回収率ともに高い値が得られており、特に、磁石ロール2の磁場変化周波数が30Hz以上であれば、磁着回収物の鉄濃度、スラグの鉄回収率ともにより高い値が得られた。
 また、上記の操業における鉄粉の付着量について、遮蔽壁5を設置した場合と設置しない場合とを比較した。その結果、遮蔽壁5を設置しない場合の付着量が100g/hであったのに対して、遮蔽壁5を設置すると、0.5g/h以下まで減少することが確認された。
1、8 コンベアベルト
2 ガイドロール
3、81、83、 ガイドロール
4 磁石
9 補助装置
11、82 コンベア始端部
12、84 コンベア終端部
20 磁石ロール
21、22 回転軸
23 軸受
70 磁着物回収部
71 非磁着物回収部
100 供給装置
106 仕切板
A、B ベルトコンベア
a 粉粒体
k 間隙部

Claims (15)

  1.  少なくとも1対のガイドロールと、
     前記ガイドロール対間に張り渡され、強磁性粒子を含む粉粒体を搬送するコンベアベルトと、を有し、
     前記ガイドロールのいずれか一方は中空ロールであって、該中空部に、前記ガイドロールの内周面に沿って複数の磁石を周方向に間隔を置いて異磁極が交互に並ぶ列状に配置した、磁石ロールを有し、
     前記ガイドロールのいずれか一方の外周面における、前記コンベアベルトが巻き回される円弧領域を除く円弧領域を覆って前記磁石からの磁力線を遮断する、遮蔽壁を備えることを特徴とする磁力選別装置。
  2.  前記ベルトコンベアの下方に、強磁性粒子を含む粉粒体を搬送する別のコンベアベルトを設け、前記別のコンベアベルトの粉粒体搬送下流側に、前記コンベアベルトの前記磁石ロール側が近接して位置する請求項1に記載の磁力選別装置。
  3.  前記遮蔽壁の背面から前記ガイドロール側に貫通し、前記遮蔽壁と前記ガイドロールとの隙間に空気を供給する、管路を少なくとも1本は有する請求項1または2に記載の磁力選別装置。
  4.  前記磁石ロールは、前記ガイドロールのいずれか一方から独立して回転可能である請求項1、2または3に記載の磁力選別装置。
  5.  下記(1)式で定義される、前記磁石から前記粉粒体に作用する磁極の変化数を示す磁場変化周波数F(Hz)が、30Hz以上である請求項1から4のいずれかに記載の磁力選別装置。
               記
     F=(x・P)/60 …(1)
     ここで、x:磁石ロールの回転数(rpm)
         P:磁石ロールが備える磁極数(但し、磁極数は、磁石ロールの粉粒体と対向
          する面の周方向に並列するN極・S極のペアを、1磁極としてカウントする。)
  6.  前記磁石ロールの軸方向に隣接する前記磁石の磁極が同じである請求項1から5のいずれかに記載の磁力選別装置。
  7.  前記磁石ロールの軸方向に隣接する前記磁石の磁極が異なる請求項1から5のいずれかに記載の磁力選別装置。
  8.  前記ガイドロールのいずれか一方と前記磁石ロールとの回転方向が同じである請求項1から7のいずれかに記載の磁力選別装置。
  9.  前記ガイドロールのいずれか一方と前記磁石ロールとの回転方向が逆である請求項1から7のいずれかに記載の磁力選別装置。
  10.  前記コンベアベルトと前記別のコンベアベルトとの輪転方向が同じである請求項2から9のいずれかに記載の磁力選別装置。
  11.  前記コンベアベルトと前記別のコンベアベルトとの輪転方向が逆である請求項2から9のいずれかに記載の磁力選別装置。
  12.  前記コンベアベルトと前記ガイドロールのいずれか一方とが非金属製である請求項1から11のいずれかに記載の磁力選別装置。
  13.  前記ガイドロール対のいずれかが非駆動である請求項1から12のいずれかに記載の磁力選別装置。
  14.  請求項1から13のいずれかに記載の磁力選別装置を用いて、強磁性粒子を含む粉粒体から該強磁性粒子を選別する磁力選別方法であって、
     前記コンベアベルト上に、前記粉粒体に含まれる最小粒子の直径よりも大きい厚みにて前記粉粒体を供給する磁力選別方法。
  15.  請求項1から14のいずれかに記載の磁力選別装置または磁力選別方法を用いて、製鉄プロセスの副生成物から鉄源を製造する鉄源の製造方法。
PCT/JP2016/085631 2015-11-30 2016-11-30 磁力選別装置、磁力選別方法および鉄源の製造方法 WO2017094803A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2016362141A AU2016362141B2 (en) 2015-11-30 2016-11-30 Magnetic Separator, Magnetic Separation Method, and Iron Source Manufacturing Method
US15/778,225 US10857548B2 (en) 2015-11-30 2016-11-30 Magnetic separator, magnetic separation method, and iron source manufacturing method
JP2017505683A JP6399203B2 (ja) 2015-11-30 2016-11-30 磁力選別装置、磁力選別方法および鉄源の製造方法
CA3002928A CA3002928C (en) 2015-11-30 2016-11-30 Magnetic separator, magnetic separation method, and iron source manufacturing method
EP16870740.4A EP3384991B1 (en) 2015-11-30 2016-11-30 Magnetic separator, magnetic separation method, and iron source manufacturing method
KR1020187014666A KR102122190B1 (ko) 2015-11-30 2016-11-30 자력 선별 장치, 자력 선별 방법 및 철원의 제조 방법
CN201680069413.2A CN108290164A (zh) 2015-11-30 2016-11-30 磁力分选装置、磁力分选方法及铁源的制造方法
BR112018009650-4A BR112018009650B1 (pt) 2015-11-30 2016-11-30 Separador magnético, método de separação magnética e método para fabricação de fonte de ferro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/005947 WO2017094039A1 (ja) 2015-11-30 2015-11-30 磁力選別装置、磁力選別方法および鉄源の製造方法
JPPCT/JP2015/005947 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094803A1 true WO2017094803A1 (ja) 2017-06-08

Family

ID=58796474

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/005947 WO2017094039A1 (ja) 2015-11-30 2015-11-30 磁力選別装置、磁力選別方法および鉄源の製造方法
PCT/JP2016/085631 WO2017094803A1 (ja) 2015-11-30 2016-11-30 磁力選別装置、磁力選別方法および鉄源の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005947 WO2017094039A1 (ja) 2015-11-30 2015-11-30 磁力選別装置、磁力選別方法および鉄源の製造方法

Country Status (9)

Country Link
US (1) US10857548B2 (ja)
EP (1) EP3384991B1 (ja)
JP (1) JP6399203B2 (ja)
KR (1) KR102122190B1 (ja)
CN (1) CN108290164A (ja)
AU (1) AU2016362141B2 (ja)
BR (1) BR112018009650B1 (ja)
CA (1) CA3002928C (ja)
WO (2) WO2017094039A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069423A (ja) * 2017-10-11 2019-05-09 公立大学法人県立広島大学 磁力選別装置、磁力選別装置の使用方法及び汚染物乾式処理システム
KR102354321B1 (ko) * 2021-04-27 2022-01-20 한광수 폐기물 선별 시스템
KR102354708B1 (ko) * 2021-05-04 2022-01-24 한승훈 폐기물 선별 방법 및 장치
CN116689150A (zh) * 2023-08-09 2023-09-05 临汾市鑫锐机械设备有限公司 机制砂连续除铁筛分设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715300B (zh) * 2019-10-17 2021-07-02 安徽森米诺农业科技有限公司 一种用于废铁回收的固体废料处理装置
JP2021194588A (ja) * 2020-06-12 2021-12-27 リファインホールディングス株式会社 炭素材料分散体の製造方法および炭素材料分散体並びにこれに用いる装置
CN113578524B (zh) * 2021-09-28 2021-12-21 山东华特磁电科技股份有限公司 一种磁选机及滚筒
DE102022104606B3 (de) 2022-02-25 2023-06-15 Prüfstandsservice Lenting GmbH Pulverscheideanlage und verfahren zur abscheidung der ferromagnetischen fraktion eines pulvers von dessen nicht-ferromagnetischer fraktion
DE102022212061A1 (de) * 2022-11-14 2024-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Vorrichtung und Verfahren zum Separieren von ferromagnetischen Pulverpartikeln von damit vermischten nicht-ferromagnetischen Pulverpartikeln

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130041A (ja) 1996-10-28 1998-05-19 Furukawa Co Ltd スラグの分離回収方法及び分離回収設備
JP2001121028A (ja) * 1999-10-29 2001-05-08 Nippon Magnetic Dressing Co Ltd 磁気発生ドラム及びこれを用いた磁力選別機
JP2002331257A (ja) * 2001-05-09 2002-11-19 Toyota Koki Kk 非鉄金属分別装置
JP2006142136A (ja) 2004-11-16 2006-06-08 Ishikawajima Harima Heavy Ind Co Ltd スラグ中の異物除去方法及び装置
JP2013063423A (ja) * 2011-09-01 2013-04-11 Naoe Tekko:Kk 選別装置
US20130264248A1 (en) * 2010-12-08 2013-10-10 Smolkin Michael Apparatus and method for magnetic separation
WO2014061256A1 (ja) * 2012-10-16 2014-04-24 Jfeスチール株式会社 磁力選別装置、磁力選別方法および鉄源の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272719A (en) * 1940-01-02 1942-02-10 Indiana Steel Products Co Magnetic separator
US2992733A (en) * 1957-10-09 1961-07-18 Indiana General Corp Magnetic pulley and permanent magnet therefor
US3454913A (en) * 1966-11-14 1969-07-08 Eriez Mfg Co Permanent magnetic pulley
US4318804A (en) * 1979-11-16 1982-03-09 Kanetsu Kogyo Kabushiki Kaisha Device for separating mixture
US5101980A (en) * 1990-10-11 1992-04-07 Arvidson Bo R Magnetic separator assembly for use in material separator equipment
US5207330A (en) * 1991-11-01 1993-05-04 Miller Compressing Company Magnetic pulley
US5494172A (en) * 1994-05-12 1996-02-27 Miller Compressing Company Magnetic pulley assembly
JP3973721B2 (ja) * 1996-12-16 2007-09-12 高橋 謙三 ベルトレス回転ドラム型非鉄金属分別装置
JP4229499B2 (ja) * 1998-11-02 2009-02-25 富士通マイクロエレクトロニクス株式会社 半導体封止用樹脂組成物、その製造方法及び製造装置ならびにそれを使用した半導体装置
CN1354694A (zh) * 1999-04-14 2002-06-19 艾克斯普技术公司 用于使用电力和磁力分类颗粒的方法和设备
US6634504B2 (en) * 2001-07-12 2003-10-21 Micron Technology, Inc. Method for magnetically separating integrated circuit devices
CN102000629B (zh) 2010-12-20 2012-05-23 王安生 永磁高梯度选矿机磁组结构
US9962710B2 (en) * 2016-07-07 2018-05-08 Bunting Magnetics Co. Magnetic roll

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130041A (ja) 1996-10-28 1998-05-19 Furukawa Co Ltd スラグの分離回収方法及び分離回収設備
JP2001121028A (ja) * 1999-10-29 2001-05-08 Nippon Magnetic Dressing Co Ltd 磁気発生ドラム及びこれを用いた磁力選別機
JP2002331257A (ja) * 2001-05-09 2002-11-19 Toyota Koki Kk 非鉄金属分別装置
JP2006142136A (ja) 2004-11-16 2006-06-08 Ishikawajima Harima Heavy Ind Co Ltd スラグ中の異物除去方法及び装置
US20130264248A1 (en) * 2010-12-08 2013-10-10 Smolkin Michael Apparatus and method for magnetic separation
JP2013063423A (ja) * 2011-09-01 2013-04-11 Naoe Tekko:Kk 選別装置
WO2014061256A1 (ja) * 2012-10-16 2014-04-24 Jfeスチール株式会社 磁力選別装置、磁力選別方法および鉄源の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. SVOBODA: "Magnetic Techniques for the Treatment of Materials", 2004, KLUWER ACADEMIC PUBLISHERS, pages: 70 - 72
See also references of EP3384991A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069423A (ja) * 2017-10-11 2019-05-09 公立大学法人県立広島大学 磁力選別装置、磁力選別装置の使用方法及び汚染物乾式処理システム
JP7038372B2 (ja) 2017-10-11 2022-03-18 広島県公立大学法人 磁力選別装置、磁力選別装置の使用方法及び汚染物乾式処理システム
KR102354321B1 (ko) * 2021-04-27 2022-01-20 한광수 폐기물 선별 시스템
KR102354708B1 (ko) * 2021-05-04 2022-01-24 한승훈 폐기물 선별 방법 및 장치
CN116689150A (zh) * 2023-08-09 2023-09-05 临汾市鑫锐机械设备有限公司 机制砂连续除铁筛分设备
CN116689150B (zh) * 2023-08-09 2023-10-20 临汾市鑫锐机械设备有限公司 机制砂连续除铁筛分设备

Also Published As

Publication number Publication date
CN108290164A (zh) 2018-07-17
KR102122190B1 (ko) 2020-06-12
AU2016362141A1 (en) 2018-05-24
WO2017094039A1 (ja) 2017-06-08
CA3002928A1 (en) 2017-06-08
US10857548B2 (en) 2020-12-08
US20180353969A1 (en) 2018-12-13
BR112018009650A2 (ja) 2018-11-13
CA3002928C (en) 2021-02-16
JPWO2017094803A1 (ja) 2017-11-30
KR20180072803A (ko) 2018-06-29
BR112018009650B1 (pt) 2022-06-14
JP6399203B2 (ja) 2018-10-03
EP3384991B1 (en) 2022-01-05
AU2016362141B2 (en) 2019-10-17
EP3384991A4 (en) 2018-12-05
EP3384991A1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6399203B2 (ja) 磁力選別装置、磁力選別方法および鉄源の製造方法
JP5773089B2 (ja) 磁力選別装置、磁力選別方法および鉄源の製造方法
US9010538B2 (en) Apparatus and method for magnetic separation
JP6169767B2 (ja) 純粋な鉄のスクラップを達成するよう金属スクラップの集塊からすべての非磁性粒子を分離するためのプロセスおよび装置
JP6690565B2 (ja) 磁力選別方法及び装置
AU2010283945B2 (en) Magnetic roller type separating device
WO2012028123A3 (de) Trennverfahren und -vorrichtung für ne-metalle
JP2018090477A (ja) 鉄鋼スラグの処理方法
RU64947U1 (ru) Сепаратор магнитный двухкаскадный для обогащения сухих сыпучих слабомагнитных руд
JP6662275B2 (ja) 粒状物の磁力選別方法及び装置
RU2380164C1 (ru) Барабанный магнитный сепаратор
JP6394619B2 (ja) 磁力選別装置および磁力選別方法
RU2400307C2 (ru) Ленточный магнитный сепаратор
RU68363U1 (ru) Сепаратор магнитный двухкаскадный барабанный для обогащения сухих сыпучих слабомагнитных руд
EA025638B1 (ru) Устройство и способ для магнитной сепарации
JP2004081965A (ja) 非磁性金属分離装置
UA24726U (en) Magnetic two-stage separator for benefication of dry friable slightly magnetic ores
UA24449U (en) Magnetic two-stage drum separator for benefication of dry friable slightly magnetic ores
UA17530U (en) Method of magnetic concentration of ores and materials

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017505683

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3002928

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018009650

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016362141

Country of ref document: AU

Date of ref document: 20161130

Kind code of ref document: A

Ref document number: 20187014666

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018009650

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180511