WO2017094176A1 - Cross-sectional observation sample preparation device and cross-sectional observation sample preparation method - Google Patents

Cross-sectional observation sample preparation device and cross-sectional observation sample preparation method Download PDF

Info

Publication number
WO2017094176A1
WO2017094176A1 PCT/JP2015/084093 JP2015084093W WO2017094176A1 WO 2017094176 A1 WO2017094176 A1 WO 2017094176A1 JP 2015084093 W JP2015084093 W JP 2015084093W WO 2017094176 A1 WO2017094176 A1 WO 2017094176A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
cross
filler
observation sample
opening
Prior art date
Application number
PCT/JP2015/084093
Other languages
French (fr)
Japanese (ja)
Inventor
敬司 渡邉
哲史 河村
峰 利之
杉井 信之
龍崎 大介
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/084093 priority Critical patent/WO2017094176A1/en
Publication of WO2017094176A1 publication Critical patent/WO2017094176A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention relates to a cross-section observation sample preparation apparatus and a cross-section observation sample preparation method for a semiconductor substrate, and more particularly to preparation of a cross-section observation sample for a semiconductor substrate having a hollow region.
  • MEMS Micro Electro Mechanical Systems
  • the MEMS device is used as, for example, a pressure sensor that utilizes vibration of a membrane, and often has a hollow region inside a semiconductor substrate.
  • the cross-sectional shape of the hollow region greatly affects its operating characteristics. For this reason, observing the cross-sectional shape of the hollow region in the middle stage of the manufacturing process of the MEMS device is one of effective inspection methods for maintaining the operation characteristics of the MEMS device.
  • Non-Patent Document 1 describes that in a MEMS device manufacturing process, a membrane is deformed and a stiction phenomenon occurs.
  • the stiction phenomenon is a phenomenon that occurs when, for example, a membrane deformed by the action of a capillary force or an electrostatic force comes into contact with an opposing film or substrate via a cavity and is fixed.
  • a technique using a focused ion beam is often employed for cross-section processing and shape observation.
  • sample observation can be performed with high magnification using an ion beam or an electron beam, and a desired position of a semiconductor device can be processed.
  • the cross-section processing is performed by irradiating a semiconductor substrate having a hollow region with a focused ion beam
  • a part of the substance removed from the semiconductor substrate adheres to the inner wall of the hollow region as a reattachment.
  • the membrane and the semiconductor substrate come into contact with each other through the reattachment in a part of the hollow region, and the stiction The phenomenon occurs.
  • the cross-sectional shape of the hollow region becomes different from the shape before the cross-section processing. Therefore, it is currently difficult to inspect the semiconductor device (MEMS device) during the manufacturing process by processing the cross section using a focused ion beam and observing the cross-sectional shape of the obtained hollow region. there were.
  • MEMS device semiconductor device
  • An object of the present invention is to provide a cross-section observation sample preparation apparatus and a cross-section observation sample preparation method capable of suppressing the occurrence of a stiction phenomenon when a cross section of a semiconductor substrate having a hollow region is processed.
  • a support base for supporting a semiconductor substrate, a beam irradiation gun for irradiating the semiconductor substrate with a beam, and a probe for extracting the cross-sectional observation sample from the semiconductor substrate
  • a filler supply line that supplies a filler toward the surface of the semiconductor substrate supported by the support
  • a discharge nozzle that is connected to the filler supply line and that discharges the filler onto the surface of the semiconductor substrate.
  • a suction nozzle for sucking a filler from the surface of the semiconductor substrate, a vacuum line for collecting the filler sucked from the suction nozzle, a temperature control mechanism for controlling the temperature of the support base, and the discharge nozzle. It has a discharge nozzle moving mechanism for moving, and a suction nozzle moving mechanism for moving the suction nozzle.
  • a first opening that exposes the hollow region is formed by irradiating a beam toward the surface of the semiconductor substrate having the hollow region,
  • the filler is discharged toward the first opening, the filler is filled into the hollow region, the temperature of the semiconductor substrate is controlled, the beam is irradiated to the semiconductor substrate, and the first Forming a second opening that exposes the hollow region by a processing cross-section including a surface formed by the filler at a position different from the opening of the semiconductor substrate, and from the semiconductor substrate having the second opening
  • the filler is removed, and a cross-section observation sample having the processed cross section is extracted from the semiconductor substrate.
  • FIG. 2 is a view showing a state where a semiconductor substrate 41 in an initial state before beam irradiation from a beam irradiation gun 12 is installed on a support base 11. It is a figure which shows the state which is performing the 1st beam irradiation toward the semiconductor substrate 41 from the beam irradiation gun 12.
  • FIG. It is a figure which shows the state which is discharging the filler 51 toward the 1st opening part 44 from the discharge nozzle 23.
  • FIG. It is a figure which shows the state which is heating with the heater 16 the semiconductor substrate 41 with which the hollow area
  • FIG. It is a figure which shows the state which is performing the 2nd beam irradiation toward the semiconductor substrate 41 from the beam irradiation gun 12.
  • FIG. It is a figure which shows typically the flow direction of the washing
  • FIG. It is a figure which shows the state at the time of extracting the observation sample 47 from the semiconductor substrate 41.
  • FIG. 4B shows a perspective view of the appearance of the semiconductor substrate 41 in the vicinity of the first opening 44 after the first cross-section processing.
  • FIG. 3 is a perspective view showing an appearance of a semiconductor substrate 41 in the vicinity of a first opening 44 after a hollow region 42 is filled with a liquid filler 51.
  • FIG. 3 is a perspective view showing an appearance of a semiconductor substrate 41 in the vicinity of a first opening 44 after a solid filler 53 is formed in a hollow region 42.
  • 4D is a diagram showing a position of a second cross-section processing surface 62 in the semiconductor substrate 41 shown in FIG. 4D. It is a perspective view which shows the external appearance of the semiconductor substrate 41 in the vicinity of the 2nd opening part 45 after performing the 2nd cross-section process. It is a perspective view which shows the external appearance of the semiconductor substrate 41 in the vicinity of the 2nd opening part 45 after the filler 53 was removed. 10 is a flowchart showing a cleaning process using the cross-section observation sample preparation device 200. It is a figure which shows the state by which the semiconductor substrate 41 of the initial state before performing the beam irradiation from the beam irradiation gun 12 was installed in the support stand.
  • FIG. 1 It is a figure which shows the state which is performing the 1st beam irradiation toward the semiconductor substrate 41 from the beam irradiation gun 12.
  • FIG. It is a figure which shows the state which is discharging the filler 51 toward the 1st opening part 44 from the discharge nozzle 23.
  • FIG. 1 is a perspective view showing a cross-sectional observation sample preparation apparatus 100 according to the first embodiment.
  • the cross-section observation sample preparation apparatus 100 includes a support base 11 that supports the semiconductor substrate 41.
  • a support base rotating mechanism 71 that rotates the support base 11 is connected to the support base 11. By connecting the support table rotating mechanism 71 to the support table 11, the semiconductor substrate 41 can be cleaned while being rotated.
  • a beam irradiation gun 12 that irradiates the semiconductor substrate 41 with a beam and a probe 13 that extracts a cross-sectional observation sample (hereinafter simply referred to as an observation sample) from the semiconductor substrate 41 are installed in the vicinity of the support base 11. Yes.
  • the beam irradiation gun 12 is connected to a beam irradiation gun drive mechanism 72 that drives the movement operation and beam irradiation operation of the beam irradiation gun 12, and the probe 13 drives the movement operation of the probe 13 and the sample extraction operation.
  • a probe driving mechanism 73 is connected.
  • a liquid supply line 21 is installed in the vicinity of the beam irradiation gun 12.
  • the liquid supply line 21 is configured by a hollow columnar body.
  • a filler supply line (not shown) for supplying a filler toward the surface of the semiconductor substrate 41
  • a cleaning liquid supply line (not shown) for supplying a cleaning liquid toward the surface of the semiconductor substrate 41. It is arranged.
  • the liquid supply line 21 has both the function of the filler supply line and the function of the cleaning liquid supply line.
  • a filling material storage tank and a cleaning liquid storage tank (not shown) are disposed at one end of the liquid supply line 21.
  • the filler storage tank is connected to the filler supply line, and the cleaning liquid storage tank is connected to the cleaning liquid supply line.
  • the other end of the liquid supply line 21 is connected with a discharge nozzle movable arm 22 and a discharge nozzle 23 in this order. That is, the discharge nozzle 23 is connected to the cleaning liquid supply line and the filler supply line via the discharge nozzle movable arm 22.
  • the filler supply line and the cleaning liquid supply line can be switched between a filler supply from the filler supply line to the discharge nozzle 23 and a cleaning liquid supply from the cleaning liquid supply line to the discharge nozzle 23 by a switching mechanism (not shown). It is configured.
  • a vacuum line 31 for collecting liquid from the surface of the semiconductor substrate 41 is installed.
  • the vacuum line 31 is constituted by a hollow columnar body, and a vacuum pump (not shown) is connected to one end of the vacuum line 31.
  • a suction nozzle movable arm 32 and a suction nozzle 33 are connected to the other end of the vacuum line 31 in this order.
  • the discharge nozzle movable arm 22 is connected to a discharge nozzle moving mechanism 74.
  • the discharge nozzle moving mechanism 74 moves the discharge nozzle 23 by driving the discharge nozzle movable arm 22.
  • the suction nozzle movable arm 32 is connected to the suction nozzle moving mechanism 75.
  • the suction nozzle moving mechanism 75 moves the suction nozzle 33 by driving the suction nozzle movable arm 32.
  • a pure water supply line for supplying pure water and a pure water discharge nozzle connected to the pure water supply line may be installed.
  • a gas spraying mechanism may be provided in which after the semiconductor substrate 41 is cleaned, a gas is sprayed onto the liquid remaining on the surface of the semiconductor substrate 41 to dry the surface of the semiconductor substrate 41.
  • the heater 11 is built in the support base 11.
  • a temperature control mechanism 76 is connected to the heater 16.
  • the temperature control mechanism 76 controls the temperature of the support 16 to a desired range by controlling the temperature of the heater 16.
  • the support 11, the beam irradiation gun 12, the probe 13, the liquid supply line 21, the vacuum line 31, the discharge nozzle movable arm 22, the suction nozzle movable arm 32, the discharge nozzle 23, and the suction nozzle 33 are accommodated in the chamber 90. .
  • a evacuation mechanism 77 that evacuates the chamber 90 is connected to the chamber 90.
  • the control unit 81 is connected to the support base rotating mechanism 71, the beam irradiation gun driving mechanism 72, the probe driving mechanism 73, the discharge nozzle moving mechanism 74, the suction nozzle moving mechanism 75, the temperature control mechanism 76, and the vacuuming mechanism 77. The operation of each of these units is controlled.
  • the portions that may come into contact with the cleaning liquid in the support base 11, the discharge nozzle 23, and the suction nozzle 33 are formed of a corrosion-resistant material.
  • each part of the cross-section observation sample preparation apparatus 100 is made of a low dust generation material as much as possible.
  • each of the discharge nozzle 23 and the suction nozzle 33 has a single-cylinder configuration.
  • the discharge nozzle 23 and the suction nozzle 33 may have other configurations.
  • the support base 11, the beam irradiation gun 12, the probe 13, the liquid supply line 21, the vacuum line 31, the discharge nozzle movable arm 22 and the suction nozzle movable arm 32 have shapes different from those shown in FIG. Also good.
  • FIG. 2 shows a cross-section observation sample preparation device 200 that is a modification of the cross-section observation sample preparation device 100 shown in FIG.
  • the cross-section observation sample preparation apparatus 200 is different from the suction nozzle 33 of the cross-section observation sample preparation apparatus 100 in the form of the suction nozzle 33.
  • the other configuration of the cross-section observation sample preparation device 200 is the same as that of the cross-section observation sample preparation device 100, and a description thereof will be omitted.
  • the suction nozzle 33 having an opening 332 inside an annular suction port 331 is used.
  • the suction nozzle 33 has a double cylindrical configuration in which the outer edge and the inner edge of the suction port 331 both have a circular upper surface shape.
  • the outer diameter of the discharge nozzle 23 is smaller than the inner diameter of the suction port 331 of the suction nozzle 33.
  • the discharge nozzle 231 of the discharge nozzle 23 is positioned inside the inner edge of the suction port 331 of the suction nozzle 33, that is, in the opening 332.
  • the liquid can be discharged from the nozzle 23 and the liquid can be sucked from the suction nozzle 33. Accordingly, when the liquid is discharged and sucked, the liquid existing range on the surface of the semiconductor substrate 41 can be defined within a range surrounded by the suction port 331 of the suction nozzle 33.
  • a suction nozzle 331 having an inner edge and an outer edge having another planar shape such as a square may be used as the suction nozzle 33 having the annular suction port 331.
  • the cross-sectional observation sample preparation apparatus 200 having the support base rotating mechanism 71 is used as the support base 11 has been described as an example.
  • the cross-sectional observation sample preparation apparatus does not necessarily have the support base rotation mechanism 71.
  • the configuration in which the heater 16 is built in the support base 11 has been described as an example.
  • the heater 16 may be installed separately from the support base 11.
  • ⁇ Cross-section observation sample preparation method> A method for preparing a cross-section observation sample using the cross-section observation sample preparation apparatus 200 will be described with reference to the flowchart shown in FIG. 5 and FIGS. 3A to 3H.
  • control unit 81 the support base rotating mechanism 71, the beam irradiation gun driving mechanism 72, the probe driving mechanism 73, the discharge nozzle moving mechanism 74, the suction nozzle moving mechanism 75, the temperature control mechanism 76, and the vacuum evacuation.
  • the description of the mechanism 77 is omitted.
  • Step S11 First, in step S11, the semiconductor substrate 41 having the hollow region 42 is installed on the support base 11 (see FIG. 3A).
  • FIG. 3A shows a cross section of the semiconductor substrate 41 in an initial state before the beam irradiation from the beam irradiation gun 12 is performed.
  • the semiconductor substrate 41 is held on the support base 11 by an electrostatic chuck.
  • the semiconductor substrate 41 has a hollow region 42 formed therein, and a membrane 43 is formed on the hollow region 42.
  • Step S12 Next, in step S ⁇ b> 12, the control unit 81 sets a region for extracting an observation sample in the semiconductor substrate 41 based on information input by an input unit (not shown).
  • Step S13 Next, in step S ⁇ b> 13, the first beam irradiation is performed toward the surface of the semiconductor substrate 41 to form the first opening 44.
  • the controller 81 drives the evacuation mechanism 77 to evacuate the chamber 90 using the evacuation mechanism 77.
  • the beam irradiation gun drive mechanism 72 drives the beam irradiation gun 12 based on a command from the control unit 81, and moves the beam irradiation gun 12 above the range set in step S12.
  • the beam irradiation gun 12 is driven by a beam irradiation gun drive mechanism 72 to irradiate the beam 14 toward the surface of the semiconductor substrate 41 (see FIG. 3B).
  • the first beam irradiation is performed toward an arbitrary position within a range corresponding to a position immediately above the hollow region 42 on the surface of the semiconductor substrate 41.
  • a hollow region 42 is exposed through the first opening 44 in the semiconductor substrate 41 after the first beam irradiation.
  • FIG. 3B shows a cross section of the semiconductor substrate 41 in which the first opening 44 is formed.
  • the beam irradiation gun 12 it is desirable to use an ion beam or an electron beam that is accelerated by an electric field to be an ion beam or an electron beam, and by focusing these beams on the surface of the sample, a part of the sample can be removed.
  • the beam irradiation gun 12 forms the first opening 44 from the surface of the semiconductor substrate 41 to a position deeper than the lower end surface of the hollow region 42.
  • the first opening 44 is preferably formed substantially perpendicular to the surface of the semiconductor substrate 41 as shown in FIG. 3B.
  • the first opening 44 desirably has an opening width that allows the liquid filler 51 to be smoothly filled into the hollow region 42 in step S ⁇ b> 17 described later.
  • step S14 Next, in step S ⁇ b> 14, the support base rotation mechanism 71 rotates the support base 11 based on a command from the control unit 81. Thereby, the semiconductor substrate 41 rotates by spin.
  • Step S15 Next, in step S ⁇ b> 15, the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 based on a command from the control unit 81, and the discharge nozzle 231 is separated from the surface of the semiconductor substrate 41. 23 is moved horizontally. The discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 so that the tip of the discharge nozzle 23 is positioned above the first opening 44 formed in step S13.
  • Step S16 Next, in step S ⁇ b> 16, the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 and moves the discharge nozzle 23 vertically to the semiconductor substrate 41 side based on a command from the control unit 81 as necessary.
  • the discharge nozzle moving mechanism 74 vertically moves the discharge nozzle movable arm 22 toward the semiconductor substrate 41 to a position where the distance between the discharge port 231 of the discharge nozzle 23 and the semiconductor substrate 41 becomes a desired value.
  • step S17 the hollow region 42 is filled with a liquid filler 51 (hereinafter simply referred to as filler 51) (see FIG. 3C).
  • FIG. 3C shows a cross section of the semiconductor substrate 41 after the hollow region 42 is filled with the filler 51.
  • FIG. 3C schematically shows the flow direction of the filler 51 in the discharge nozzle movable arm 22 and the discharge nozzle 23 in step S ⁇ b> 17 together with the semiconductor substrate 41.
  • the flow direction 52 of the filler 51 is indicated by an arrow.
  • the filler 51 stored in a filler storage tank (not shown) is supplied to the filler supply line of the liquid supply line 21, and the inside of the discharge nozzle movable arm 22 is shown in FIG. 3C. It flows in the direction of the arrow 52 and is supplied to the discharge nozzle 23. Then, the discharge nozzle 23 discharges the filler 51 toward the first opening 44 of the semiconductor substrate 41, and the filler 51 is filled into the hollow region 42 from the first opening 44.
  • the filler 51 is preferably made of a resin material such as a photoresist in consideration of solidification by heating performed in step S18 described later and workability of removal performed by cleaning performed in steps S24 to S25.
  • the discharge amount of the filler 51 discharged toward the semiconductor substrate 41 is larger than the volume required for filling the hollow region 42.
  • the entire hollow region 42 is filled with the filler 51, and the filler 51 is also deposited on the surface of the semiconductor substrate 41 with the first opening 44 as the center.
  • the discharge amount of the filler 51 is too large compared to the volume of the hollow region 42, the filler 51 diffuses over a wide range on the surface of the semiconductor substrate 41, and the amount of cleaning liquid required for removing the filler 51 is large. It becomes excessive. For this reason, it is desirable that the discharge amount of the filler 51 onto the semiconductor substrate 41 is as small as possible within a range larger than the volume required to fill the hollow region 42.
  • step S18 the temperature control mechanism 76 raises the temperature of the heater 16 and heats the support base 11 based on a command from the control unit 81 (see FIG. 3D).
  • the semiconductor substrate 41 is heated by the heat flow 15 applied to the semiconductor substrate 41 from the support 11 heated by the heater 16.
  • the liquid filler 51 is solidified, and a solid filler 53 is formed in the hollow region 42.
  • FIG. 3D shows a cross section of the semiconductor substrate 41 after the liquid filler 51 is solidified and the solid filler 53 is formed.
  • the semiconductor substrate 41 can be solidified by heating to about 110 to 120 ° C.
  • Step S19 Next, in step S19, a second beam irradiation is performed toward the semiconductor substrate 41 to form a second opening.
  • the beam irradiation gun drive mechanism 72 drives the beam irradiation gun 12 based on a command from the control unit 81, and step S12.
  • the beam irradiation gun 12 is moved above the range set in.
  • the beam irradiation gun 12 is driven by a beam irradiation gun drive mechanism 72 to irradiate the beam 14 toward the surface of the semiconductor substrate 41 (see FIG. 3E).
  • the second beam irradiation is performed in a range corresponding to a position immediately above the hollow region 42 on the surface of the semiconductor substrate 41 and toward a position different from the first opening 44.
  • the solid filler 53 hereinafter simply referred to as the filler 53
  • the membrane 43 the membrane 43
  • the semiconductor substrate 41 are removed in a part of the region, and the first opening 44 is A second opening 45 is formed at a different position.
  • FIG. 3E shows a cross section of the semiconductor substrate 41 in which the second opening 45 is formed.
  • the second opening 45 formed by the second beam irradiation has a processed cross section 451 including a surface formed by the solid filler 53 (see FIG. 4F). Through this processed cross section 451, the hollow region 42 filled with the solid filler 53 is exposed in the second opening 45.
  • the processed cross section 451 of the second opening 45 is an observation surface of the observation sample 47 (see FIG. 3H) extracted in step S27 described later. For this reason, the formation region and depth of the second opening 45 are appropriately adjusted so that a desired observation visual field can be obtained in the observation sample 47.
  • the second opening 45 is formed from the surface of the solid filler 53 to a position deeper than the lower end surface of the hollow region 42.
  • the second opening 45 is preferably formed substantially perpendicular to the surface of the semiconductor substrate 41.
  • Step S20 Next, in step S ⁇ b> 20, the suction nozzle moving mechanism 75 drives the suction nozzle movable arm 32 based on a command from the control unit 81, and the suction port 331 of the suction nozzle 33 is separated from the surface of the semiconductor substrate 41. Then, the suction nozzle 33 is moved horizontally. The suction nozzle moving mechanism 75 moves the suction nozzle movable arm 32 so that the center of the suction port 331 of the suction nozzle 33 is located above the first opening 44 when viewed from the axial direction of the suction nozzle 33. The suction nozzle 33 is moved by driving.
  • Step S21 Next, in step S ⁇ b> 21, the suction nozzle moving mechanism 75 drives the suction nozzle movable arm 32 based on a command from the control unit 81 and vertically moves the suction nozzle 33 to the semiconductor substrate 41 side.
  • the suction nozzle moving mechanism 75 moves the suction nozzle movable arm 32 to a position where the distance between the suction port 331 of the suction nozzle 33 and the semiconductor substrate 41 becomes a desired value.
  • Step S22 Next, in step S ⁇ b> 22, the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 based on a command from the control unit 81, and the discharge nozzle 23 in a state where the discharge port 231 is separated from the surface of the semiconductor substrate 41. Move horizontally.
  • the discharge nozzle moving mechanism 74 discharges so that the discharge port 231 enters a region inside the suction port 331, that is, a region in the opening 332 (see FIG. 2).
  • the nozzle movable arm 22 is moved horizontally (see FIG. 3F).
  • Step S23 the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 based on a command from the control unit 81 and vertically moves the discharge nozzle 23 toward the semiconductor substrate 41.
  • the discharge nozzle moving mechanism 74 vertically moves the discharge nozzle movable arm 22 toward the semiconductor substrate 41 to a position where the distance between the discharge port 231 of the discharge nozzle 23 and the semiconductor substrate 41 becomes a desired value.
  • Step S24 Next, in step S24 to step S25, the cleaning liquid is discharged and sucked, and the filler 53 is removed.
  • FIG. 3F schematically shows the flow direction of the cleaning liquid in the cross-section observation sample preparation apparatus 200 in the following steps S24 to S25.
  • the flow direction 52 of the cleaning liquid is indicated by an arrow.
  • step S24 the cleaning liquid stored in a cleaning liquid storage tank (not shown) is supplied to the cleaning liquid supply line of the liquid supply line 21. As shown in FIG. It is made to flow in the direction and supplied to the discharge nozzle 23. Then, the discharge nozzle 23 discharges the cleaning liquid toward the first opening 44 of the semiconductor substrate 41, and causes the cleaning liquid to flow into the hollow region 42.
  • a cleaning liquid storage tank not shown
  • the solid filler 53 is separated from the inside of the hollow region 42 and the surface of the semiconductor substrate 41 by the cleaning liquid.
  • the solid filler 53 separated from the hollow region 42 and the surface of the semiconductor substrate 41 flows out to the surface of the semiconductor substrate 41 from the first opening 44 and the second opening 45 together with the cleaning liquid.
  • an organic solvent such as acetone is preferably used as the cleaning liquid.
  • an organic solvent such as acetone is preferably used as the cleaning liquid.
  • Step S25 Next, in step S ⁇ b> 25, the suction nozzle 33 sucks the mixture of the cleaning liquid and the filler 53 that has flowed out to the surface of the semiconductor substrate 41. As shown in FIG. 3F, the suction nozzle 33 sucks the mixture of the cleaning liquid and the filler 53 while being separated from the surface of the semiconductor substrate 41. The mixture of the cleaning liquid and the filler 53 sucked by the suction nozzle 33 is collected by the vacuum line 31 via the suction nozzle movable arm 32 and removed from the semiconductor substrate 41. FIG. 3F shows a cross section of the semiconductor substrate 41 after the filler 53 has been removed by the cleaning liquid.
  • the suction nozzle 33 applies a suction force to the cleaning liquid by reducing the pressure inside the nozzle as described above. Accordingly, the cleaning liquid is sucked by the suction nozzle 33 while the suction nozzle 33 and the semiconductor substrate 41 are not in contact with each other.
  • the semiconductor substrate 41 is spin-rotated so that the cleaning liquid moves within a desired cleaning range on the surface of the semiconductor substrate 41.
  • a centrifugal force directed toward the outer periphery of the semiconductor substrate 41 acts on the cleaning liquid.
  • the suction force by the suction nozzle 33 is smaller than the centrifugal force acting on the cleaning liquid, the cleaning liquid is not sucked by the suction nozzle 33 and diffuses to the outer periphery of the semiconductor substrate 41. Accordingly, the positions of the suction nozzle 33 and the discharge nozzle 23 are set so that the suction force acting on the cleaning liquid from the suction nozzle 33 becomes larger than the centrifugal force acting on the cleaning liquid due to the spin rotation of the semiconductor substrate 41, and It is desirable to adjust conditions appropriately.
  • the suction nozzle 33 has a circular top surface shape and has rotational symmetry.
  • the cleaning liquid flows uniformly in all directions due to the rotation of the support table 11 when the cleaning liquid is sucked. For this reason, generation of a watermark on the surface of the semiconductor substrate 41 can be prevented.
  • Step S26 a third beam irradiation is performed toward the semiconductor substrate 41 to form a third opening.
  • the beam irradiation gun drive mechanism 72 drives the beam irradiation gun 12 on the basis of a command from the control unit 81, and the step The beam irradiation gun 12 is moved above the range set in S12.
  • the beam irradiation gun 12 is driven by a beam irradiation gun drive mechanism 72 to irradiate the surface of the semiconductor substrate 41 with the beam 14.
  • the third beam irradiation is performed in a range corresponding to a position immediately above the hollow region 42 on the surface of the semiconductor substrate 41 and toward a position different from both the first opening 44 and the second opening 45.
  • a third opening 46 is formed at a position different from the first opening 44 and the second opening 45 (see FIG. 3G).
  • FIG. 3G shows a cross section of the semiconductor substrate 41 in which the third opening 46 is formed.
  • the first opening 44 and the second opening 45 are formed in a direction perpendicular to the surface of the semiconductor substrate 41.
  • the third opening 46 is formed obliquely with respect to the surface of the semiconductor substrate 41 as shown in FIG. 3F.
  • the wedge-shaped observation sample can be separated from the semiconductor substrate 41 by the third opening 46 formed in the oblique direction and the second opening 45.
  • Step S27 Next, in step S ⁇ b> 27, the observation sample is extracted from the semiconductor substrate 41 by the probe 13.
  • the probe driving mechanism 73 drives the probe 13 based on a command from the control unit 81 and moves the probe 13 above the position between the second opening 45 and the third opening 46.
  • the probe 13 is driven by the probe driving mechanism 73 to extract the observation sample 47 separated from the semiconductor substrate 41 by the second opening 45 and the third opening 46 from the semiconductor substrate 41 (see FIG. 3H).
  • FIG. 3H shows a cross section of the semiconductor substrate 41 after the observation sample 47 is extracted.
  • the beam irradiation gun 12 may additionally irradiate the semiconductor substrate 41 in the state shown in FIG. 3G as necessary. Extraction of the observation sample 47 using the probe 13 can be performed in the same manner as a general sample extraction method performed using a focused ion beam apparatus.
  • the configuration in which the cleaning liquid is discharged from the cleaning liquid supply line and the filler 53 is removed from the semiconductor substrate 41 has been described.
  • the removal of the filler 53 is not necessarily performed using a cleaning liquid.
  • the solid filler 53 is changed by temperature adjustment. After forming the liquid filler 51, the liquid filler 51 may be sucked and removed from the suction nozzle 33.
  • the solid filler 53 can be easily removed from the semiconductor substrate 41 by discharging the cleaning liquid from the cleaning liquid supply line.
  • the filler 51 and the cleaning liquid are discharged and sucked while the discharge nozzle 23 and the suction nozzle 33 are both separated from the surface of the semiconductor substrate 41. For this reason, it is possible to prevent foreign matter from adhering to the surface of the semiconductor substrate 41.
  • the discharge nozzle 23 and the suction nozzle 33 may be brought into contact with the surface of the semiconductor substrate 41 as necessary when the filler 51 or the cleaning liquid is discharged or sucked.
  • FIGS. 4A to 4G show in detail the shape changes of the hollow region 42 and the membrane 43 of the semiconductor substrate 41, and the other configurations shown in FIGS. 3A to 3H are not shown.
  • FIG. 4A is a perspective view showing an appearance of the vicinity of the hollow region 42 of the semiconductor substrate 41 in the initial state before the cross-section processing is performed by focused ion beam irradiation. 4A, the hollow region 42 is not exposed to the outside. However, in FIG. 4A, in order to explain the internal state of the hollow region 42, the hollow region 42 is shown exposed for convenience.
  • the lower end surface of the hollow region 42 is a flat surface parallel to the horizontal plane.
  • the membrane 43 formed on the upper side of the hollow region 42 is bent due to the stress of the membrane 43 itself and the surrounding membrane, and the upper end surface of the hollow region 42 has a curved surface shape due to the bending of the membrane 43. Yes.
  • FIG. 4A the position of the first cross-section processed surface 61 on which the first beam irradiation is performed is indicated by a broken line.
  • the first opening 44 is formed by the first cross-section processing by beam irradiation performed along the first cross-section processing surface 61 (see FIG. 3B).
  • FIG. 4B shows a perspective view of the appearance of the semiconductor substrate 41 in the vicinity of the first opening 44 after the first cross-section processing.
  • FIG. 4B corresponds to the state of FIG. 3B.
  • the membrane 43 is deformed by the first beam irradiation. As shown in FIG. 4B, in the semiconductor substrate 41 after the first beam irradiation, due to the deformation of the membrane 43, a stiction phenomenon in which the membrane 43 and the semiconductor substrate 41 come into contact with each other in a part of the hollow region 42 occurs. ing.
  • FIG. 4C shows a perspective view of the appearance of the semiconductor substrate 41 in the vicinity of the first opening 44 after the liquid filler 51 is filled.
  • FIG. 4C corresponds to the state of FIG. 3C.
  • a void 442 in which the stiction phenomenon does not occur remains in the processed cross section 441 of the first opening 44, and the hollow material 42 is filled with the filler 51 from the void 442.
  • step S ⁇ b> 18 the liquid filler 51 is solidified by heating by the heater 16, and the solid filler 53 is formed in the hollow region 42.
  • FIG. 4D shows an external perspective view of the semiconductor substrate 41 in the vicinity of the first opening 44 after the solid filler 53 is formed.
  • FIG. 4D corresponds to the state of FIG. 3D.
  • step S19 the semiconductor substrate 41 after the solid filler 53 is formed is subjected to cross-section processing by second beam irradiation.
  • FIG. 4E the position of the second cross-section processing surface 62 that performs the second beam irradiation is indicated by a broken line. Note that the state shown in FIG. 4E is the same as the state shown in FIG. 4D.
  • the second cross-section processing surface 62 is set at a position different from the first cross-section processing surface 61 shown in FIG. 4A.
  • the second cross-section processing surface 62 includes a region where a stiction phenomenon due to deformation of the membrane 43 does not occur during the first cross-section processing, that is, a region where the filler 53 is formed.
  • FIG. 4F shows an external perspective view of the semiconductor substrate 41 in the vicinity of the second opening 45 after the second cross-section processing. 4F corresponds to the state of FIG. 3E.
  • the cross section processing is performed at a position including the region where the solid filler 53 is formed. For this reason, at the time of the second cross-section processing, it is possible to form the second opening 45 in which the deformation of the membrane 43 is suppressed and the occurrence of the stiction phenomenon is suppressed. As shown in FIG. 4F, in the second opening 45, the hollow region 42 is exposed by the processing section 451 including the surface formed by the filler 53.
  • FIG. 4G shows an external perspective view of the semiconductor substrate 41 in the vicinity of the second opening 45 after the filler 53 is removed.
  • FIG. 4G corresponds to the state of FIG. 3F.
  • the membrane 43 after the removal of the filler 53 has a shape close to the shape of the membrane 43 before the cross-section processing (see FIG. 4A), as shown in FIG. 4G.
  • the cross-sectional observation sample preparation method of Example 2 can be performed using an apparatus similar to the cross-sectional observation sample preparation apparatus 200 used in Example 1. A method for preparing a cross-sectional observation sample of Example 2 will be described with reference to the flowchart shown in FIG. 5 and FIGS. 6A to 6C.
  • the cross-sectional observation sample preparation method of Example 2 is a partial modification of Step S13 of the cross-section observation sample preparation method of Example 1, and the other steps are the same as the steps of the cross-section observation sample preparation method of Example 1. Do the same.
  • FIG. 6A is a perspective view showing an appearance of the vicinity of the hollow region 42 of the semiconductor substrate 41 in an initial state before the cross-section processing is performed by focused ion beam irradiation.
  • the sample is a semiconductor substrate 41.
  • a hollow region 42 is formed inside the semiconductor substrate 41, and a membrane 43 is formed on the hollow region 42.
  • Steps S11 to S12 are performed in the same manner as in the first embodiment. For this reason, description of step S11 to step S12 is omitted.
  • step S13 a first beam irradiation is performed toward the surface of the semiconductor substrate 41 to form a first opening 44 (see FIG. 6B).
  • FIG. 6B shows a cross section of the semiconductor substrate 41 after the first beam 14 irradiation.
  • a first opening 44 is formed on the surface of the semiconductor substrate 41 by the first irradiation of the beam 14.
  • the first opening 44 is penetrated to the upper end surface of the hollow region 42, and the lower end thereof is formed so as not to exceed the lower end surface of the hollow region 42. Thereby, the cutting amount of the semiconductor substrate 41 when the first opening 44 is formed can be reduced.
  • the first opening 44 may be formed in a linear shape on the top surface or may be formed in a dot shape. By forming the upper surface shape of the first opening 44 in a dot shape, the cutting amount of the semiconductor substrate 41 when the first opening 44 is formed can be further reduced. Except for the points described above, step S13 can be performed in the same manner as in the first embodiment.
  • step S14 to step S16 the support base 11 is rotationally driven and the discharge nozzle 23 is moved.
  • Steps S14 to S16 are performed in the same manner as in the first embodiment, and thus description thereof is omitted.
  • FIG. 6C shows a cross section of the semiconductor substrate 41 after the hollow region 42 is filled with the filler 51. Filling the hollow region 42 with the filler 51 is performed in the same manner as in step S17 of the first embodiment. Also in Example 2, as shown in FIG. 6C, the hollow region 42 is filled with the liquid filler 51.
  • the amount of the semiconductor substrate 41 that is removed when the first opening 44 is formed can be reduced by making the first opening 44 shallower than the first embodiment. For this reason, the time required for forming the first opening 44 can be shortened.
  • the volume of the first opening 44 is reduced as compared with the first embodiment. Further, when the first opening 44 is formed in a dot shape, the opening area of the semiconductor substrate 41 is reduced. For this reason, in Example 2, compared with Example 1, it becomes difficult to fill the whole hollow region 42 with the liquid filler 51. For this reason, in Example 2, it is desirable to select and use the liquid filler 51 having a lower viscosity at the time of filling.
  • the cross-sectional observation sample preparation apparatus and the cross-sectional observation sample preparation method of Example 1 and Example 2 described above can be suitably used for preparing a cross-sectional observation sample of a semiconductor substrate having a hollow region such as a MEMS device.

Abstract

A cross-sectional observation sample preparation device (100) comprises: a support stand (11); a beam irradiation gun (12); a probe (13); a filler supply line for supplying a filler toward the surface of a semiconductor substrate (41) supported on the support stand (11); a discharge nozzle (23) that is connected to the filler supply line and discharges the filler onto the surface of the semiconductor substrate (41); a suction nozzle (33) for suctioning the filler from the surface of the semiconductor substrate (41); a vacuum line (31) for recovering the filler that has been suctioned from the suction nozzle (33); a temperature control mechanism (71) for controlling the temperature of the support stand (11); a discharge nozzle movement mechanism (74) for moving the discharge nozzle (23); and a suction nozzle movement mechanism (75) for moving the suction nozzle (33).

Description

断面観察試料作製装置及び断面観察試料作製方法Cross-section observation sample preparation apparatus and cross-section observation sample preparation method
 本発明は、半導体基板の断面観察試料作製装置及び断面観察試料作製方法に係り、特に中空領域を有する半導体基板の断面観察試料作製に関する。 The present invention relates to a cross-section observation sample preparation apparatus and a cross-section observation sample preparation method for a semiconductor substrate, and more particularly to preparation of a cross-section observation sample for a semiconductor substrate having a hollow region.
 近年、半導体装置において、MEMS(Micro Electro Mechanical Systems)デバイスが注目されている。MEMSデバイスは、例えば、メンブレンの振動を利用した圧力センサとして用いられており、多くの場合、半導体基板の内部に中空領域を有している。 In recent years, MEMS (Micro Electro Mechanical Systems) devices have attracted attention in semiconductor devices. The MEMS device is used as, for example, a pressure sensor that utilizes vibration of a membrane, and often has a hollow region inside a semiconductor substrate.
 MEMSデバイスでは、中空領域の断面形状が、その動作特性に大きく影響する。このため、MEMSデバイスの製造プロセスの途中段階において、中空領域の断面形状観察を行うことは、MEMSデバイスの動作特性を維持するための有効な検査方法の1つである。 In a MEMS device, the cross-sectional shape of the hollow region greatly affects its operating characteristics. For this reason, observing the cross-sectional shape of the hollow region in the middle stage of the manufacturing process of the MEMS device is one of effective inspection methods for maintaining the operation characteristics of the MEMS device.
 非特許文献1には、MEMSデバイスの製造プロセスにおいて、メンブレンが変形し、スティクション現象が発生することが記載されている。スティクション現象は、例えば毛細管力や静電気力が作用して変形したメンブレンが、空洞を介して対向する膜や基板と接触し、固着することで発生する現象である。 Non-Patent Document 1 describes that in a MEMS device manufacturing process, a membrane is deformed and a stiction phenomenon occurs. The stiction phenomenon is a phenomenon that occurs when, for example, a membrane deformed by the action of a capillary force or an electrostatic force comes into contact with an opposing film or substrate via a cavity and is fixed.
 MEMSデバイスのような半導体デバイスの断面形状観察では、断面加工や形状観察に、集束イオンビームを用いる手法が多く採用されている。集束イオンビームを用いることで、イオンビームや電子ビームにより試料観察を高倍率で行うことができ、半導体デバイスの所望の位置を加工することが可能となる。 In cross-sectional shape observation of a semiconductor device such as a MEMS device, a technique using a focused ion beam is often employed for cross-section processing and shape observation. By using a focused ion beam, sample observation can be performed with high magnification using an ion beam or an electron beam, and a desired position of a semiconductor device can be processed.
 しかしながら、中空領域を有する半導体基板の断面加工を、集束イオンビームを用いて行うと、イオンビームの照射に伴い発生する静電気力や、断面加工に伴う応力が、中空領域の上のメンブレンに作用して、スティクション現象が発生することがある。 However, when cross-section processing of a semiconductor substrate having a hollow region is performed using a focused ion beam, the electrostatic force generated by irradiation of the ion beam and the stress accompanying cross-section processing act on the membrane above the hollow region. In some cases, a stiction phenomenon may occur.
 また、中空領域を有する半導体基板に集束イオンビームを照射して断面加工を行うと、半導体基板から除去された物質の一部が中空領域の内壁に再付着物として付着する。中空領域の内壁に付着した再付着物の厚さが、中空領域の高さを上回ると、中空領域の一部の箇所において、再付着物を介してメンブレンと半導体基板とが接触し、スティクション現象が発生する。 Further, when the cross-section processing is performed by irradiating a semiconductor substrate having a hollow region with a focused ion beam, a part of the substance removed from the semiconductor substrate adheres to the inner wall of the hollow region as a reattachment. When the thickness of the reattachment adhered to the inner wall of the hollow region exceeds the height of the hollow region, the membrane and the semiconductor substrate come into contact with each other through the reattachment in a part of the hollow region, and the stiction The phenomenon occurs.
 スティクション現象が発生すると、中空領域の断面形状は、断面加工前の形状とは異なる形状となる。従って、集束イオンビームを用いて断面加工して、得られた中空領域の断面形状を観察することにより、半導体デバイス(MEMSデバイス)の製造プロセスの途中段階の検査を行うことは、現状では困難であった。 When the stiction phenomenon occurs, the cross-sectional shape of the hollow region becomes different from the shape before the cross-section processing. Therefore, it is currently difficult to inspect the semiconductor device (MEMS device) during the manufacturing process by processing the cross section using a focused ion beam and observing the cross-sectional shape of the obtained hollow region. there were.
 従って、中空領域を有する半導体基板を、集束イオンビームを用いて断面加工して断面観察試料を作製するときの、スティクション現象の発生を抑制することができる方法が求められている。 Therefore, there is a demand for a method capable of suppressing the occurrence of a stiction phenomenon when a semiconductor substrate having a hollow region is processed by a cross-section using a focused ion beam to produce a cross-sectional observation sample.
 本発明の目的は、中空領域を有する半導体基板を断面加工するときのスティクション現象の発生を抑制することができる断面観察試料作製装置及び断面観察試料作製方法を提供することにある。 An object of the present invention is to provide a cross-section observation sample preparation apparatus and a cross-section observation sample preparation method capable of suppressing the occurrence of a stiction phenomenon when a cross section of a semiconductor substrate having a hollow region is processed.
 本発明に係る断面観察試料作製装置の好ましい実施形態としては、半導体基板を支持する支持台と、前記半導体基板へビームを照射するビーム照射銃と、前記半導体基板から断面観察試料を摘出するプローブと、前記支持台に支持される前記半導体基板の表面に向けて充填材を供給する充填材供給ラインと、前記充填材供給ラインに接続され、前記半導体基板の表面に充填材を吐出する吐出ノズルと、前記半導体基板の表面から充填材を吸引する吸引ノズルと、前記吸引ノズルから吸引された前記充填材を回収する真空ラインと、前記支持台の温度を制御する温度制御機構と、前記吐出ノズルを移動させる吐出ノズル移動機構と、前記吸引ノズルを移動させる吸引ノズル移動機構と、を有することを特徴とする。 As a preferred embodiment of the cross-sectional observation sample preparation apparatus according to the present invention, a support base for supporting a semiconductor substrate, a beam irradiation gun for irradiating the semiconductor substrate with a beam, and a probe for extracting the cross-sectional observation sample from the semiconductor substrate, A filler supply line that supplies a filler toward the surface of the semiconductor substrate supported by the support; and a discharge nozzle that is connected to the filler supply line and that discharges the filler onto the surface of the semiconductor substrate. A suction nozzle for sucking a filler from the surface of the semiconductor substrate, a vacuum line for collecting the filler sucked from the suction nozzle, a temperature control mechanism for controlling the temperature of the support base, and the discharge nozzle. It has a discharge nozzle moving mechanism for moving, and a suction nozzle moving mechanism for moving the suction nozzle.
 また、本発明に係る断面観察試料作製方法の好ましい実施形態としては、中空領域を有する半導体基板の表面に向けてビームを照射して、前記中空領域を露出させる第1の開口部を形成し、前記第1の開口部に向けて充填材を吐出して、前記中空領域内に前記充填材を充填し、前記半導体基板の温度を制御し、前記半導体基板にビームを照射して、前記第1の開口部とは異なる位置で、前記充填材により形成される面を含む加工断面により前記中空領域を露出させる第2の開口部を形成し、前記第2の開口部を有する前記半導体基板から前記充填材を除去し、前記半導体基板から、前記加工断面を有する断面観察試料を摘出することを特徴とする。 Further, as a preferred embodiment of the method for preparing a cross-sectional observation sample according to the present invention, a first opening that exposes the hollow region is formed by irradiating a beam toward the surface of the semiconductor substrate having the hollow region, The filler is discharged toward the first opening, the filler is filled into the hollow region, the temperature of the semiconductor substrate is controlled, the beam is irradiated to the semiconductor substrate, and the first Forming a second opening that exposes the hollow region by a processing cross-section including a surface formed by the filler at a position different from the opening of the semiconductor substrate, and from the semiconductor substrate having the second opening The filler is removed, and a cross-section observation sample having the processed cross section is extracted from the semiconductor substrate.
 本発明によれば、中空領域を有する半導体基板を断面加工するときのスティクション現象の発生を抑制することができる。 According to the present invention, it is possible to suppress the occurrence of a stiction phenomenon when a semiconductor substrate having a hollow region is processed in cross section.
断面観察試料作製装置100を示す斜視図である。It is a perspective view which shows the cross-section observation sample preparation apparatus. 断面観察試料作製装置200を示す斜視図である。It is a perspective view which shows the cross-section observation sample preparation apparatus. ビーム照射銃12からビーム照射を行う前の初期状態の半導体基板41が、支持台11に設置された状態を示す図である。FIG. 2 is a view showing a state where a semiconductor substrate 41 in an initial state before beam irradiation from a beam irradiation gun 12 is installed on a support base 11. ビーム照射銃12から半導体基板41に向けて1回目のビーム照射を行っている状態を示す図である。It is a figure which shows the state which is performing the 1st beam irradiation toward the semiconductor substrate 41 from the beam irradiation gun 12. FIG. 吐出ノズル23から第1の開口部44に向けて充填材51を吐出している状態を示す図である。It is a figure which shows the state which is discharging the filler 51 toward the 1st opening part 44 from the discharge nozzle 23. FIG. 中空領域42に充填材51が充填された半導体基板41を、ヒータ16により加熱している状態を示す図である。It is a figure which shows the state which is heating with the heater 16 the semiconductor substrate 41 with which the hollow area | region 42 was filled with the filler 51. FIG. ビーム照射銃12から半導体基板41に向けて2回目のビーム照射を行っている状態を示す図である。It is a figure which shows the state which is performing the 2nd beam irradiation toward the semiconductor substrate 41 from the beam irradiation gun 12. FIG. 第2の開口部45が形成された半導体基板41の洗浄時における、断面観察試料作製装置200内の洗浄液15の流動方向を模式的に示す図である。It is a figure which shows typically the flow direction of the washing | cleaning liquid 15 in the cross-section observation sample preparation apparatus 200 at the time of washing | cleaning of the semiconductor substrate 41 in which the 2nd opening part 45 was formed. ビーム照射銃12から半導体基板41に向けて、3回目のビーム照射を行っている状態を示す図である。It is a figure which shows the state which is performing the 3rd beam irradiation toward the semiconductor substrate 41 from the beam irradiation gun 12. FIG. 半導体基板41から観察試料47を摘出する時の状態を示す図である。It is a figure which shows the state at the time of extracting the observation sample 47 from the semiconductor substrate 41. FIG. 集束イオンビーム照射により断面加工を行う前の、初期状態の半導体基板41の中空領域42近傍の外観を示す斜視図である。It is a perspective view which shows the external appearance of the hollow area | region 42 vicinity of the semiconductor substrate 41 of an initial state before performing cross-section processing by focused ion beam irradiation. 1回目の断面加工を行った後の、第1の開口部44近傍の半導体基板41の外観の斜視図を図4Bに示す。FIG. 4B shows a perspective view of the appearance of the semiconductor substrate 41 in the vicinity of the first opening 44 after the first cross-section processing. 中空領域42に液状の充填材51が充填された後の、第1の開口部44近傍の半導体基板41の外観を示す斜視図である。FIG. 3 is a perspective view showing an appearance of a semiconductor substrate 41 in the vicinity of a first opening 44 after a hollow region 42 is filled with a liquid filler 51. 中空領域42に固体状の充填材53が形成された後の、第1の開口部44近傍の半導体基板41の外観を示す斜視図である。FIG. 3 is a perspective view showing an appearance of a semiconductor substrate 41 in the vicinity of a first opening 44 after a solid filler 53 is formed in a hollow region 42. 図4Dに示す半導体基板41において、第2の断面加工面62の位置を示す図である。FIG. 4D is a diagram showing a position of a second cross-section processing surface 62 in the semiconductor substrate 41 shown in FIG. 4D. 2回目の断面加工を行った後の、第2の開口部45近傍の半導体基板41の外観を示す斜視図である。It is a perspective view which shows the external appearance of the semiconductor substrate 41 in the vicinity of the 2nd opening part 45 after performing the 2nd cross-section process. 充填材53が除去された後の、第2の開口部45近傍の半導体基板41の外観を示す斜視図である。It is a perspective view which shows the external appearance of the semiconductor substrate 41 in the vicinity of the 2nd opening part 45 after the filler 53 was removed. 断面観察試料作製装置200を用いた洗浄処理を示すフローチャートである。10 is a flowchart showing a cleaning process using the cross-section observation sample preparation device 200. ビーム照射銃12からのビーム照射を行う前の初期状態の半導体基板41が、支持台に設置された状態を示す図である。It is a figure which shows the state by which the semiconductor substrate 41 of the initial state before performing the beam irradiation from the beam irradiation gun 12 was installed in the support stand. ビーム照射銃12から半導体基板41に向けて1回目のビーム照射を行っている状態を示す図である。It is a figure which shows the state which is performing the 1st beam irradiation toward the semiconductor substrate 41 from the beam irradiation gun 12. FIG. 吐出ノズル23から第1の開口部44に向けて充填材51を吐出している状態を示す図である。It is a figure which shows the state which is discharging the filler 51 toward the 1st opening part 44 from the discharge nozzle 23. FIG.
 <断面観察試料作製装置> 
 (例1) 
 実施例1に係る断面観察試料作製装置について、図1~図4を用いて説明する。図1は、実施例1に係る断面観察試料作製装置100を示す斜視図である。断面観察試料作製装置100は、半導体基板41を支持する支持台11を備えている。支持台11には、支持台11を回転させる支持台回転機構71が接続されている。支持台11に支持台回転機構71を接続することで、半導体基板41をスピン回転させながら洗浄することができる。
<Cross-section observation sample preparation device>
(Example 1)
A cross-sectional observation sample preparation apparatus according to Example 1 will be described with reference to FIGS. FIG. 1 is a perspective view showing a cross-sectional observation sample preparation apparatus 100 according to the first embodiment. The cross-section observation sample preparation apparatus 100 includes a support base 11 that supports the semiconductor substrate 41. A support base rotating mechanism 71 that rotates the support base 11 is connected to the support base 11. By connecting the support table rotating mechanism 71 to the support table 11, the semiconductor substrate 41 can be cleaned while being rotated.
 支持台11の近傍には、半導体基板41に対してビームを照射するビーム照射銃12と、半導体基板41から断面観察試料(以下、単に観察試料と示す)を摘出するプローブ13とが設置されている。ビーム照射銃12には、ビーム照射銃12の移動動作やビーム照射動作を駆動するビーム照射銃駆動機構72が接続されており、プローブ13には、プローブ13の移動動作や試料の摘出動作を駆動するプローブ駆動機構73が接続されている。 A beam irradiation gun 12 that irradiates the semiconductor substrate 41 with a beam and a probe 13 that extracts a cross-sectional observation sample (hereinafter simply referred to as an observation sample) from the semiconductor substrate 41 are installed in the vicinity of the support base 11. Yes. The beam irradiation gun 12 is connected to a beam irradiation gun drive mechanism 72 that drives the movement operation and beam irradiation operation of the beam irradiation gun 12, and the probe 13 drives the movement operation of the probe 13 and the sample extraction operation. A probe driving mechanism 73 is connected.
 ビーム照射銃12の近傍には、液体供給ライン21が設置されている。液体供給ライン21は、中空の柱状体により構成されている。液体供給ライン21内には、半導体基板41の表面に向けて充填材を供給する不図示の充填材供給ラインと、半導体基板41の表面に向けて洗浄液を供給する不図示の洗浄液供給ラインとが配設されている。図1に示す例では、液体供給ライン21は、充填材供給ラインの機能と洗浄液供給ラインの機能とを兼ねている。 A liquid supply line 21 is installed in the vicinity of the beam irradiation gun 12. The liquid supply line 21 is configured by a hollow columnar body. In the liquid supply line 21, there are a filler supply line (not shown) for supplying a filler toward the surface of the semiconductor substrate 41 and a cleaning liquid supply line (not shown) for supplying a cleaning liquid toward the surface of the semiconductor substrate 41. It is arranged. In the example shown in FIG. 1, the liquid supply line 21 has both the function of the filler supply line and the function of the cleaning liquid supply line.
 液体供給ライン21の一端には、不図示の充填材貯留タンク及び洗浄液貯留タンクが配設されている。充填材貯留タンクは充填材供給ラインに接続されており、洗浄液貯留タンクは洗浄液供給ラインに接続されている。 A filling material storage tank and a cleaning liquid storage tank (not shown) are disposed at one end of the liquid supply line 21. The filler storage tank is connected to the filler supply line, and the cleaning liquid storage tank is connected to the cleaning liquid supply line.
 液体供給ライン21の他端には、吐出ノズル可動アーム22、吐出ノズル23とが、この順に接続されている。すなわち、吐出ノズル23は、吐出ノズル可動アーム22を介して、洗浄液供給ライン及び充填材供給ラインに接続されている。充填材供給ライン、洗浄液供給ラインは、不図示の切り替え機構により、充填材供給ラインから吐出ノズル23への充填材の供給と、洗浄液供給ラインから吐出ノズル23への洗浄液の供給とが、切替可能に構成されている。 The other end of the liquid supply line 21 is connected with a discharge nozzle movable arm 22 and a discharge nozzle 23 in this order. That is, the discharge nozzle 23 is connected to the cleaning liquid supply line and the filler supply line via the discharge nozzle movable arm 22. The filler supply line and the cleaning liquid supply line can be switched between a filler supply from the filler supply line to the discharge nozzle 23 and a cleaning liquid supply from the cleaning liquid supply line to the discharge nozzle 23 by a switching mechanism (not shown). It is configured.
 洗浄液供給ライン21の近傍には、半導体基板41の表面からの液体を回収する真空ライン31が設置されている。真空ライン31は、中空の柱状体により構成されており、真空ライン31の一端には、不図示の真空ポンプが接続されている。真空ライン31の他端には、吸引ノズル可動アーム32、吸引ノズル33とがこの順で接続されている。 Near the cleaning liquid supply line 21, a vacuum line 31 for collecting liquid from the surface of the semiconductor substrate 41 is installed. The vacuum line 31 is constituted by a hollow columnar body, and a vacuum pump (not shown) is connected to one end of the vacuum line 31. A suction nozzle movable arm 32 and a suction nozzle 33 are connected to the other end of the vacuum line 31 in this order.
 吐出ノズル可動アーム22は、吐出ノズル移動機構74に接続されている。吐出ノズル移動機構74は、吐出ノズル可動アーム22を駆動することで、吐出ノズル23を移動させる。吸引ノズル可動アーム32は、吸引ノズル移動機構75に接続されている。吸引ノズル移動機構75は、吸引ノズル可動アーム32を駆動することで、吸引ノズル33を移動させる。 The discharge nozzle movable arm 22 is connected to a discharge nozzle moving mechanism 74. The discharge nozzle moving mechanism 74 moves the discharge nozzle 23 by driving the discharge nozzle movable arm 22. The suction nozzle movable arm 32 is connected to the suction nozzle moving mechanism 75. The suction nozzle moving mechanism 75 moves the suction nozzle 33 by driving the suction nozzle movable arm 32.
 支持台11の近傍には、純水を供給する純水供給ライン及びこれに接続する純水吐出ノズルが設置されていてもよい。また、半導体基板41の洗浄後、半導体基板41の表面に残存する液体にガスを吹き付けて、半導体基板41の表面を乾燥させる、ガス吹付機構を設けてもよい。 Near the support 11, a pure water supply line for supplying pure water and a pure water discharge nozzle connected to the pure water supply line may be installed. Further, a gas spraying mechanism may be provided in which after the semiconductor substrate 41 is cleaned, a gas is sprayed onto the liquid remaining on the surface of the semiconductor substrate 41 to dry the surface of the semiconductor substrate 41.
 支持台11には、ヒータ16が内蔵されている。ヒータ16には、温度制御機構76が接続されている。温度制御機構76は、ヒータ16の温度を制御することで、支持台11の温度を所望の範囲に制御する。 The heater 11 is built in the support base 11. A temperature control mechanism 76 is connected to the heater 16. The temperature control mechanism 76 controls the temperature of the support 16 to a desired range by controlling the temperature of the heater 16.
 支持台11、ビーム照射銃12、プローブ13、液体供給ライン21、真空ライン31、吐出ノズル可動アーム22、吸引ノズル可動アーム32、吐出ノズル23及び吸引ノズル33は、チャンバ90内に収容されている。チャンバ90には、チャンバ90内を真空引きする真空引き機構77が接続されている。 The support 11, the beam irradiation gun 12, the probe 13, the liquid supply line 21, the vacuum line 31, the discharge nozzle movable arm 22, the suction nozzle movable arm 32, the discharge nozzle 23, and the suction nozzle 33 are accommodated in the chamber 90. . A evacuation mechanism 77 that evacuates the chamber 90 is connected to the chamber 90.
 制御部81は、支持台回転機構71、ビーム照射銃駆動機構72、プローブ駆動機構73、吐出ノズル移動機構74、吸引ノズル移動機構75、温度制御機構76、真空引き機構77に接続されており、これら各部の動作を制御する。 The control unit 81 is connected to the support base rotating mechanism 71, the beam irradiation gun driving mechanism 72, the probe driving mechanism 73, the discharge nozzle moving mechanism 74, the suction nozzle moving mechanism 75, the temperature control mechanism 76, and the vacuuming mechanism 77. The operation of each of these units is controlled.
 洗浄液による腐食の発生を防止するため、支持台11、吐出ノズル23、及び吸引ノズル33において、洗浄液と接触する可能性のある箇所は、耐腐食性材料により形成することが望ましい。 In order to prevent the occurrence of corrosion due to the cleaning liquid, it is desirable that the portions that may come into contact with the cleaning liquid in the support base 11, the discharge nozzle 23, and the suction nozzle 33 are formed of a corrosion-resistant material.
 また、半導体基板41から摘出される観察試料に異物が付着すると、観察試料の断面観察の際に、正しい形状評価が困難になる場合がある。このため、断面観察試料作製装置100の各部は、可能な限り、低発塵性材料で構成されるのが望ましい。 In addition, if a foreign substance adheres to the observation sample extracted from the semiconductor substrate 41, it may be difficult to evaluate the correct shape when observing the cross section of the observation sample. For this reason, it is desirable that each part of the cross-section observation sample preparation apparatus 100 is made of a low dust generation material as much as possible.
 断面観察試料作製装置100において、吐出ノズル23及び吸引ノズル33は、いずれも、単筒型の構成を有している。ただし、吐出ノズル23及び吸引ノズル33は、他の構成を有していてもよい。 In the cross-section observation sample preparation apparatus 100, each of the discharge nozzle 23 and the suction nozzle 33 has a single-cylinder configuration. However, the discharge nozzle 23 and the suction nozzle 33 may have other configurations.
 また、支持台11、ビーム照射銃12、プローブ13、液体供給ライン21、真空ライン31、吐出ノズル可動アーム22及び吸引ノズル可動アーム32、は、図1に示す形状とは異なる形状を有してもよい。 Further, the support base 11, the beam irradiation gun 12, the probe 13, the liquid supply line 21, the vacuum line 31, the discharge nozzle movable arm 22 and the suction nozzle movable arm 32 have shapes different from those shown in FIG. Also good.
 (例2) 
 図2に、図1に示す断面観察試料作製装置100の変形例である断面観察試料作製装置200を示す。断面観察試料作製装置200は、吸引ノズル33の形態が、断面観察試料作製装置100の吸引ノズル33とは異なっている。なお、断面観察試料作製装置200のその他の構成は、断面観察試料作製装置100と同様であり、その説明を省略する。
(Example 2)
FIG. 2 shows a cross-section observation sample preparation device 200 that is a modification of the cross-section observation sample preparation device 100 shown in FIG. The cross-section observation sample preparation apparatus 200 is different from the suction nozzle 33 of the cross-section observation sample preparation apparatus 100 in the form of the suction nozzle 33. The other configuration of the cross-section observation sample preparation device 200 is the same as that of the cross-section observation sample preparation device 100, and a description thereof will be omitted.
 断面観察試料作製装置200では、吸引ノズル33として、環状に形成された吸引口331の内側に開口部332を有するものを用いている。吸引ノズル33は、吸引口331の外縁及び内縁が、いずれも円形の上面形状を有する二重円筒型の構成を有している。 In the cross-section observation sample preparation apparatus 200, the suction nozzle 33 having an opening 332 inside an annular suction port 331 is used. The suction nozzle 33 has a double cylindrical configuration in which the outer edge and the inner edge of the suction port 331 both have a circular upper surface shape.
 図1に示す例では、吐出ノズル23の外径直径が、吸引ノズル33の吸引口331の内径よりも小さく形成されている。これにより、吐出ノズル23の軸方向から見たときに、吐出ノズル23の吐出口231を、吸引ノズル33の吸引口331の内縁の内側、即ち開口部332内に位置させた状態で、吐出ノズル23からの液体の吐出及び吸引ノズル33からの液体の吸引を行うことができる。これにより、液体の吐出及び吸引を行う際に、半導体基板41の表面における液体の存在範囲を、吸引ノズル33の吸引口331により囲まれる範囲内に規定することができる。 In the example shown in FIG. 1, the outer diameter of the discharge nozzle 23 is smaller than the inner diameter of the suction port 331 of the suction nozzle 33. Thereby, when viewed from the axial direction of the discharge nozzle 23, the discharge nozzle 231 of the discharge nozzle 23 is positioned inside the inner edge of the suction port 331 of the suction nozzle 33, that is, in the opening 332. The liquid can be discharged from the nozzle 23 and the liquid can be sucked from the suction nozzle 33. Accordingly, when the liquid is discharged and sucked, the liquid existing range on the surface of the semiconductor substrate 41 can be defined within a range surrounded by the suction port 331 of the suction nozzle 33.
 なお、環状の吸引口331を有する吸引ノズル33としては、吸引口331の内縁及び外縁が、例えば四角形等の他の平面形状を有するものを用いてもよい。 In addition, as the suction nozzle 33 having the annular suction port 331, a suction nozzle 331 having an inner edge and an outer edge having another planar shape such as a square may be used.
 以上説明した実施例1の断面観察試料作製装置100、200では、支持台11が支持台回転機構71を有する断面観察試料作製装置200を用いた場合を例に説明した。但し、断面観察試料作製装置は、必ずしも支持台回転機構71を有していなくてもよい。また、断面観察試料作製装置100、200では、支持台11にヒータ16が内蔵されている構成を例に説明した。但し、ヒータ16は、支持台11とは別体として設置されていてもよい。これらの点は、実施例2において同様である。 In the cross-sectional observation sample preparation apparatuses 100 and 200 of Example 1 described above, the case where the cross-section observation sample preparation apparatus 200 having the support base rotating mechanism 71 is used as the support base 11 has been described as an example. However, the cross-sectional observation sample preparation apparatus does not necessarily have the support base rotation mechanism 71. In the cross-section observation sample preparation apparatuses 100 and 200, the configuration in which the heater 16 is built in the support base 11 has been described as an example. However, the heater 16 may be installed separately from the support base 11. These points are the same in the second embodiment.
 <断面観察試料作製方法> 
 断面観察試料作製装置200を用いた断面観察試料作製方法について、図5に示すフローチャート及び図3A~図3Hを用いて説明する。
<Cross-section observation sample preparation method>
A method for preparing a cross-section observation sample using the cross-section observation sample preparation apparatus 200 will be described with reference to the flowchart shown in FIG. 5 and FIGS. 3A to 3H.
 なお、図3A~図3Hでは、制御部81、支持台回転機構71、ビーム照射銃駆動機構72、プローブ駆動機構73、吐出ノズル移動機構74、吸引ノズル移動機構75、温度制御機構76、真空引き機構77の表記は省略する。 3A to 3H, the control unit 81, the support base rotating mechanism 71, the beam irradiation gun driving mechanism 72, the probe driving mechanism 73, the discharge nozzle moving mechanism 74, the suction nozzle moving mechanism 75, the temperature control mechanism 76, and the vacuum evacuation. The description of the mechanism 77 is omitted.
 (ステップS11) 
 まず、ステップS11で、支持台11上に、中空領域42を有する半導体基板41を設置する(図3A参照)。図3Aには、ビーム照射銃12からのビーム照射を行う前の初期状態の半導体基板41の断面を示している。半導体基板41は、静電チャックにより支持台11上に保持されている。半導体基板41は、その内部に中空領域42が形成されており、中空領域42の上には、メンブレン43が形成されている。
(Step S11)
First, in step S11, the semiconductor substrate 41 having the hollow region 42 is installed on the support base 11 (see FIG. 3A). FIG. 3A shows a cross section of the semiconductor substrate 41 in an initial state before the beam irradiation from the beam irradiation gun 12 is performed. The semiconductor substrate 41 is held on the support base 11 by an electrostatic chuck. The semiconductor substrate 41 has a hollow region 42 formed therein, and a membrane 43 is formed on the hollow region 42.
 (ステップS12) 
 次に、ステップS12で、制御部81は、不図示の入力部により入力された情報に基づき、半導体基板41において観察試料を摘出する領域を設定する。
(Step S12)
Next, in step S <b> 12, the control unit 81 sets a region for extracting an observation sample in the semiconductor substrate 41 based on information input by an input unit (not shown).
 (ステップS13) 
 次に、ステップS13で、半導体基板41の表面に向けて1回目のビーム照射を行い、第1の開口部44を形成する。 
 まず、制御部81は、真空引き機構77を駆動し、チャンバ90内を真空引き機構77により真空引きする。次に、ビーム照射銃駆動機構72は、制御部81からの指令に基づき、ビーム照射銃12を駆動し、ステップS12で設定した範囲の上方にビーム照射銃12を移動させる。ビーム照射銃12は、ビーム照射銃駆動機構72により駆動されて、半導体基板41の表面に向けてビーム14を照射する(図3B参照)。
(Step S13)
Next, in step S <b> 13, the first beam irradiation is performed toward the surface of the semiconductor substrate 41 to form the first opening 44.
First, the controller 81 drives the evacuation mechanism 77 to evacuate the chamber 90 using the evacuation mechanism 77. Next, the beam irradiation gun drive mechanism 72 drives the beam irradiation gun 12 based on a command from the control unit 81, and moves the beam irradiation gun 12 above the range set in step S12. The beam irradiation gun 12 is driven by a beam irradiation gun drive mechanism 72 to irradiate the beam 14 toward the surface of the semiconductor substrate 41 (see FIG. 3B).
 1回目のビーム照射は、半導体基板41の表面における中空領域42の直上に相当する範囲内の任意の位置に向けて行う。1回目のビーム照射を行った後の半導体基板41内には、第1の開口部44により、中空領域42が露出する。図3Bには、第1の開口部44が形成された半導体基板41の断面を示している。 The first beam irradiation is performed toward an arbitrary position within a range corresponding to a position immediately above the hollow region 42 on the surface of the semiconductor substrate 41. A hollow region 42 is exposed through the first opening 44 in the semiconductor substrate 41 after the first beam irradiation. FIG. 3B shows a cross section of the semiconductor substrate 41 in which the first opening 44 is formed.
 ビーム照射銃12としては、電界によりイオン又は電子を加速してイオンビーム又は電子ビームとし、これらのビームを試料の表面に集束させることで、試料の一部を除去できるものを用いることが望ましい。 As the beam irradiation gun 12, it is desirable to use an ion beam or an electron beam that is accelerated by an electric field to be an ion beam or an electron beam, and by focusing these beams on the surface of the sample, a part of the sample can be removed.
 実施例1では、ビーム照射銃12は、第1の開口部44を、半導体基板41の表面から、中空領域42の下端面より深い位置まで形成する。第1の開口部44は、図3Bに示すように、半導体基板41の表面に対して略垂直に形成することがよい。また、第1の開口部44は、後述するステップS17において、液状の充填材51を中空領域42に円滑に充填できる程度の開口幅を有することが望ましい。 In Example 1, the beam irradiation gun 12 forms the first opening 44 from the surface of the semiconductor substrate 41 to a position deeper than the lower end surface of the hollow region 42. The first opening 44 is preferably formed substantially perpendicular to the surface of the semiconductor substrate 41 as shown in FIG. 3B. In addition, the first opening 44 desirably has an opening width that allows the liquid filler 51 to be smoothly filled into the hollow region 42 in step S <b> 17 described later.
 (ステップS14) 
 次に、ステップS14で、支持台回転機構71は、制御部81の指令に基づき、支持台11を回転させる。これにより、半導体基板41はスピン回転する。
(Step S14)
Next, in step S <b> 14, the support base rotation mechanism 71 rotates the support base 11 based on a command from the control unit 81. Thereby, the semiconductor substrate 41 rotates by spin.
 (ステップS15) 
 次に、ステップS15で、吐出ノズル移動機構74は、制御部81からの指令に基づき、吐出ノズル可動アーム22を駆動し、吐出口231を半導体基板41の表面から離間させた状態で、吐出ノズル23を水平移動させる。吐出ノズル移動機構74は、吐出ノズル23の先端が、ステップS13で形成した第1の開口部44の上方に位置するように、吐出ノズル可動アーム22を駆動する。
(Step S15)
Next, in step S <b> 15, the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 based on a command from the control unit 81, and the discharge nozzle 231 is separated from the surface of the semiconductor substrate 41. 23 is moved horizontally. The discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 so that the tip of the discharge nozzle 23 is positioned above the first opening 44 formed in step S13.
 (ステップS16) 
 次に、ステップS16で、吐出ノズル移動機構74は、必要に応じて、制御部81からの指令に基づき、吐出ノズル可動アーム22を駆動し、吐出ノズル23を半導体基板41側に垂直移動させる。吐出ノズル移動機構74は、吐出ノズル23の吐出口231と半導体基板41との距離が所望の値となる位置まで、吐出ノズル可動アーム22を半導体基板41側に垂直移動させる。
(Step S16)
Next, in step S <b> 16, the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 and moves the discharge nozzle 23 vertically to the semiconductor substrate 41 side based on a command from the control unit 81 as necessary. The discharge nozzle moving mechanism 74 vertically moves the discharge nozzle movable arm 22 toward the semiconductor substrate 41 to a position where the distance between the discharge port 231 of the discharge nozzle 23 and the semiconductor substrate 41 becomes a desired value.
 (ステップS17) 
 次に、ステップS17で、中空領域42に液状の充填材51(以下、単に充填材51と示す)を充填する(図3C参照)。図3Cには、中空領域42に充填材51が充填された後の半導体基板41の断面を示している。また、図3Cには、半導体基板41と併せて、ステップS17における、吐出ノズル可動アーム22内及び吐出ノズル23内における充填材51の流動方向を模式的に示している。図3Cでは、充填材51の流動方向52を矢印で示している。
(Step S17)
Next, in step S17, the hollow region 42 is filled with a liquid filler 51 (hereinafter simply referred to as filler 51) (see FIG. 3C). FIG. 3C shows a cross section of the semiconductor substrate 41 after the hollow region 42 is filled with the filler 51. FIG. 3C schematically shows the flow direction of the filler 51 in the discharge nozzle movable arm 22 and the discharge nozzle 23 in step S <b> 17 together with the semiconductor substrate 41. In FIG. 3C, the flow direction 52 of the filler 51 is indicated by an arrow.
 具体的には、不図示の充填材貯留タンクに貯留された充填材51を、液体供給ライン21の充填材供給ラインに供給し、図3Cに示すように、吐出ノズル可動アーム22内を図中矢印52方向に流動させて、吐出ノズル23に供給する。そして、吐出ノズル23により、半導体基板41の第1の開口部44に向けて充填材51を吐出し、第1の開口部44から中空領域42内に充填材51を充填する。 Specifically, the filler 51 stored in a filler storage tank (not shown) is supplied to the filler supply line of the liquid supply line 21, and the inside of the discharge nozzle movable arm 22 is shown in FIG. 3C. It flows in the direction of the arrow 52 and is supplied to the discharge nozzle 23. Then, the discharge nozzle 23 discharges the filler 51 toward the first opening 44 of the semiconductor substrate 41, and the filler 51 is filled into the hollow region 42 from the first opening 44.
 充填材51は、後述するステップS18で行う加熱による固化や、ステップS24~ステップS25で行う洗浄による除去の作業性を考慮して、フォトレジスト等の樹脂材料を用いることが望ましい。 The filler 51 is preferably made of a resin material such as a photoresist in consideration of solidification by heating performed in step S18 described later and workability of removal performed by cleaning performed in steps S24 to S25.
 半導体基板41に向けて吐出する充填材51の吐出量は、中空領域42を充填するのに要する体積より多い量とすることが望ましい。これにより、中空領域42の全体に充填材51が充填されるとともに、半導体基板41の表面にも、第1の開口部44を中心として充填材51が堆積する。 It is desirable that the discharge amount of the filler 51 discharged toward the semiconductor substrate 41 is larger than the volume required for filling the hollow region 42. As a result, the entire hollow region 42 is filled with the filler 51, and the filler 51 is also deposited on the surface of the semiconductor substrate 41 with the first opening 44 as the center.
 ただし、充填材51の吐出量が、中空領域42の体積と比較して多すぎると、充填材51が、半導体基板41の表面に広範囲にわたって拡散し、充填材51の除去に要する洗浄液の量が過大となる。このため、半導体基板41への充填材51の吐出量は、中空領域42を充填するのに要する体積より多い範囲で、可能な限り少なくすることが望ましい。 However, if the discharge amount of the filler 51 is too large compared to the volume of the hollow region 42, the filler 51 diffuses over a wide range on the surface of the semiconductor substrate 41, and the amount of cleaning liquid required for removing the filler 51 is large. It becomes excessive. For this reason, it is desirable that the discharge amount of the filler 51 onto the semiconductor substrate 41 is as small as possible within a range larger than the volume required to fill the hollow region 42.
 (ステップS18) 
 次に、ステップS18で、温度制御機構76は、制御部81からの指令に基づき、ヒータ16を昇温し、支持台11を加熱する(図3D参照)。ヒータ16により加熱された支持台11から半導体基板41に与えられる熱流15により、半導体基板41が加熱される。半導体基板41が加熱されることで、液状の充填材51が固化され、中空領域42内に固体状の充填材53が形成される。液状の充填材51が固形化され、固体状の充填材53が形成された後の半導体基板41の断面を図3Dに示す。液状の充填材51として、例えばフォトレジストを用いた場合には、半導体基板41を110~120℃程度に加熱することで、固化することが可能である。
(Step S18)
Next, in step S18, the temperature control mechanism 76 raises the temperature of the heater 16 and heats the support base 11 based on a command from the control unit 81 (see FIG. 3D). The semiconductor substrate 41 is heated by the heat flow 15 applied to the semiconductor substrate 41 from the support 11 heated by the heater 16. By heating the semiconductor substrate 41, the liquid filler 51 is solidified, and a solid filler 53 is formed in the hollow region 42. FIG. 3D shows a cross section of the semiconductor substrate 41 after the liquid filler 51 is solidified and the solid filler 53 is formed. For example, when a photoresist is used as the liquid filler 51, the semiconductor substrate 41 can be solidified by heating to about 110 to 120 ° C.
 (ステップS19) 
 次に、ステップS19では、半導体基板41に向けて2回目のビーム照射を行い、第2の開口部を形成する。
(Step S19)
Next, in step S19, a second beam irradiation is performed toward the semiconductor substrate 41 to form a second opening.
 具体的には、ビーム照射銃駆動機構72は、ビーム照射銃12が図3Bに示す位置から移動している場合には、制御部81からの指令に基づきビーム照射銃12を駆動し、ステップS12で設定した範囲の上方にビーム照射銃12を移動させる。ビーム照射銃12は、ビーム照射銃駆動機構72により駆動されて、半導体基板41の表面に向けてビーム14を照射する(図3E参照)。 Specifically, when the beam irradiation gun 12 has moved from the position shown in FIG. 3B, the beam irradiation gun drive mechanism 72 drives the beam irradiation gun 12 based on a command from the control unit 81, and step S12. The beam irradiation gun 12 is moved above the range set in. The beam irradiation gun 12 is driven by a beam irradiation gun drive mechanism 72 to irradiate the beam 14 toward the surface of the semiconductor substrate 41 (see FIG. 3E).
 2回目のビーム照射は、半導体基板41の表面における中空領域42の直上に相当する範囲内で、かつ第1の開口部44とは異なる位置に向けて行う。2回目のビーム照射により、固体状の充填材53(以下、単に充填材53と示す)、メンブレン43、半導体基板41が、それぞれ一部の領域において除去されて、第1の開口部44とは異なる位置に、第2の開口部45が形成される。図3Eには、第2の開口部45が形成された半導体基板41の断面を示している。 The second beam irradiation is performed in a range corresponding to a position immediately above the hollow region 42 on the surface of the semiconductor substrate 41 and toward a position different from the first opening 44. By the second beam irradiation, the solid filler 53 (hereinafter simply referred to as the filler 53), the membrane 43, and the semiconductor substrate 41 are removed in a part of the region, and the first opening 44 is A second opening 45 is formed at a different position. FIG. 3E shows a cross section of the semiconductor substrate 41 in which the second opening 45 is formed.
 2回目のビーム照射により形成された第2の開口部45は、固体状の充填材53により形成される面を含む加工断面451(図4F参照)を有している。この加工断面451により、固体状の充填材53が充填された中空領域42が、第2の開口部45において露出する。 The second opening 45 formed by the second beam irradiation has a processed cross section 451 including a surface formed by the solid filler 53 (see FIG. 4F). Through this processed cross section 451, the hollow region 42 filled with the solid filler 53 is exposed in the second opening 45.
 第2の開口部45の加工断面451は、後述するステップS27において摘出される観察試料47(図3H参照)の観察面となる。このため、観察試料47において所望の観察視野が得られるように、第2の開口部45の形成領域及び深さを適宜調整して形成する。第2の開口部45は、図3Eに示すように、固体状の充填材53の表面から、中空領域42の下端面より深い位置まで形成する。また、第2の開口部45は、半導体基板41の表面に対して略垂直に形成することがよい。 The processed cross section 451 of the second opening 45 is an observation surface of the observation sample 47 (see FIG. 3H) extracted in step S27 described later. For this reason, the formation region and depth of the second opening 45 are appropriately adjusted so that a desired observation visual field can be obtained in the observation sample 47. As shown in FIG. 3E, the second opening 45 is formed from the surface of the solid filler 53 to a position deeper than the lower end surface of the hollow region 42. The second opening 45 is preferably formed substantially perpendicular to the surface of the semiconductor substrate 41.
 (ステップS20) 
 次に、ステップS20で、吸引ノズル移動機構75は、制御部81からの指令に基づき、吸引ノズル可動アーム32を駆動し、吸引ノズル33の吸引口331を半導体基板41の表面から離間させた状態で、吸引ノズル33を水平移動させる。吸引ノズル移動機構75は、吸引ノズル33の軸方向から見たときに、吸引ノズル33の吸引口331の中心が、第1の開口部44の上方に位置するように、吸引ノズル可動アーム32を駆動して吸引ノズル33を移動させる。
(Step S20)
Next, in step S <b> 20, the suction nozzle moving mechanism 75 drives the suction nozzle movable arm 32 based on a command from the control unit 81, and the suction port 331 of the suction nozzle 33 is separated from the surface of the semiconductor substrate 41. Then, the suction nozzle 33 is moved horizontally. The suction nozzle moving mechanism 75 moves the suction nozzle movable arm 32 so that the center of the suction port 331 of the suction nozzle 33 is located above the first opening 44 when viewed from the axial direction of the suction nozzle 33. The suction nozzle 33 is moved by driving.
 (ステップS21) 
 次に、ステップS21で、吸引ノズル移動機構75は、制御部81からの指令に基づき、吸引ノズル可動アーム32を駆動し、吸引ノズル33を半導体基板41側に垂直移動させる。吸引ノズル移動機構75は、吸引ノズル33の吸引口331と半導体基板41との距離が所望の値となる位置まで、吸引ノズル可動アーム32を移動させる。
(Step S21)
Next, in step S <b> 21, the suction nozzle moving mechanism 75 drives the suction nozzle movable arm 32 based on a command from the control unit 81 and vertically moves the suction nozzle 33 to the semiconductor substrate 41 side. The suction nozzle moving mechanism 75 moves the suction nozzle movable arm 32 to a position where the distance between the suction port 331 of the suction nozzle 33 and the semiconductor substrate 41 becomes a desired value.
 (ステップS22) 
 次いで、ステップS22で、吐出ノズル移動機構74は、制御部81からの指令に基づき、吐出ノズル可動アーム22を駆動し、吐出口231を半導体基板41の表面から離間させた状態で、吐出ノズル23を水平移動させる。
(Step S22)
Next, in step S <b> 22, the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 based on a command from the control unit 81, and the discharge nozzle 23 in a state where the discharge port 231 is separated from the surface of the semiconductor substrate 41. Move horizontally.
 吐出ノズル移動機構74は、吐出ノズル23を軸方向から見たときに、吐出口231が、吸引口331の内側の領域、すなわち開口部332(図2参照)内の領域に入るように、吐出ノズル可動アーム22を水平移動させる(図3F参照)。 When the discharge nozzle 23 is viewed from the axial direction, the discharge nozzle moving mechanism 74 discharges so that the discharge port 231 enters a region inside the suction port 331, that is, a region in the opening 332 (see FIG. 2). The nozzle movable arm 22 is moved horizontally (see FIG. 3F).
 (ステップS23) 
 次に、ステップS23で、吐出ノズル移動機構74は、制御部81からの指令に基づき、吐出ノズル可動アーム22を駆動し、吐出ノズル23を半導体基板41側に垂直移動させる。吐出ノズル移動機構74は、吐出ノズル23の吐出口231と半導体基板41との距離が所望の値となる位置まで、吐出ノズル可動アーム22を半導体基板41側に垂直移動させる。
(Step S23)
Next, in step S <b> 23, the discharge nozzle moving mechanism 74 drives the discharge nozzle movable arm 22 based on a command from the control unit 81 and vertically moves the discharge nozzle 23 toward the semiconductor substrate 41. The discharge nozzle moving mechanism 74 vertically moves the discharge nozzle movable arm 22 toward the semiconductor substrate 41 to a position where the distance between the discharge port 231 of the discharge nozzle 23 and the semiconductor substrate 41 becomes a desired value.
 (ステップS24) 
 次に、ステップS24~ステップS25で、洗浄液の吐出及び吸引を行い、充填材53を除去する。図3Fに、以下のステップS24~ステップS25における、断面観察試料作製装置200内の洗浄液の流動方向を模式的に示す。図3Fでは、洗浄液の流動方向52を矢印で示している。
(Step S24)
Next, in step S24 to step S25, the cleaning liquid is discharged and sucked, and the filler 53 is removed. FIG. 3F schematically shows the flow direction of the cleaning liquid in the cross-section observation sample preparation apparatus 200 in the following steps S24 to S25. In FIG. 3F, the flow direction 52 of the cleaning liquid is indicated by an arrow.
 まず、吸引ノズル33の内部を減圧して、半導体基板41に対する吸引力を作用させる。次に、ステップS24で、不図示の洗浄液貯留タンクに貯留された洗浄液を、液体供給ライン21の洗浄液供給ラインに供給し、図3Fに示すように、吐出ノズル可動アーム22内を図中矢印52方向に流動させて、吐出ノズル23に供給する。そして、吐出ノズル23により、半導体基板41の第1の開口部44に向けて洗浄液を吐出し、中空領域42内に、洗浄液を流入させる。 First, the inside of the suction nozzle 33 is decompressed to apply a suction force to the semiconductor substrate 41. Next, in step S24, the cleaning liquid stored in a cleaning liquid storage tank (not shown) is supplied to the cleaning liquid supply line of the liquid supply line 21. As shown in FIG. It is made to flow in the direction and supplied to the discharge nozzle 23. Then, the discharge nozzle 23 discharges the cleaning liquid toward the first opening 44 of the semiconductor substrate 41, and causes the cleaning liquid to flow into the hollow region 42.
 洗浄液により、固体状の充填材53が、中空領域42の内部や半導体基板41の表面から分離される。中空領域42や半導体基板41の表面から分離された固体状の充填材53は、洗浄液とともに、第1の開口部44や第2の開口部45から半導体基板41の表面に流出する。 The solid filler 53 is separated from the inside of the hollow region 42 and the surface of the semiconductor substrate 41 by the cleaning liquid. The solid filler 53 separated from the hollow region 42 and the surface of the semiconductor substrate 41 flows out to the surface of the semiconductor substrate 41 from the first opening 44 and the second opening 45 together with the cleaning liquid.
 充填材として例えばフォトレジストを用いた場合には、洗浄液として、アセトン等の有機溶剤を用いることがよい。有機溶剤を洗浄液として用いることで、フォトレジストにより形成された固体状の充填材53を、円滑に除去することができる。 When, for example, a photoresist is used as the filler, an organic solvent such as acetone is preferably used as the cleaning liquid. By using an organic solvent as a cleaning liquid, the solid filler 53 formed of a photoresist can be removed smoothly.
 (ステップS25) 
 次に、ステップS25で、吸引ノズル33は、半導体基板41の表面に流出した、洗浄液と充填材53との混合物を吸引する。図3Fに示すように、吸引ノズル33は、半導体基板41の表面から離間した状態で、洗浄液と充填材53との混合物を吸引する。吸引ノズル33により吸引された、洗浄液と充填材53との混合物は、吸引ノズル可動アーム32を介して、真空ライン31に回収され、半導体基板41から除去される。図3Fには、充填材53が洗浄液により除去された後の半導体基板41の断面を示している。
(Step S25)
Next, in step S <b> 25, the suction nozzle 33 sucks the mixture of the cleaning liquid and the filler 53 that has flowed out to the surface of the semiconductor substrate 41. As shown in FIG. 3F, the suction nozzle 33 sucks the mixture of the cleaning liquid and the filler 53 while being separated from the surface of the semiconductor substrate 41. The mixture of the cleaning liquid and the filler 53 sucked by the suction nozzle 33 is collected by the vacuum line 31 via the suction nozzle movable arm 32 and removed from the semiconductor substrate 41. FIG. 3F shows a cross section of the semiconductor substrate 41 after the filler 53 has been removed by the cleaning liquid.
 吸引ノズル33は、上記したように、ノズル内部を減圧することで、洗浄液に対して吸引力を作用させている。これにより、吸引ノズル33と半導体基板41とが非接触の状態で、洗浄液が吸引ノズル33により吸引される。 The suction nozzle 33 applies a suction force to the cleaning liquid by reducing the pressure inside the nozzle as described above. Accordingly, the cleaning liquid is sucked by the suction nozzle 33 while the suction nozzle 33 and the semiconductor substrate 41 are not in contact with each other.
 一方、断面観察試料作製装置200の作動時には、洗浄液が、半導体基板41の表面における所望の洗浄範囲を移動するように、半導体基板41をスピン回転させることが望ましい。半導体基板41をスピン回転させた場合、洗浄液には、半導体基板41の外周部に向かう遠心力が作用する。 On the other hand, when the cross-section observation sample preparation apparatus 200 is operated, it is desirable that the semiconductor substrate 41 is spin-rotated so that the cleaning liquid moves within a desired cleaning range on the surface of the semiconductor substrate 41. When the semiconductor substrate 41 is spun and rotated, a centrifugal force directed toward the outer periphery of the semiconductor substrate 41 acts on the cleaning liquid.
 吸引ノズル33による吸引力が、洗浄液に作用する遠心力より小さい場合には、洗浄液が吸引ノズル33に吸引されず、半導体基板41の外周に拡散する。従って、吸引ノズル33から洗浄液に作用する吸引力が、半導体基板41のスピン回転により洗浄液に作用する遠心力よりも大きくなるように、吸引ノズル33や吐出ノズル23の位置の設定や、吸引時の条件を、適宜調整することが望ましい。 When the suction force by the suction nozzle 33 is smaller than the centrifugal force acting on the cleaning liquid, the cleaning liquid is not sucked by the suction nozzle 33 and diffuses to the outer periphery of the semiconductor substrate 41. Accordingly, the positions of the suction nozzle 33 and the discharge nozzle 23 are set so that the suction force acting on the cleaning liquid from the suction nozzle 33 becomes larger than the centrifugal force acting on the cleaning liquid due to the spin rotation of the semiconductor substrate 41, and It is desirable to adjust conditions appropriately.
 具体的には、吸引ノズル33の吸引力、吸引ノズル33と吐出ノズル23との距離、吸引ノズル33と半導体基板41との距離、及び半導体基板41のスピン回転速度を調整するのが望ましい。 Specifically, it is desirable to adjust the suction force of the suction nozzle 33, the distance between the suction nozzle 33 and the discharge nozzle 23, the distance between the suction nozzle 33 and the semiconductor substrate 41, and the spin rotation speed of the semiconductor substrate 41.
 図2に示す例では、吸引ノズル33は、円形の上面形状を有しており、回転対称性を有している。吸引ノズル33が回転対称性を有している場合には、洗浄液の吸引時には、支持台11の回転により、洗浄液の流れが全方位に向けて均一に発生する。このため、半導体基板41の表面における、ウォーターマークの発生を防止することができる。 In the example shown in FIG. 2, the suction nozzle 33 has a circular top surface shape and has rotational symmetry. When the suction nozzle 33 has rotational symmetry, the cleaning liquid flows uniformly in all directions due to the rotation of the support table 11 when the cleaning liquid is sucked. For this reason, generation of a watermark on the surface of the semiconductor substrate 41 can be prevented.
 (ステップS26) 
 次に、ステップS26では、半導体基41に向けて3回目のビーム照射を行い、第3の開口部を形成する。 
 具体的には、ビーム照射銃駆動機構72は、ビーム照射銃12が図3Bに示す位置から移動している場合には、制御部81からの指令に基づき、ビーム照射銃12を駆動し、ステップS12で設定した範囲の上方にビーム照射銃12を移動させる。ビーム照射銃12は、ビーム照射銃駆動機構72により駆動されて、半導体基板41の表面に向けてビーム14を照射する。
(Step S26)
Next, in step S26, a third beam irradiation is performed toward the semiconductor substrate 41 to form a third opening.
Specifically, when the beam irradiation gun 12 is moved from the position shown in FIG. 3B, the beam irradiation gun drive mechanism 72 drives the beam irradiation gun 12 on the basis of a command from the control unit 81, and the step The beam irradiation gun 12 is moved above the range set in S12. The beam irradiation gun 12 is driven by a beam irradiation gun drive mechanism 72 to irradiate the surface of the semiconductor substrate 41 with the beam 14.
 3回目のビーム照射は、半導体基板41の表面における中空領域42の直上に相当する範囲内で、かつ第1の開口部44及び第2の開口部45のいずれとも異なる位置に向けて行う。3回目のビーム照射により、第1の開口部44及び第2の開口部45とは異なる位置に、第3の開口部46が形成される(図3G参照)。図3Gには、第3の開口部46が形成された半導体基板41の断面を示している。 The third beam irradiation is performed in a range corresponding to a position immediately above the hollow region 42 on the surface of the semiconductor substrate 41 and toward a position different from both the first opening 44 and the second opening 45. By the third beam irradiation, a third opening 46 is formed at a position different from the first opening 44 and the second opening 45 (see FIG. 3G). FIG. 3G shows a cross section of the semiconductor substrate 41 in which the third opening 46 is formed.
 第1の開口部44及び第2の開口部45は、半導体基板41の表面に対して垂直方向に形成している。これに対して、第3の開口部46は、図3Fに示すように、半導体基板41の表面に対して斜め方向に形成する。斜め方向に形成した第3の開口部46と、第2の開口部45とにより、楔形の観察試料を半導体基板41から分離することができる。 The first opening 44 and the second opening 45 are formed in a direction perpendicular to the surface of the semiconductor substrate 41. On the other hand, the third opening 46 is formed obliquely with respect to the surface of the semiconductor substrate 41 as shown in FIG. 3F. The wedge-shaped observation sample can be separated from the semiconductor substrate 41 by the third opening 46 formed in the oblique direction and the second opening 45.
 (ステップS27) 
 次に、ステップS27では、プローブ13により、半導体基板41から観察試料を摘出する。
(Step S27)
Next, in step S <b> 27, the observation sample is extracted from the semiconductor substrate 41 by the probe 13.
 まず、プローブ駆動機構73は、制御部81からの指令に基づき、プローブ13を駆動し、第2の開口部45と第3の開口部46との間の位置の上方にプローブ13を移動させる。プローブ13は、プローブ駆動機構73により駆動されて、第2の開口部45と第3の開口部46により半導体基板41から分離された観察試料47を、半導体基板41から摘出する(図3H参照)。図3Hには、観察試料47を摘出した後の半導体基板41の断面を示している。 First, the probe driving mechanism 73 drives the probe 13 based on a command from the control unit 81 and moves the probe 13 above the position between the second opening 45 and the third opening 46. The probe 13 is driven by the probe driving mechanism 73 to extract the observation sample 47 separated from the semiconductor substrate 41 by the second opening 45 and the third opening 46 from the semiconductor substrate 41 (see FIG. 3H). . FIG. 3H shows a cross section of the semiconductor substrate 41 after the observation sample 47 is extracted.
 観察試料47を摘出する際には、図3Gに示す状態の半導体基板41に対して、必要に応じて、ビーム照射銃12によりビームを追加照射してもよい。プローブ13を用いた観察試料47の摘出は、集束イオンビーム装置を用いて行われる一般的な試料の摘出方法と同様にして行うことができる。 When the observation sample 47 is extracted, the beam irradiation gun 12 may additionally irradiate the semiconductor substrate 41 in the state shown in FIG. 3G as necessary. Extraction of the observation sample 47 using the probe 13 can be performed in the same manner as a general sample extraction method performed using a focused ion beam apparatus.
 なお、実施例1の断面観察試料作製方法においては、上記した工程に加えて、半導体基板41の加工性の改善や、摘出後の観察試料47の質の向上を目的として、熱処理や洗浄処理等を適宜追加してもよい。 In the cross-sectional observation sample preparation method of Example 1, in addition to the above-described steps, heat treatment, cleaning treatment, etc. are performed for the purpose of improving the workability of the semiconductor substrate 41 and improving the quality of the observation sample 47 after extraction. May be added as appropriate.
 以上説明した断面観察試料作製方法では、洗浄液供給ラインから洗浄液を吐出して、半導体基板41から充填材53を除去する構成を説明した。なお、充填材53の除去は、必ずしも洗浄液を用いて行わなくてもよい。例えば、充填材として、温度調整により、固体状態から液体状態に変更できる材質のものを用いた場合には、第2の開口部45を形成した後、温度調整により、固体状の充填材53を液状の充填材51とした上で、吸引ノズル33から液状の充填材51を吸引して除去するようにしてもよい。但し、図1~4で説明したように、洗浄液供給ラインから洗浄液を吐出することで、固体状の充填材53を、半導体基板41から容易に除去することができる。 In the cross-section observation sample preparation method described above, the configuration in which the cleaning liquid is discharged from the cleaning liquid supply line and the filler 53 is removed from the semiconductor substrate 41 has been described. The removal of the filler 53 is not necessarily performed using a cleaning liquid. For example, in the case where a material that can be changed from a solid state to a liquid state by temperature adjustment is used as the filler, after the second opening 45 is formed, the solid filler 53 is changed by temperature adjustment. After forming the liquid filler 51, the liquid filler 51 may be sucked and removed from the suction nozzle 33. However, as described in FIGS. 1 to 4, the solid filler 53 can be easily removed from the semiconductor substrate 41 by discharging the cleaning liquid from the cleaning liquid supply line.
 また、以上説明した断面観察試料作製方法では、吐出ノズル23、吸引ノズル33を、いずれも半導体基板41の表面から離間させた状態で、充填材51や洗浄液の吐出及び吸引を行っている。このため、半導体基板41表面への異物の付着を防止することができる。但し、吐出ノズル23や吸引ノズル33は、充填材51や洗浄液の吐出又は吸引時に、必要に応じて、半導体基板41の表面に接触させるようにしてもよい。 In the cross-section observation sample preparation method described above, the filler 51 and the cleaning liquid are discharged and sucked while the discharge nozzle 23 and the suction nozzle 33 are both separated from the surface of the semiconductor substrate 41. For this reason, it is possible to prevent foreign matter from adhering to the surface of the semiconductor substrate 41. However, the discharge nozzle 23 and the suction nozzle 33 may be brought into contact with the surface of the semiconductor substrate 41 as necessary when the filler 51 or the cleaning liquid is discharged or sucked.
 <断面観察試料作製方法の各工程における半導体基板の形状変化> 
 次に、図3A~図3Hを用いて説明した断面観察試料作製方法の各工程における半導体基板の形状変化及びこの断面観察試料作製方法の効果について、図4A~図4Gを用いて、さらに説明する。なお、図4A~図4Gでは、半導体基板41の中空領域42及びメンブレン43の形状変化を詳細に示し、図3A~図3Hに示すその他の構成は、図示を省略している。
<Shape change of semiconductor substrate in each step of cross-sectional observation sample preparation method>
Next, the shape change of the semiconductor substrate in each step of the cross-sectional observation sample preparation method described with reference to FIGS. 3A to 3H and the effect of this cross-section observation sample preparation method will be further described with reference to FIGS. 4A to 4G. . 4A to 4G show in detail the shape changes of the hollow region 42 and the membrane 43 of the semiconductor substrate 41, and the other configurations shown in FIGS. 3A to 3H are not shown.
 図4Aは、集束イオンビーム照射により断面加工を行う前の、初期状態の半導体基板41の中空領域42近傍の外観を示す斜視図である。なお、図4Aの段階では、中空領域42は外部に露出していない。但し、図4Aでは、中空領域42の内部状態を説明するため、便宜的に、中空領域42を露出させた状態で図示している。 FIG. 4A is a perspective view showing an appearance of the vicinity of the hollow region 42 of the semiconductor substrate 41 in the initial state before the cross-section processing is performed by focused ion beam irradiation. 4A, the hollow region 42 is not exposed to the outside. However, in FIG. 4A, in order to explain the internal state of the hollow region 42, the hollow region 42 is shown exposed for convenience.
 図4Aに示すように、半導体基板41において、中空領域42の下端面は、水平面に平行な平坦な面である。これに対し、中空領域42の上側に形成されたメンブレン43は、メンブレン43自身や周囲の膜の応力により撓んでおり、中空領域42の上端面は、メンブレン43の撓みにより、曲面形状をなしている。 As shown in FIG. 4A, in the semiconductor substrate 41, the lower end surface of the hollow region 42 is a flat surface parallel to the horizontal plane. On the other hand, the membrane 43 formed on the upper side of the hollow region 42 is bent due to the stress of the membrane 43 itself and the surrounding membrane, and the upper end surface of the hollow region 42 has a curved surface shape due to the bending of the membrane 43. Yes.
 図4Aには、1回目のビーム照射を行う第1の断面加工面61の位置を破線で示している。ステップS13で説明したように、まず、第1の断面加工面61に沿って行われる、1回目のビーム照射による断面加工により、第1の開口部44が形成される(図3B参照)。1回目の断面加工を行った後の、第1の開口部44近傍の半導体基板41の外観の斜視図を図4Bに示す。図4Bは、図3Bの状態に対応する。 In FIG. 4A, the position of the first cross-section processed surface 61 on which the first beam irradiation is performed is indicated by a broken line. As described in step S13, first, the first opening 44 is formed by the first cross-section processing by beam irradiation performed along the first cross-section processing surface 61 (see FIG. 3B). FIG. 4B shows a perspective view of the appearance of the semiconductor substrate 41 in the vicinity of the first opening 44 after the first cross-section processing. FIG. 4B corresponds to the state of FIG. 3B.
 1回目のビーム照射により、メンブレン43が変形する。図4Bに示すように、1回目のビーム照射後の半導体基板41では、メンブレン43の変形により、中空領域42の一部において、メンブレン43と半導体基板41とが接触する、スティクション現象が発生している。 The membrane 43 is deformed by the first beam irradiation. As shown in FIG. 4B, in the semiconductor substrate 41 after the first beam irradiation, due to the deformation of the membrane 43, a stiction phenomenon in which the membrane 43 and the semiconductor substrate 41 come into contact with each other in a part of the hollow region 42 occurs. ing.
 次に、ステップS17で説明したように、中空領域42に、液状の充填材51が充填される。液状の充填材51が充填された後の、第1の開口部44近傍の半導体基板41の外観の斜視図を、図4Cに示す。図4Cは、図3Cの状態に対応する。図4Cに示すように、第1の開口部44の加工断面441には、スティクション現象が生じていない空隙442が残存しており、この空隙442から中空領域42に、充填材51が充填される。 Next, as described in step S17, the hollow region 42 is filled with the liquid filler 51. FIG. 4C shows a perspective view of the appearance of the semiconductor substrate 41 in the vicinity of the first opening 44 after the liquid filler 51 is filled. FIG. 4C corresponds to the state of FIG. 3C. As shown in FIG. 4C, a void 442 in which the stiction phenomenon does not occur remains in the processed cross section 441 of the first opening 44, and the hollow material 42 is filled with the filler 51 from the void 442. The
 次に、ステップS18で説明したように、ヒータ16による加熱により、液状の充填材51が固化され、中空領域42内に、固体状の充填材53が形成される。固体状の充填材53が形成された後の、第1の開口部44近傍の半導体基板41の外観の斜視図を図4Dに示す。図4Dは、図3Dの状態に対応する。 Next, as described in step S <b> 18, the liquid filler 51 is solidified by heating by the heater 16, and the solid filler 53 is formed in the hollow region 42. FIG. 4D shows an external perspective view of the semiconductor substrate 41 in the vicinity of the first opening 44 after the solid filler 53 is formed. FIG. 4D corresponds to the state of FIG. 3D.
 次に、ステップS19で説明したように、固体状の充填材53が形成された後の半導体基板41に対して、2回目のビーム照射による断面加工を行う。図4Eには、2回目のビーム照射を行う第2の断面加工面62の位置を破線で示している。なお、図4Eに示す状態は、図4Dに示す状態と同じである。 Next, as described in step S19, the semiconductor substrate 41 after the solid filler 53 is formed is subjected to cross-section processing by second beam irradiation. In FIG. 4E, the position of the second cross-section processing surface 62 that performs the second beam irradiation is indicated by a broken line. Note that the state shown in FIG. 4E is the same as the state shown in FIG. 4D.
 図4Eに示すように、第2の断面加工面62は、図4Aで示した第1の断面加工面61とは異なる位置に設定する。具体的には、第2の断面加工面62は、1回目の断面加工の際に、メンブレン43の変形によるスティクション現象が発生していない領域、即ち充填材53が形成されている領域を含むように設定する。 As shown in FIG. 4E, the second cross-section processing surface 62 is set at a position different from the first cross-section processing surface 61 shown in FIG. 4A. Specifically, the second cross-section processing surface 62 includes a region where a stiction phenomenon due to deformation of the membrane 43 does not occur during the first cross-section processing, that is, a region where the filler 53 is formed. Set as follows.
 第2の断面加工面62に沿って行われる、2回目のビーム照射により、第2の開口部45が形成される。2回目の断面加工を行った後の、第2の開口部45近傍の半導体基板41の外観の斜視図を図4Fに示す。なお、図4Fは、図3Eの状態に対応する。 The second opening 45 is formed by the second beam irradiation performed along the second cross-section processing surface 62. FIG. 4F shows an external perspective view of the semiconductor substrate 41 in the vicinity of the second opening 45 after the second cross-section processing. 4F corresponds to the state of FIG. 3E.
 上記したように、2回目の断面加工時には、固体状の充填材53が形成されている領域を含む位置で断面加工を行う。このため、2回目の断面加工時には、メンブレン43の変形が抑制され、スティクション現象の発生が抑制された第2の開口部45を形成することができる。図4Fに示すように、第2の開口部45においては、充填材53により形成される面を含む加工断面451により、中空領域42が露出している。 As described above, during the second cross section processing, the cross section processing is performed at a position including the region where the solid filler 53 is formed. For this reason, at the time of the second cross-section processing, it is possible to form the second opening 45 in which the deformation of the membrane 43 is suppressed and the occurrence of the stiction phenomenon is suppressed. As shown in FIG. 4F, in the second opening 45, the hollow region 42 is exposed by the processing section 451 including the surface formed by the filler 53.
 次に、ステップS24~ステップS25で説明したように、半導体基板41の表面に向けて洗浄液が吐出され、固形化した充填材53が、中空領域42内や、半導体基板41の表面から除去される。充填材53が除去された後の、第2の開口部45近傍の半導体基板41の外観の斜視図を図4Gに示す。図4Gは、図3Fの状態に対応する。 Next, as described in steps S24 to S25, the cleaning liquid is discharged toward the surface of the semiconductor substrate 41, and the solidified filler 53 is removed from the hollow region 42 or from the surface of the semiconductor substrate 41. . FIG. 4G shows an external perspective view of the semiconductor substrate 41 in the vicinity of the second opening 45 after the filler 53 is removed. FIG. 4G corresponds to the state of FIG. 3F.
 図4Fに示したように、第2の断面加工面62での断面加工時には、スティクション現象の発生が回避されている。このため、充填材53の除去後におけるメンブレン43は、図4Gに示すように、断面加工前のメンブレン43の形状(図4A参照)と近い形状を有している。 As shown in FIG. 4F, at the time of cross-section processing on the second cross-section processing surface 62, occurrence of a stiction phenomenon is avoided. For this reason, the membrane 43 after the removal of the filler 53 has a shape close to the shape of the membrane 43 before the cross-section processing (see FIG. 4A), as shown in FIG. 4G.
 <断面観察試料作製方法の効果> 
 実施例1の断面観察試料作製装置及び断面観察試料作製方法によれば、中空領域42を有する半導体基板41を、集束イオンビームを用いて断面加工して断面観察試料を作製するときの、スティクション現象の発生を抑制することができる。この結果、半導体デバイスの製造プロセスの途中段階において、各段階におけるデバイスの検査として、中空領域42の断面形状の観察を行うことが可能になる。
<Effect of cross-sectional observation sample preparation method>
According to the cross-section observation sample preparation apparatus and the cross-section observation sample preparation method of Example 1, stiction when a cross-section processing is performed on a semiconductor substrate 41 having a hollow region 42 using a focused ion beam to produce a cross-section observation sample. Occurrence of the phenomenon can be suppressed. As a result, it is possible to observe the cross-sectional shape of the hollow region 42 as an inspection of the device at each stage in the middle stage of the semiconductor device manufacturing process.
 <断面観察試料作製方法> 
 実施例2の断面観察試料作製方法は、実施例1で用いた断面観察試料作製装置200と同様の装置を用いて行うことができる。実施例2の断面観察試料作製方法について、図5に示すフローチャート及び図6A~図6Cを用いて説明する。
<Cross-section observation sample preparation method>
The cross-sectional observation sample preparation method of Example 2 can be performed using an apparatus similar to the cross-sectional observation sample preparation apparatus 200 used in Example 1. A method for preparing a cross-sectional observation sample of Example 2 will be described with reference to the flowchart shown in FIG. 5 and FIGS. 6A to 6C.
 実施例2の断面観察試料作製方法は、実施例1の断面観察試料作製方法のステップS13を一部変更したものであり、その他の工程は、実施例1の断面観察試料作製方法の各工程と同様にして行う。 The cross-sectional observation sample preparation method of Example 2 is a partial modification of Step S13 of the cross-section observation sample preparation method of Example 1, and the other steps are the same as the steps of the cross-section observation sample preparation method of Example 1. Do the same.
 図6Aは、集束イオンビーム照射により断面加工を行う前の、初期状態の半導体基板41の中空領域42近傍の外観を示す斜視図である。実施例1と同様、試料は半導体基板41である。半導体基板41の内部には、中空領域42が形成されており、中空領域42の上にメンブレン43が形成されている。 
 ステップS11~ステップS12は、実施例1と同様にして行う。このため、ステップS11~ステップS12の説明を省略する。
FIG. 6A is a perspective view showing an appearance of the vicinity of the hollow region 42 of the semiconductor substrate 41 in an initial state before the cross-section processing is performed by focused ion beam irradiation. As in the first embodiment, the sample is a semiconductor substrate 41. A hollow region 42 is formed inside the semiconductor substrate 41, and a membrane 43 is formed on the hollow region 42.
Steps S11 to S12 are performed in the same manner as in the first embodiment. For this reason, description of step S11 to step S12 is omitted.
 次に、ステップS13で、半導体基板41の表面に向けて1回目のビーム照射を行い、第1の開口部44(図6B参照)を形成する。図6Bには、1回目のビーム14照射後の半導体基板41の断面を示している。1回目のビーム14の照射により、半導体基板41の表面に第1の開口部44が形成される。 Next, in step S13, a first beam irradiation is performed toward the surface of the semiconductor substrate 41 to form a first opening 44 (see FIG. 6B). FIG. 6B shows a cross section of the semiconductor substrate 41 after the first beam 14 irradiation. A first opening 44 is formed on the surface of the semiconductor substrate 41 by the first irradiation of the beam 14.
 図6Bに示すように、実施例2では、第1の開口部44を、中空領域42の上端面まで貫通させ、かつその下端部を、中空領域42の下端面を超えないように形成する。これにより、第1の開口部44形成時の、半導体基板41の切削量を低減することができる。第1の開口部44は、上面形状を線状に形成してもよく、ドット状に形成してもよい。第1の開口部44の上面形状をドット状に形成することで、第1の開口部44形成時の、半導体基板41の切削量を、より低減することができる。なお、上記した点以外は、ステップS13は、実施例1と同様にして行うことができる。 As shown in FIG. 6B, in Example 2, the first opening 44 is penetrated to the upper end surface of the hollow region 42, and the lower end thereof is formed so as not to exceed the lower end surface of the hollow region 42. Thereby, the cutting amount of the semiconductor substrate 41 when the first opening 44 is formed can be reduced. The first opening 44 may be formed in a linear shape on the top surface or may be formed in a dot shape. By forming the upper surface shape of the first opening 44 in a dot shape, the cutting amount of the semiconductor substrate 41 when the first opening 44 is formed can be further reduced. Except for the points described above, step S13 can be performed in the same manner as in the first embodiment.
 次に、ステップS14~ステップS16において、支持台11の回転駆動及び吐出ノズル23の移動を行う。なお、ステップS14~ステップS16は、実施例1と同様にして行うため、説明を省略する。 Next, in step S14 to step S16, the support base 11 is rotationally driven and the discharge nozzle 23 is moved. Steps S14 to S16 are performed in the same manner as in the first embodiment, and thus description thereof is omitted.
 次に、中空領域42に、液状の充填材51を充填する。中空領域42に充填材51が充填された後の半導体基板41の断面を図6Cに示す。中空領域42への充填材51の充填は、実施例1のステップS17と同様にして行う。実施例2においても、図6Cに示すように、中空領域42は、液状の充填材51により充填される。 Next, the hollow region 42 is filled with a liquid filler 51. FIG. 6C shows a cross section of the semiconductor substrate 41 after the hollow region 42 is filled with the filler 51. Filling the hollow region 42 with the filler 51 is performed in the same manner as in step S17 of the first embodiment. Also in Example 2, as shown in FIG. 6C, the hollow region 42 is filled with the liquid filler 51.
 以降のステップS18~ステップS27は、実施例1と同様にして行うため、説明を省略する。 Since the subsequent steps S18 to S27 are performed in the same manner as in the first embodiment, the description thereof is omitted.
 <断面観察試料作製方法の効果> 
 実施例2によれば、第1の開口部44を、実施例1より浅くすることで、第1の開口部44の形成時に除去される半導体基板41の量を低減できる。このため、第1の開口部44の形成に要する時間を短縮することが可能である。
<Effect of cross-sectional observation sample preparation method>
According to the second embodiment, the amount of the semiconductor substrate 41 that is removed when the first opening 44 is formed can be reduced by making the first opening 44 shallower than the first embodiment. For this reason, the time required for forming the first opening 44 can be shortened.
 一方、実施例2では、実施例1と比較して、第1の開口部44の容積が低減される。また、第1の開口部44をドット状に形成した場合には、半導体基板41の開口面積が低減される。このため、実施例2では、実施例1と比較すると、中空領域42の全体に液状の充填材51を充填するのが困難になる。このため、実施例2では、液状の充填材51として、充填時の粘性がより低いものを選択して用いることが望ましい。 On the other hand, in the second embodiment, the volume of the first opening 44 is reduced as compared with the first embodiment. Further, when the first opening 44 is formed in a dot shape, the opening area of the semiconductor substrate 41 is reduced. For this reason, in Example 2, compared with Example 1, it becomes difficult to fill the whole hollow region 42 with the liquid filler 51. For this reason, in Example 2, it is desirable to select and use the liquid filler 51 having a lower viscosity at the time of filling.
 以上説明した実施例1及び実施例2の断面観察試料作製装置及び断面観察試料作製方法は、例えばMEMSデバイス等の中空領域を有する半導体基板の断面観察試料の作成に、好適に用いることができる。 The cross-sectional observation sample preparation apparatus and the cross-sectional observation sample preparation method of Example 1 and Example 2 described above can be suitably used for preparing a cross-sectional observation sample of a semiconductor substrate having a hollow region such as a MEMS device.
100、200…断面観察試料作製装置、11…支持台、12…ビーム照射銃、13…プローブ、14…ビーム、15…熱流、16…ヒータ、21…液体供給ライン、22…吐出ノズル可動アーム、22…吐出ノズル、231…吐出ノズル23の吐出口、31…真空ライン、32…吸引ノズル可動アーム、33…吸引ノズル、331…吸引ノズル33の吸引口、332…開口部、41…半導体基板、42…中空領域、43…メンブレン、44…第1の開口部、441…第1の開口部44の加工断面、442…空隙、45…第2の開口部、46…第3の開口部、47…観察試料、51…液状の充填材、52…充填材51又は洗浄液の流動方向、53…固体状の充填材、61…第1の断面加工面、62…第2の断面加工面、71…支持台回転機構、72…ビーム照射銃駆動機構、73…プローブ駆動機構、74…吐出ノズル移動機構、75…吸引ノズル移動機構75、76…温度制御機構、77…真空引き機構、81…制御部、90…チャンバ DESCRIPTION OF SYMBOLS 100, 200 ... Cross-section observation sample preparation apparatus, 11 ... Support stand, 12 ... Beam irradiation gun, 13 ... Probe, 14 ... Beam, 15 ... Heat flow, 16 ... Heater, 21 ... Liquid supply line, 22 ... Discharge nozzle movable arm, 22 ... discharge nozzle, 231 ... discharge port of the discharge nozzle 23, 31 ... vacuum line, 32 ... suction nozzle movable arm, 33 ... suction nozzle, 331 ... suction port of the suction nozzle 33, 332 ... opening, 41 ... semiconductor substrate, 42 ... hollow region, 43 ... membrane, 44 ... first opening, 441 ... processing cross section of first opening 44, 442 ... gap, 45 ... second opening, 46 ... third opening, 47 ... Observation sample, 51 ... Liquid filler, 52 ... Flow direction of filler 51 or cleaning liquid, 53 ... Solid filler, 61 ... First cross section processed surface, 62 ... Second cross section processed surface, 71 ... Support base rotation mechanism 72 ... beam gun drive mechanism, 73 ... probe driving mechanism, 74 ... discharge nozzle moving mechanism, 75 ... suction nozzle moving mechanism 75, 76 ... temperature control mechanism 77 ... vacuum unit, 81 ... control unit, 90 ... chamber

Claims (15)

  1.  半導体基板を支持する支持台と、
     前記半導体基板へビームを照射するビーム照射銃と、
     前記半導体基板から断面観察試料を摘出するプローブと、
     前記支持台に支持される前記半導体基板の表面に向けて充填材を供給する充填材供給ラインと、
     前記充填材供給ラインに接続され、前記半導体基板の表面に充填材を吐出する吐出ノズルと、
     前記半導体基板の表面から充填材を吸引する吸引ノズルと、
     前記吸引ノズルから吸引された前記充填材を回収する真空ラインと、
     前記支持台の温度を制御する温度制御機構と、
     前記吐出ノズルを移動させる吐出ノズル移動機構と、
     前記吸引ノズルを移動させる吸引ノズル移動機構と、
    を有することを特徴とする断面観察試料作製装置。
    A support for supporting the semiconductor substrate;
    A beam irradiation gun for irradiating the semiconductor substrate with a beam;
    A probe for extracting a cross-sectional observation sample from the semiconductor substrate;
    A filler supply line for supplying a filler toward the surface of the semiconductor substrate supported by the support base;
    A discharge nozzle connected to the filler supply line and discharging the filler onto the surface of the semiconductor substrate;
    A suction nozzle for sucking a filler from the surface of the semiconductor substrate;
    A vacuum line for collecting the filler sucked from the suction nozzle;
    A temperature control mechanism for controlling the temperature of the support,
    A discharge nozzle moving mechanism for moving the discharge nozzle;
    A suction nozzle moving mechanism for moving the suction nozzle;
    An apparatus for preparing a cross-sectional observation sample, comprising:
  2.  前記吐出ノズルに接続され、前記半導体基板の表面に向けて洗浄液を供給する洗浄液供給ラインを有することを特徴とする請求項1に記載の断面観察試料作製装置。 The cross-section observation specimen preparation apparatus according to claim 1, further comprising a cleaning liquid supply line connected to the discharge nozzle and configured to supply a cleaning liquid toward the surface of the semiconductor substrate.
  3.  前記吐出ノズルに接続された吐出ノズル可動アームと、前記吸引ノズルに接続された吸引ノズル可動アームと、を有し、
     前記吐出ノズル移動機構は、前記吐出ノズル可動アームを駆動し、
     前記吸引ノズル移動機構は、前記吸引ノズル可動アームを駆動することを特徴とする請求項1に記載の断面観察試料作製装置。
    A discharge nozzle movable arm connected to the discharge nozzle; and a suction nozzle movable arm connected to the suction nozzle;
    The discharge nozzle moving mechanism drives the discharge nozzle movable arm,
    The cross-section observation sample preparation apparatus according to claim 1, wherein the suction nozzle moving mechanism drives the suction nozzle movable arm.
  4.  前記支持台と前記ビーム照射銃とを収容するチャンバと、前記チャンバを真空引きする真空引き機構と、をさらに有することを特徴とする請求項1に記載の断面観察試料作製装置。 The cross-section observation sample preparation apparatus according to claim 1, further comprising a chamber that accommodates the support base and the beam irradiation gun, and a vacuum evacuation mechanism that evacuates the chamber.
  5.  前記吸引ノズルは、環状に形成された吸引口の内側に開口部が形成されており、
     前記吐出ノズルの外径は、前記吸引ノズルの前記吸引口の内径より小さく形成されていることを特徴とする請求項1に記載の断面観察試料作製装置。
    The suction nozzle has an opening formed inside the annular suction port,
    2. The cross-sectional observation sample preparation apparatus according to claim 1, wherein an outer diameter of the discharge nozzle is smaller than an inner diameter of the suction port of the suction nozzle.
  6.  前記吐出ノズルに接続され、前記半導体基板の表面に向けて洗浄液を供給する洗浄液供給ラインを有し、
     前記吐出ノズル移動機構は、前記吐出ノズルから前記半導体基板に前記洗浄液を吐出して前記半導体基板の表面を洗浄する洗浄時に、前記吐出ノズルの吐出口を、前記開口部の内側に位置付けることを特徴とする請求項5に記載の断面観察試料作製装置。
    A cleaning liquid supply line connected to the discharge nozzle and configured to supply a cleaning liquid toward the surface of the semiconductor substrate;
    The discharge nozzle moving mechanism positions the discharge port of the discharge nozzle inside the opening during cleaning in which the cleaning liquid is discharged from the discharge nozzle onto the semiconductor substrate to clean the surface of the semiconductor substrate. The cross-sectional observation sample preparation apparatus according to claim 5.
  7.  前記吸引ノズルは、前記半導体基板の表面から離間した状態で前記充填材を吸引することを特徴とする請求項1に記載の断面観察試料作製装置。 2. The cross-sectional observation sample preparation apparatus according to claim 1, wherein the suction nozzle sucks the filler in a state of being separated from the surface of the semiconductor substrate.
  8.  前記支持台を回転させる支持台回転機構を有することを特徴とする請求項1に記載の断面観察試料作製装置。 The cross-sectional observation sample preparation apparatus according to claim 1, further comprising a support base rotation mechanism that rotates the support base.
  9.  中空領域を有する半導体基板の表面に向けてビームを照射して、前記中空領域を露出させる第1の開口部を形成し、
     前記第1の開口部に向けて充填材を吐出して、前記中空領域内に前記充填材を充填し、
     前記半導体基板の温度を制御し、
     前記半導体基板にビームを照射して、前記第1の開口部とは異なる位置で、前記充填材により形成される面を含む加工断面により前記中空領域を露出させる第2の開口部を形成し、
     前記第2の開口部を有する前記半導体基板から前記充填材を除去し、
     前記半導体基板から、前記加工断面を有する断面観察試料を摘出することを特徴とする断面観察試料作製方法。
    Irradiating a beam toward the surface of the semiconductor substrate having a hollow region to form a first opening that exposes the hollow region;
    Discharging the filler toward the first opening, filling the filler in the hollow region,
    Controlling the temperature of the semiconductor substrate;
    Irradiating the semiconductor substrate with a beam to form a second opening that exposes the hollow region by a processing cross section including a surface formed by the filler at a position different from the first opening;
    Removing the filler from the semiconductor substrate having the second opening;
    A method for preparing a cross-sectional observation sample, wherein the cross-sectional observation sample having the processed cross section is extracted from the semiconductor substrate.
  10.  前記半導体基板を加熱して前記充填材を固形化し、
     前記第2の開口部を有する前記半導体基板の前記中空領域に向けて洗浄液を吐出し、固形化した前記充填材を含む前記洗浄液を、前記半導体基板の表面から吸引することを特徴とする請求項9に記載の断面観察試料作製方法。
    Heating the semiconductor substrate to solidify the filler;
    The cleaning liquid is discharged toward the hollow region of the semiconductor substrate having the second opening, and the cleaning liquid containing the solidified filler is sucked from the surface of the semiconductor substrate. 9. The method for preparing a cross-sectional observation sample according to 9.
  11.  前記充填材は、樹脂材料を含むことを特徴とする請求項9に記載の断面観察試料作製方法。 10. The method for preparing a cross-sectional observation sample according to claim 9, wherein the filler includes a resin material.
  12.  前記洗浄液は、有機溶剤を含むことを特徴とする請求項10に記載の断面観察試料作製方法。 The method for preparing a cross-sectional observation sample according to claim 10, wherein the cleaning liquid contains an organic solvent.
  13.  前記中空領域の体積より多い量の前記充填材を、前記第1の開口部に向けて吐出することを特徴とする請求項9に記載の断面観察試料作製方法。 The method for preparing a cross-sectional observation sample according to claim 9, wherein the filler in an amount larger than the volume of the hollow region is discharged toward the first opening.
  14.  前記第1の開口部を、前記中空領域の下端面より深い位置まで形成することを特徴とする請求項9に記載の断面観察試料作製方法。 10. The method for preparing a cross-sectional observation sample according to claim 9, wherein the first opening is formed to a position deeper than a lower end surface of the hollow region.
  15.  前記第1の開口部は、上面形状をドット状に形成することを特徴とする請求項9に記載の断面観察試料作製方法。 10. The method for preparing a cross-sectional observation sample according to claim 9, wherein the first opening has a top surface formed in a dot shape.
PCT/JP2015/084093 2015-12-04 2015-12-04 Cross-sectional observation sample preparation device and cross-sectional observation sample preparation method WO2017094176A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084093 WO2017094176A1 (en) 2015-12-04 2015-12-04 Cross-sectional observation sample preparation device and cross-sectional observation sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084093 WO2017094176A1 (en) 2015-12-04 2015-12-04 Cross-sectional observation sample preparation device and cross-sectional observation sample preparation method

Publications (1)

Publication Number Publication Date
WO2017094176A1 true WO2017094176A1 (en) 2017-06-08

Family

ID=58796567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084093 WO2017094176A1 (en) 2015-12-04 2015-12-04 Cross-sectional observation sample preparation device and cross-sectional observation sample preparation method

Country Status (1)

Country Link
WO (1) WO2017094176A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264225A (en) * 2000-03-15 2001-09-26 Hitachi Ltd Sample manufacturing method
JP2014092496A (en) * 2012-11-06 2014-05-19 Hitachi High-Technologies Corp Sample observation method using ionic liquid
JP2015501734A (en) * 2011-12-07 2015-01-19 ジョージア・テック・リサーチ・コーポレーション Wafer level capping of MEMS devices suitable for packaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264225A (en) * 2000-03-15 2001-09-26 Hitachi Ltd Sample manufacturing method
JP2015501734A (en) * 2011-12-07 2015-01-19 ジョージア・テック・リサーチ・コーポレーション Wafer level capping of MEMS devices suitable for packaging
JP2014092496A (en) * 2012-11-06 2014-05-19 Hitachi High-Technologies Corp Sample observation method using ionic liquid

Similar Documents

Publication Publication Date Title
JP5954923B2 (en) Gas-assisted laser ablation
JP6304592B2 (en) Substrate processing method and substrate processing apparatus
JP5173142B2 (en) Repetitive circumferential cutting for sample preparation
JP5010875B2 (en) Cleaning device and cleaning method
JP5486708B2 (en) Substrate processing apparatus and substrate processing method
JP4546314B2 (en) Fine structure drying method and apparatus
JP2015500987A (en) High-throughput TEM preparation process and hardware for backside thinning of cross-section observation slices
JP5114252B2 (en) Substrate processing method and substrate processing apparatus
CN107408502B (en) Substrate processing apparatus and substrate processing method
JP6392046B2 (en) Substrate processing equipment
WO2015098655A1 (en) Substrate processing device
WO2017094176A1 (en) Cross-sectional observation sample preparation device and cross-sectional observation sample preparation method
JP2009216534A (en) Thin-film sample preparation method
JP2009238793A (en) Substrate treatment method, and substrate treatment device
JP4583216B2 (en) Substrate processing method
JP2006332215A (en) Method of processing microstructure and apparatus thereof
JP6450024B2 (en) Cleaning device and cleaning method
KR102403789B1 (en) Method for manufacturing bowl and apparatus for treating substrate
JP5297056B2 (en) Substrate processing apparatus and substrate processing method
JP7214306B2 (en) Workpiece processing method
Kim et al. Local etch control for fabricating nanomechanical devices
JP2005277230A (en) Fine structure drying processing method and its device
JP6101023B2 (en) Substrate processing apparatus and substrate processing method
JP2017021006A (en) Dynamic creation of backup fiducials
JP2008124103A (en) Method and device for treating surface of substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP