WO2017093685A1 - Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques - Google Patents

Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques Download PDF

Info

Publication number
WO2017093685A1
WO2017093685A1 PCT/FR2016/053180 FR2016053180W WO2017093685A1 WO 2017093685 A1 WO2017093685 A1 WO 2017093685A1 FR 2016053180 W FR2016053180 W FR 2016053180W WO 2017093685 A1 WO2017093685 A1 WO 2017093685A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
units
dianhydrohexitol
temperature
naphthalenediol
Prior art date
Application number
PCT/FR2016/053180
Other languages
English (en)
Inventor
Nicolas JACQUEL
Gabriel DEGAND
René SAINT-LOUP
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to KR1020187015250A priority Critical patent/KR20180089418A/ko
Priority to CN201680070741.4A priority patent/CN108431078B/zh
Priority to MX2018006685A priority patent/MX2018006685A/es
Priority to EP16819348.0A priority patent/EP3383932A1/fr
Priority to CA3006905A priority patent/CA3006905A1/fr
Priority to US15/781,387 priority patent/US20180362707A1/en
Priority to JP2018528647A priority patent/JP2018536073A/ja
Publication of WO2017093685A1 publication Critical patent/WO2017093685A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/067Wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2250/00Compositions for preparing crystalline polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a thermoplastic polyester free of ethylene glycol units and having a high degree of incorporation of 1,4-3,6-dianhydrohexitol units.
  • the invention also relates to a method of manufacturing said polyester and the use of this polyester for the manufacture of different optical articles.
  • Optical glass and transparent optical resins are used for the manufacture of optical lenses in various optical devices, such as cameras, cameras, telescopes, magnifiers, binoculars or projectors.
  • Transparent optical resins also find an application in the form of an optical film, for example for screens of electronic devices.
  • Optical glass has excellent properties of heat resistance, transparency, dimensional stability and chemical resistance. However, its cost is high and it can not or only very difficult to be processed by molding. Unlike optical glass, a lens made from a transparent optical resin, particularly a thermoplastic transparent resin, has the advantage that it can easily be mass produced by injection molding. Examples of transparent optical resins include polycarbonates and polymethyl methacrylate (PMMA). However, these resins have several defects. The high viscosity of the polycarbonates causes problems in their shaping. In addition, the polycarbonates have limited UV light resistance. With regard to polymethyl methacrylate, it has limitations in optical applications subjected to high temperatures, such as for example projector lenses or screens of electronic devices, because of its low thermal resistance. Thus, there is still to date the need to find new transparent resins with interesting optical properties, can easily be shaped and having a thermal resistance and a high impact resistance.
  • thermoplastic polyesters comprising 1,4: 3,6-dianhydrohexitol units and units of a cyclic diol other than cyclohexanedimethanol units and units 1 , 4: 3,6-dianhydrohexitol.
  • thermoplastic polyester comprising: ⁇ at least one 1,4: 3,6-dianhydrohexitol (A) unit;
  • This polymer may especially be obtained by a particular manufacturing process, comprising in particular a step of introducing into a monomer reactor comprising at least one 1,4: 3,6-dianhydrohexitol (A), at least one cyclic diol (B). other than cyclohexanedimethanol and the 1,4: 3,6-dianhydrohexitols (A) and at least one aromatic dicarboxylic acid (C), said monomers being free of ethylene glycol.
  • This process comprises a polymerization step in the presence of a catalyst system and at a high temperature of said monomers to form the polyester, said step consisting of:
  • a first oligomerization stage during which the reaction mixture is first stirred under inert atmosphere at a temperature ranging from 150 to 250 ° C, preferably from 170 to 240 ° C, more preferably from 180 to
  • 235 ⁇ then brought to a temperature ranging from 230 to 300 ⁇ , preferably from 240 to 290 ° C, more preferably from 245 to 270 ⁇ €;
  • the Applicant has found against all odds that by not using ethylene glycol as the diol monomer, it is possible to obtain new thermoplastic polyesters having a high glass transition temperature. This is explained by the fact that the reaction kinetics of ethylene glycol is much higher than that of 1,4: 3,6-dianhydrohexitol which greatly limits the integration of the latter in the polyester. The resulting polyesters thus have a low degree of integration of 1,4: 3,6-dianhydrohexitol and therefore a relatively low glass transition temperature.
  • the polyester according to the invention Due to the absence of ethylene glycol units, the polyester according to the invention has a high glass transition temperature and can be used in many tools for converting plastics, and in particular be easily converted by molding, especially injection molding. It also has interesting optical properties for manufacturing optical lenses having high refractive indices and an Abbe number (variation of the refractive index with the wavelength) high compared to conventional polyesters. Its high glass transition temperature makes it particularly suitable for applications in the field of optics subjected to high temperatures.
  • the polyesters according to the invention have interesting optical properties, in particular as regards their transmittance, refractive index and Abbe number. They are characterized in fact by a high transparency a high refractive index and Abbe number higher than the usual polyesters.
  • the polyester according to the invention has a high glass transition temperature.
  • it has a glass transition temperature of at least 95 ° C., preferably at least 100%, more preferably at least 1%, and more preferably still at least 120%.
  • the polyester according to the invention has a glass transition temperature ranging from 95% to 155%, preferably from 100% to 150%, more preferably from 1% to 147%. :, more preferably still 120%: to 145%.
  • the glass transition temperature is measured by conventional methods, especially using differential scanning calorimetry (DSC) using a heating rate of 10%: / min.
  • DSC differential scanning calorimetry
  • the polyester according to the invention advantageously has a transmittance greater than 88%, preferably greater than 90%.
  • the polyester according to the invention has a haze of less than 2%, preferably less than 1%.
  • the haze and the transmittance of the sample are measured according to the ASTM D1003 and ASTM D1003-95 methods on a polyester injected part according to the invention.
  • the refractive index of the polyester according to the invention is greater than 1.50, more preferably greater than 1.55. It can be measured on a thick injected part (for example 3mm thick). The refractive index is then measured at 589 nm (D line of sodium).
  • the Abbe number of the polyester according to the invention is preferably greater than 30, more preferably greater than 50.
  • the number of ABBE is calculated according to the formula below from three refractive index measurements taken at 589 nm (nD: sodium D-line), 486 nm (nF: hydrogen F-line) and 656 nm (nC: C line of hydrogen).
  • the polyesters according to the invention have a high impact resistance.
  • the impact strength of the polyester according to the invention measured at ambient temperature is greater than 100 kJ / m 2 for a non-notched test piece and greater than 5 kJ / m 2 for a notched test piece. It can be evaluated using a Charpy shock test according to ISO 179 (Not notched: ISO 179 1 eU, notched: ISO 179 1 e A).
  • the unit (A) is 1, 4: 3,6-dianhydrohexitol.
  • the 1,4: 3,6-dianhydrohexitols have the disadvantage of being secondary diols that are not very reactive in the manufacture of polyesters.
  • 1,4: 3,6-Dianhydrohexitol (A) may be isosorbide, isomannide, isoidide, or a mixture thereof.
  • 1,4: 3,6-dianhydrohexitol (A) is isosorbide.
  • Isosorbide, isomannide and isoidide can be obtained respectively by dehydration of sorbitol, mannitol and iditol.
  • isosorbide it is marketed by the Applicant under the brand name POLYSORB® P.
  • the polyester according to the invention preferably has at least 1%, preferably at least 2%, more preferably at least 5% and even more preferably at least 10% of 1,4-3,6-dianhydrohexitol (A) units. relative to all the diol units present in the polyester.
  • the amount of 1,4-3,6-dianhydrohexitol (A) units in the polyester may be determined by 1 H NMR or by chromatographic analysis of the monomer mixture resulting from methanolysis or complete hydrolysis of the polyester, preferably by 1H NMR.
  • the cyclic diol (B) may be chosen from spiroglycol, tricyclo [5.2.1.0.2.6] decane dimethanol (TCDDM), 2,2,4,4-tetramethyl, 3-cyclobutanediol, tetrahydrofuranedimethanol (THFDM) , furanedimethanol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cycloheptanediol, 1,5-naphthalenediol, naphthalenediol, 1,4-naphthalenediol, 2,3-naphthalenediol, 2-methyl-1,4-naphthalenediol, 1,4-benzylediol, octahydronaphthalene-4,8-diol, dioxane glycol (DOG ), norbornane di
  • the cyclic diol (B) is spiroglycol, tricyclo [5.2.1.02.6] decane dimethanol (TCDDM) or a mixture of these two diols.
  • the polyester according to the invention is free of cyclohexanedimethanol units.
  • the aromatic dicarboxylic acid unit (C) is advantageously chosen from terephthalic acid, 2,5-furan dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, isophthalic acid units and mixtures of two or more of these acidic units.
  • the polyester according to the invention contains only one type of aromatic dicarboxylic acid unit.
  • the polyester of the invention advantageously contains at least one terephthalic acid unit, at least one 2,5-furan dicarboxylic acid unit or at least one 2,6-naphthalene dicarboxylic acid unit or at least one isophthalic acid unit.
  • the polyester according to the invention has a reduced solution viscosity greater than 40 ml / g, preferably greater than 45 ml / g and more preferably greater than 50 ml / g.
  • the reduced viscosity in solution is evaluated using a Ubbelohde capillary viscometer at 35 ° C.
  • the polymer is dissolved beforehand in ortho-chlorophenol at 130 ° with magnetic stirring. For these measurements, the polymer concentration introduced is 5 g / l.
  • the polyester of the invention may for example comprise: ⁇ a molar amount of 1,4-4,6-dianhydrohexitol (A) units ranging from 5 to
  • a molar amount of dicarboxylic acid units (C) ranging from 48 to 52%.
  • the quantities in different units in the polyester may be determined by H NMR or by chromatographic analysis of the monomer mixture resulting from a methanolysis or complete hydrolysis of the polyester, preferably by H.sym.
  • the polyester according to the invention can be semi-crystalline or amorphous.
  • the polyester according to the invention preferably has a crystallization temperature ranging from 175 to 250 ° C, preferably from 190 to 220 ° C eg 195-215 ⁇ C.
  • the polyester according to the invention when it is semi-crystalline, it has a melting point ranging from 210 to 320 ° C., for example from 225 to 310 ° C.
  • the invention also relates to a method of manufacturing the polyester according to the invention. This process comprises:
  • a step of introducing into a monomer reactor comprising at least one 1,4: 3,6-dianhydrohexitol (A), at least one alicyclic diol (B) other than 1,4: 3,6-dianhydrohexitols (A); ) and at least one dicarboxylic acid (C), said monomers being free of ethylene glycol;
  • a step of polymerizing said monomers to form the polyester consisting of:
  • 250.degree. C. advantageously 170.degree. To 240.degree. C., more preferably 180.degree. To 235.degree.
  • a temperature ranging from 230 to 50.degree. C. advantageously from 240 to 290.degree. C., more preferably from 245 to 270.degree . ;
  • a second oligomer condensation step in which the formed oligomers are vacuum stirred at a temperature of 240 to 320 ° C to form the polyester, preferably 275 to 310, more preferably 289 to 310;
  • polyester recovery step If the polyester according to the invention is semi-crystalline, this process may comprise a step of post-condensation in the solid state under vacuum or under a purge of an inert gas such as, for example, nitrogen (N 2 ), and at a temperature of 5 to 30 ° C below the melting point of the polyester.
  • an inert gas such as, for example, nitrogen (N 2 )
  • catalytic system is meant a catalyst or a mixture of catalysts, optionally dispersed or fixed on an inert support.
  • the catalytic system is advantageously chosen from the group consisting of tin derivatives, preferentially tin, titanium, zirconium, germanium, antimony, bismuth, hafnium, magnesium, cerium, zinc , cobalt, iron, manganese, calcium, strontium, sodium, potassium, aluminum, lithium or a mixture of two or more of these catalysts.
  • tin derivatives preferentially tin, titanium, zirconium, germanium, antimony, bismuth, hafnium, magnesium, cerium, zinc , cobalt, iron, manganese, calcium, strontium, sodium, potassium, aluminum, lithium or a mixture of two or more of these catalysts.
  • examples of such compounds may be, for example, those given in EP 1882712 B1 in paragraphs [0090] to [0094].
  • the catalyst is a tin, titanium, germanium, aluminum or antimony derivative, more preferably a tin derivative or a germanium derivative, for example tin dibutyl dioxide or germanium oxide.
  • the catalyst system is used in catalytic amounts usually used for the production of aromatic polyesters.
  • mass quantities it is possible to use from 10 to 500 ppm of catalyst system during the condensation stage of the oligomers, with respect to the amount of monomers introduced.
  • an antioxidant is advantageously used during the polymerization step of the monomers. These antioxidants make it possible to reduce the coloring of the polyester obtained.
  • the antioxidants may be primary and / or secondary antioxidants.
  • the primary antioxidant can be a sterically hindered phenol such as the compounds Hostanox® 0 3, Hostanox® 010, Hostanox® 016, Ultranox® 210, Ultranox®276, Dovernox® 10, Dovernox® 76, Dovernox® 31 14, Irganox® 1010, Irganox® 1076 or a phosphonate such as Irgamod® 195.
  • the secondary antioxidant may be trivalent phosphorus compounds such as Ultranox® 626, Doverphos® S-9228, Hostanox® P-EPQ, or the Irgafos 168. It is also possible to introduce as polymerization additive into the reactor at least one compound capable of limiting spurious etherification reactions, such as sodium acetate, tetramethylammonium hydroxide, or tetraethylammonium hydroxide.
  • the method of the invention comprises a step of recovering the polyester at the end of the polymerization step. The polyester can be recovered by extracting it from the reactor in the form of a melted polymer rod. This ring can be converted into granules using conventional granulation techniques.
  • the subject of the invention is also the polyester obtainable by the process of the invention.
  • the invention also relates to a composition
  • this composition may also comprise at least one additive or at least one additional polymer or at least one mixture thereof.
  • the polyester composition according to the invention may comprise the polymerization additives possibly used during the process. It may also comprise other additives and / or additional polymers which are generally added during a subsequent thermomechanical mixing step.
  • charges or fibers of organic or inorganic nature there may be mentioned charges or fibers of organic or inorganic nature, nanometric or non-functional, functionalized or not. It can be silicas, zeolites, fibers or glass beads, clays, mica, titanates, silicates, graphite, calcium carbonate, carbon nanotubes, wood fibers, carbon fibers, polymer fibers, proteins, cellulosic fibers, lignocellulosic fibers and non-destructured granular starch. These fillers or fibers can improve the hardness, rigidity or permeability to water or gases.
  • the composition may comprise from 0.1 to 75% by weight filler and / or fibers relative to the total weight of the composition, for example from 0.5 to 50%.
  • the additive useful for the composition according to the invention may also comprise opacifying agents, dyes and pigments. They can be chosen from cobalt acetate and the following compounds: HS-325 Sandoplasl® RED BB (which is a compound carrying an azo function also known as Solvent Red 195), HS-510 Sandoplasl® Blue 2B which is an anthraquinone, Polysynthren® Blue R, and Clariant® RSB Violet.
  • the composition may also include as an additive a process agent, or processing aid, to reduce the pressure in the processing tool.
  • a release agent to reduce adhesion to polyester forming materials, such as molds or calender rolls can also be used.
  • These agents can be selected from esters and fatty acid amides, metal salts, soaps, paraffins or hydrocarbon waxes. Specific examples of these agents are zinc stearate, calcium stearate, aluminum stearate, stearamides, erucamides, behenamides, beeswax or candelilla waxes.
  • composition according to the invention may also comprise other additives such as stabilizing agents, for example light stabilizing agents, UV stabilizing agents and heat stabilizing agents, fluidifying agents, flame retardants and antistatic agents.
  • stabilizing agents for example light stabilizing agents, UV stabilizing agents and heat stabilizing agents, fluidifying agents, flame retardants and antistatic agents.
  • the composition may further comprise an additional polymer, different from the polyester according to the invention.
  • This polymer may be chosen from polyamides, polyesters other than the polyester according to the invention, polystyrene, styrene copolymers, styrene-acrylonitrile copolymers, styrene-acrylonitrile-butadiene copolymers, polymethyl methacrylates and acrylic copolymers.
  • the composition may also comprise, as additional polymer, a polymer making it possible to improve the impact properties of the polymer, in particular functional polyolefins such as functionalized ethylene or propylene polymers and copolymers, core-shell copolymers or block copolymers.
  • the composition according to the invention may also comprise polymers of natural origin, such as starch, cellulose, chitosans, alginates, proteins such as gluten, pea proteins, casein, collagen, gelatin, lignin, these polymers of natural origin may or may not be physically or chemically modified.
  • the starch can be used in destructured or plasticized form.
  • the plasticizer may be water or a polyol, in particular glycerol, polyglycerol, isosorbide, sorbitans, sorbitol, mannitol or else urea.
  • the composition according to the invention can be manufactured by conventional methods of blending thermoplastics. These conventional methods include at least one step of melt blending or softening of the polymers and a step of recovering the composition. This method can be carried out in internal mixers with blades or rotors, external mixers, co-rotating or counter-rotating twin screw extruders. However, it is preferred to carry out this mixture by extrusion, in particular by using a co-rotating extruder.
  • the mixture of the constituents of the composition can be carried out under an inert atmosphere.
  • the various constituents of the composition can be introduced by means of introducing hoppers located along the extruder.
  • the invention also relates to the use of the polyester or the composition in the field of optical articles, in particular for the manufacture of optical lenses or optical films. It can also be used for the manufacture of multilayer articles.
  • the invention also relates to a plastic article, finished or semi-finished, comprising the polyester or the composition according to the invention.
  • This article can be of any type and be obtained using conventional transformation techniques. It may be for example an optical article, that is to say an article requiring good optical properties such as lenses, disks, transparent or translucent panels, light-emitting diode (LED) components, optical fibers, films for LCD screens or windows. Thanks to the high glass transition temperature of the polyester according to the invention, the optical articles have the advantage of being able to be placed near sources of light and therefore of heat, while maintaining excellent dimensional stability and good resistance to light. light.
  • LED light-emitting diode
  • the article according to the invention may also be a multilayer article, at least one layer of which comprises the polymer or the composition according to the invention.
  • These articles can be manufactured by a process comprising a coextrusion step in the case where the materials of the different layers are brought into contact in the molten state.
  • tube coextrusion techniques coextrusion of profiles
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blowmolding”
  • coextrusion blow molding in English "blow
  • They can also be manufactured by a process comprising a step of applying a polyester layer in the molten state to a layer based on organic polymer, metal or adhesive composition in the solid state. This step may be carried out by pressing, overmolding, lamination or lamination, extrusion-rolling, coating, extrusion-coating or coating.
  • the article according to the invention can also be a fiber, a wire or a filament.
  • the filaments can be obtained by various processes such as wet spinning, dry spinning, melt spinning, spinning a gel (spinning or dry-wet spinning gel). or electrospinning. Filaments obtained by spinning can also be stretched or oriented.
  • the filaments can be cut into short fibers, which allows these fibers to be mixed with other fibers to create blends and obtain a yarn.
  • Yarns or filaments can also be woven for the manufacture of clothing fabrics, carpets, curtains, draperies, linens, wall coverings, boat sails, upholstery fabrics or straps. or seat belts.
  • the yarns, fibers or filaments can also be used in technical applications as reinforcements such as in pipes, power belts, tires, or as reinforcement in any other polymer matrix.
  • the yarns, fibers or filaments can also be assembled in the form of nonwovens (eg felts), in the form of ropes, or knitted in the form of nets.
  • nonwovens eg felts
  • ropes eg ropes
  • knitted in the form of nets eg.
  • the thermal properties of the polyesters were measured by differential scanning calorimetry (DSC): the sample is first heated under a nitrogen atmosphere in an open crucible of 10 to 320%: (1 ⁇ m-1), cooled to 10%: (10%: min-1) then heated to 320%: under the same conditions as the first stage.
  • the glass transition temperatures were taken at the midpoint of the second heating.
  • the possible crystallization temperatures are determined on the exothermic peak (onset of the peak).
  • the possible melting temperatures are determined on the endothermic peak (onset of the peak) in the second heating. In the same way the determination of the enthalpy of fusion (area under the curve) is carried out at the second heating.
  • the reduced viscosity in solution is evaluated using a 35% Ubbelohde capillary viscometer.
  • the polymer is previously dissolved in 130% orthochlorophenol: with magnetic stirring.
  • the polymer concentration introduced is 5 g / l.
  • the isosorbide content of the final polyester was determined by 1 H NMR by integrating the signals relating to each pattern of the polyester. For the illustrative examples presented below the following reagents were used:
  • the polymer obtained is a semi-crystalline material whose glass transition is 130, a crystallization temperature of 200 ° C., a melting point of 281 ° C. and a reduced viscosity of 63.8 ml / g (concentration at 5 g / l). in 2-chlorophenol at 35 °).
  • Analysis of the final polyester by NMR shows that 5% of Isosorbide (relative to the diols) were introduced into the polymer chains.
  • Example 1a
  • the polyester of Example 1 is used in a post-condensation step in the solid state.
  • the polymer is crystallized for 2 hours in a vacuum oven at 190.
  • the crystallized polymer is then introduced into an oil bath rotavapor equipped with a fluted balloon.
  • the granules are then subjected to a temperature of 270 q C and a nitrogen flow of 3.3 L / min.
  • the polymer will have a reduced solution viscosity of 105.8 ml / g.
  • the polymer obtained is an amorphous material whose glass transition is ⁇ 49 ° C and the reduced viscosity of 54.9 ml / g (concentration at 5 g / l in 2-chlorophenol 35 ⁇ ).
  • Analysis of the final polyester by NMR shows that 27% of Isosorbide (relative to the diols) were introduced into the polymer chains.
  • the polymer obtained is a semi-crystalline material whose glass transition is 169, a crystallization temperature of 210 ° C., a melting temperature of 292 ° C. and a reduced viscosity of 49.4 ml / g (concentration at 5 g / l in 2-chlorophenol at 35 °).
  • Analysis of the final polyester by NMR shows that 17% of Isosorbide (relative to the diols) were introduced into the polymer chains.
  • the polyester of Example 3 is used in a post-condensation step in the solid state.
  • the polymer is crystallized for 2 hours in a vacuum oven at 190.
  • the crystallized polymer is then introduced into an oil bath rotavapor equipped with a fluted balloon.
  • the granules are then subjected to a temperature of 270 ° C. and a nitrogen flow of 3.3 L / min. After 28 hours of post condensation, the polymer will have a reduced solution viscosity of 78.2 ml / g.
  • the obtained polymer is an amorphous material whose glass transition is ⁇ 9 ° C, and a reduced viscosity of 58.4 ml / g (concentration at 5 g / l in 2-chlorophenol at 35 ° C).
  • Analysis of the final polyester by NMR shows that 1 1% of Isosorbide (relative to the diols) were introduced into the polymer chains.
  • the polymer obtained is an amorphous material whose glass transition is 135%, and a reduced viscosity of 51.3 ml / g (concentration at 5 g / l in 2-chlorophenol at 35%).
  • Analysis of the final polyester by NMR shows that 27% of Isosorbide (relative to the diols) were introduced into the polymer chains.

Abstract

L'invention concerne un polyester thermoplastique comprenant : − au moins un motif 1,4 : 3,6-dianhydrohexitol (A); − au moins un motif diol cyclique (B) autre que des motifs cyclohexanediméthanol et les motifs 1,4 : 3,6-dianhydrohexitol (A); − au moins un motif diacide carboxylique aromatique (C); ledit polyester étant exempt de motifs éthylène glycol, sa fabrication et son utilisation.

Description

COPOLYESTERS THERMOPLASTIQUES AROMATIQUES COMPRENANT DU 1 ,4 : 3,6- DIANHYDROHEXITOL ET DIVERS DIOLS CYCLIQUES
Domaine de l'invention
La présente invention se rapporte à un polyester thermoplastique exempt de motifs éthylène glycol et présentant un taux d'incorporation élevé de motifs 1 ,4 : 3,6- dianhydrohexitol. L'invention a également pour objet un procédé de fabrication dudit polyester et l'utilisation de ce polyester pour la fabrication de différents articles optiques.
Arrière-plan technologique de l'invention
Le verre optique et les résines optiques transparentes sont utilisés pour la fabrication de lentilles optiques dans divers appareils optiques, comme par exemple des appareils photos, caméras, téléscopes, loupes, binoculaires ou des projecteurs. Les résines optiques transparentes trouvent également une application sous forme de film optique, par exemple pour les écrans d'appareils électroniques.
Le verre optique présente d'excellentes propriétés de résistance thermique, transparence, stabilité dimensionnelle et résistance chimique. Toutefois, son prix de revient est élevé et il ne peut pas ou seulement très difficilement être transformé par moulage. Contrairement au verre optique, une lentille fabriquée à partir d'une résine optique transparente, en particulier une résine transparente thermoplastique, présente l'avantage qu'elle peut être facilement produite en masse par injection-moulage. Des exemples de résines optiques transparentes comprennent notamment les polycarbonates et le polyméthylméthacrylate (PMMA). Toutefois, ces résines présentent plusieurs défauts. La viscosité élevée des polycarbonates pose des problèmes au niveau de leur mise en forme. De plus, les polycarbonates ont une tenue aux rayons UV limitée. En ce qui concerne le polyméthylméthacrylate, il a des limites dans les applications optiques soumises à des températures élevées, comme par exemple les lentilles de projecteurs ou les écrans d'appareils électroniques, en raison de sa faible résistance thermique. Ainsi, il existe encore à ce jour le besoin de trouver de nouvelles résines transparentes ayant des propriétés optiques intéressantes, pouvant facilement être mises en forme et ayant une résistance thermique ainsi qu'une résistance aux chocs élevée.
Il est du mérite de la Demanderesse d'avoir trouvé que cet objectif peut être atteint avec des polyesters thermoplastiques comprenant des motifs 1 ,4 : 3,6-dianhydrohexitol et des motifs d'un diol cyclique autre que des motifs cyclohexanediméthanol et des motifs 1 ,4 : 3,6-dianhydrohexitol.
Résumé de l'invention
L'invention a ainsi pour objet un polyester thermoplastique comprenant : · au moins un motif 1 ,4 : 3,6-dianhydrohexitol (A) ;
• au moins un motif diol cyclique (B) autre que des motifs cyclohexanediméthanol et les motifs 1 ,4 : 3,6-dianhydrohexitol (A) ;
• au moins un motif diacide carboxylique aromatique (C) ; ledit polyester étant exempt de motifs éthylène glycol. Ce polymère peut notamment être obtenu par un procédé de fabrication particulier, comprenant notamment une étape d'introduction dans un réacteur de monomères comprenant au moins un 1 ,4 : 3,6-dianhydrohexitol (A), au moins un diol cyclique (B) autre que du cyclohexanediméthanol et les 1 ,4 : 3,6-dianhydrohexitols (A) et au moins un diacide carboxylique aromatique (C), lesdits monomères étant exempts d'éthylène glycol. Ce procédé comprend une étape de polymérisation en présence d'un système catalytique et à une température élevée desdits monomères pour former le polyester, ladite étape consistant en :
un premier stade d'oligomérisation pendant lequel le milieu réactionnel est d'abord agité sous atmosphère inerte à une température allant de 150 à 250 °C, avantageusement de 170 à 240 °C, plus avantageusement de 180 à
235^, puis porté à une température allant de 230 à 300^, avantageusement allant de 240 à 290 °C, plus avantageusement de 245 à 270 <€;
un second stade de condensation des oligomères pendant lequel les oligomères formés sont agités sous vide à une température allant de 240 à 320 °C afin de former le polyester, avantageusement de 275 à 310^, plus avantageusement de 289 à 310 ; et
une étape de récupération du polyester.
La Demanderesse a constaté contre toute attente qu'en ne mettant pas en œuvre de l'éthylène glycol comme monomère diol, il est possible d'obtenir de nouveaux polyesters thermoplastiques présentant une température de transition vitreuse élevée. Ceci s'expliquerait par le fait que la cinétique de réaction de l'éthylène glycol est beaucoup plus élevée que celle du 1 ,4 : 3,6-dianhydrohexitol ce qui limite fortement l'intégration de ce dernier dans le polyester. Les polyesters en résultant présentent donc un faible taux d'intégration de 1 ,4 : 3,6-dianhydrohexitol et par conséquent une température de transition vitreuse relativement basse.
Grâce à l'absence de motifs éthylène glycol, le polyester selon l'invention présente une température de transition vitreuse élevée et peut être utilisé dans de nombreux outils de transformation des matières plastiques, et notamment être transformés aisément par moulage, notamment moulage par injection. Il présente en outre des propriétés optiques intéressantes permettant de fabriquer des lentilles optiques ayant des indices de réfractions élevés et un nombre d'Abbe (variation de l'indice de réfraction avec la longueur d'onde) élevé par rapport aux polyesters usuels. Sa température de transition vitreuse élevée le rend par ailleurs particulièrement adapté pour des applications dans le domaine de l'optique soumises à des températures élevées. De plus, les polyesters selon l'invention présentent des propriétés optiques intéressantes, notamment en ce qui concerne leurs transmittance, indice de réfraction et nombre d'Abbe. Ils se caractérisent en effet par une transparence élevée un indice de réfraction élevé et un nombre d'Abbe plus élevé que les polyesters usuels.
Description détaillée de l'invention Le polymère objet de l'invention est un polyester thermoplastique comprenant :
• au moins un motif 1 ,4 : 3,6-dianhydrohexitol (A) ;
• au moins un motif diol cyclique (B) autre que des motifs cyclohexanediméthanol et les motifs 1 ,4 : 3,6-dianhydrohexitol (A) ;
« au moins un motif diacide carboxylique aromatique (C) ; ledit polyester étant exempt de motifs éthylène glycol.
Comme expliqué précédemment, le polyester selon l'invention a une température de transition vitreuse élevée. Avantageusement, il a une température de transition vitreuse d'au moins 95°C, de préférence d'au moins 100 :, plus préférentiellement d'au moins 1 10%: et plus préférentiellement encore d'au moins 120%:. Dans un mode de réalisation particulier, le polyester selon l'invention a une température de transition vitreuse allant de 95%: à 155%:, de préférence de 100%: à 150%:, plus préférentiellement de 1 10%: à 147%:, plus préférentiellement encore de 120%: à 145%:.
La température de transition vitreuse est mesurée par les méthodes classiques, notamment en utilisant la calorimétrie différentielle à balayage (DSC) en utilisant une vitesse de chauffe de 10%:/min. Le protocole expérimental est détaillé dans la partie exemples ci-après.
Le polyester selon l'invention présente avantageusement une transmittance supérieure à 88%, de préférence supérieure à 90%. Avantageusement, le polyester selon l'invention présente un haze inférieur à 2%, de préférence inférieur à 1 %.
Le haze et la transmittance de l'échantillon sont mesurés selon les méthodes ASTM D1003 et ASTM D1003-95 sur une pièce injectée en polyester selon l'invention.
De préférence l'indice de réfraction du polyester selon l'invention est supérieur à 1 ,50 plus préférentiellement supérieur à 1 ,55. Il peut être mesuré sur une pièce injectée épaisse (par exemple 3mm d'épaisseur). L'indice de réfraction est ensuite mesuré à 589nm (raie D du sodium). Le nombre de Abbe du polyester selon l'invention est de préférence supérieur à 30 plus préférentiellement supérieure à 50.
Le nombre de ABBE est calculé suivant la formule ci-dessous à partir de trois mesures d'indice de réfraction prises à 589 nm (nD : raie D du sodium), 486 nm (nF : raie F de l'hydrogène) et 656 nm (nC : raie C de l'hydrogène).
Y = ¾D - 1
f-'-F— 'ÏÏQ
Avantageusement, les polyesters selon l'invention présentent une résistance aux chocs élevée. De préférence, la résistance aux chocs du polyester selon l'invention mesurée à température ambiante est supérieure à 100 kJ/m2 pour une éprouvette non entaillée et supérieure à 5 kJ/m2 pour une éprouvette entaillée. Elle peut être évaluée à l'aide d'un test de choc Charpy suivant la norme ISO 179 (Non entaillé : ISO 179 1 eU, Entaillé : ISO 179 1 e A).
Le motif (A) est un 1 ,4 : 3,6-dianhydrohexitol. Comme expliqué précédemment, les 1 ,4 : 3,6-dianhydrohexitols ont l'inconvénient d'être des diols secondaires peu réactifs dans la fabrication de polyesters. Le 1 ,4 : 3,6-dianhydrohexitol (A) peut être l'isosorbide, l'isomannide, l'isoidide, ou un de leurs mélanges. De préférence, le 1 ,4 : 3,6- dianhydrohexitol (A) est l'isosorbide.
L'isosorbide, l'isomannide et l'isoidide peuvent être obtenus respectivement par déshydratation de sorbitol, de mannitol et d'iditol. En ce qui concerne l'isosorbide, il est commercialisé par la Demanderesse sous le nom de marque POLYSORB® P.
Le polyester selon l'invention présente de préférence au moins 1 %, de préférence au moins 2 %, plus préférentiellement au moins 5 % et plus préférentiellement encore au moins 10 % de motifs 1 ,4 : 3,6-dianhydrohexitol (A) par rapport à la totalité des motifs diols présents dans le polyester. La quantité en motifs 1 ,4 : 3,6-dianhydrohexitol (A) dans le polyester peut être déterminée par RMN 1 H ou par analyse chromatographique du mélange de monomères issus d'une méthanolyse ou d'une hydrolyse complète du polyester, de préférence par RMN 1 H.
L'homme de l'art peut aisément trouver les conditions d'analyse pour déterminer la quantité en motifs 1 ,4 : 3,6-dianhydrohexitol (A) du polyester. Par exemple, à partir d'un spectre RMN d'un poly(spiroglycol-co-isosorbide téréphtalate), les déplacements chimiques relatifs au spiroglycol sont compris entre 0,7 et 0,9 ppm, entre 3,1 et 3,6 ppm et entre 4,1 et 4,3 ppm et les déplacements chimiques relatifs à l'isosorbide sont compris entre 4,1 et 5,8 ppm. L'intégration de chaque signal permet de déterminer la quantité relative d'un motif par rapport à la totalité des deux motifs diols.
Le diol cyclique (B) peut être choisi parmi le spiroglycol, le tricyclo[5.2.1 .02,6]décane diméthanol (TCDDM), le 2,2,4,4-tétraméthyM ,3-cyclobutandiol, le tétrahydrofuranedimethanol (THFDM), le furanediméthanol, le 1 ,2-cyclopentanediol, le 1 ,3- cyclopentanediol, le 1 ,2-cyclohexanediol, le 1 ,4-cyclohexanediol, le 1 ,2-cycloheptanediol, 1 ,5-naphtalènediol, le 2,7-naphtalènediol, le 1 ,4-naphtalènediol, le 2,3-naphtalènediol, le 2-méthyl-1 ,4-naphtalènediol, le 1 ,4,-benzylediol, l'octahydronaphtalène-4,8-diol, le dioxane glycol (DOG), les norbornane diols, les adamanthanediols, les pentacyclopentadecane diméthanols.
Dans un mode de réalisation préféré, le diol cyclique (B) est le spiroglycol, le tricyclo[5.2.1.02,6]décane diméthanol (TCDDM) ou un mélange de ces deux diols.
Avantageusement, le polyester selon l'invention est exempt de motifs cyclohexanediméthanol.
Le motif diacide carboxylique aromatique (C) est avantageusement choisi parmi les motifs acide téréphtalique, acide 2,5-furane dicarboxylique, acide 2,6-naphtalène dicarboxylique, acide isophtalique et les mélanges de deux ou plusieurs de ces motifs acides.
Selon un mode de réalisation, le polyester selon l'invention ne contient qu'un type de motif diacide carboxylique aromatique. En d'autres termes, selon ce mode de réalisation, le polyester de l'invention contient avantageusement au moins un motif acide téréphtalique, au moins un motif acide 2,5-furane dicarboxylique ou au moins un motif acide 2,6- naphtalène dicarboxylique ou au moins un motif acide isophtalique.
Avantageusement, le polyester selon l'invention présente une viscosité réduite en solution supérieure à 40 mL/g, de préférence supérieure à 45 mL/g et plus préférentiellement supérieure à 50 mL/g. La viscosité réduite en solution est évaluée à l'aide d'un viscosimètre capillaire Ubbelohde à 35 °C. Le polymère est préalablement dissout dans de l'orthochlorophenol à 130^ sous agitation magnétique. Pour ces mesures, la concentration de polymère introduite est de 5g/L.
Le polyester de l'invention peut par exemple comprendre : · une quantité molaire de motifs 1 ,4 : 3,6-dianhydrohexitol (A) allant de 5 à
45 %;
• une quantité molaire de motifs diol cyclique (B) autre que des motifs cyclohexanediméthanol et les motifs 1 ,4 : 3,6-dianhydrohexitol (A) allant de 3 à 47% ;
· une quantité molaire de motifs diacide carboxylique (C) allant de 48 à 52%.
Les quantités en différents motifs dans le polyester peuvent être déterminées par RMN H ou par analyse chromatographique du mélange de monomères issus d'une méthanolyse ou d'une hydrolyse complète du polyester, de préférence par RMN H.
L'homme de l'art peut aisément trouver les conditions d'analyse pour déterminer les quantités en chacun des motifs du polyester. Par exemple, à partir d'un spectre RMN d'un poly(spiroglycol-co-isosorbide terephtalate), les déplacements chimiques relatifs au spiroglycol sont compris entre 0,7 et 0,9 ppm, entre 3,1 et 3,6 ppm et entre 4,1 et 4,3 ppm, les déplacements chimiques relatifs au cycle téréphtalate sont compris entre 7,8 et 8,4 ppm et les déplacements chimiques relatifs à l'isosorbide sont compris entre 4,1 et 5,8 ppm. L'intégration de chaque signal permet de déterminer la quantité de chaque motif du polyester.
Le polyester selon l'invention peut être semi-cristallin ou amorphe. Lorsque le polyester selon l'invention est semi-cristallin, il présente avantageusement une température de cristallisation allant de 175 à 250 °C, de préférence de 190 à 220 °C par exemple de 195 à 215 <C.
De préférence, lorsque le polyester selon l'invention est semi-cristallin, il présente une température de fusion allant de 210 à 320 °C, par exemple de 225 à 310 °C.
Les températures de cristallisation et de fusion sont mesurées par les méthodes classiques, notamment en utilisant la calorimétrie différentielle à balayage (DSC) en utilisant une vitesse de chauffe de l O /min. Le protocole expérimental est détaillé dans la partie exemples ci-après. L'invention a également pour objet un procédé de fabrication du polyester selon l'invention. Ce procédé comprend :
• une étape d'introduction dans un réacteur de monomères comprenant au moins un 1 ,4 : 3,6-dianhydrohexitol (A), au moins un diol alicyclique (B) autre que les 1 ,4 : 3,6-dianhydrohexitols (A) et au moins un diacide carboxylique (C), lesdits monomères étant exempts d'éthylène glycol ;
• une étape d'introduction dans le réacteur d'un système catalytique ;
• une étape de polymérisation desdits monomères pour former le polyester, ladite étape consistant en :
un premier stade d'oligomérisation pendant lequel le milieu réactionnel est d'abord agité sous atmosphère inerte à une température allant de 150 à
250 °C, avantageusement de 170 à 240 °C, plus avantageusement de 180 à 235^, puis porté à une température allant de 230 à SOO'C, avantageusement allant de 240 à 290 °C, plus avantageusement de 245 à 270 <C;
■ un second stade de condensation des oligomères pendant lequel les oligomères formés sont agités sous vide à une température allant de 240 à 320 °C afin de former le polyester, avantageusement de 275 à 310 , plus avantageusement de 289 à 310 ;
• une étape de récupération du polyester. Si le polyester selon l'invention est semi-cristallin ce procédé peut comprendre une étape de post-condensation à l'état solide sous vide ou sous balayage d'un gaz inerte tel que par exemple de l'azote (N2), et à une température inférieure de 5 à 30 *C au point de fusion du polyester. On entend par système catalytique, un catalyseur ou un mélange de catalyseurs, éventuellement dispersé(s) ou fixé(s) sur un support inerte.
Le système catalytique est avantageusement choisi dans le groupe constitué par les dérivés d'étain, préférentiellement d'étain, de titane, de zirconium, de germanium, d'antimoine, de bismuth, d'hafnium, de magnésium, de cérium, de zinc, de cobalt, de fer, de manganèse, de calcium, de strontium, de sodium, de potassium, d'aluminium, de lithium ou d'un mélange de deux ou plusieurs de ces catalyseurs. Des exemples de tels composés peuvent être par exemple ceux donnés dans le brevet EP 1882712 B1 aux paragraphes [0090] à [0094].
De préférence, le catalyseur est un dérivé d'étain, de titane, de germanium, d'aluminium ou d'antimoine, plus préférentiellement un dérivé d'étain ou un dérivé de germanium, par exemple du dioxyde de dibutyl d'étain ou de l'oxyde de germanium.
Le système catalytique est utilisé dans des quantités catalytiques habituellement utilisées pour la fabrication de polyesters aromatiques. A titre d'exemple de quantités massiques, on peut utiliser de 10 à 500 ppm de système catalytique lors du stade de condensation des oligomères, par rapport à la quantité de monomères introduits.
Selon le procédé de l'invention, on utilise avantageusement un anti-oxydant lors de l'étape de polymérisation des monomères. Ces anti-oxydants permettent de réduire la coloration du polyester obtenu. Les anti-oxydants peuvent être des anti-oxydants primaires et/ou secondaires. L'anti-oxydant primaire peut être un phénol encombré stériquement tels que les composés Hostanox® 0 3, Hostanox® 0 10, Hostanox® 0 16, Ultranox® 210, Ultranox®276, Dovernox® 10, Dovernox® 76, Dovernox® 31 14, Irganox® 1010, Irganox® 1076 ou un phosphonate tel que l'Irgamod® 195. L'anti-oxydant secondaire peut être des composés phosphorés trivalents tels que Ultranox® 626, Doverphos® S-9228, Hostanox® P-EPQ, ou l'Irgafos 168. Il est également possible d'introduire comme additif de polymérisation dans le réacteur au moins un composé susceptible de limiter les réactions parasites d'éthérification, tel que l'acétate de sodium, le tétraméthylammonium hydroxyde, ou le tétraéthylammonium hydroxyde. Le procédé de l'invention comprend une étape de récupération du polyester à l'issue de l'étape de polymérisation. On peut récupérer le polyester en l'extrayant du réacteur sous forme d'un jonc de polymère fondu. Ce jonc peut être transformé en granulés en utilisant les techniques classiques de granulation.
L'invention a également pour objet le polyester susceptible d'être obtenu par le procédé de l'invention.
L'invention porte également sur une composition comprenant le polyester selon l'invention, cette composition pouvant comprendre en outre au moins un additif ou au moins un polymère additionnel ou au moins un mélange de ceux-ci.
La composition de polyester selon l'invention peut comprendre les additifs de polymérisation éventuellement utilisés lors du procédé. Elle peut également comprendre d'autres additifs et/ou polymères additionnels qui sont généralement ajoutés lors d'une étape de mélange thermomécanique ultérieure.
A titre d'exemple d'additif, on peut citer les charges ou les fibres de nature organique ou inorganique, nanométriques ou non, fonctionnalisées ou non. Il peut s'agir de silices, de zéolithes, de fibres ou de billes de verre, d'argiles, de mica, de titanates, de silicates, de graphite, de carbonate de calcium, de nanotubes de carbone, de fibres de bois, de fibres de carbone, de fibres de polymère, de protéines, de fibres cellulosiques, de fibres ligno- cellulosiques et d'amidon granulaire non déstructuré. Ces charges ou fibres peuvent permettre d'améliorer la dureté, la rigidité ou la perméabilité à l'eau ou aux gaz. La composition peut comprendre de 0,1 à 75% en masse charges et/ou fibres par rapport au poids total de la composition, par exemple de 0,5 à 50%. L'additif utile à la composition selon l'invention peut également comprendre des agents opacifiants, des colorants et des pigments. Ils peuvent être choisis parmi l'acétate de cobalt et les composés suivants : HS- 325 Sandoplasl® RED BB (qui est un composé porteur d'une fonction azo également connu sous le nom Solvent Red 195), HS-510 Sandoplasl® Blue 2B qui est une anthraquinone, Polysynthren® Blue R, et Clariant® RSB Violet.
La composition peut également comprendre comme additif un agent de procédé, ou processing aid, pour diminuer la pression dans l'outil de mise en œuvre. Un agent de démoulage permettant de réduire l'adhésion aux matériels de mise en forme du polyester, tels que les moules ou les cylindres de calandreuses peuvent également être utilisés. Ces agents peuvent être sélectionnés parmi les esters et les amides d'acide gras, les sels métalliques, les savons, les paraffines ou les cires hydrocarbonées. Des exemples particuliers de ces agents sont le stéarate de zinc, le stéarate de calcium, le stéarate d'aluminium, les stéaramides, les érucamides, les béhénamides, les cires d'abeille ou de candelilla.
La composition selon l'invention peut comprendre également d'autres additifs tels que les agents stabilisants, par exemple les agents stabilisants lumière, les agents stabilisants UV et les agents stabilisants thermiques, les agents fluidifiants, les agents retardateurs de flamme et les agents antistatiques.
La composition peut comprendre en outre un polymère additionnel, différent du polyester selon l'invention. Ce polymère peut être choisi parmi les polyamides, les polyesters autres que le polyester selon l'invention, le polystyrène, les copolymères de styrène, les copolymères styrène-acrylonitrile, les copolymères styrène-acrylonitrile-butadiène, les polyméthacrylates de méthyle, les copolymères acryliques, les poly(éther-imides), les polyoxydes de phénylène tels que le polyoxyde de (2,6-diméthylphenylène), les polysulfates de phénylène, les poly (ester-carbonates), les polycarbonates, les polysulfones, les polysulfone ethers, les polyéther cétones et les mélanges de ces polymères. La composition peut également comprendre comme polymère additionnel un polymère permettant d'améliorer les propriétés au choc du polymère, notamment les polyoléfines fonctionnelles telles que les polymères et copolymères d'éthylène ou de propylène fonctionnalisés, des copolymères cœur-écorce ou des copolymères à bloc. La composition selon l'invention peut également comprendre des polymères d'origine naturelle, tels que l'amidon, la cellulose, les chitosans, les alginates, les protéines telles que le gluten, les protéines de pois, la caséine, le collagène, la gélatine, la lignine, ces polymères d'origine naturelle pouvant ou non être modifiés physiquement ou chimiquement. L'amidon peut être utilisé sous forme déstructurée ou plastifiée. Dans le dernier cas, le plastifiant peut être de l'eau ou un polyol, notamment le glycérol, le polyglycérol, l'isosorbide, les sorbitans, le sorbitol, le mannitol ou encore de l'urée. Pour préparer la composition, on peut notamment utiliser le procédé décrit dans le document WO 2010/010282 A1 . La composition selon l'invention peut être fabriquée par les méthodes classiques de mélanges des thermoplastiques. Ces méthodes classiques comprennent au moins une étape de mélange à l'état fondu ou ramolli des polymères et une étape de récupération de la composition. On peut réaliser ce procédé dans des mélangeurs internes à pales ou à rotors, des mélangeurs externes, des extrudeuses mono-vis, bi-vis co-rotatives ou contrarotatives. Toutefois, on préfère réaliser ce mélange par extrusion, notamment en utilisant une extrudeuse co-rotative.
Le mélange des constituants de la composition peut se faire sous atmosphère inerte.
Dans le cas d'une extrudeuse, on peut introduire les différents constituants de la composition à l'aide de trémies d'introduction situées le long de l'extrudeuse. L'invention porte également sur l'utilisation du polyester ou de la composition dans le domaine des articles optiques, notamment pour la fabrication de lentilles optiques ou films optiques. Il peut également être utilisé pour la fabrication d'articles multicouches.
L'invention porte également sur un article plastique, fini ou semi-fini, comprenant le polyester ou la composition selon l'invention. Cet article peut être de tout type et être obtenu en utilisant les techniques classiques de transformation. Il peut s'agir par exemple d'un article optique, c'est-à-dire un article nécessitant de bonnes propriétés optiques tels que des lentilles, des disques, des panneaux transparents ou translucides, des composants de diodes électroluminescentes (LED), des fibres optiques, des films pour les écrans LCD ou encore des vitres. Grâce à la température de transition vitreuse élevée du polyester selon l'invention, les articles optiques présentent l'avantage de pouvoir être placés à proximité de sources de lumière et donc de chaleur, tout en conservant une excellente stabilité dimensionnelle et une bonne tenue à la lumière.
L'article selon l'invention peut également être un article multicouche, dont au moins une couche comprend le polymère ou la composition selon l'invention. Ces articles peuvent être fabriqués par un procédé comprenant une étape de co-extrusion dans le cas où les matériaux des différentes couches sont mis en contact à l'état fondu. A titre d'exemple, on peut citer les techniques de co-extrusion de tube, co-extrusion de profilé, de co-extrusion soufflage (en anglais « blowmolding ») de bouteille, de flacon ou de réservoir, généralement regroupés sous le terme de co-extrusion soufflage de corps creux, co- extrusion gonflage appelée également soufflage de gaine (en anglais « film blowing ») et co-extrusion à plat (« en anglais « cast coextrusion »).
Ils peuvent également être fabriqués selon un procédé comprenant une étape d'application d'une couche de polyester à l'état fondu sur une couche à base de polymère organique, de métal ou de composition adhésive à l'état solide. Cette étape peut être réalisée par pressage, par surmoulage, stratification ou laminage (en anglais « lamination »), extrusion-laminage, couchage (en anglais « coating »), extrusion-couchage ou enduction.
L'article selon l'invention peut aussi être une fibre, un fil ou un filament. Les filaments peuvent être obtenus par différents procédés tels que le filage humide (wet spinning en anglais), filage à sec (dry spinning), filage du fondu (melt spinning), filage d'un gel (gel spinning or dry-wet spinning), ou encore électrofilage (electrospinning). Les filaments obtenus par filage peuvent également être étirés ou orientés.
Les filaments, si désiré, peuvent être coupés en fibres courtes, ceci permet de mélanger ces fibres avec d'autres fibres pour créer des mélanges et obtenir un fil. Les fils ou filaments peuvent également être tissés pour la fabrication de tissus pour l'habillement, des tapis, de rideaux, de tentures, des linges de maison, de revêtements muraux, des voiles de bateau, des tissus d'ameublements ou encore de sangles ou ceintures de sécurité. Les fils, fibres ou filaments peuvent égalent être utilisés dans des applications techniques en tant que renforts comme dans des tuyaux, des courroies de puissance, des pneus, ou comme renfort dans toute autre matrice polymère.
Les fils, fibres ou filaments peuvent également être assemblés sous forme de non-tissés (ex : feutres), sous forme de cordes, ou encore tricotés sous forme de filets. L'invention va maintenant être illustrée dans les exemples ci-après. Il est précisé que ces exemples ne limitent en rien la présente invention.
Exemples :
Les propriétés des polymères ont été étudiées avec les techniques suivantes :
Les propriétés thermiques des polyesters ont été mesurées par calorimétrie différentielle à balayage (DSC) : l'échantillon est tout d'abord chauffé sous atmosphère d'azote dans un creuset ouvert de 10 à 320%: (l O .min-l ), refroidi à 10%: (10%:.min-1 ) puis réchauffé à 320%: dans les mêmes conditions que la première étape. Les températures de transition vitreuse ont été prises au point médian (en anglais mid-point) du second chauffage. Les températures de cristallisation éventuelles sont déterminées sur le pic exothermique (début du pic (en anglais, onset)) au refroidissement. Les températures de fusion éventuelles sont déterminées sur le pic endothermique (début du pic (en anglais, onset)) au second chauffage. De même la détermination de l'enthalpie de fusion (aire sous la courbe) est réalisée au second chauffage.
La viscosité réduite en solution est évaluée à l'aide d'un viscosimètre capillaire Ubbelohde à 35%:. Le polymère est préalablement dissout dans de l'orthochlorophenol à 130%: sous agitation magnétique. Pour ces mesures, la concentration de polymère introduite est de 5g/L. La teneur en isosorbide du polyester final a été déterminée par RMN H en intégrant les signaux relatifs à chaque motif du polyester. Pour les exemples illustratifs présentés ci-dessous les réactifs suivants ont été utilisés :
- Ethylène glycol (pureté >99,8%) de Sigma-AIdrich
- Spiroglycol (pureté >97%) de TCI
- Tricyclo[5.2.1 .02,6]décane diméthanol (TCDDM, pureté 96 %) de Sigma-AIdrich - Isosorbide (pureté >99,5%) Polysorb® P de Roquette Frères
- Acide téréphtalique (pureté 99+%) de Accros
- Acide 2,5-furane dicarboxylique (pureté 99,7%)) de Satachem
- Acide isophtalique (pureté 99%) de Sigma-AIdrich
- Acide 2,6-naphtalène dicarboxylique (pureté 99,8%) de BASF
- Dioxyde de germanium (>99,99%) de Sigma Aldrich
- Dioxyde de dibutyl d'étain (pureté 98%) de Sigma Aldrich
Préparation des polyesters : Exemple 1 :
Dans un réacteur sont introduits 25 g de Diméthyltéréphtalate, 2,4 g d'Isosorbide, 67,5 g de Spiroglycol et 20 mg de dioxyde de dibutyl d'étain. Le mélange est agité par agitation mécanique à 150 tr/min et est chauffé à 190 °C en 15 min sous flux d'azote. Toujours sous flux d'azote et agitation mécanique, le milieu réactionnel est ensuite maintenu à 190 pendant 5 minutes avant d'être à nouveau chauffé à 265 < en 10 minutes. Cette température est maintenue pendant 3h. Suite à cela, la température est montée à 300 °C, la pression est réduite en 1 heure à 0,7mbar et la vitesse d'agitation est réduite à 50 tr/min. Ces conditions seront maintenues pendant 3h.
Le polymère obtenu est un matériau semi cristallin dont la transition vitreuse est de 130 , une température de cristallisation de 200 °C, une température de fusion de 281 °C et une viscosité réduite de 63,8 mL/g (concentration à 5g/L dans du 2-chlorophenol à 35^). L'analyse du polyester final par RMN montre que 5 % d'Isosorbide (relatifs aux diols) ont été introduits dans les chaînes de polymère. Exemple 1a :
Le polyester de l'exemple 1 , est utilisé dans une étape de post condensation à l'état solide. Tout d'abord, le polymère est cristallisé pendant 2h en étuve sous vide à 190 . Le polymère cristallisé est ensuite introduit dans un rotavapor à bain d'huile équipé d'un ballon cannelé. Les granulés sont alors soumis à une température de 270qC et un flux d'azote de 3,3 L/min. Après 25h de post condensation, le polymère présentera une viscosité réduite en solution de 105,8mL/g.
Exemple 2 :
Dans un réacteur sont introduits 25 g de Diméthyltéréphtalate, 10,5 g d'Isosorbide, 50,8 g de Spiroglycol et 20 mg de dioxyde de dibutyl d'étain. Le mélange est agité par agitation mécanique à 150 tr/min et est chauffé à 190 °C en 15 min sous flux d'azote. Toujours sous flux d'azote et agitation mécanique, le milieu réactionnel est ensuite maintenu à 190 pendant 5 minutes avant d'être à nouveau chauffé à 265qC en 10 minutes. Cette température est maintenue pendant 4h. Suite à cela, la température est montée à 300 °C, la pression est réduite en 1 heure à 0,7mbar et la vitesse d'agitation est réduite à 50 tr/min. Ces conditions seront maintenues pendant 4h.
Le polymère obtenu est un matériau amorphe dont la transition vitreuse est de ~\ 49°C et la viscosité réduite de 54,9 mL/g (concentration à 5g/L dans du 2-chlorophenol à 35^). L'analyse du polyester final par RMN montre que 27 % d'Isosorbide (relatifs aux diols) ont été introduits dans les chaînes de polymère.
Exemple 3 :
Dans un réacteur sont introduits 25 g d'acide 2,6-naphtalene dicarboxylique, 4,0 g d'Isosorbide, 33,3 g de Spiroglycol et 20 mg de dioxyde de dibutyl d'étain. Le mélange est agité par agitation mécanique à 150 tr/min et est chauffé à 230 °C en 15 min sous flux d'azote. Toujours sous flux d'azote et agitation mécanique, le milieu réactionnel est ensuite maintenu à 230qC pendant 5 minutes avant d'être à nouveau chauffé à 265qC en 10 minutes. Cette température est maintenue pendant 4h.
Suite à cela, la température est montée à 310 , la pression est réduite en 1 heure à 0,7mbar et la vitesse d'agitation est réduite à 50 tr/min. Ces conditions seront maintenues pendant 4h.
Le polymère obtenu est un matériau semi cristallin dont la transition vitreuse est de 169 , une température de cristallisation de 210^, une température de fusion de 292 °C et une viscosité réduite de 49,4 mL/g (concentration à 5g/L dans du 2-chlorophenol à 35^). L'analyse du polyester final par RMN montre que 17 % d'Isosorbide (relatifs aux diols) ont été introduits dans les chaînes de polymère.
Exemple 3a :
Le polyester de l'exemple 3, est utilisé dans une étape de post condensation à l'état solide. Tout d'abord, le polymère est cristallisé pendant 2h en étuve sous vide à 190 . Le polymère cristallisé est ensuite introduit dans un rotavapor à bain d'huile équipé d'un ballon cannelé. Les granulés sont alors soumis à une température de 270^ et un flux d'azote de 3,3 L/min. Après 28h de post condensation, le polymère présentera une viscosité réduite en solution de 78,2mL/g.
Exemple 4 :
Dans un réacteur sont introduits 25 g de diméthyltéréphtalate, 42,2 g de 4,8- Tricyclo[5.2.1 .02,6]décane diméthanol (mélange d'isomères), 4,2 g d'isosobide, et 17.9 mg d'oxyde de dibutyl d'étain. Le mélange est agité par agitation mécanique à 150 tr/min et est chauffé à 190^ en 10 min sous flux d'azote. Toujours sous flux d'azote et agitation mécanique, le milieu réactionnel ensuite maintenu à 190^ pendant 5 minutes avant d'être à nouveau chauffé à 250^ en 20 minutes. Cette température est maintenue 120 minutes. Suite à cela, la température est montée à 280^, la pression est réduite en 30 min à 0,7mbar et la vitesse d'agitation est réduite à 50 tr/min. Ces conditions seront maintenues pendant 3h. Le polymère obtenu est un matériau amorphe dont la transition vitreuse est de ^ ^ 9°C, et une viscosité réduite de 58,4 mL/g (concentration à 5g/L dans du 2-chlorophenol à 35 °C). L'analyse du polyester final par RMN montre que 1 1% d'Isosorbide (relatifs aux diols) ont été introduits dans les chaînes de polymère. Exemple 5 :
Dans un réacteur sont introduits 25 g de diméthyltéréphtalate, 33,5 g de 4,8- Tricyclo[5.2.1 .02,6]décane diméthanol (mélange d'isomères), 10,7 g d'isosobide, et 17.9 mg d'oxyde de dibutyl d'étain. Le mélange est agité par agitation mécanique à 150 tr/min et est chauffé à '\ 90°C en 10 min sous flux d'azote. Toujours sous flux d'azote et agitation mécanique, le milieu réactionnel ensuite maintenu à '\ 90°C pendant 5 minutes avant d'être à nouveau chauffé à 250qC en 20 minutes. Cette température est maintenue 180 minutes.
Suite à cela, la température est montée à 280^, la pression est réduite en 30 min à 0,7mbar et la vitesse d'agitation est réduite à 50 tr/min. Ces conditions seront maintenues pendant 4h30. Le polymère obtenu est un matériau amorphe dont la transition vitreuse est de 135^, et une viscosité réduite de 51 ,3 mL/g (concentration à 5g/L dans du 2-chlorophenol à 35^). L'analyse du polyester final par RMN montre que 27% d'Isosorbide (relatifs aux diols) ont été introduits dans les chaînes de polymère.

Claims

REVENDICATIONS
1. Polyester thermoplastique comprenant :
- au moins un motif 1 ,4 : 3,6-dianhydrohexitol (A) ;
- au moins un motif diol cyclique (B) autre que des motifs cyclohexanediméthanol et les motifs 1 ,4 : 3,6-dianhydrohexitol (A) ;
- au moins un motif diacide carboxylique aromatique (C) ; ledit polyester étant exempt de motifs éthylène glycol.
2. Polyester selon la revendication 1 présentant une température de transition vitreuse d'au moins 95 °C, de préférence d'au moins 100 °C, plus préférentiellement d'au moins 1 10 °C et plus préférentiellement encore d'au moins 120 °C.
3. Polyester selon l'une quelconque des revendications précédentes, dans lequel le 1 ,4 : 3,6-dianhydrohexitol (A) est l'isosorbide.
4. Polyester selon l'une quelconque des revendications 1 ou 2, dans lequel le diol cyclique (B) est choisi parmi le spiroglycol, le tricyclo[5.2.1 .02,6]décane diméthanol (TCDDM), le 2,2,4,4-tétraméthyl-1 ,3-cyclobutandiol, le tétrahydrofuranedimethanol
(THFDM), le furanediméthanol, le 1 ,2-cyclopentanediol, le 1 ,3-cyclopentanediol, le 1 ,2- cyclohexanediol, le 1 ,4-cyclohexanediol, le 1 ,2-cycloheptanediol, 1 ,5-naphtalènediol, le 2,7-naphtalènediol, le 1 ,4-naphtalènediol, le 2,3-naphtalènediol, le 2-méthyl-1 ,4- naphtalènediol, le 1 ,4,-benzylediol, l'octahydronaphtalène-4,8-diol, le dioxane glycol (DOG), les norbornane diols, les adamanthanediols, les pentacyclopentadecane diméthanols.
5. Polyester selon l'une des revendications précédentes, caractérisé en ce qu'il est exempt de motifs cyclohexanediméthanol.
6. Polyester selon l'une quelconque des revendications précédentes, dans lequel le polyester comprend :
- une quantité molaire de motifs 1 ,4 : 3,6-dianhydrohexitol (A) allant de 5 à 45% ; - une quantité molaire de motifs diol cyclique (B) autre que des motifs cyclohexanediméthanol et les motifs 1 ,4 : 3,6-dianhydrohexitol (A) allant de 3 à 47% ;
une quantité molaire de motifs diacide carboxylique (C) allant de 48 à 52%.
7. Polyester selon l'une des revendications précédentes, caractérisé en ce qu'il est amorphe.
8. Polyester selon l'une des revendications 1 à 6, caractérisé en ce qu'il est semi- cristallin.
9. Procédé de fabrication du polyester selon l'une des revendications précédentes, ledit procédé comprenant :
- une étape d'introduction dans un réacteur de monomères comprenant au moins un 1 ,4 : 3,6-dianhydrohexitol (A), au moins un diol alicyclique (B) autre que les 1 ,4 : 3,6-dianhydrohexitols (A) et au moins un diacide carboxylique (C), lesdits monomères étant exempts d'éthylène glycol ;
- une étape d'introduction dans le réacteur d'un système catalytique ;
- une étape de polymérisation desdits monomères pour former le polyester, ladite étape consistant en :
un premier stade d'oligomérisation pendant lequel le milieu réactionnel est d'abord agité sous atmosphère inerte à une température allant de 150 à 250 °C, avantageusement de 170 à 240 °C, plus avantageusement de 180 à
235qC, puis porté à une température allant de 230 à 300^, avantageusement allant de 240 à 290 °C, plus avantageusement de 245 à 270 <€;
un second stade de condensation des oligomères pendant lequel les oligomères formés sont agités sous vide à une température allant de 240 à
320 °C afin de former le polyester, avantageusement de 275 à 310^, plus avantageusement de 289 à 310 ; et;
- une étape de récupération du polyester.
10. Procédé selon la revendication 9, dans lequel le polyester est semi-cristallin et le procédé comprend une étape de post-condensation à l'état solide sous vide ou sous balayage d'un gaz inerte et à une température inférieure de 5 à 30 à la température de fusion du polyester.
1 1 . Polyester susceptible d'être obtenu par le procédé selon la revendication 9 ou 10.
12. Composition de polyester comprenant un polyester selon l'une des revendications 1 à 8 ou 1 1 .
13. Utilisation du polyester l'une des revendications 1 à 8 ou 1 1 ou d'une composition selon la revendication 12, dans le domaine des articles optiques ou des articles plastiques multicouches.
14. Article plastique comprenant un polyester selon l'une des revendications 1 à 8 ou 1 1 ou une composition selon la revendication 12.
PCT/FR2016/053180 2015-12-02 2016-12-02 Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques WO2017093685A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187015250A KR20180089418A (ko) 2015-12-02 2016-12-02 1,4:3,6-디안하이드로헥시톨 및 다양한 사이클릭 디올을 포함하는 방향족 열가소성 코폴리에스테르
CN201680070741.4A CN108431078B (zh) 2015-12-02 2016-12-02 含1,4:3,6-双脱水己糖醇和各种环状二醇的芳香族热塑性共聚酯
MX2018006685A MX2018006685A (es) 2015-12-02 2016-12-02 Copoliesteres termoplasticos aromaticos que comprenden 1,4:3,6-dianhidrohexitol y diversos dioles ciclicos.
EP16819348.0A EP3383932A1 (fr) 2015-12-02 2016-12-02 Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques
CA3006905A CA3006905A1 (fr) 2015-12-02 2016-12-02 Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques
US15/781,387 US20180362707A1 (en) 2015-12-02 2016-12-02 Aromatic thermoplastic copolyesters comprising 1,4:3,6-dianhydrohexitol and various cyclic diols
JP2018528647A JP2018536073A (ja) 2015-12-02 2016-12-02 1,4:3,6−ジアンヒドロヘキシトールと種々の環状ジオールを含む、芳香族熱可塑性コポリエステル

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1561753 2015-12-02
FR1561753A FR3044665A1 (fr) 2015-12-02 2015-12-02 Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques
FR1651205 2016-02-15
FR1651205A FR3044667B1 (fr) 2015-12-02 2016-02-15 Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques

Publications (1)

Publication Number Publication Date
WO2017093685A1 true WO2017093685A1 (fr) 2017-06-08

Family

ID=55650570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/053180 WO2017093685A1 (fr) 2015-12-02 2016-12-02 Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques

Country Status (9)

Country Link
US (1) US20180362707A1 (fr)
EP (1) EP3383932A1 (fr)
JP (1) JP2018536073A (fr)
KR (1) KR20180089418A (fr)
CN (1) CN108431078B (fr)
CA (1) CA3006905A1 (fr)
FR (2) FR3044665A1 (fr)
MX (1) MX2018006685A (fr)
WO (1) WO2017093685A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202918A1 (fr) * 2017-05-05 2018-11-08 Roquette Freres Procede de fabrication d'un materiau composite
WO2020025548A1 (fr) * 2018-08-02 2020-02-06 Alpla Werke Alwin Lehner Gmbh & Co. Kg Préforme en polyester
US11401372B2 (en) 2016-02-04 2022-08-02 Sk Chemicals Co., Ltd. Polyester resin having excellent heat resistance and solubility in solvents, and coating composition containing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478598B1 (ko) * 2019-08-30 2022-12-15 코오롱인더스트리 주식회사 바이오매스 유래 환형 단량체를 포함하는 고분자 화합물 및 그의 제조방법
CN111072940B (zh) * 2019-11-28 2021-09-28 中国科学院宁波材料技术与工程研究所 基于螺环乙二醇的共聚酯及其制备方法、制品
FR3105232B1 (fr) 2019-12-20 2021-12-24 Roquette Freres Procédé de fabrication d’un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d’incorporation dudit motif améliorés
CN111303394A (zh) * 2020-04-20 2020-06-19 河南功能高分子膜材料创新中心有限公司 一种改性耐高温聚酯的制备方法及改性耐高温聚酯
CN111471167B (zh) * 2020-05-12 2022-08-09 河南功能高分子膜材料创新中心有限公司 一种改性耐高温抗水解共聚聚酯

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1322671A (fr) * 1961-05-26 1963-03-29 Atlas Chem Ind Résines de polyesters perfectionnées et leur procédé de préparation
DE19704506A1 (de) * 1997-02-06 1998-08-13 Basf Ag Chiral nematische Polyester
EP0924283A1 (fr) * 1997-12-20 1999-06-23 Clariant GmbH Matériau organique présentant un éclat métallique
WO1999054119A1 (fr) * 1998-04-23 1999-10-28 E.I. Du Pont De Nemours And Company Polyesters contenant de l'isosorbide et procedes de fabrication associes
WO2014100257A2 (fr) * 2012-12-20 2014-06-26 Dow Global Technologies Llc Polyesters à base de ndca fabriqués avec de l'isosorbide
WO2015170050A1 (fr) * 2014-05-09 2015-11-12 Roquette Freres Polyesters aromatiques thermoplastiques comprenant des motifs tétrahydrofuranediméthanol et acide furanedicarboxylique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383003B (zh) * 2005-02-02 2013-01-21 Mitsubishi Gas Chemical Co 聚脂薄膜、及其製法、以及其用途
EP2650317A1 (fr) * 2010-12-10 2013-10-16 Mitsubishi Gas Chemical Company, Inc. Résine polyester et lentille optique
KR101775620B1 (ko) * 2011-04-06 2017-09-07 에스케이케미칼주식회사 코팅용 폴리에스테르 바인더 수지 및 이를 함유하는 코팅 조성물
US10800877B2 (en) * 2011-10-14 2020-10-13 Eastman Chemical Company Polyester compositions containing furandicarboxylic acid or an ester thereof, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1322671A (fr) * 1961-05-26 1963-03-29 Atlas Chem Ind Résines de polyesters perfectionnées et leur procédé de préparation
DE19704506A1 (de) * 1997-02-06 1998-08-13 Basf Ag Chiral nematische Polyester
EP0924283A1 (fr) * 1997-12-20 1999-06-23 Clariant GmbH Matériau organique présentant un éclat métallique
WO1999054119A1 (fr) * 1998-04-23 1999-10-28 E.I. Du Pont De Nemours And Company Polyesters contenant de l'isosorbide et procedes de fabrication associes
WO2014100257A2 (fr) * 2012-12-20 2014-06-26 Dow Global Technologies Llc Polyesters à base de ndca fabriqués avec de l'isosorbide
WO2015170050A1 (fr) * 2014-05-09 2015-11-12 Roquette Freres Polyesters aromatiques thermoplastiques comprenant des motifs tétrahydrofuranediméthanol et acide furanedicarboxylique

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401372B2 (en) 2016-02-04 2022-08-02 Sk Chemicals Co., Ltd. Polyester resin having excellent heat resistance and solubility in solvents, and coating composition containing same
WO2018202918A1 (fr) * 2017-05-05 2018-11-08 Roquette Freres Procede de fabrication d'un materiau composite
FR3065958A1 (fr) * 2017-05-05 2018-11-09 Roquette Freres Procede de fabrication d'un materiau composite
WO2020025548A1 (fr) * 2018-08-02 2020-02-06 Alpla Werke Alwin Lehner Gmbh & Co. Kg Préforme en polyester
CH715228A1 (de) * 2018-08-02 2020-02-14 Alpla Werke Alwin Lehner Gmbh & Co Kg Preform aus Polyester.

Also Published As

Publication number Publication date
CA3006905A1 (fr) 2017-06-08
CN108431078B (zh) 2021-08-06
MX2018006685A (es) 2018-08-24
KR20180089418A (ko) 2018-08-08
FR3044665A1 (fr) 2017-06-09
FR3044667A1 (fr) 2017-06-09
EP3383932A1 (fr) 2018-10-10
US20180362707A1 (en) 2018-12-20
CN108431078A (zh) 2018-08-21
JP2018536073A (ja) 2018-12-06
FR3044667B1 (fr) 2020-02-14

Similar Documents

Publication Publication Date Title
EP3383932A1 (fr) Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques
CA2986103A1 (fr) Polyester de haute viscosite aux proprietes choc ameliorees
EP3383933A1 (fr) Copolyesters thermoplastiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diacides aromatiques
EP3212692A1 (fr) Procédé de fabrication d&#39;un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée
EP3491046B1 (fr) Polyester thermoplastique pour la fabrication d&#39;objet d&#39;impression 3d
EP3694903B1 (fr) Polyester thermoplastique hautement incorpore en motif 1,4 : 3,6-dianhydro-l-iditol
EP3494158B1 (fr) Polyester thermoplastique semi-cristallin pour la fabrication de films bi-orientés
FR3054244B1 (fr) Polyester thermoplastique semi-cristallin pour la fabrication de fibres
EP3493965B1 (fr) Utilisation d&#39;un polyester thermoplastique pour la fabrication de pieces injectees
FR3054551B1 (fr) Composition polymere comprenant un polyester thermoplastique
EP3861050A1 (fr) Procédé de préparation d&#39;un polyester de type poly(1,4:3,6-dianhydrohexitol-cocyclohexylène téréphtalate)
WO2022008096A1 (fr) Polyesier thermoplastique pour la fabrication d&#39;objet d&#39;impression 3d
WO2022008097A1 (fr) Polyester thermoplastique pour la fabrication d&#39;objet d&#39;impression 3d
WO2021123655A1 (fr) Procédé de fabrication d&#39;un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d&#39;incorporation dudit motif améliorés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3006905

Country of ref document: CA

Ref document number: 20187015250

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/006685

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2018528647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016819348

Country of ref document: EP