WO2017092227A1 - 一种充电方法及移动终端 - Google Patents

一种充电方法及移动终端 Download PDF

Info

Publication number
WO2017092227A1
WO2017092227A1 PCT/CN2016/080819 CN2016080819W WO2017092227A1 WO 2017092227 A1 WO2017092227 A1 WO 2017092227A1 CN 2016080819 W CN2016080819 W CN 2016080819W WO 2017092227 A1 WO2017092227 A1 WO 2017092227A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
cutoff voltage
current
battery
initial
Prior art date
Application number
PCT/CN2016/080819
Other languages
English (en)
French (fr)
Inventor
邓南巍
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to US15/561,140 priority Critical patent/US10389155B2/en
Publication of WO2017092227A1 publication Critical patent/WO2017092227A1/zh
Priority to US16/196,436 priority patent/US10283993B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a charging method and a mobile terminal.
  • lithium batteries for power supply.
  • the charging of lithium batteries is generally divided into four processes: trickle charging, pre-charging, constant current charging, and constant voltage charging.
  • the constant current charging process due to the large current charging, the lithium battery can be quickly charged, and the charging time of the lithium battery is saved.
  • the constant voltage charging phase is entered.
  • the safety cut-off voltage is generally set to a fixed value and lower than the safe voltage of the lithium battery.
  • the voltage of the lithium battery measured by the power management chip is often higher than the actual voltage of the lithium battery, resulting in a shorter constant current charging time of the lithium battery and a longer charging time of the constant voltage. This makes the total charging time of the lithium battery longer.
  • Embodiments of the present invention provide a charging method and a mobile terminal, which can shorten the charging time of the battery.
  • a first aspect of the embodiments of the present invention provides a charging method, including:
  • an initial cutoff voltage of the battery and an initial charging current are set, the initial cutoff voltage being greater than a safe cutoff voltage of the battery, and a difference between the initial cutoff voltage and the safe cutoff voltage Less than or equal to the preset voltage difference;
  • the initial cut is gradually lowered And stopping the voltage and the initial charging current until the initial cutoff voltage is less than or equal to the safe cutoff voltage, and performing constant voltage charging on the battery, and the voltage of the constant voltage charging is the safe cutoff voltage.
  • the step of stepping down the initial cutoff voltage and the initial charging current until the initial cutoff voltage is less than or equal to the safe cutoff voltage performing constant voltage charging on the battery, including:
  • the current cutoff voltage is turned down by the first preset value as a new current cutoff voltage, and the current charging current is turned down by the second Determining, as the new current charging current, performing the step of determining whether the current cutoff voltage is greater than the safety cutoff voltage, until the current cutoff voltage is less than or equal to the safe cutoff voltage, performing the battery Constant voltage charging.
  • the method further includes:
  • the step of determining whether the current value of the battery voltage is equal to the initial cutoff voltage is continued.
  • the difference between the initial cutoff voltage and the safety cutoff voltage is The K is a multiple of the first preset value, and the K is a positive integer.
  • the setting an initial cutoff voltage and an initial charging current of the battery includes:
  • a second aspect of the embodiments of the present invention provides a mobile terminal, including:
  • a setting unit configured to set an initial cutoff voltage of the battery and an initial charging current when the battery is subjected to constant current charging, the initial cutoff voltage being greater than a safe cutoff voltage of the battery, and the initial cutoff voltage and the The difference between the safety cutoff voltages is less than or equal to the preset voltage difference;
  • a detecting unit configured to detect a battery voltage of the battery
  • a determining unit configured to determine whether a current value of the battery voltage is equal to the initial cutoff voltage
  • an adjusting unit configured to gradually lower the initial cutoff voltage and the initial charging current when the determining unit determines that the result is YES, until the initial cutoff voltage is less than or equal to the safety cutoff voltage,
  • the battery is subjected to constant voltage charging, and the voltage of the constant voltage charging is the safety cutoff voltage.
  • the adjusting unit includes:
  • a first adjusting subunit configured to lower the initial cutoff voltage by a first preset value as a current cutoff voltage, and lower the initial charging current by a second preset value as a current charging current;
  • a first determining subunit configured to determine whether the current cutoff voltage is greater than the safety cutoff voltage
  • a second determining subunit configured to determine, when the first determining subunit determines that the result is YES, whether the current value of the battery voltage is equal to the current cutoff voltage
  • a second adjusting subunit configured to: when the second determining subunit determines that the result is YES, lower the current cutoff voltage by the first preset value as a new current cutoff voltage, and the current charging current Lowering the second preset value as a new current charging current, triggering the first determining subunit to determine whether the current cutoff voltage is greater than the safety cutoff voltage until the first determining subunit determines the current cutoff voltage When the safety cutoff voltage is less than or equal to, the battery is subjected to constant voltage charging.
  • the determining unit determines that the result is no, the determining unit continues to determine whether the current value of the battery voltage is Equal to the initial cutoff voltage.
  • the difference between the initial cutoff voltage and the safety cutoff voltage is The K is a multiple of the first preset value, and the K is a positive integer.
  • the setting unit includes:
  • a detecting subunit for detecting a safe cutoff voltage of the battery
  • Setting a subunit configured to set an initial cutoff voltage of the battery according to a correspondence between the safety cutoff voltage and an initial cutoff voltage
  • the setting subunit is further configured to set an initial charging current of the battery according to a correspondence between the initial cutoff voltage and an initial charging current.
  • the initial cutoff voltage of the battery when the battery is subjected to constant current charging, the initial cutoff voltage of the battery is set to be greater than the safe cutoff voltage of the battery.
  • the initial cutoff voltage is gradually lowered until the initial cutoff voltage is less than or equal to
  • the battery is charged at a constant voltage.
  • FIG. 1 is a flow chart of a charging method disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing changes in charging current and battery voltage with charging time according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another mobile terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another mobile terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another mobile terminal according to an embodiment of the present invention.
  • Embodiments of the present invention provide a charging method and a mobile terminal, which can shorten the charging time of the battery. The details are described below separately.
  • FIG. 1 is a flowchart of a charging method according to an embodiment of the present invention. As shown in FIG. 1, the charging method described in this embodiment includes the following steps:
  • the initial cutoff voltage is greater than a safe cutoff voltage of the battery, and a difference between the initial cutoff voltage and the safe cutoff voltage is less than or equal to a preset voltage difference.
  • the charging of the battery is generally divided into four processes of trickle charging, pre-charging, constant current charging, and constant voltage charging.
  • trickle charge small current charge
  • the precharge phase is entered, and after the precharge is completed, the constant current charge is entered.
  • the cutoff voltage of the constant current charging is mainly adjusted, which can prolong the constant current charging time, shorten the constant voltage charging time, and further shorten the total charging time.
  • the initial cutoff voltage and the initial charging current of the battery are set, and the initial cutoff voltage is the cutoff voltage set when the battery enters the constant current charging, and the initial cutoff voltage is greater than the safe cutoff voltage of the battery.
  • the safety cut-off voltage is generally less than the safe voltage of the battery.
  • the safe voltage of the battery is determined by the battery material of the battery. For example, depending on the material of the battery, the safe voltage of the battery can be 4.3V, 4.35V, 4.4V, etc. For a battery with a safe voltage of 4.3V, the safe cutoff voltage of the battery is generally set to 4.25V, and the initial cutoff voltage is set to 4.35V.
  • the preset voltage difference can be set to a fixed value, such as 100 millivolts (mV).
  • the safety cut-off voltage is generally set to be less than the safe voltage of the battery of 50 mV.
  • the initial charging current is a constant current charging current, and the initial charging current can be set to 800 milliamps (mA), 1000 milliamps (mA), 1200 milliamps (mA), etc. depending on the battery capacity, in general, the battery The larger the capacity, the initial charging power The bigger the flow.
  • step 101 can include:
  • the safety cutoff voltages of the batteries of different cell materials are different, and the safe cutoff voltage of the battery can be monitored by the charging chip, and the correspondence between the safety cutoff voltage and the initial cutoff voltage can be pre-stored in the mobile terminal, for example.
  • 4.25V (safety cutoff voltage) corresponds to 4.35V (initial cutoff voltage)
  • 4.3V (safety cutoff voltage) corresponds to 4.4V (initial cutoff voltage)
  • 4.35V (safety cutoff voltage) corresponds to 4.45V (initial cutoff voltage) .
  • the correspondence between the initial cutoff voltage and the initial charging current can be stored in advance in the mobile terminal.
  • the safe cutoff voltage of the battery can be detected according to different cell materials, thereby setting the initial cutoff voltage and the initial off current of the battery.
  • the battery voltage of the battery can be detected by the charging chip in the mobile terminal. It should be noted that since the battery has internal resistance during the charging process, the measured battery voltage here includes the voltage of the internal resistance of the battery, so The measured battery voltage is greater than the actual voltage of the battery.
  • step 104 it is determined whether the current value of the battery voltage is equal to the initial cutoff voltage.
  • step 103 when the current value of the battery voltage is not equal to the initial cutoff voltage, proceed to step 103.
  • the initial step when the current value of the battery voltage is equal to the initial cutoff voltage, the initial step is gradually lowered.
  • Starting voltage and initial charging current for example, if the initial cutoff voltage is 4.35V, the safe cutoff voltage is 4.25V, and the initial charging current is 1000mA.
  • the initial cutoff voltage is lowered to 4.34. V, the initial charging current is reduced to 950mA.
  • the initial cutoff voltage is lowered to 4.335V, and the initial charging current is turned down to 925mA.
  • the initial cutoff voltage of the battery is set to be greater than the safe cutoff voltage of the battery.
  • the initial cutoff voltage and the initial charging current are gradually lowered until the initial cutoff voltage is less than or equal to the safety.
  • the battery is subjected to constant voltage charging.
  • step 104 can include:
  • step 1042 Determine whether the current cutoff voltage is greater than the safety cutoff voltage. If yes, go to step 1043. If no, charge the battery with constant voltage.
  • step 1043 Determine whether the current value of the battery voltage is equal to the current cutoff voltage. If yes, go to step 1044. If no, continue to step 1043.
  • the current cutoff voltage is turned down the first preset value as a new current cutoff voltage, and the current charging current is turned down to the second preset value as a new current charging current, and step 1042 is performed until the current cutoff voltage is less than or equal to safety.
  • the battery is charged at a constant voltage.
  • the initial cutoff voltage when the initial cutoff voltage is gradually lowered, the initial cutoff voltage is lowered to the first preset value as the current cutoff voltage, and when the initial charging current is gradually lowered, the initial charging current is lowered to the second preset value as Current charging current.
  • the first preset value may be set to 10 mV, 15 mV, 25 mV, etc.
  • the second preset value may be set to 10 mA, 20 mA, 25 mA, etc., for example, the first preset value may be set to 25 mV, and the second preset value may be Set to 25mA.
  • Steps 1041 to 1044 are described with reference to FIG. 2 .
  • FIG. 2 is a schematic diagram showing changes in charging current and battery voltage with charging time according to an embodiment of the present invention
  • Figure 2 is a diagram (a) and (b) of the prior art, the charging current and battery voltage change with charging time
  • Figure (c) and Figure (d) is A schematic diagram of changes in charging current and battery voltage with charging time in the embodiment of the present invention.
  • Figure (a) is a schematic diagram showing changes in charging current with charging time in the prior art
  • Figure (b) is a schematic diagram showing changes in battery voltage with charging time in the prior art
  • Figure (c) is a charging current charging according to an embodiment of the present invention.
  • (d) is a schematic diagram of the variation of the battery voltage with the charging time in the embodiment of the present invention.
  • the initial cutoff voltage (U 2 in Figure (d)) is 4.35V
  • the safe cutoff voltage (U 1 in Figure (b) and Figure (d)) is 4.25V
  • the initial charging current ( In Fig. (a) and Fig. (c), I 1 ) is 1000 mA.
  • the charging current is 1000 mA (initial charging current) when the battery voltage
  • the current value reaches 4.25V (safety cutoff voltage)
  • the constant voltage charging phase is directly entered.
  • the initial cutoff voltage is set to 4.35V, the battery continues to be charged at 1000 mA.
  • the current value of the battery voltage is equal to the initial cutoff voltage.
  • the initial cutoff voltage (4.35V) is lowered to the first preset value (25mV) as the current cutoff voltage (4.325V).
  • the initial charging current (1000 mA) is turned down to the second preset value (25 mA) as the current charging current (975 mA), and the current off voltage (4.325 V) is judged to be greater than the safe cutoff voltage (4.25 V), and the current value of the battery voltage is determined.
  • Equal to the current cutoff voltage (4.325V) if not, continue to determine the current battery voltage Whether it is equal to the current cutoff voltage.
  • the current cutoff voltage (4.325V) is lowered by the first preset value (25mV) as the new current cutoff voltage (4.3). V)
  • the current charging current (975mA) is turned down to the second preset value (25mA) as the new current charging current (950mA).
  • the battery is charged at 950mA for constant current charging; continue to judge the current cutoff voltage (4.3V) Greater than the safety cutoff voltage (4.25V), determine whether the current value of the battery voltage is equal to the current cutoff voltage (4.3V), and if not, continue to determine whether the current value of the battery voltage is equal to the current cutoff voltage, and if so, the current cutoff voltage (4.3V) ) Lower the first preset value (25mV) as the new current cutoff voltage (4.275V) and lower the current charging current (950mA) to the second preset value (25mA) as the new current charging current (925mA).
  • the battery is charged at 900mA for constant current charging; continue to judge that the current cutoff voltage (4.25V) is equal to the safe cutoff voltage (4.25V).
  • the constant current charging duration is t1 in the prior art, and the constant voltage charging duration is t2.
  • the constant current charging duration is t3, and the constant voltage charging duration is t4, although t3 is greater than T1, but t4 is much smaller than t2.
  • the total charging time (t1+t2) is greater than (t3+t4), and the embodiment of the present invention can shorten the charging time of the battery.
  • the difference between the initial cutoff voltage and the safe cutoff voltage is K times the first predetermined value, and K is a positive integer.
  • the first preset value can be set to 10mV.
  • the difference between the initial cutoff voltage and the safe cutoff voltage is 100mV, the initial cutoff voltage and the safe cutoff voltage. The difference is 10 times the first preset value.
  • the initial cutoff voltage of the battery and the initial charging current are set, the initial cutoff voltage is greater than the safe cutoff voltage of the battery, and the difference between the initial cutoff voltage and the safe cutoff voltage is less than or equal to the pre Set the voltage difference; detect the battery voltage of the battery; determine whether the current value of the battery voltage is equal to the initial cutoff voltage; when the current value of the battery voltage is equal to the initial cutoff voltage, gradually decrease the initial cutoff voltage and the initial charging current until the initial cutoff voltage When the safety cutoff voltage is less than or equal to, the battery is subjected to constant voltage charging, and the voltage of the constant voltage charging is a safe cutoff voltage.
  • setting the initial cutoff voltage of the battery to be greater than the safe cutoff voltage of the battery can prolong the constant current charging time of the battery, thereby shortening the constant voltage charging time of the battery, and shortening the charging time of the battery.
  • FIG. 3 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention.
  • the mobile terminal described in this embodiment includes a setting unit 301, a detecting unit 302, a determining unit 303, and an adjusting unit 304, where:
  • the setting unit 301 is configured to set an initial cutoff voltage and an initial charging current of the battery when the battery is subjected to constant current charging, the initial cutoff voltage is greater than the safe cutoff voltage of the battery, and the difference between the initial cutoff voltage and the safe cutoff voltage is less than or equal to the pre Set the voltage difference.
  • the setting unit 301 may include a detecting subunit 3011 and a setting subunit 3012, where:
  • the detecting subunit 3011 is configured to detect a safe cutoff voltage of the battery
  • the setting subunit 3012 is configured to set an initial cutoff voltage of the battery according to a correspondence between a safety cutoff voltage and an initial cutoff voltage;
  • the setting subunit 3012 is further configured to set an initial charging current of the battery according to a correspondence relationship between the initial cutoff voltage and the initial charging current.
  • the safety cutoff voltages of the batteries of different cell materials are different, and the detecting subunit 3011 can monitor the safe cutoff voltage of the battery through the charging chip, and the correspondence between the safety cutoff voltage and the initial cutoff voltage can be pre-stored in the For mobile terminals, for example, 4.25V (safety cutoff voltage) corresponds to 4.35V (initial cutoff voltage), 4.3V (safety cutoff voltage) corresponds to 4.4V (initial cutoff voltage), and 4.35V (safety cutoff voltage) corresponds to 4.45V ( Initial cutoff voltage).
  • the correspondence between the initial cutoff voltage and the initial charging current can be stored in advance in the mobile terminal.
  • the setting subunit 3012 may set an initial cutoff voltage of the battery according to a correspondence relationship between the safety cutoff voltage and the initial cutoff voltage, and set an initial charging current of the battery according to a correspondence relationship between the initial cutoff voltage and the initial charging current. In the embodiment of the present invention, the setting subunit 3012 can set the initial cutoff voltage and the initial off current of the battery according to the safe cutoff voltage of the battery according to different cell materials.
  • the detecting unit 302 is configured to detect a battery voltage of the battery.
  • the detecting unit 302 can detect the battery voltage of the battery through the charging chip in the mobile terminal. It should be noted that since the battery has internal resistance during the charging process, the measured battery voltage here includes the internal resistance of the battery. The voltage, therefore, the measured battery voltage is greater than the actual voltage of the battery.
  • the determining unit 303 is configured to determine whether the current value of the battery voltage is equal to the initial cutoff voltage.
  • the determining unit 303 determines whether the current value of the battery voltage is equal to the initial cutoff voltage. When the current value of the battery voltage is less than the initial cutoff voltage, the battery is still in the constant current charging phase, and the determining unit 303 continues to determine the current battery voltage. Whether the value is equal to the initial cutoff voltage, when the determining unit 303 determines that the current value of the battery voltage is equal to the initial cutoff voltage, the triggering adjustment unit 304, when the determining unit 303 determines that the current value of the battery voltage is not equal to the initial cutoff voltage, the determining unit 303 continues to determine Electricity Whether the current value of the pool voltage is equal to the initial cutoff voltage.
  • the adjusting unit 304 is configured to gradually lower the initial cutoff voltage and the initial charging current when the determining unit determines that the result is YES, until the initial cutoff voltage is less than or equal to the safe cutoff voltage, and perform constant voltage charging on the battery, and the voltage of the constant voltage charging For safe cut-off voltage.
  • the adjusting unit 304 when the current value of the battery voltage is equal to the initial cutoff voltage, gradually decreases the initial cutoff voltage and the initial charging current. For example, if the initial cutoff voltage is 4.35V, the safety cutoff voltage is 4.25V, and the initial value is 4.25V. The charging current is 1000 mA. When the current value of the battery voltage is equal to 4.35 V, the adjusting unit 304 lowers the initial cutoff voltage to 4.34 V, and reduces the initial charging current to 950 mA. When the current value of the battery voltage is equal to 4.34 V, the adjustment is performed. The unit 304 lowers the initial cutoff voltage to 4.335V and lowers the initial charging current to 925mA.
  • the adjusting unit 304 lowers the initial cutoff voltage to 4.32V, and adjusts the initial charging current. As low as 850mA until the current value of the battery voltage is less than or equal to 4.25V, the battery is subjected to constant voltage charging, and the voltage of constant voltage charging is 4.25V.
  • the setting unit 301 sets the initial cutoff voltage of the battery to be greater than the safe cutoff voltage of the battery. When the current value of the battery voltage is equal to the initial cutoff voltage, the adjusting unit 304 gradually lowers the initial cutoff voltage and the initial charging current until the initial state.
  • the battery When the cutoff voltage is less than or equal to the safe cutoff voltage, the battery is subjected to constant voltage charging.
  • the constant current charging time of the battery can be prolonged, thereby shortening the constant voltage charging time of the battery, and the charging time of the battery can be shortened.
  • the adjusting unit 304 includes a first adjusting subunit 3041, a first determining subunit 3042, a second judging subunit 3043, and a second adjusting subunit 3044, where:
  • the first adjusting sub-unit 3041 is configured to lower the initial cutoff voltage to the first preset value as the current cutoff voltage, and turn the initial charging current to the second preset value as the current charging current;
  • the first determining subunit 3042 is configured to determine whether the current cutoff voltage is greater than a safe cutoff voltage
  • the second determining subunit 3043 is configured to determine, when the first determining subunit determines that the result is YES, whether the current value of the battery voltage is equal to the current cutoff voltage;
  • the second adjusting subunit 3044 is configured to: when the second determining subunit determines that the result is YES, lower the current cutoff voltage by the first preset value as a new current cutoff voltage, and lower the current charging current by a second preset value. As a new current charging current, the first determining subunit is triggered to determine whether the current cutoff voltage is greater than the safe cutoff voltage, until the first determining subunit determines that the current cutoff voltage is less than or equal to the safe cutoff voltage, and the battery is subjected to constant voltage charging.
  • the first adjusting subunit 3041 lowers the initial cutoff voltage to the first preset value as the current cutoff voltage, and when the adjusting unit 304 gradually lowers the initial charging current, The first adjustment subunit 3041 lowers the initial charging current by a second preset value as the current charging current.
  • the first preset value may be set to 10 mV, 15 mV, 25 mV, etc.
  • the second preset value may be set to 10 mA, 20 mA, 25 mA, etc., for example, the first preset value may be set to 25 mV, and the second preset value may be Set to 25mA.
  • Steps 1041 to 1044 are described with reference to FIG. 2 .
  • FIG. 2 is a schematic diagram showing changes in charging current and battery voltage with charging time according to an embodiment of the present invention.
  • FIG. 2 is a diagram of (a) and (b) of the prior art. Schematic diagram of battery voltage variation with charging time.
  • (c) and (d) are schematic diagrams showing changes in charging current and battery voltage with charging time in the embodiment of the present invention. For convenience of explanation, only constant current charging is shown in FIG. Phase and constant voltage charging phase.
  • Figure (a) is a schematic diagram showing changes in charging current with charging time in the prior art
  • Figure (b) is a schematic diagram showing changes in battery voltage with charging time in the prior art
  • Figure (c) is a charging current charging according to an embodiment of the present invention.
  • Schematic diagram of the change of time, and (d) is a schematic diagram of the variation of the battery voltage with the charging time in the embodiment of the present invention.
  • the initial cutoff voltage (U 2 in Figure (d)) is 4.35V
  • the safe cutoff voltage (U 1 in Figure (b) and Figure (d)) is 4.25V
  • the initial charging current ( In Fig. (a) and Fig. (c), I 1 ) is 1000 mA.
  • the charging current is 1000 mA (initial charging current) when the battery voltage
  • the current value reaches 4.25V (safety cutoff voltage)
  • the constant voltage charging phase is directly entered.
  • the initial cutoff voltage is set to 4.35V, the battery continues to be charged at 1000 mA.
  • the first adjustment subunit 3041 lowers the initial cutoff voltage (4.35V) by the first preset value (25mV) as the current The cutoff voltage (4.325V), the initial charging current (1000mA) is lowered to the second preset value (25mA) as the current charging current (975mA), and the first determining subunit 3042 determines that the current cutoff voltage (4.325V) is greater than the safe cutoff voltage.
  • the second determining subunit 3043 determines whether the current value of the battery voltage is equal or not Current cutoff voltage (4.325V), if not, the second determining subunit 3043 continues to determine whether the current value of the battery voltage is equal to the current cutoff voltage. At this time, since the current value of the battery voltage gradually increases with the charging time, if so, the second The adjusting sub-unit 3044 lowers the current cut-off voltage (4.325V) by the first preset value (25mV) as the new current cut-off voltage (4.3V), and lowers the current charging current (975mA) to the second preset value (25mA).
  • the battery As a new current charging current (950 mA), at this time, the battery is subjected to constant current charging at 950 mA; the first judging subunit 3042 continues to judge that the current off voltage (4.3 V) is greater than the safety cutoff voltage (4.25 V), the second judging subunit 3043 determines whether the current value of the battery voltage is equal to the current cutoff voltage (4.3V).
  • the second determining subunit 3043 continues to determine whether the current value of the battery voltage is equal to the current cutoff voltage, and if so, the second adjustment subunit 3044 will be currently up to Voltage (4.3V) turns down the first preset value (25mV) as the new current cutoff voltage (4.275V), and lowers the current charging current (950mA) to the second preset value (25mA) as the new current charging current ( 925mA), at this time, The battery is charged at 925 mA with constant current; the first determining subunit 3042 continues to determine that the current cutoff voltage (4.275 V) is greater than the safe cutoff voltage (4.25 V), and the second determining subunit 3043 determines whether the current value of the battery voltage is equal to the current cutoff voltage ( 4.275V), if not, the second determining subunit 3043 continues to determine whether the current value of the battery voltage is equal to the current cutoff voltage, and if so, the second adjusting subunit 3044 lowers the current cutoff voltage (4.275V)
  • the battery is charged at 900mA for constant current charging.
  • the first judging subunit 3042 continues to judge that the current cutoff voltage (4.25 V) is equal to the safe cutoff voltage (4.25 V), and at this time, enters the constant voltage charging phase.
  • the constant current charging duration is t1 in the prior art, and the constant voltage charging duration is t2.
  • the constant current charging duration is t3, and the constant voltage charging duration is t4, although t3 is greater than T1, but t4 is much smaller than t2.
  • the total charging time (t1+t2) is greater than (t3+t4), and the embodiment of the present invention can shorten the charging time of the battery.
  • the difference between the initial cutoff voltage and the safe cutoff voltage is K times the first predetermined value, and K is a positive integer.
  • the setting unit 301 can set the first preset value to be 10mV.
  • the difference between the initial cutoff voltage and the safe cutoff voltage is 100mV, and the initial cutoff voltage is The difference between the safety cutoff voltages is 10 times the first preset value.
  • the setting unit 301 sets the initial cutoff voltage of the battery and the initial charging current, the initial cutoff voltage is greater than the safe cutoff voltage of the battery, and the difference between the initial cutoff voltage and the safe cutoff voltage is less than Or equal to the preset voltage difference;
  • the detecting unit 302 detects The battery voltage of the battery;
  • the determining unit 303 determines whether the current value of the battery voltage is equal to the initial cutoff voltage; when the current value of the battery voltage is equal to the initial cutoff voltage, the adjusting unit 304 gradually decreases the initial cutoff voltage and the initial charging current until the initial cutoff voltage
  • the safety cutoff voltage is less than or equal to, the battery is subjected to constant voltage charging, and the voltage of the constant voltage charging is a safe cutoff voltage.
  • the unit 301 By setting the unit 301 to set the initial cutoff voltage of the battery to be greater than the safe cutoff voltage of the battery, the constant current charging time of the battery can be prolonged, thereby shortening the constant voltage charging time of the battery, and the charging time of the battery can be shortened.
  • FIG. 6 is a schematic structural diagram of still another mobile terminal according to an embodiment of the present invention.
  • the mobile terminal includes a memory 601 and a processor 602.
  • the number of processors 602 may be one or more.
  • a processor is taken as an example) and a battery 603.
  • the memory 601, the processor 602, and the battery 603 may be connected by a bus or other means, wherein example.
  • the memory 601 is for storing instructions, and the processor 602 calls the instructions stored in the memory 601 to perform the following operations:
  • the processor 602 calls the instructions stored in the memory 601 to perform the following operations:
  • the initial cutoff voltage of the battery 603 and the initial charging current are set, the initial cutoff voltage is greater than the safe cutoff voltage of the battery 603, and the difference between the initial cutoff voltage and the safe cutoff voltage is less than or equal to the preset voltage difference. value;
  • the initial cutoff voltage and the initial charging current are gradually lowered until the initial cutoff voltage is less than or equal to the safe cutoff voltage, and the battery 603 is subjected to constant voltage charging, and the voltage of the constant voltage charging is Safety cut-off voltage.
  • the processor 602 gradually lowers the initial cutoff voltage and the initial charging current until the initial cutoff voltage is less than or equal to the safe cutoff voltage, and performs constant voltage charging on the battery 603, specifically:
  • the current cutoff voltage is lowered first.
  • the preset value is used as a new current cutoff voltage, and the current charging current is turned down to the second preset value as a new current charging current, and the step of determining whether the current cutoff voltage is greater than the safe cutoff voltage is performed until the current cutoff voltage is less than or equal to the safety cutoff.
  • the battery 603 is subjected to constant voltage charging.
  • processor 602 is further configured to:
  • the step of determining whether the current value of the voltage of the battery 603 is equal to the initial cutoff voltage is continued.
  • the difference between the initial cutoff voltage and the safe cutoff voltage is K times the first preset value, and K is a positive integer.
  • the processor 602 sets an initial cutoff voltage and an initial charging current of the battery 603, specifically:
  • the initial charging current of the battery 603 is set in accordance with the correspondence between the initial cutoff voltage and the initial charging current.
  • the constant current charging time of the battery can be prolonged, thereby shortening the constant voltage charging time of the battery, and the charging time of the battery can be shortened.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种充电方法及移动终端,该方法包括:当对电池进行恒流充电时,设置电池的初始截止电压和初始充电电流(101),初始截止电压大于电池的安全截止电压,并且初始截止电压与安全截止电压之差小于或等于预设电压差值;检测电池的电池电压(102);判断电池电压的当前值是否等于初始截止电压(103);当电池电压的当前值等于初始截止电压时,逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电(104),恒压充电的电压为安全截止电压;该充电方法可以缩短电池的充电时间。

Description

一种充电方法及移动终端
本发明要求2015年12月3日递交的发明名称为“一种充电方法及移动终端”的申请号201510884669.6的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及通信技术领域,具体涉及一种充电方法及移动终端。
背景技术
目前,手机、平板电脑等移动终端一般使用锂电池进行供电,锂电池的充电一般分为涓流充电、预充电、恒流充电、恒压充电四个过程。恒流充电过程中,由于采用较大的电流充电,可以快速对锂电池进行充电,节省锂电池的充电时间,当锂电池的电压达到安全截止电压时,进入恒压充电阶段。为了保证锂电池的安全,一般设置安全截止电压为固定值,且低于锂电池的安全电压。然而,在实际充电过程中,由于锂电池有内阻,电源管理芯片测得的锂电池电压往往高于锂电池的实际电压,导致锂电池的恒流充电时间较短,恒压充电时间较长,使得锂电池的总的充电时间较长。
发明内容
本发明实施例提供一种充电方法及移动终端,可以缩短电池的充电时间。
本发明实施例第一方面,提供一种充电方法,包括:
当对电池进行恒流充电时,设置所述电池的初始截止电压和初始充电电流,所述初始截止电压大于所述电池的安全截止电压,并且所述初始截止电压与所述安全截止电压之差小于或等于预设电压差值;
检测所述电池的电池电压;
判断所述电池电压的当前值是否等于所述初始截止电压;
当所述电池电压的当前值等于所述初始截止电压时,逐步调低所述初始截 止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,所述恒压充电的电压为所述安全截止电压。
在本发明实施例第一方面的第一种可能的实现方式中,所述逐步调低所述初始截止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,包括:
将所述初始截止电压调低第一预设值作为当前截止电压,将所述初始充电电流调低第二预设值作为当前充电电流;
判断所述当前截止电压是否大于所述安全截止电压;
当所述当前截止电压大于所述安全截止电压时,判断所述电池电压的当前值是否等于所述当前截止电压;
当所述电池电压的当前值等于所述当前截止电压时,将所述当前截至电压调低所述第一预设值作为新的当前截止电压,将所述当前充电电流调低所述第二预设值作为新的当前充电电流,执行所述判断所述当前截止电压是否大于所述安全截止电压的步骤,直至所述当前截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电。
结合本发明实施例第一方面,在本发明实施例第一方面的第二种可能的实现方式中,所述方法还包括:
当所述电池电压的当前值不等于所述初始截止电压时,继续执行所述判断电池电压的当前值是否等于所述初始截止电压的步骤。
结合本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第一方面的第三种可能的实现方式中,所述初始截止电压与所述安全截止电压之差为所述第一预设值的K倍,所述K为正整数。
结合本发明实施例第一方面或本发明实施例第一方面的第一种至第三种中任一种可能的实现方式,在本发明实施例第一方面的第四种可能的实现方式中,所述设置所述电池的初始截止电压和初始充电电流包括:
检测所述电池的安全截止电压;
根据所述安全截止电压与初始截止电压之间的对应关系设置所述电池的初始截止电压;
根据所述初始截止电压和初始充电电流之间的对应关系设置所述电池的 初始充电电流。
本发明实施例第二方面,提供一种移动终端,包括:
设置单元,用于当对电池进行恒流充电时,设置所述电池的初始截止电压和初始充电电流,所述初始截止电压大于所述电池的安全截止电压,并且所述初始截止电压与所述安全截止电压之差小于或等于预设电压差值;
检测单元,用于检测所述电池的电池电压;
判断单元,用于判断所述电池电压的当前值是否等于所述初始截止电压;
调整单元,用于当所述判断单元判断结果为是时,逐步调低所述初始截止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,所述恒压充电的电压为所述安全截止电压。
在本发明实施例第二方面的第一种可能的实现方式中,所述调整单元包括:
第一调整子单元,用于将所述初始截止电压调低第一预设值作为当前截止电压,将所述初始充电电流调低第二预设值作为当前充电电流;
第一判断子单元,用于判断所述当前截止电压是否大于所述安全截止电压;
第二判断子单元,用于当所述第一判断子单元判断结果为是时,判断所述电池电压的当前值是否等于所述当前截止电压;
第二调整子单元,用于当所述第二判断子单元判断结果为是时,将所述当前截至电压调低所述第一预设值作为新的当前截止电压,将所述当前充电电流调低所述第二预设值作为新的当前充电电流,触发所述第一判断子单元判断所述当前截止电压是否大于所述安全截止电压,直至所述第一判断子单元判断当前截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电。
结合本发明实施例第二方面,在本发明实施例第二方面的第二种可能的实现方式中,当所述判断单元判断结果为否时,所述判断单元继续判断电池电压的当前值是否等于所述初始截止电压。
结合本发明实施例第二方面的第一种可能的实现方式,在本发明实施例第二方面的第三种可能的实现方式中,所述初始截止电压与所述安全截止电压之差为所述第一预设值的K倍,所述K为正整数。
结合本发明实施例第二方面或本发明实施例第二方面的第一种至第三种中任一种可能的实现方式,在本发明实施例第二方面的第四种可能的实现方式中,所述设置单元包括:
检测子单元,用于检测所述电池的安全截止电压;
设置子单元,用于根据所述安全截止电压与初始截止电压之间的对应关系设置所述电池的初始截止电压;
所述设置子单元,还用于根据所述初始截止电压和初始充电电流之间的对应关系设置所述电池的初始充电电流。
本发明实施例中,对电池进行恒流充电时,设置电池的初始截止电压大于电池的安全截止电压,当电池电压达到初始截止电压之后,逐步调低初始截止电压,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电。实施本发明实施例,设置电池的初始截止电压大于电池的安全截止电压,可以延长电池的恒流充电时间,进而缩短电池的恒压充电时间,可以缩短电池的充电时间。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种充电方法的流程图;
图2是本发明实施例公开的充电电流和电池电压随充电时间的变化示意图;
图3是本发明实施例公开的一种移动终端的结构示意图;
图4是本发明实施例公开的另一种移动终端的结构示意图;
图5是本发明实施例公开的另一种移动终端的结构示意图;
图6是本发明实施例公开的又一种移动终端的结构示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明的一部分实施方式,而不是全部实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都应属于本发明保护的范围。
本发明实施例提供一种充电方法及移动终端,可以缩短电池的充电时间。以下分别进行详细说明。
请参阅图1,图1是本发明实施例公开的一种充电方法的流程图。如图1所示,本实施例中所描述的充电方法,包括步骤:
101,当对电池进行恒流充电时,设置电池的初始截止电压和初始充电电流,初始截止电压大于电池的安全截止电压,并且初始截止电压与安全截止电压之差小于或等于预设电压差值。
本发明实施例中,电池的充电一般分为涓流充电、预充电、恒流充电、恒压充电四个过程。当电池电量很低、电池电压的当前值较低时,使用涓流充电(小电流充电),当电池电压的当前值达到一定阈值时,进入预充电阶段,预充电结束后,进入恒流充电(快速充电阶段),当电池电压的当前值达到截止电压时,进入恒压充电,直至电池电量充满。本发明实施例中,主要针对恒流充电的截止电压进行调整,可以延长恒流充电时间,缩短恒压充电时间,进而缩短总的充电时间。
本发明实施例中,当对电池进行恒流充电时,设置电池的初始截止电压和初始充电电流,初始截止电压为电池进入恒流充电时设置的截止电压,初始截止电压大于电池的安全截止电压,安全截止电压一般小于电池的安全电压,电池的安全电压由电池的电芯材料决定,例如,根据电芯材料的不同,电池的安全电压可以为4.3V、4.35V,4.4V等,对于电池的安全电压为4.3V的电芯来说,一般设置电池的安全截止电压为4.25V,设置初始截止电压为4.35V。预设电压差值可以设为固定值,如100毫伏(mV),为了保证恒压充电的安全,安全截止电压一般设置为小于电池的安全电压50mV。初始充电电流为恒流充电的电流,初始充电电流根据电池容量的不同可以设置为800毫安(mA),1000毫安(mA),1200毫安(mA)等等,一般而言,电池的容量越大,初始充电电 流越大。
在一些可行的实施方式中,步骤101可以包括:
1011,检测电池的安全截止电压;
1012,根据安全截止电压与初始截止电压之间的对应关系设置电池的初始截止电压;
1013,根据初始截止电压和初始充电电流之间的对应关系设置电池的初始充电电流。
本发明实施例中,不同电芯材料的电池的安全截止电压不相同,可以通过充电芯片监测电池的安全截止电压,安全截止电压与初始截止电压之间的对应关系可以预先存储在移动终端,举例来说,4.25V(安全截止电压)对应4.35V(初始截止电压),4.3V(安全截止电压)对应4.4V(初始截止电压),4.35V(安全截止电压)对应4.45V(初始截止电压)。初始截止电压和初始充电电流之间的对应关系可以预先存储在移动终端,举例来说,4.35V(初始截止电压)对应1000mA(初始充电电流),4.4V(初始截止电压)对应1100mA(初始充电电流),4.45V(初始截止电压)对应1200mA(初始充电电流)。实施本发明实施例,可以根据不同电芯材料检测电池的安全截止电压,从而设置电池的初始截止电压和初始截止电流。
102,检测电池的电池电压。
本发明实施例中,可以通过移动终端中的充电芯片检测电池的电池电压,需要说明的是,由于在充电过程中电池有内阻,这里的测得的电池电压包括电池内阻的电压,因此,测得的电池电压要大于电池的实际电压。
103,判断电池电压的当前值是否等于初始截止电压。
本发明实施例中,判断电池电压的当前值是否等于初始截止电压,当电池电压的当前值小于初始截止电压时,电池仍处于恒流充电阶段,继续执行步骤103,当电池电压的当前值等于初始截止电压时,执行步骤104。
可选的,当电池电压的当前值不等于初始截止电压时,继续执行步骤103。
104,逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电,恒压充电的电压为安全截止电压。
本发明实施例中,当电池电压的当前值等于初始截止电压时,逐步调低初 始截止电压和初始充电电流,例如,若初始截止电压为4.35V,安全截止电压为4.25V,初始充电电流为1000mA,当电池电压的当前值等于4.35V时,将初始截止电压调低至4.34V,初始充电电流调低至950mA,当电池电压的当前值等于4.34V时,将初始截止电压调低至4.335V,初始充电电流调低至925mA,当电池电压的当前值等于4.335V时,将初始截止电压调低至4.32V,初始充电电流调低至850mA,直至当电池电压的当前值小于或等于4.25V,对电池进行恒压充电,恒压充电的电压为4.25V。本发明实施例中,设置电池的初始截止电压大于电池的安全截止电压,当电池电压的当前值等于初始截止电压时,逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电,实施本发明实施例,可以延长电池的恒流充电时间,进而缩短电池的恒压充电时间,可以缩短电池的充电时间。
在一些可行的实施方式中,步骤104可以包括:
1041,将初始截止电压调低第一预设值作为当前截止电压,将初始充电电流调低第二预设值作为当前充电电流。
1042,判断当前截止电压是否大于安全截止电压,若是,执行步骤1043,若否,对电池进行恒压充电。
1043,判断电池电压的当前值是否等于当前截止电压,若是,执行步骤1044,若否,继续执行步骤1043。
1044,将当前截至电压调低第一预设值作为新的当前截止电压,将当前充电电流调低第二预设值作为新的当前充电电流,执行步骤1042,直至当前截止电压小于或等于安全截止电压时,对电池进行恒压充电。
本发明实施例中,逐步调低初始截止电压时,将初始截止电压调低第一预设值作为当前截止电压,逐步调低初始充电电流时,将初始充电电流调低第二预设值作为当前充电电流。其中,第一预设值可以设为10mV,15mV,25mV等,第二预设值可以设为10mA,20mA,25mA等,例如,第一预设值可以设为25mV,第二预设值可以设为25mA。
下面以第一预设值为25mV,第二预设值为25mA为例,结合图2,对步骤1041~步骤1044进行说明。
图2是本发明实施例公开的充电电流和电池电压随充电时间的变化示意 图,如图2所示,图2是中的图(a)和图(b)为现有技术中的充电电流和电池电压随充电时间的变化示意图,图(c)和图(d)为本发明实施例中的充电电流和电池电压随充电时间的变化示意图,为了方便阐述,图2中仅仅显示了恒流充电阶段和恒压充电阶段。图(a)为现有技术中充电电流随充电时间的变化示意图,图(b)为现有技术中电池电压随充电时间的变化示意图,图(c)为本发明实施例中充电电流随充电时间的变化示意图,图(d)为本发明实施例中电池电压随充电时间的变化示意图。
如图2所示,若初始截止电压(图(d)中的U2)为4.35V,安全截止电压(图(b)和图(d)中的U1)为4.25V,初始充电电流(图(a)和图(c)中的I1)为1000mA,在恒流充电阶段,随着充电时间的增加,电池电压逐渐增加,充电电流均为1000mA(初始充电电流),当电池电压的当前值达到4.25V(安全截止电压)时,在现有技术中,直接进入了恒压充电阶段,在本发明实施例中,由于设置的初始截止电压为4.35V,电池继续以1000mA进行充电,当电池电压的当前值达到4.35V时,电池电压的当前值等于初始截止电压,此时,将初始截止电压(4.35V)调低第一预设值(25mV)作为当前截止电压(4.325V),将初始充电电流(1000mA)调低第二预设值(25mA)作为当前充电电流(975mA),判断当前截止电压(4.325V)大于安全截止电压(4.25V),判断电池电压的当前值是否等于当前截止电压(4.325V),若否,继续判断电池电压的当前值是否等于当前截止电压,此时,由于电池电压的当前值随着充电时间逐渐增加,若是,将当前截至电压(4.325V)调低第一预设值(25mV)作为新的当前截止电压(4.3V),将当前充电电流(975mA)调低第二预设值(25mA)作为新的当前充电电流(950mA),此时,电池以950mA进行恒流充电;继续判断当前截止电压(4.3V)大于安全截止电压(4.25V),判断电池电压的当前值是否等于当前截止电压(4.3V),若否,继续判断电池电压的当前值是否等于当前截止电压,若是,将当前截至电压(4.3V)调低第一预设值(25mV)作为新的当前截止电压(4.275V),将当前充电电流(950mA)调低第二预设值(25mA)作为新的当前充电电流(925mA),此时,电池以925mA进行恒流充电;继续判断当前截止电压(4.275V)大于安全截止电压(4.25V),判断电池电压的当前值是否等于当前截止电压(4.275V),若否,继续判断电池电压的 当前值是否等于当前截止电压,若是,将当前截至电压(4.275V)调低第一预设值(25mV)作为新的当前截止电压(4.25V),将当前充电电流(925mA)调低第二预设值(25mA)作为新的当前充电电流(900mA),此时,电池以900mA进行恒流充电;继续判断当前截止电压(4.25V)等于安全截止电压(4.25V),此时,进入恒压充电阶段。从图2中可以看出,现有技术中的恒流充电时长为t1,恒压充电时长为t2,本发明实施例中的恒流充电时长为t3,恒压充电时长为t4,虽然t3大于t1,但是t4远小于t2,对电池容量相同的电池进行充电时,总充电时长(t1+t2)大于(t3+t4),实施本发明实施例,可以缩短电池的充电时间。
在一些可行的实施方式中,初始截止电压与安全截止电压之差为第一预设值的K倍,K为正整数。
例如,若初始截止电压为4.35V,安全截止电压为4.25V,则可设置第一预设值为10mV,此时,初始截止电压与安全截止电压之差为100mV,初始截止电压与安全截止电压之差为第一预设值的10倍。
本发明实施例中,当对电池进行恒流充电时,设置电池的初始截止电压和初始充电电流,初始截止电压大于电池的安全截止电压,并且初始截止电压与安全截止电压之差小于或等于预设电压差值;检测电池的电池电压;判断电池电压的当前值是否等于初始截止电压;当电池电压的当前值等于初始截止电压时,逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电,恒压充电的电压为安全截止电压。实施本发明实施例,设置电池的初始截止电压大于电池的安全截止电压,可以延长电池的恒流充电时间,进而缩短电池的恒压充电时间,可以缩短电池的充电时间。
请参阅图3,图3是本发明实施例公开的一种移动终端的结构示意图。如图3所示,本实施例中所描述的移动终端,包括设置单元301、检测单元302、判断单元303和调整单元304,其中:
设置单元301,用于当对电池进行恒流充电时,设置电池的初始截止电压和初始充电电流,初始截止电压大于电池的安全截止电压,并且初始截止电压与安全截止电压之差小于或等于预设电压差值。
可选的,如图4所示,设置单元301可以包括检测子单元3011和设置子单元3012,其中:
检测子单元3011,用于检测电池的安全截止电压;
设置子单元3012,用于根据安全截止电压与初始截止电压之间的对应关系设置电池的初始截止电压;
设置子单元3012,还用于根据初始截止电压和初始充电电流之间的对应关系设置电池的初始充电电流。
本发明实施例中,不同电芯材料的电池的安全截止电压不相同,检测子单元3011可以通过充电芯片监测电池的安全截止电压,安全截止电压与初始截止电压之间的对应关系可以预先存储在移动终端,举例来说,4.25V(安全截止电压)对应4.35V(初始截止电压),4.3V(安全截止电压)对应4.4V(初始截止电压),4.35V(安全截止电压)对应4.45V(初始截止电压)。初始截止电压和初始充电电流之间的对应关系可以预先存储在移动终端,举例来说,4.35V(初始截止电压)对应1000mA(初始充电电流),4.4V(初始截止电压)对应1100mA(初始充电电流),4.45V(初始截止电压)对应1200mA(初始充电电流)。设置子单元3012可以根据安全截止电压与初始截止电压之间的对应关系设置电池的初始截止电压,根据初始截止电压和初始充电电流之间的对应关系设置电池的初始充电电流。实施本发明实施例,设置子单元3012可以根据不同电芯材料检测电池的安全截止电压设置电池的初始截止电压和初始截止电流。
检测单元302,用于检测电池的电池电压。
本发明实施例中,检测单元302可以通过移动终端中的充电芯片检测电池的电池电压,需要说明的是,由于在充电过程中电池有内阻,这里的测得的电池电压包括电池内阻的电压,因此,测得的电池电压要大于电池的实际电压。
判断单元303,用于判断电池电压的当前值是否等于初始截止电压。
本发明实施例中,判断单元303判断电池电压的当前值是否等于初始截止电压,当电池电压的当前值小于初始截止电压时,电池仍处于恒流充电阶段,判断单元303继续判断电池电压的当前值是否等于初始截止电压,当判断单元303判断电池电压的当前值等于初始截止电压时,触发调整单元304,当判断单元303判断电池电压的当前值不等于初始截止电压时,判断单元303继续判断电 池电压的当前值是否等于初始截止电压。
调整单元304,用于当判断单元判断结果为是时,逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电,恒压充电的电压为安全截止电压。
本发明实施例中,当电池电压的当前值等于初始截止电压时,调整单元304逐步调低初始截止电压和初始充电电流,例如,若初始截止电压为4.35V,安全截止电压为4.25V,初始充电电流为1000mA,当电池电压的当前值等于4.35V时,调整单元304将初始截止电压调低至4.34V,将初始充电电流调低至950mA,当电池电压的当前值等于4.34V时,调整单元304将初始截止电压调低至4.335V,将初始充电电流调低至925mA,当电池电压的当前值等于4.335V时,调整单元304将初始截止电压调低至4.32V,将初始充电电流调低至850mA,直至当电池电压的当前值小于或等于4.25V,对电池进行恒压充电,恒压充电的电压为4.25V。本发明实施例中,设置单元301设置电池的初始截止电压大于电池的安全截止电压,当电池电压的当前值等于初始截止电压时,调整单元304逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电,实施本发明实施例,可以延长电池的恒流充电时间,进而缩短电池的恒压充电时间,可以缩短电池的充电时间。
可选的,如图5所示,调整单元304包括第一调整子单元3041、第一判断子单元3042、第二判断子单元3043和第二调整子单元3044,其中:
第一调整子单元3041,用于将初始截止电压调低第一预设值作为当前截止电压,将初始充电电流调低第二预设值作为当前充电电流;
第一判断子单元3042,用于判断当前截止电压是否大于安全截止电压;
第二判断子单元3043,用于当第一判断子单元判断结果为是时,判断电池电压的当前值是否等于当前截止电压;
第二调整子单元3044,用于当第二判断子单元判断结果为是时,将当前截至电压调低第一预设值作为新的当前截止电压,将当前充电电流调低第二预设值作为新的当前充电电流,触发第一判断子单元判断当前截止电压是否大于安全截止电压,直至第一判断子单元判断当前截止电压小于或等于安全截止电压时,对电池进行恒压充电。
本发明实施例中,调整单元304逐步调低初始截止电压时,第一调整子单元3041将初始截止电压调低第一预设值作为当前截止电压,调整单元304逐步调低初始充电电流时,第一调整子单元3041将初始充电电流调低第二预设值作为当前充电电流。其中,第一预设值可以设为10mV,15mV,25mV等,第二预设值可以设为10mA,20mA,25mA等,例如,第一预设值可以设为25mV,第二预设值可以设为25mA。
下面以第一预设值为25mV,第二预设值为25mA为例,结合图2,对步骤1041~步骤1044进行说明。
图2是本发明实施例公开的充电电流和电池电压随充电时间的变化示意图,如图2所示,图2是中的图(a)和图(b)为现有技术中的充电电流和电池电压随充电时间的变化示意图,图(c)和图(d)为本发明实施例中的充电电流和电池电压随充电时间的变化示意图,为了方便阐述,图2中仅仅显示了恒流充电阶段和恒压充电阶段。图(a)为现有技术中充电电流随充电时间的变化示意图,图(b)为现有技术中电池电压随充电时间的变化示意图,图(c)为本发明实施例中充电电流随充电时间的变化示意图,图(d)为本发明实施例中电池电压随充电时间的变化示意图。
如图2所示,若初始截止电压(图(d)中的U2)为4.35V,安全截止电压(图(b)和图(d)中的U1)为4.25V,初始充电电流(图(a)和图(c)中的I1)为1000mA,在恒流充电阶段,随着充电时间的增加,电池电压逐渐增加,充电电流均为1000mA(初始充电电流),当电池电压的当前值达到4.25V(安全截止电压)时,在现有技术中,直接进入了恒压充电阶段,在本发明实施例中,由于设置的初始截止电压为4.35V,电池继续以1000mA进行充电,当电池电压的当前值达到4.35V时,电池电压的当前值等于初始截止电压,此时,第一调整子单元3041将初始截止电压(4.35V)调低第一预设值(25mV)作为当前截止电压(4.325V),将初始充电电流(1000mA)调低第二预设值(25mA)作为当前充电电流(975mA),第一判断子单元3042判断当前截止电压(4.325V)大于安全截止电压(4.25V),第二判断子单元3043判断电池电压的当前值是否等于当前截止电压(4.325V),若否,第二判断子单元3043继续判断电池电压的当前值是否等于当前截止电压,此时,由于电池电压的当前值随着充电时间 逐渐增加,若是,第二调整子单元3044将当前截至电压(4.325V)调低第一预设值(25mV)作为新的当前截止电压(4.3V),将当前充电电流(975mA)调低第二预设值(25mA)作为新的当前充电电流(950mA),此时,电池以950mA进行恒流充电;第一判断子单元3042继续判断当前截止电压(4.3V)大于安全截止电压(4.25V),第二判断子单元3043判断电池电压的当前值是否等于当前截止电压(4.3V),若否,第二判断子单元3043继续判断电池电压的当前值是否等于当前截止电压,若是,第二调整子单元3044将当前截至电压(4.3V)调低第一预设值(25mV)作为新的当前截止电压(4.275V),将当前充电电流(950mA)调低第二预设值(25mA)作为新的当前充电电流(925mA),此时,电池以925mA进行恒流充电;第一判断子单元3042继续判断当前截止电压(4.275V)大于安全截止电压(4.25V),第二判断子单元3043判断电池电压的当前值是否等于当前截止电压(4.275V),若否,第二判断子单元3043继续判断电池电压的当前值是否等于当前截止电压,若是,第二调整子单元3044将当前截至电压(4.275V)调低第一预设值(25mV)作为新的当前截止电压(4.25V),将当前充电电流(925mA)调低第二预设值(25mA)作为新的当前充电电流(900mA),此时,电池以900mA进行恒流充电;第一判断子单元3042继续判断当前截止电压(4.25V)等于安全截止电压(4.25V),此时,进入恒压充电阶段。从图2中可以看出,现有技术中的恒流充电时长为t1,恒压充电时长为t2,本发明实施例中的恒流充电时长为t3,恒压充电时长为t4,虽然t3大于t1,但是t4远小于t2,对电池容量相同的电池进行充电时,总充电时长(t1+t2)大于(t3+t4),实施本发明实施例,可以缩短电池的充电时间。
在一些可行的实施方式中,初始截止电压与安全截止电压之差为第一预设值的K倍,K为正整数。
例如,若初始截止电压为4.35V,安全截止电压为4.25V,则设置单元301可设置第一预设值为10mV,此时,初始截止电压与安全截止电压之差为100mV,初始截止电压与安全截止电压之差为第一预设值的10倍。
本发明实施例中,当对电池进行恒流充电时,设置单元301设置电池的初始截止电压和初始充电电流,初始截止电压大于电池的安全截止电压,并且初始截止电压与安全截止电压之差小于或等于预设电压差值;检测单元302检测 电池的电池电压;判断单元303判断电池电压的当前值是否等于初始截止电压;当电池电压的当前值等于初始截止电压时,调整单元304逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池进行恒压充电,恒压充电的电压为安全截止电压。实施本发明实施例,通过设置单元301设置电池的初始截止电压大于电池的安全截止电压,可以延长电池的恒流充电时间,进而缩短电池的恒压充电时间,可以缩短电池的充电时间。
请参阅图6,图6是本发明实施例公开的又一种移动终端的结构示意图,如图6所示,移动终端包括存储器601、处理器602(处理器602的数量可以一个或多个,图6中以一个处理器为例)和电池603,在本发明的一些实施例中,存储器601、处理器602和电池603可通过总线或者其它方式连接,其中,图6中以通过总线连接为例。存储器601用于存储指令,处理器602调用存储在存储器601中的指令执行如下操作:
处理器602调用存储在存储器601中的指令执行如下操作:
当对电池603进行恒流充电时,设置电池603的初始截止电压和初始充电电流,初始截止电压大于电池603的安全截止电压,并且初始截止电压与安全截止电压之差小于或等于预设电压差值;
检测电池603的电池603电压;
判断电池603电压的当前值是否等于初始截止电压;
当电池603电压的当前值等于初始截止电压时,逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池603进行恒压充电,恒压充电的电压为安全截止电压。
可选的,处理器602逐步调低初始截止电压和初始充电电流,直至初始截止电压小于或等于安全截止电压时,对电池603进行恒压充电,具体为:
将初始截止电压调低第一预设值作为当前截止电压,将初始充电电流调低第二预设值作为当前充电电流;
判断当前截止电压是否大于安全截止电压;
当当前截止电压大于安全截止电压时,判断电池603电压的当前值是否等于当前截止电压;
当电池603电压的当前值等于当前截止电压时,将当前截至电压调低第一 预设值作为新的当前截止电压,将当前充电电流调低第二预设值作为新的当前充电电流,执行判断当前截止电压是否大于安全截止电压的步骤,直至当前截止电压小于或等于安全截止电压时,对电池603进行恒压充电。
可选的,处理器602还用于:
当电池603电压的当前值不等于初始截止电压时,继续执行判断电池603电压的当前值是否等于初始截止电压的步骤。
可选的,初始截止电压与安全截止电压之差为第一预设值的K倍,K为正整数。
可选的,处理器602设置电池603的初始截止电压和初始充电电流,具体为:
检测电池603的安全截止电压;
根据安全截止电压与初始截止电压之间的对应关系设置电池603的初始截止电压;
根据初始截止电压和初始充电电流之间的对应关系设置电池603的初始充电电流。
实施图6所描述的移动终端,可以延长电池的恒流充电时间,进而缩短电池的恒压充电时间,可以缩短电池的充电时间。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种充电方法及移动终端进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种充电方法,其特征在于,包括:
    当对电池进行恒流充电时,设置所述电池的初始截止电压和初始充电电流,所述初始截止电压大于所述电池的安全截止电压,并且所述初始截止电压与所述安全截止电压之差小于或等于预设电压差值;
    检测所述电池的电池电压;
    判断所述电池电压的当前值是否等于所述初始截止电压;
    当所述电池电压的当前值等于所述初始截止电压时,逐步调低所述初始截止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,所述恒压充电的电压为所述安全截止电压。
  2. 根据权利要求1所述的方法,其特征在于,所述逐步调低所述初始截止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,包括:
    将所述初始截止电压调低第一预设值作为当前截止电压,将所述初始充电电流调低第二预设值作为当前充电电流;
    判断所述当前截止电压是否大于所述安全截止电压;
    当所述当前截止电压大于所述安全截止电压时,判断所述电池电压的当前值是否等于所述当前截止电压;
    当所述电池电压的当前值等于所述当前截止电压时,将所述当前截至电压调低所述第一预设值作为新的当前截止电压,将所述当前充电电流调低所述第二预设值作为新的当前充电电流,执行所述判断所述当前截止电压是否大于所述安全截止电压的步骤,直至所述当前截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述电池电压的当前值不等于所述初始截止电压时,继续执行所述判断电池电压的当前值是否等于所述初始截止电压的步骤。
  4. 根据权利要求2所述的方法,其特征在于,所述初始截止电压与所述安全截止电压之差为所述第一预设值的K倍,所述K为正整数。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述设置所述电池的初始截止电压和初始充电电流包括:
    检测所述电池的安全截止电压;
    根据所述安全截止电压与初始截止电压之间的对应关系设置所述电池的初始截止电压;
    根据所述初始截止电压和初始充电电流之间的对应关系设置所述电池的初始充电电流。
  6. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述电池电压的当前值不等于所述当前截止电压时,执行所述判断所述电池电压的当前值是否等于所述当前截止电压的步骤。
  7. 一种移动终端,其特征在于,包括:
    设置单元,用于当对电池进行恒流充电时,设置所述电池的初始截止电压和初始充电电流,所述初始截止电压大于所述电池的安全截止电压,并且所述初始截止电压与所述安全截止电压之差小于或等于预设电压差值;
    检测单元,用于检测所述电池的电池电压;
    判断单元,用于判断所述电池电压的当前值是否等于所述初始截止电压;
    调整单元,用于当所述判断单元判断结果为是时,逐步调低所述初始截止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,所述恒压充电的电压为所述安全截止电压。
  8. 根据权利要求7所述的移动终端,其特征在于,所述调整单元包括:
    第一调整子单元,用于将所述初始截止电压调低第一预设值作为当前截止电压,将所述初始充电电流调低第二预设值作为当前充电电流;
    第一判断子单元,用于判断所述当前截止电压是否大于所述安全截止电压;
    第二判断子单元,用于当所述第一判断子单元判断结果为是时,判断所述电池电压的当前值是否等于所述当前截止电压;
    第二调整子单元,用于当所述第二判断子单元判断结果为是时,将所述当前截至电压调低所述第一预设值作为新的当前截止电压,将所述当前充电电流调低所述第二预设值作为新的当前充电电流,触发所述第一判断子单元判断所述当前截止电压是否大于所述安全截止电压,直至所述第一判断子单元判断当前截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电。
  9. 根据权利要求7所述的移动终端,其特征在于,当所述判断单元判断结果为否时,所述判断单元继续判断电池电压的当前值是否等于所述初始截止电压。
  10. 根据权利要求8所述的移动终端,其特征在于,所述初始截止电压与所述安全截止电压之差为所述第一预设值的K倍,所述K为正整数。
  11. 根据权利要求7~10任一项所述的移动终端,其特征在于,所述设置单元包括:
    检测子单元,用于检测所述电池的安全截止电压;
    设置子单元,用于根据所述安全截止电压与初始截止电压之间的对应关系设置所述电池的初始截止电压;
    所述设置子单元,还用于根据所述初始截止电压和初始充电电流之间的对应关系设置所述电池的初始充电电流。
  12. 根据权利要求8所述的移动终端,其特征在于,所述第二判断子单元,还用于当所述电池电压的当前值不等于所述当前截止电压时,判断所述电池电压的当前值是否等于所述当前截止电压。
  13. 一种移动终端,其特征在于,包括处理器、存储器和电池,所述存储器用于存储指令;
    所述处理器调用存储在所述存储器中的指令执行如下操作:
    当对所述电池进行恒流充电时,设置所述电池的初始截止电压和初始充电电流,所述初始截止电压大于所述电池的安全截止电压,并且所述初始截止电压与所述安全截止电压之差小于或等于预设电压差值;
    检测所述电池的电池电压;
    判断所述电池电压的当前值是否等于所述初始截止电压;
    当所述电池电压的当前值等于所述初始截止电压时,逐步调低所述初始截止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,所述恒压充电的电压为所述安全截止电压。
  14. 根据权利要求13所述的移动终端,其特征在于,所述处理器逐步调低所述初始截止电压和所述初始充电电流,直至所述初始截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电,具体为:
    将所述初始截止电压调低第一预设值作为当前截止电压,将所述初始充电电流调低第二预设值作为当前充电电流;
    判断所述当前截止电压是否大于所述安全截止电压;
    当所述当前截止电压大于所述安全截止电压时,判断所述电池电压的当前值是否等于所述当前截止电压;
    当所述电池电压的当前值等于所述当前截止电压时,将所述当前截至电压调低所述第一预设值作为新的当前截止电压,将所述当前充电电流调低所述第二预设值作为新的当前充电电流,执行所述判断所述当前截止电压是否大于所述安全截止电压的步骤,直至所述当前截止电压小于或等于所述安全截止电压时,对所述电池进行恒压充电。
  15. 根据权利要求13所述的移动终端,其特征在于,所述处理器还用于:
    当所述电池电压的当前值不等于所述初始截止电压时,继续执行所述判断电池电压的当前值是否等于所述初始截止电压的步骤。
  16. 根据权利要求14所述的移动终端,其特征在于,所述初始截止电压与所述安全截止电压之差为所述第一预设值的K倍,所述K为正整数。
  17. 根据权利要求13~16任一项所述的移动终端,其特征在于,所述处理器设置所述电池的初始截止电压和初始充电电流,具体为:
    检测所述电池的安全截止电压;
    根据所述安全截止电压与初始截止电压之间的对应关系设置所述电池的初始截止电压;
    根据所述初始截止电压和初始充电电流之间的对应关系设置所述电池的初始充电电流。
  18. 根据权利要求14所述的移动终端,其特征在于,所述处理器还用于:
    当所述电池电压的当前值不等于所述当前截止电压时,执行所述判断所述电池电压的当前值是否等于所述当前截止电压的步骤。
PCT/CN2016/080819 2015-12-03 2016-04-29 一种充电方法及移动终端 WO2017092227A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/561,140 US10389155B2 (en) 2015-12-03 2016-04-29 Charging method and mobile terminal
US16/196,436 US10283993B2 (en) 2015-12-03 2018-11-20 Charging method and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510884669.6 2015-12-03
CN201510884669.6A CN105449759B (zh) 2015-12-03 2015-12-03 一种充电方法及移动终端

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/561,140 A-371-Of-International US10389155B2 (en) 2015-12-03 2016-04-29 Charging method and mobile terminal
US16/196,436 Continuation US10283993B2 (en) 2015-12-03 2018-11-20 Charging method and mobile terminal

Publications (1)

Publication Number Publication Date
WO2017092227A1 true WO2017092227A1 (zh) 2017-06-08

Family

ID=55559667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080819 WO2017092227A1 (zh) 2015-12-03 2016-04-29 一种充电方法及移动终端

Country Status (3)

Country Link
US (2) US10389155B2 (zh)
CN (2) CN105449759B (zh)
WO (1) WO2017092227A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389155B2 (en) 2015-12-03 2019-08-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and mobile terminal

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214852A1 (zh) * 2016-06-14 2017-12-21 宁德新能源科技有限公司 电池的充电方法、装置及电池系统
CN106207296B (zh) * 2016-08-25 2020-05-19 上海传英信息技术有限公司 充电方法
CN107808987A (zh) * 2016-09-08 2018-03-16 宁德新能源科技有限公司 二次电池充电方法
JP6897765B2 (ja) * 2017-04-28 2021-07-07 株式会社Gsユアサ 管理装置、蓄電装置および蓄電システム
US11258285B2 (en) * 2017-06-06 2022-02-22 The Regents Of The University Of Michigan User aware charging algorithm that reduces battery fading
CN107834640B (zh) * 2017-11-14 2020-10-23 维沃移动通信有限公司 一种充电方法及终端
CN110770998A (zh) * 2018-02-28 2020-02-07 深圳市柔宇科技有限公司 电子设备及其电池充电方法、以及存储介质
CA3061923C (en) * 2018-05-31 2024-02-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and charging apparatus
CN109781526A (zh) * 2019-02-13 2019-05-21 滁州职业技术学院 一种混凝土试样抗拉强度测试方法
CN109888420B (zh) * 2019-02-28 2020-11-13 深圳猛犸电动科技有限公司 一种锂离子电池包的充电方法、装置及终端设备
CN112242726A (zh) * 2019-07-19 2021-01-19 北京小米移动软件有限公司 充电方法及装置
EP3859870A4 (en) * 2019-10-21 2022-06-15 Ningde Amperex Technology Ltd. CHARGING PROCESS, ELECTRONIC DEVICE AND STORAGE MEDIA
CN110911770B (zh) * 2019-11-26 2023-06-27 Oppo广东移动通信有限公司 充电方法及待充电设备
CN111371140B (zh) * 2020-03-11 2024-03-29 Oppo广东移动通信有限公司 充电控制方法、装置、终端设备以及存储介质
JP2021164302A (ja) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 充電システム、充電方法、及びプログラム
CN113571787B (zh) * 2020-04-29 2023-04-07 北京小米移动软件有限公司 一种锂离子电池的充电方法
CN112072196A (zh) * 2020-09-11 2020-12-11 罗福英 锂离子电池快速充电方法及装置
CN114362301A (zh) * 2021-12-27 2022-04-15 厦门芯阳科技股份有限公司 一种锂电池充电电压控制方法及设备
CN117096991B (zh) * 2023-10-08 2024-04-19 荣耀终端有限公司 一种充电方法、电子设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088718A (zh) * 1992-12-20 1994-06-29 王雅各 密封镉-镍蓄电池组安全、高效、自动充电方法及其装置
EP0851556A2 (en) * 1996-12-26 1998-07-01 Japan Tobacco Inc. Battery charger
CN105098913A (zh) * 2015-08-21 2015-11-25 上海传英信息技术有限公司 一种用于手持设备的3a快速充电系统及其充电方法
CN105449759A (zh) * 2015-12-03 2016-03-30 广东欧珀移动通信有限公司 一种充电方法及移动终端

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442274A (en) * 1992-08-27 1995-08-15 Sanyo Electric Company, Ltd. Rechargeable battery charging method
US5561360A (en) * 1994-05-02 1996-10-01 General Motors Corporation Battery cycle life improvements through bifurcated recharge method
US5617007A (en) * 1994-08-17 1997-04-01 International Business Machines Corporation Battery charging method and apparatus using current control
JP3620118B2 (ja) * 1995-10-24 2005-02-16 松下電器産業株式会社 定電流・定電圧充電装置
US6326689B1 (en) 1999-07-26 2001-12-04 Stmicroelectronics, Inc. Backside contact for touchchip
JP2001178011A (ja) * 1999-12-10 2001-06-29 Toshiba Battery Co Ltd 二次電池装置
KR100572160B1 (ko) * 2001-09-14 2006-04-19 가부시키가이샤 리코 이차 전지 충전 회로
KR100542215B1 (ko) * 2003-12-23 2006-01-10 삼성에스디아이 주식회사 2차 전지의 충전방법 및 충전장치
TWI343141B (en) * 2007-06-14 2011-06-01 Compal Electronics Inc Method for charging battery module in multiple stages
JP5219485B2 (ja) * 2007-12-12 2013-06-26 三洋電機株式会社 充電方法
CN101488591B (zh) * 2008-01-16 2011-12-07 仁宝电脑工业股份有限公司 多段式充电电池模块的方法
TWI403071B (zh) * 2010-04-21 2013-07-21 Dynapack Internat Technology Corp A charging method for a rechargeable battery and a charging device thereof
KR101723998B1 (ko) * 2011-05-06 2017-04-06 삼성전자주식회사 충전 가능한 배터리를 사용하는 기기에서 충전 전류 제어 장치 및 방법
CN103730915A (zh) * 2012-10-10 2014-04-16 国基电子(上海)有限公司 充电控制方法及使用该方法的电子装置
CN103107378B (zh) * 2013-02-05 2016-08-17 广东欧珀移动通信有限公司 一种移动终端的电池充电方法及装置移动终端
CN103490111B (zh) * 2013-08-06 2015-05-27 重庆邮电大学 一种分段式恒流恒压充电方法
WO2016007444A1 (en) 2014-07-07 2016-01-14 Goodix Technology Inc. Integration of touch screen and fingerprint sensor assembly
CN204595874U (zh) 2015-03-06 2015-08-26 南昌欧菲生物识别技术有限公司 指纹识别装置、触控屏及终端设备
CN105528104A (zh) 2015-07-03 2016-04-27 宸鸿科技(厦门)有限公司 具有指纹识别功能的触控面板及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088718A (zh) * 1992-12-20 1994-06-29 王雅各 密封镉-镍蓄电池组安全、高效、自动充电方法及其装置
EP0851556A2 (en) * 1996-12-26 1998-07-01 Japan Tobacco Inc. Battery charger
CN105098913A (zh) * 2015-08-21 2015-11-25 上海传英信息技术有限公司 一种用于手持设备的3a快速充电系统及其充电方法
CN105449759A (zh) * 2015-12-03 2016-03-30 广东欧珀移动通信有限公司 一种充电方法及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389155B2 (en) 2015-12-03 2019-08-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and mobile terminal

Also Published As

Publication number Publication date
US10283993B2 (en) 2019-05-07
US10389155B2 (en) 2019-08-20
CN105449759B (zh) 2018-07-06
CN108599310B (zh) 2020-07-10
CN105449759A (zh) 2016-03-30
CN108599310A (zh) 2018-09-28
US20190089166A1 (en) 2019-03-21
US20180048163A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2017092227A1 (zh) 一种充电方法及移动终端
WO2016113791A1 (ja) 電池装置、充電制御装置および充電制御方法
US9184607B2 (en) Battery module and overcharge protecting method thereof
JP2017158418A (ja) 電池の不足電圧保護の動的な調整方法及びシステム
AU2016101740A4 (en) Charger and charging method
WO2016188070A1 (zh) 温度控制方法、装置、终端及存储介质
CN106655344B (zh) 一种移动终端的充电方法和装置
KR20170030992A (ko) 과열 상태 배터리 냉각 충전 장치 및 방법
US20190324086A1 (en) Battery Leakage Current Check Method, Apparatus, And Circuit
JP2009022078A (ja) リチウムイオン二次電池の充電方法
TWI511405B (zh) 調變攜帶式裝置之電源裝置充電電流的方法以及相關的電源裝置
JP3758361B2 (ja) 充電制御装置
CN115133616A (zh) 充电控制方法、装置、电子设备及可读存储介质及产品
WO2020015502A1 (zh) 跟踪电池过放电的方法和装置、芯片、电池及飞行器
WO2020047809A1 (zh) 一种充电方法、终端及计算机存储介质
US10181749B2 (en) Charging system
WO2018119798A1 (zh) 电池充电方法、充电系统、充电器及电池
CN112928798B (zh) 储能设备的电量控制方法、装置和储能设备
WO2015152878A1 (en) Regulate processor states
TW201807919A (zh) 充電電流控制方法及其系統
JPWO2015141003A1 (ja) 二次電池充電システムおよび二次電池充電方法
JP2005322592A (ja) 二次電池の充電方法
CN105811499B (zh) 一种充电控制方法及应用该方法的电子设备
WO2018050070A1 (zh) 充电控制方法、装置及终端和计算机存储介质
WO2018014285A1 (zh) 电池的充电控制方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869541

Country of ref document: EP

Kind code of ref document: A1