WO2017090944A1 - sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체 - Google Patents

sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체 Download PDF

Info

Publication number
WO2017090944A1
WO2017090944A1 PCT/KR2016/013399 KR2016013399W WO2017090944A1 WO 2017090944 A1 WO2017090944 A1 WO 2017090944A1 KR 2016013399 W KR2016013399 W KR 2016013399W WO 2017090944 A1 WO2017090944 A1 WO 2017090944A1
Authority
WO
WIPO (PCT)
Prior art keywords
sug
plant
gene
sugary
rice
Prior art date
Application number
PCT/KR2016/013399
Other languages
English (en)
French (fr)
Inventor
고희종
이윤주
김백기
이길응
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2017090944A1 publication Critical patent/WO2017090944A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4636Oryza sp. [rice]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Definitions

  • the present invention relates to a method for controlling sugar content, starch content or form of plant endosperm using the sug-1 gene and sug-2 gene, and a plant according thereto.
  • Grain crops accumulate starch in the drainage of seeds for energy storage and are the primary source of carbohydrates in human and livestock diets. Moreover, starch has many industrial applications. Current methods of starch biosynthesis in higher plants are initiated by the synthesis of amylopectin, a major component of starch. Amylopectin is composed of AGPase (ADP glucose pyrophosphorylase), soluble starch synthases (SS), starch-branching enzymes (BE), and starch-DBE (starch-). It is produced by the action of debranching enzymes. There is also evidence that disproportionating enzymes and alpha-glucan phosphorylase are involved in this process. In rice, starch makes up 90% of the dry grain and provides up to 80% of calories. Various aspects of rice quality, in particular regarding the quality of eating and cooking, are determined by the properties of the starch.
  • AGPase ADP glucose pyrophosphorylase
  • SS soluble starch synthases
  • BE starch-branching enzymes
  • the endosperm starch consists of glandular (amylose) and branched phase (amylopectin). Based on the appearance and physicochemical properties of the endosperm, mutants were identified, ala (amylase extender), bt (brittle), du (dull), flo (floury), glu (glutinous), sh (shrunken), su1 (sugary) 1) and wc (white-core) variants.
  • the mutants provide valuable genetic material for identifying metabolic processes involved in the storage of starch during grain ripening.
  • the mutants also facilitate the identification of genes encoding starch biosynthetic enzymes. Some of the mutants have traits that allow the grain to be used in the food industry.
  • Korean Patent Publication No. 2014-0135917 discloses rice starch synthase SSS4A.
  • the present invention discloses a zinc finger nuclease that targets a gene and a use thereof
  • Korean Patent No. 1117347 discloses a method for preparing a rice plant with improved taste, which is transformed with a gene encoding rice-derived starch branching enzyme. Is disclosed.
  • a method for controlling sugar content, starch content or morphology of plant endosperm using the sug- 1 gene and sug- 2 gene of the present invention and plants according thereto have not been disclosed.
  • the present invention was derived by the above-mentioned demands, and the present inventors treated with MNU (N-methyl-N-nitrosourea) in Hwachung rice, a rice japonica variety, resulting from inhibition of the expression of sug-1 gene and sug-2 gene.
  • MNU N-methyl-N-nitrosourea
  • a sugary-2 mutant was obtained, and the sugary-2 completed the present invention by confirming that the sugar content of the endosperm was increased and the starch content was reduced and the thickness was thinner than that of the wild type Hwachung rice.
  • the present invention transforms a plant cell with a recombinant vector comprising a SUG-1 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 3 and a SUG-2 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 4 It provides a method of controlling the sugar content, starch content or form of plant endosperm comprising the step of controlling the expression of the SUG-1 protein coding gene and SUG-2 protein coding gene.
  • the present invention comprises the steps of transforming a plant cell with a recombinant vector comprising a SUG-1 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 3 and a SUG-2 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 4;
  • It provides a method for producing a transgenic plant having a modified milk content, starch content or morphology comprising the step of regenerating the plant from the transformed plant cells.
  • the present invention also provides a transgenic plant and its transformed seed having an endosperm with a controlled sugar content, starch content or form produced by the above method.
  • the present invention provides a composition for controlling sugar content, starch content or form of plant endosperm containing SUG-1 protein coding gene and SUG-2 protein coding gene as an active ingredient.
  • the present invention is inhibited expression of the SUG-1 protein coding gene and SUG-2 protein coding gene mutant rice plants, characterized in that the sugar content of the plant endosperm increase, starch content is reduced, and the thickness is thinner than the wild type To provide.
  • the present inventors treated MNU (N-methyl-N-nitrosourea) with Hwachung rice, a rice japonica cultivar, to obtain a sugary-2 mutant resulting from inhibition of expression of sug-1 gene and sug-2 gene.
  • MNU N-methyl-N-nitrosourea
  • the saccharide content of the endosperm was increased and the starch content was decreased.
  • the present invention can be usefully used for plant cultivation-related breeding and quality-related research, and in particular, by enhancing the competitiveness of our rice through improved quality and flavoring of rice varieties, it is possible to activate the rice industry and provide the highest quality rice and seeds in the future. Can also secure export potential.
  • Figure 1 shows the seed form (a) and the degree of starch synthesis (b) of wild type hwacheong rice and mutant plants (sugary-1 and sugary-2) according to an embodiment of the present invention.
  • Figure 2 is performed to determine the location of the sug-1 gene (a) and sug-2 gene (b) to determine the phenotype of mutant plants (sugary-1 and sugary-2) according to an embodiment of the present invention
  • BSA bulk segregant analysis
  • c co-segregation analysis
  • Figure 3 is sug-2 ( OsBEIIa ) -RNAi according to an embodiment of the present invention
  • A The results of co-separation analysis between the phenotypes of F 2 seeds and the genotypes of F 2 individuals obtained from crosses of individuals and sugary-2 individuals and the relative RNA expression of sugary-2 phenotypes among the F 2 individuals ( b) is shown.
  • FIG. 4 is a sugary-induced change in phenotype of T 1 seed obtained by overexpressing sug-2 ( OsBEIIa ) gene by inducing callus of sugary-2 mutant according to an embodiment of the present invention and RNAi transformation.
  • FIG. The results of analyzing the genotype of one type of seed are shown.
  • the present invention provides a plant cell with a recombinant vector comprising a SUG-1 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 3 and a SUG-2 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 4
  • a method of controlling the sugar content, starch content or form of plant endosperm comprising the step of transforming to regulate the expression of the SUG-1 protein coding gene and the SUG-2 protein coding gene.
  • SUG-1 protein and SUG-2 includes proteins having amino acid sequences represented by SEQ ID NO: 3 and SEQ ID NO: 4 and functional equivalents of the proteins.
  • “Functional equivalent” means at least 70%, preferably at least 80%, more preferably at least 90% of the amino acid sequences represented by SEQ ID NO: 3 and SEQ ID NO: 4, respectively, as a result of the addition, substitution, or deletion of amino acids More preferably, it refers to a protein having a sequence homology of 95% or more and exhibiting substantially homogeneous physiological activity with each protein represented by SEQ ID NO: 3 and SEQ ID NO: 4.
  • the present invention also provides respective genes encoding the SUG-1 protein and SUG-2 protein.
  • the sug- 1 gene and sug- 2 gene of the present invention are characterized by controlling sugar content, starch content or morphology of plant endosperm, and each of the genomic DNA and cDNA encoding SUG-1 protein and SUG-2 protein Include.
  • the sug- 1 gene and sug- 2 gene of the present invention may include respective base sequences represented by SEQ ID NO: 1 and SEQ ID NO: 2.
  • homologues of the above nucleotide sequences are included within the scope of the present invention.
  • the sug- 1 gene and the sug- 2 gene are 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably the nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, respectively. May comprise base sequences having at least 95% sequence homology.
  • the "% sequence homology" for a polynucleotide is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
  • the "gene expression control" of the present invention refers to increasing or decreasing the expression of the sug- 1 gene and sug- 2 gene in a plant.
  • by inhibiting the expression of the SUG-1 protein coding gene and SUG-2 protein coding gene may be to increase the sugar content of the plant embryos and to reduce the starch content compared to wild type, Preferably it may be to increase the fructose, glucose, sucrose, maltose and raffinose content of the plant endosperm and to reduce the starch content, but is not limited thereto.
  • the expression of the SUG-1 protein coding gene and the SUG-2 protein coding gene may be reduced in thickness of the plant embryo compared to the wild type, but is not limited thereto.
  • the inhibition of expression of the SUG-1 protein coding gene and the SUG-2 protein coding gene may be induced by an RNAi vector or a T-DNA vector, but is not limited thereto.
  • Recombinant refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, a heterologous peptide, or a heterologous nucleic acid.
  • Recombinant cells can express genes or gene fragments that are not found in their natural form in either the sense or antisense form.
  • Recombinant cells can also express genes found in natural cells, but the genes are modified and reintroduced into cells by artificial means.
  • vector is used to refer to a DNA fragment (s), a nucleic acid molecule, that is delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells.
  • carrier is often used interchangeably with “vector”.
  • expression vector refers to a recombinant DNA molecule comprising a coding sequence of interest and a suitable nucleic acid sequence necessary to express a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
  • Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells.
  • a suitable host such as Agrobacterium tumerfaciens
  • Another type of Ti-plasmid vector (see EP 0 116 718 B1) is used to transfer hybrid DNA sequences to protoplasts from which current plant cells or new plants can be produced that properly insert hybrid DNA into the plant's genome. have.
  • a particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838.
  • viral vectors such as those which can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc.
  • CaMV double stranded plant viruses
  • gemini viruses single stranded viruses
  • it may be selected from an incomplete plant viral vector.
  • the use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
  • the expression vector will preferably comprise one or more selectable markers.
  • the marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate, phosphinothricin and glufosinate, kanamycin, G418, bleomycin, hygromycin, There are antibiotic resistance genes such as chloramphenicol, but are not limited thereto.
  • the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter.
  • promoter refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.
  • a "plant promoter” is a promoter capable of initiating transcription in plant cells.
  • a “constitutive promoter” is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the selection possibilities.
  • Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including both dicotyledonous plants as well as monocotyledonous plants. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. The method is based on the calcium / polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), electroporation of protoplasts ( Shillito et al., 1985, Bio / Technol.
  • Plant cells used for plant transformation may be any plant cells.
  • Plant cells are cultured cells, cultured tissues, culture organs or whole plants.
  • Plant tissue refers to the tissues of differentiated or undifferentiated plants, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues and various types of cells used in culture, ie single cells, protoplasts. (protoplast), shoots and callus tissue.
  • Plant tissue may be in planta or in organ culture, tissue culture or cell culture.
  • the present invention comprises the steps of transforming a plant cell with a recombinant vector comprising a SUG-1 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 3 and a SUG-2 protein coding gene consisting of an amino acid sequence of SEQ ID NO: 4;
  • It provides a method for producing a transgenic plant having a modified milk content, starch content or morphology comprising the step of regenerating the plant from the transformed plant cells.
  • by inhibiting the expression of the SUG-1 protein coding gene and SUG-2 protein coding gene may be to increase the sugar content of the plant endosperm and decrease the starch content compared to wild type This is not restrictive.
  • the expression of the SUG-1 protein coding gene and the SUG-2 protein coding gene may be reduced in thickness of the plant embryo compared to the wild type, but is not limited thereto.
  • the present invention also provides a transgenic plant and its transformed seed having an endosperm with a controlled sugar content, starch content or form produced by the above method.
  • plants to which the method according to the present invention can be applied include Arabidopsis, eggplant, tobacco, pepper, tomato, burdock, garland chrysanthemum, lettuce, bellflower, spinach, beetroot, sweet potato, celery, carrot, buttercup, parsley, cabbage, cabbage, It can be a dicotyledonous plant such as gat radish, watermelon, melon, cucumber pumpkin, gourd, strawberry, soybean, green bean, kidney bean, pea, or monocotyledonous plant such as rice, barley, wheat, rye, corn, sugarcane, oats, onions, Preferably it is a monocotyledonous plant.
  • the plant may be preferably a rice plant, but is not limited thereto.
  • the present invention provides a composition for controlling sugar content, starch content or form of plant endosperm containing SUG-1 protein coding gene and SUG-2 protein coding gene as an active ingredient.
  • Controlling the sugar content, starch content or form of the plant endosperm of the present invention includes the SUG-1 protein coding gene and SUG-2 protein coding gene for controlling the sugar content, starch content or form of the plant endosperm of the present invention as an active ingredient
  • the sugar content, starch content or form of the plant endosperm can be controlled.
  • sugar content, starch content or form of plant endosperm may be controlled, but is not limited thereto.
  • the present invention is inhibited expression of the SUG-1 protein coding gene and SUG-2 protein coding gene mutant rice plants, characterized in that the sugar content of the plant endosperm increase, starch content is reduced, and the thickness is thinner than the wild type To provide.
  • sugary-2 is a mutant with glycotyping properties, with a slight decrease in the level of glycotyping than previously reported sugary-1 mutants (Koh et al., 1994., Journal of crop science., 39., 1-6). However, sugary-2 has been renamed from sugary-1 because its seed thickness is thicker and wrinkles are relatively weak and commercially valuable.
  • F 1 , F 2 and F 3 seeds were peeled off and observed under a microscope.
  • the whole seed of the ear was analyzed and mainly the thickness and wrinkles of the seeds were observed.
  • Seed length, thickness, and the like were measured with a digimatic caliper, and statistically analyzed by Statistical Package for the Social Sciences (SPSS).
  • BSA Bulked segregant analysis
  • the F 3 population of sugary-2 / Miyang 23 was selected by phenotype from F 2 and developed line by line. Among them, the sug- 1 gene was fixed, and the sug- 2 gene was identified using the developing population of the isolate to determine the specific position of the gene that determines the phenotype of the sugary-2 mutant, and additionally produced STS and dCAPS markers. Was used.
  • RNAi and overexpressing transformants were constructed.
  • RNAi vector construction was performed by synthesizing the nucleotide sequence of 291bp portion of sug -1 and 206bp portion of sug -2 into the pH7GWIWG (II) RNAi vector, and transforming the resulting vector into a wild-type callus. It was.
  • the overexpression vector construct was synthesized with the cDNA of the entire sug- 2 gene and inserted into the overexpression vector pMDC32, and the final vector was transformed into the sugary-2 mutant.
  • Glucose mutants derived from Hwacheng rice, a rice japonica cultivar are characterized by wrinkly, translucent and high sugar content.
  • sugary-2 is known to be sugary-1 because it shows the characteristics of the endosperm, less wrinkles than sugary-1 and the thickness of the seed is more thick because it can be milled Practicality is superior to mutants.
  • the seeds were stained with iodine-potassium iodide solution, the whole area of the seed section was stained in the case of hwacheong rice, whereas sugary-1 Seeds of the mutants were not stained at all, sugary-2 The mutants were found to be stained only in the seed outer layer.
  • sugary-2 was found to be the intermediate form of hwacheong rice and sugary-1 (Fig. 1 and Table 1).
  • the free sugar content was analyzed by slightly modifying the method of Zittawan Kubola et al., 2011., Food chemistry., 126., 972-981.
  • the sugary-2 of the present invention as disclosed in Table 2 below The mutants showed about 2 times more sucrose content than the wild type Hwachung rice, and it was confirmed that it contained a small amount of fructose and raffinose that were not present in Hwachung rice.
  • Huacheng rice and mutant Comparison of length, width and thickness of brown rice Plant sample Length (mm) Width (mm) Thickness (mm) Length / width ratio Flower garden 4.82b * 2.75a 1.98a 1.75c sugary-1 4.91ab 2.29c 1.42c 2.15a sugary-2 4.99a 2.52b 1.51b 1.98b
  • TR A small amount is detected (a quantity below LOQ on the instrument is detected).
  • sugary-2 Genetic analysis of populations made by crossing sugary-2 and Milyang 23 (M.23) was performed to analyze genes involved in mutant traits. Since the F 1 seeds of the sugary-2 / M.23 population were all normal, The carbohydrate phenotype could be predicted to be a recessive gene. Afterwards, all the F 2 seeds from the F 1 plant were harvested and classified according to phenotype. Of the total 334 seeds, 271 showed normal phenotype and 81 sugary phenotype, which corresponded to the 3: 1 separation ratio. Thus, the sugary phenotype could be expected to be determined by one recessive gene.
  • sugary-2 showed a 12: 3: 1 separation. This is due to epistatic interactions, resulting in the sugary-2 mutant Recovered Glucose phenotypes are suc -1 and two genes It is thought to be determined by sug -2 .
  • Example 4 Carbohydrate Subgenes to determine traits whose seed thickness has been restored during harvesting
  • the sugary seed of the F 2 group was divided into sugary-1 seed (very flat seed form) and sugary-2 seed (slightly thick seed form), and sug- 1 ( OsISA1 ). It is a phenotype in which genes preferentially act and then separate.
  • bulking was made with the F 3 population of sugary-2 / Milyang 23 (M.23) and a second BSA was performed as shown in FIG. 2B.
  • chromosome 4 Chor. 4
  • Os04g33460 rice starch branching enzyme 4 or starch branching enzyme IIa
  • OsBEIIa is a candidate gene associated with the sugary-2 trait. That is, sug- 2 ( OsBEIIa ) gene is a lower gene that has an effect when the upper gene sug- 1 ( OsISA1 ) acts as in the result of Example 3, and the mutation of the sug- 2 ( OsBEIIa ) gene is a flat glycoside . It seems to play a role in recovering a little.
  • the phenotype of the sugary-2 mutant consists of two genes ( sug -1 and sug - 2 ), the transformation was attempted using both genes to confirm the function of the candidate genes.
  • Callus was induced from wild type Dongjin rice seeds to inactivate both genes using RNAi technique, and RNAi individuals in which sug -1 ( OsISA1 ) and sug -2 ( OsBEIIa ) genes were independently inactivated.
  • sug -1 OsISA1
  • sug -2 OsBEIIa
  • sug -2 OsBEIIa
  • the genes do not work independently, there is no difference in the phenotype with the naked eye.
  • sug -2 OsBEIIa
  • the isolation pattern of the hybridized seed was observed using the transformant as a material of artificial cross.
  • OsBEIIa -RNAi starter and sugary-2 It was hybridized to a mutant, the genotype and the phenotype of the object F 2 F 2 seeds obtained in OsBEIIa -RNAi / sugary-2 confirmed that the ball separated from each other (Fig. 3).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체에 관한 것으로, 본 발명자들은 MNU(N-methyl-N-nitrosourea)를 벼 자포니카 품종인 화청벼에 처리하여 sug-1 유전자 및 sug-2 유전자의 발현 저해로 발생한 sugary-2 돌연변이체를 얻었으며, 상기 sugary-2는 야생형인 화청벼에 비해 배유의 당 함량이 증가되고 전분 함량이 감소되며, sugary-1 돌연변이체와 야생형 종자 두께의 중간 형태를 보이는 것을 확인하였다. 이는 기존에 이미 밝혀진 sugary-1 돌연변이체와 비슷한 당질배유 특성을 가지면서도 형태적 실용성이 높아졌다고 볼 수 있다. 따라서, 본 발명은 식물체 배유 관련 품종 육성 및 품질 관련 연구에 유용하게 활용할 수 있으며, 특히 벼 품종의 향상된 품질 및 식미를 통해 우리 쌀의 경쟁력을 높임으로써 쌀 산업을 활성화하고 장차 최고 품질의 쌀 및 종자의 수출 가능성도 확보할 수 있다.

Description

sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체
본 발명은 sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체에 관한 것이다.
곡류 작물은 에너지 비축을 위해 종자의 배유에 전분을 축적하며, 사람 및 가축의 식이에서 일차적인 탄수화물원이다. 더욱이, 전분은 산업적으로 많은 응용이 가능하다. 고등식물에서 현행 전분 생합성의 방식은 전분의 주 구성요소인 아밀로펙틴의 합성으로 개시되며, 아밀로펙틴은 AGPase(ADP glucose pyrophosphorylase), SS(soluble starch synthases), BE(starch-branching enzymes) 및 DBE(starch-debranching enzymes)의 작용으로 생성된다. 또한, 불균형효소(disproportionating enzyme) 및 알파-글루칸 포스포릴라아제(α-glucan phosphorylase)가 상기 과정에 관여된다는 증거가 있다. 쌀에서 전분이 곡물 건량의 90%를 이루며, 칼로리의 80%까지를 제공한다. 특히 식미(eating) 및 조리(cooking)의 질에 관한 쌀 질의 다양한 양상은 전분의 특성에 의해 결정된다.
낱알(grain) 등숙 중에 다량의 전분이 침착되는 배유는 발달 초기 단계의 배(embryo)에 양분을 공급한다. 배유 전분은 선상(아밀로오스) 및 분지상(아밀로펙틴)으로 구성된다. 배유의 외양 및 물리화학적 특성에 근거하여, 돌연변이주가 동정되었으며, ae(amylase extender), bt(brittle), du(dull), flo(floury), glu(glutinous), sh(shrunken), su1(sugary 1), 및 wc(white-core) 변종으로 나누어졌다. 상기 돌연변이주들은 낱알(grain) 등숙 중에 전분의 저장에 관련된 대사과정 규명을 위한 소중한 유전 재료를 제공한다. 또한 상기 돌연변이주들은 전분의 생합성 효소를 암호화하는 유전자의 동정을 용이하게 한다. 상기 돌연변이주들 중의 일부는 상기 곡물이 식품산업에 이용되게 하는 형질을 가진다.
한편, 한국공개특허 제2014-0135917호에는 벼의 전분합성효소 SSS4A 유전자를 표적으로 하는 징크 핑거 뉴클레아제 및 이의 용도에 대해 개시하고 있으며, 한국등록특허 제1171347호에는 벼 유래의 전분가지화효소를 코딩하는 유전자로 형질전환된 식미가 향상된 벼 식물체의 제조방법에 대해 개시하고 있다. 하지만 본 발명의 sug -1 유전자 및 sug -2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체에 대해 아직 개시된 바가 없다.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 MNU(N-methyl-N-nitrosourea)를 벼 자포니카 품종인 화청벼에 처리하여 sug-1 유전자 및 sug-2 유전자의 발현 저해로 발생한 sugary-2 돌연변이체를 얻었으며, 상기 sugary-2는 야생형인 화청벼에 비해 배유의 당 함량이 증가되고 전분 함량이 감소되며, 두께가 얇아진 것을 확인함으로써, 본 발명을 완성하였다.
상기 과제를 해결하기 위하여, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 SUG-1 단백질 코딩 유전자 및 서열번호 4의 아미노산 서열로 이루어진 SUG-2 단백질 코딩 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시켜 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 조절하는 단계를 포함하는 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법을 제공한다.
또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 SUG-1 단백질 코딩 유전자 및 서열번호 4의 아미노산 서열로 이루어진 SUG-2 단백질 코딩 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및
상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 당 함량, 전분 함량 또는 형태가 조절된 배유를 가지는 형질전환 식물체의 제조방법을 제공한다.
또한, 본 발명은 상기 방법에 의해 제조된 당 함량, 전분 함량 또는 형태가 조절된 배유를 가지는 형질전환 식물체 및 이의 형질전환된 종자를 제공한다.
또한, 본 발명은 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자를 유효성분으로 함유하는 식물체 배유의 당 함량, 전분 함량 또는 형태 조절용 조성물을 제공한다.
또한, 본 발명은 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현이 저해되어 야생형에 비해 식물체 배유의 당 함량이 증가되고 전분 함량이 감소되며, 두께가 얇아진 것을 특징으로 하는 돌연변이 벼 식물체를 제공한다.
본 발명자들은 MNU(N-methyl-N-nitrosourea)를 벼 자포니카 품종인 화청벼에 처리하여 sug-1 유전자 및 sug-2 유전자의 발현 저해로 발생한 sugary-2 돌연변이체를 얻었으며, 상기 sugary-2는 야생형인 화청벼에 비해 배유의 당 함량이 증가되고 전분 함량이 감소되며, sugary-1 돌연변이체와 야생형 종자 두께의 중간 형태를 보이는 것을 확인하였다. 이는 기존에 이미 밝혀진 sugary-1 돌연변이체와 비슷한 당질배유 특성을 가지면서도 형태적 실용성이 높아졌다고 볼 수 있다. 따라서, 본 발명은 식물체 배유 관련 품종 육성 및 품질 관련 연구에 유용하게 활용할 수 있으며, 특히 벼 품종의 향상된 품질 및 식미를 통해 우리 쌀의 경쟁력을 높임으로써 쌀 산업을 활성화하고 장차 최고 품질의 쌀 및 종자의 수출 가능성도 확보할 수 있다.
도 1은 본 발명의 일 실시예에 따른 야생형인 화청벼 및 돌연변이 식물체(sugary-1 및 sugary-2)의 종자 형태(a) 및 전분 합성 정도(b)를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 돌연변이 식물체(sugary-1 및 sugary-2)의 표현형을 결정하는 sug-1 유전자(a) 및 sug-2 유전자(b)의 위치를 확인하기 위해 수행한 BSA(bulked segregant analysis) 분석 결과 및 상기 두 유전자의 공분리(co-segregation) 분석 결과(c)를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 sug-2(OsBEIIa)-RNAi 개체와 sugary-2 개체의 교배집단에서 얻은 F2 종자들의 표현형과 F2 개체의 유전형간에 공분리 분석 결과(a) 및 상기 F2 개체 중 sugary-2의 표현형을 보인 개체들의 상대적인 RNA 발현 정도(b)를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 sugary-2 돌연변이체의 캘러스를 유도해 sug-2(OsBEIIa) 유전자를 과발현시켜 얻은 T1 종자의 표현형 및 RNAi 형질전환으로 인해 표현형에 변화가 생긴 sugary-1 형태의 종자의 유전형을 분석한 결과를 나타낸 것이다.
본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 SUG-1 단백질 코딩 유전자 및 서열번호 4의 아미노산 서열로 이루어진 SUG-2 단백질 코딩 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시켜 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 조절하는 단계를 포함하는 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법을 제공한다.
본 발명에 따른 SUG-1 단백질 및 SUG-2의 범위는 각각 서열번호 3 및 서열번호 4로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환, 또는 결실의 결과, 상기 서열번호 3 및 서열번호 4로 각각 표시된 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 3 및 서열번호 4로 표시되는 각각의 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다.
또한, 본 발명은 상기 SUG-1 단백질 및 SUG-2 단백질을 코딩하는 각각의 유전자를 제공한다. 본 발명의 sug -1 유전자 및 sug -2 유전자는 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 특징이 있으며, SUG-1 단백질 및 SUG-2 단백질을 암호화하는 각각의 게놈 DNA와 cDNA를 모두 포함한다. 바람직하게는, 본 발명의 sug -1 유전자 및 sug -2 유전자는 서열번호 1 및 서열번호 2로 표시되는 각각의 염기서열을 포함할 수 있다. 또한, 상기 염기서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 sug -1 유전자 및 sug -2 유전자는 서열번호 1 및 서열번호 2의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
본 발명의 상기 "유전자 발현 조절"은 식물체 내의 sug -1 유전자 및 sug -2 유전자의 발현을 증가시키거나 또는 감소시키는 것을 말한다.
본 발명의 일 구현 예에 따른 방법에서, 상기 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 저해시켜 야생형에 비해 식물체 배유의 당 함량을 증가시키고 전분 함량을 감소시키는 것일 수 있으며, 바람직하게는 식물체 배유의 프럭토스, 글루코오스, 수크로오스, 말토오스 및 라피노오스 함량을 증가시키고 전분 함량을 감소시키는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 방법에서, 상기 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 저해시켜 야생형에 비해 식물체 배유의 두께가 얇아진 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 방법에서, 상기 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현 저해는 RNAi 벡터 또는 T-DNA 벡터에 의해 유도하는 것일 수 있으나, 이에 제한되지 않는다.
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 코딩된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.
용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.
식물 발현 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.
발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate), 포스피노트리신(phosphinothricin) 및 글루포시네이트(glufosinate)와 같은 제초제 저항성 유전자, 카나마이신(Kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.
본 발명의 식물 발현 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다.
"프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.
식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및(또는) 조직배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), 원형질체의 전기천공법 (Shillito et al., 1985, Bio/Technol. 3: 1099-1102), 식물 요소로의 현미주사법 (Crossway et al.,1986, Mol. Gen. Genet. 202: 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al.,1987, Nature 327: 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EPA 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 바이너리 벡터 기술을 이용하는 것이다.
식물의 형질전환에 이용되는 "식물 세포"는 어떤 식물 세포도 된다. 식물 세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직배양 또는 세포 배양 상태일 수 있다.
또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 SUG-1 단백질 코딩 유전자 및 서열번호 4의 아미노산 서열로 이루어진 SUG-2 단백질 코딩 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및
상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 당 함량, 전분 함량 또는 형태가 조절된 배유를 가지는 형질전환 식물체의 제조방법을 제공한다.
본 발명의 일 구현 예에 따른 제조방법에서, 상기 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 저해시켜 야생형에 비해 식물체 배유의 당 함량을 증가시키고 전분 함량을 감소시키는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 제조방법에서, 상기 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 저해시켜 야생형에 비해 식물체 배유의 두께가 얇아진 것일 수 있으나, 이에 제한되지 않는다.
또한, 본 발명은 상기 방법에 의해 제조된 당 함량, 전분 함량 또는 형태가 조절된 배유를 가지는 형질전환 식물체 및 이의 형질전환된 종자를 제공한다.
또한 본 발명에 따른 방법이 적용될 수 있는 식물체로는 애기장대, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽 식물 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물이 될 수 있으며, 바람직하게는 단자엽 식물이다. 상기 식물체는 바람직하게는 벼 식물체일 수 있으나, 이에 제한되지 않는다.
또한, 본 발명은 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자를 유효성분으로 함유하는 식물체 배유의 당 함량, 전분 함량 또는 형태 조절용 조성물을 제공한다.
본 발명의 식물체 배유의 당 함량, 전분 함량 또는 형태 조절용은 유효성분으로서 본 발명의 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자를 포함하며, 상기 단백질 각각의 유전자를 식물체에 형질전환시킴으로써 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절할 수 있는 것이다. 바람직하게는 상기 sug -1 유전자 및 sug -2 유전자의 발현을 저해시켜 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절할 수 있으나, 이에 제한되지 않는다.
또한, 본 발명은 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현이 저해되어 야생형에 비해 식물체 배유의 당 함량이 증가되고 전분 함량이 감소되며, 두께가 얇아진 것을 특징으로 하는 돌연변이 벼 식물체를 제공한다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
재료 및 방법
1. 식물 재료
화학적 돌연변이 약제인 MNU(N-methyl-N-nitrosourea)를 벼 자포니카 품종인 화청벼에 처리하여 sugary-2 돌연변이체를 얻었다. sugary-2는 당질배유 특성을 가지는 돌연변이체로, 기존에 보고된 sugary-1 돌연변이체(Koh et al., 1994., Journal of crop science., 39., 1-6)보다 당질배유 정도가 약간 감소했지만, sugary-2는 종자 두께가 더 두껍고 주름진 정도가 비교적 약하여 상업적 이용 가치가 높기 때문에 sugary-1과 구별하여 새롭게 이름을 명명하였다. 새로운 유형의 돌연변이체인 sugary-2의 유전 분석 및 분리를 위해 sugary-2 및 밀양 23호(통일형 인디카)의 교배집단인 F2 및 F3를 이용하였고, 특히 F3 집단은 F2에서 유래한 sugary 표현형을 보이는 개체를 선발하여 전개하였다. 분리비 확인과 공분리 분석을 위해 sugary-2와 화청벼를 교배하여 전개한 F2 집단을 사용하였다.
2. 표현형 분석
개체별 표현형 분석을 위해서 F1, F2 및 F3 종자를 모두 박피하여 현미경으로 관찰하였다. 표현형 분석시 발생할 오류를 방지하기 위해 주 이삭의 종자 전체를 분석의 대상으로 하였으며, 주로 종자의 두께 및 주름진 정도를 중점적으로 관찰하였다. 종자 길이, 두께 등의 크기는 디지매틱 캘리퍼(digimatic caliper)로 측정하였으며, SPSS(Statistical Package for the Social Sciences)로 통계 분석하였다.
3. 유전자 지도(genetic mapping)
sugary-2/밀양 23호의 F2 및 F3 집단을 이용하여 BSA(bulked segregant analysis)를 수행하였다. 목적에 따라 2회의 독립적인 BSA를 진행하였으며, 첫 번째는 전체적인 sugary 타입의 종자 표현형을 결정하는 유전자의 위치를 파악하기 위해 수행하였고, 두 번째는 sugary 타입의 개체들 중 특히나 그 두께가 더 두꺼운 sugary-2 타입의 표현형을 결정하는 유전자의 위치를 예측하기 위해 수행하였다. 표현형에 근거하여, 첫 번째 BSA에 사용할 벌크(bulk)는 F2 집단에서 sugary 개체 10개 및 정상 종자 개체 10개를 선발하여 같은 농도로 혼합하였고, 두 번째 BSA에 사용할 벌크(bulk)는 F3 집단에서 sugary-1 개체 10개(아주 납작한 종자 형태), sugary-2 개체 12개(조금 두꺼운 종자 형태) 및 정상 종자 개체 12개를 선발하여 역시 같은 농도로 혼합한 후 하기 실시예를 진행하였다. BSA에는 염색체에 고루 분포하는 STS(Sequence Tagged Sites) 마커를 이용하였다.
sugary-2/밀양 23호의 F3 집단은 F2에서 표현형에 의해 선발하여 계통별로 전개하였다. 그 중에 sug -1 유전자는 고정되어 있고, sug -2 유전자는 분리하는 개체의 전개 집단을 이용하여 sugary-2 돌연변이체의 표현형을 결정하는 유전자의 구체적인 위치를 파악하였으며, STS 및 dCAPS 마커를 추가 제작하여 사용하였다.
4. 형질전환체 제작
sug -2 유전자의 기능을 분석하기 위해, RNAi 및 과발현 형질전환체를 제작하였다. RNAi 벡터 구축은 sug -1의 291bp 부분 및 sug -2의 206bp 부분의 염기서열을 합성하여 pH7GWIWG(II) RNAi 벡터에 삽입하였고, 만들어진 최종 벡터를 야생형(wild-type, 동진벼)의 캘러스에 형질전환하였다. 과발현 벡터 구축은 sug -2 유전자 전체의 cDNA를 합성하여 과발현 벡터인 pMDC32에 삽입하였고, 최종 벡터를 sugary-2 돌연변이체에 형질전환하였다.
실시예 1. sugary-2 돌연변이체의 당질배유 특성
벼 자포니카 품종인 화청벼에서 유래한 당질배유 돌연변이체는 주름지고 반투명하며 유리당 함량이 높은 종자 특징을 가진다. 특히, sugary-2는 당질배유의 특징을 보이면서도 sugary-1보다 덜 주름지며 종자의 두께가 좀 더 두꺼워 도정이 가능하기 때문에 이미 알려진 sugary-1 돌연변이체에 비해 실용성이 우수하다. 요오드-요오드화 칼륨 용액으로 각 종자를 염색해 관찰한 결과, 화청벼의 경우 종자 단면의 전 영역이 염색된 반면, sugary-1 돌연변이체의 종자는 전혀 염색이 되지 않은 것을 볼 수 있었고, sugary-2 돌연변이체는 종자 바깥층에만 한정적으로 염색이 된 것을 확인할 수 있었다. 따라서 전분 합성 정도에 있어서 sugary-2는 화청벼와 sugary-1의 중간 형태임을 알 수 있었다(도 1 및 표 1). 또한, 유리당 함량은 지타완 등(Jittawan Kubola et al., 2011., Food chemistry., 126., 972-981)의 방법을 약간 변형하여 분석하였다. 그 결과, 하기 표 2에 개시된 바와 같이 본 발명의 sugary-2 돌연변이체에서 야생형인 화청벼에 비해 약 2배 이상의 수크로오스 함량을 나타내었으며, 화청벼에 없는 프럭토스 및 라피노오스를 미량으로 함유하고 있는 것을 확인할 수 있었다.
화청벼 및 돌연변이체(sugary-1 및 sugary-2) 현미의 길이, 너비 및 두께 비교
식물 시료 길이(mm) 너비(mm) 두께(mm) 길이/너비 비율
화청벼 4.82b* 2.75a 1.98a 1.75c
sugary-1 4.91ab 2.29c 1.42c 2.15a
sugary-2 4.99a 2.52b 1.51b 1.98b
*다른 알파벳은 유의한 차이가 있음을 의미하며, 각 시료는 10번씩 측정되었음.
화청벼 및 sugary-2 돌연변이체 현미의 당 함량 비교
식물 시료 프럭토스 글루코오스 수크로오스 말토오스 라피노오스 총 유리당
화청벼 ND1) TR2) 330.9±5.1 (1.6) TR ND 330.9
sugary-2* TR TR 705.3±0.5 (0.1) TR TR 705.3
1) ND : 검출되지 않음.
2) TR : 미량 검출됨(기기 상 LOQ 이하의 양이 검출되었음).
실시예 2. sug-2 ( OsBEIIa ) 유전자에 관한 유전분석
sugary-2 돌연변이체의 형질에 관여하는 유전자를 분석하기 위해 sugary-2와 밀양 23호(M.23)를 교배하여 만든 집단의 유전분석을 실시하였다. sugary-2/M.23 집단의 F1 종자는 모두 정상이었기 때문에 sugary-2의 당질배유 표현형은 열성 유전자라고 예측할 수 있었다. 그 후 F1 식물체에서 얻은 F2 종자를 전량 수확하여 표현형에 따라 구분해 본 결과, 전체 334개의 종자 중 271개가 정상 표현형을, 81개가 sugary 표현형을 보였고 이는 3:1 분리비에 부합하였다. 따라서 sugary 표현형은 한 개의 열성 유전자에 의해 결정된다고 예상할 수 있었다. 그런데 81개의 sugary 표현형 종자를 sugary-1의 종자(매우 납작한 종자 형태)와 sugary-2의 종자(조금 두꺼운 종자 형태)로 구분했을 때, sugary-1 타입은 57개, sugary-2 타입은 24개로, sugary-2의 분리 양상이 12:3:1을 나타내었다. 이는 유전자 상위효과(epistatic interaction)에 의한 것으로, 결국 sugary-2 돌연변이체의 회복된 당질배유 표현형은 상위작용을 하는 두 개의 유전자인 sug -1 sug -2에 의해 결정된다고 사료된다.
화청벼 및 sugary-2 돌연변이체의 교배집단에서 F2 종자의 표현형 분리
교배 집단 종자 수 x2 0.05(12:3:1) P value
정상 타입 sugary-1 타입 sugary-2 타입
화청벼/sugary-2 271 57 24 352 1.595 0.451
sugary-2/화청벼 152 28 11 191 2.312 0.315
실시예 3. 당질배유 형질을 결정하는 상위 유전자 탐색
벼 종자의 당질배유 형질에 관여하는 상위 유전자를 탐색하기 위해, sugary-2/밀양 23호(M.23)의 F2 집단을 사용하였다. 첫 번째 수행한 BSA(bulked segregant analysis)에서, 벌크(bulk)의 표현형을 sugary 타입 및 정상(normal) 타입으로만 나누어 진행하였으며, 그 결과 도 2a에 개시된 바와 같이, 염색체 8번(Chr.8)에서 마커 유전형과 당질배유 표현형이 공분리하는 것을 확인하였다. 정확한 위치는 S08105와 S08107 마커 사이였으며, 내로우 다운(narrow down)을 수행한 후 염기서열을 분석해본 결과, Os08g40930(isoamylase1, OsISA1)이 후보 유전자임을 알 수 있었고, 이 유전자는 2005년에 코보 등(Kubo A et al., 2005., Plant physiology., 137., 43-56)에 의해 보고가 되었다. 결론적으로, sug -1(OsISA1) 유전자에 의해 전반적인 sugary 표현형이 결정된다고 할 수 있고, 상기 sug -1(OsISA1) 유전자는 우선적으로 당질배유 표현형을 결정하는 상위 유전자로 작용한다는 것을 확인할 수 있었다.
실시예 4. 당질배유 중에 종자 두께가 회복된 형질을 결정하는 하위 유전자 탐색
상기 실시예 3에서의 분리비 분석 결과, F2 집단의 sugary 종자가 sugary-1 종자(매우 납작한 종자 형태) 및 sugary-2 종자(조금 두꺼운 종자 형태)로 구분되었고, sug -1(OsISA1) 유전자가 우선적으로 작용한 후 분리되는 표현형이다. 종자 두께를 회복시키는 유전자를 추가로 탐색하기 위해, sugary-2/밀양 23호(M.23)의 F3 집단으로 벌크(bulk)를 만들어 두 번째 BSA를 수행한 결과, 도 2b에 개시된 바와 같이 염색체 4번(Chr.4)에서 sugary-2(두께가 회복된 당질배유 형질) 표현형과 마커 유전형이 공분리하는 것을 확인하였다. 추가적으로 내로우 다운(narrow down)을 수행한 결과, 자체 제작한 dCAPS 마커인 AL731A 및 AL731B 사이에 후보 유전자가 있을 것으로 예상하였고, 염기서열을 분석한 후 Os04g33460(rice starch branching enzyme 4 또는 starch branching enzyme IIa; OsBEIIa)이 sugary-2 형질과 연관된 후보 유전자라 결론지었다. 즉, sug -2(OsBEIIa) 유전자는 상기 실시예 3의 결과와 같이 상위 유전자 sug -1(OsISA1)가 작용할 때 그 효과가 나타나는 하위 유전자이고, sug -2(OsBEIIa) 유전자의 돌연변이는 납작한 당질배유를 약간 회복시키는 역할을 하는 것으로 사료된다. 또한, dCAPS 마커를 이용하여 공분리 분석을 수행하였는데, 두 개의 후보 유전자가 sugary-2/화청벼의 F2 개체들에서 표현형과 유전형이 공분리하는 것을 확인하였고, 이는 두 개 유전자의 돌연변이가 sugary-2 돌연변이체의 표현형을 결정한다는 것을 간접적으로 증명한 결과이다.
실시예 5. 형질전환 기법을 통한 후보 유전자의 기능 확인
sugary-2 돌연변이체의 표현형은 두 개의 유전자(sug -1 sug - 2)에 의해 결정이 되므로, 후보 유전자의 기능을 확인하기 위해 두 개의 유전자 모두를 이용하여 형질전환을 시도하였다. 야생형인 동진벼 종자에서 캘러스를 유도하여 RNAi 기법을 이용해 두 유전자를 각각 불활성화하였고, sug -1(OsISA1) 및 sug -2(OsBEIIa) 유전자가 독립적으로 불활성화된 RNAi 개체를 얻을 수 있었다. OsISA1-RNAi 개체의 T1 종자 표현형을 확인한 결과, sugary-1 돌연변이체의 종자와 같은 납작한 당질배유 형태를 보였고, 첫 번째 후보 유전자인 OsISA1의 효과를 입증할 수 있었다(도 3). 그러나 sug -2(OsBEIIa) 유전자는 독립적으로 작용하지 않기 때문에 육안으로 보는 표현형에서는 별다른 차이를 보이지 않았다. sug -2(OsBEIIa) 유전자의 기능을 간접적으로 확인하기 위해, 형질전환체를 인공교배의 재료로 사용해서 교배 종자의 분리 양상을 관찰하였다. OsBEIIa-RNAi 선발 개체와 sugary-2 돌연변이체를 교배하였고, OsBEIIa-RNAi/sugary-2에서 얻은 F2 종자들의 표현형과 F2 개체의 유전형이 서로 공분리함을 확인하였다(도 3).
또한, sugary-2 돌연변이체의 캘러스를 유도해 sug -2(OsBEIIa) 유전자를 과발현시켰을 때, sugary-2 형질을 결정하는 유전자 두 개 중 하위 유전자 하나만 발현이 회복될 것이다. 따라서 예상할 수 있는 결과는, 상위 유전자 sug -1(OsISA1) 하나만 문제가 생겨 나타나는 표현형인 아주 납작한 종자가 과발현 형질전환체에서 발견될 것이고, 그 납작한 표현형을 지니는 종자의 유전형은 모두 과발현 벡터 DNA를 보유하고 있을 것이다. 실제 과발현 개체를 획득한 결과, 위에서 예상한 결과와 일치하는 개체를 얻을 수 있었고, 이는 상기 유전자 sug -1(OsISA1) sug -2(OsBEIIa)를 어떤 조합으로 조절하는가에 따라 당질배유의 정도를 조절할 수 있다는 가능성을 보여준 결과이다(도 4).

Claims (7)

  1. 서열번호 3의 아미노산 서열로 이루어진 SUG-1 단백질 코딩 유전자 및 서열번호 4의 아미노산 서열로 이루어진 SUG-2 단백질 코딩 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및
    상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 당 함량, 전분 함량 또는 형태가 조절된 배유를 가지는 형질전환 식물체의 제조방법.
  2. 제1항에 있어서, 상기 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 저해시켜 야생형에 비해 당 함량이 증가되고 전분 함량이 감소된 배유를 가지는 형질전환 식물체의 제조방법.
  3. 제1항에 있어서, 상기 SUG-1 단백질 코딩 유전자 및 SUG-2 단백질 코딩 유전자의 발현을 저해시켜 야생형에 비해 식물체 배유의 두께가 얇아진 것을 특징으로 하는 형질전환 식물체의 제조방법.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 방법에 의해 제조된 당 함량, 전분 함량 또는 형태가 조절된 배유를 가지는 형질전환 식물체.
  5. 제4항에 따른 식물체의 형질전환된 종자.
  6. 서열번호 3의 아미노산 서열로 이루어진 SUG-1 단백질 코딩 유전자 및 서열번호 4의 아미노산 서열로 이루어진 SUG-2 단백질 코딩 유전자를 유효성분으로 함유하는 식물체 배유의 당 함량, 전분 함량 또는 형태 조절용 조성물.
  7. 서열번호 3의 아미노산 서열로 이루어진 SUG-1 단백질 코딩 유전자 및 서열번호 4의 아미노산 서열로 이루어진 SUG-2 단백질 코딩 유전자의 발현이 저해되어 야생형에 비해 식물체 배유의 당 함량이 증가되고 전분 함량이 감소되며, 두께가 얇아진 것을 특징으로 하는 돌연변이 벼 식물체.
PCT/KR2016/013399 2015-11-24 2016-11-21 sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체 WO2017090944A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150164709 2015-11-24
KR10-2015-0164709 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090944A1 true WO2017090944A1 (ko) 2017-06-01

Family

ID=57574771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013399 WO2017090944A1 (ko) 2015-11-24 2016-11-21 sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체

Country Status (2)

Country Link
KR (1) KR101684882B1 (ko)
WO (1) WO2017090944A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019331A1 (en) * 2009-08-12 2011-02-17 Abbott & Cobb, Inc. Methods for enhancing the production and consumer traits of plants
US20110045127A1 (en) * 2007-11-27 2011-02-24 Commonwealth Scientific and Industrial Research Orginisation Plants with modified starch metabolism
KR20120089869A (ko) * 2003-10-27 2012-08-14 코몬웰스 싸이언티픽 엔드 인더스트리얼 리서치 오가니제이션 아밀로스 비율이 증가된 전분을 갖는 쌀 및 이의 생성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089869A (ko) * 2003-10-27 2012-08-14 코몬웰스 싸이언티픽 엔드 인더스트리얼 리서치 오가니제이션 아밀로스 비율이 증가된 전분을 갖는 쌀 및 이의 생성물
US20110045127A1 (en) * 2007-11-27 2011-02-24 Commonwealth Scientific and Industrial Research Orginisation Plants with modified starch metabolism
WO2011019331A1 (en) * 2009-08-12 2011-02-17 Abbott & Cobb, Inc. Methods for enhancing the production and consumer traits of plants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONNEWALD: "Starches-from current models to genetic engineering", PLANT BIOTECHNOLOGY JOURNAL, vol. 11, no. 2, 2013, pages 223 - 232, XP055596209 *
UTSUMI: "Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm", PLANT PHYSIOLOGY, vol. 156, 2011, pages 61 - 77, XP055596202 *

Also Published As

Publication number Publication date
KR101684882B1 (ko) 2016-12-09

Similar Documents

Publication Publication Date Title
Sun et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice
PL202462B1 (pl) Wyizolowany kwas nukleinowy do modyfikacji cech roślin przy użyciu genu wernalizacji VRN2, para starterów, sposób wytwarzania kwasu nukleinowego, sposób identyfikowania, klonowania lub określania obecności w genetycznie zmienionej roślinie kwasu nukleinowego, sposób selekcjonowania rośliny posiadającej żądany allel genu VRN2, zrekombinowany wektor, komórka gospodarza, sposób transformowania komórki gospodarza, sposób wytwarzania rośliny transgenicznej, roślina transgeniczna, część lub rozmnóżka rośliny, wyizolowany polipeptyd, sposób wytwarzania polipe
Ma et al. TaCYP78A5 regulates seed size in wheat (Triticum aestivum)
Cheng et al. Identification and analysis of the GASR gene family in common wheat (Triticum aestivum L.) and characterization of TaGASR34, a gene associated with seed dormancy and germination
CN117904170A (zh) 与大豆中锈病抗性相关联的新颖的遗传基因座
Huang et al. Modification of cereal plant architecture by genome editing to improve yields
KR101226485B1 (ko) 벼의 분질배유 유전자 FLO(a)와 분자마커 및 유전자 부위 정밀유전자지도
WO2011090272A9 (ko) 식물의 외형(초형)을 변화시키고 수확량을 증가시키는 OsMPT 유전자 및 이의 용도
Baloglu Genomics of cucurbits
KR101852530B1 (ko) 식물의 엽설 및 종자 발달을 조절하는 벼 유래의 OsiEZ1 유전자 및 이의 용도
Poethig et al. Temporal regulation of vegetative phase change in plants
KR101526190B1 (ko) 시금치 유래의 cyp85 유전자를 이용한 20-히드록시엑디손 함량이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체
WO2017090944A1 (ko) sug-1 유전자 및 sug-2 유전자를 이용한 식물체 배유의 당 함량, 전분 함량 또는 형태를 조절하는 방법 및 그에 따른 식물체
KR102130550B1 (ko) 식물체의 종자 크기, 저온발아성 및 비생물적 스트레스에 대한 내성을 조절하는 벼 유래 cyp90d2 유전자 및 이의 용도
KR102127184B1 (ko) 벼 유래의 ak102606 유전자의 항산화능, 환경 스트레스 및 수확량 조절자로서의 용도
KR101987663B1 (ko) 식물체에서 CRISPR/Cas9 시스템을 이용하여 LeMADS-RIN 유전자 편집에 의해 에틸렌 생산을 감소시키는 방법
CN109112137B (zh) 一种控制水稻谷粒大小和粒重的基因sng1及其应用
KR101841606B1 (ko) 식물의 벼흰잎마름병 저항성을 증가시키는 OsLCT1 유전자 및 이의 용도
KR101711586B1 (ko) 식물체의 가임성을 조절하는 애기장대 유래의 ASKβ 유전자 및 이의 용도
WO2015199435A1 (ko) 스틸벤 생산이 증가된 형질전환 식물체의 제조 방법 및 그에 따른 식물체
KR101402602B1 (ko) 벼 유래 OsCYP18-2 유전자를 이용한 환경 스트레스에 대한 내성이 증진된 형질전환 식물체의 제조방법
Pandey et al. Molecular, Biotechnological and Omics-Based Interventions for Improving Wheat Grain Quality: Advances and Way Forward
KR102083153B1 (ko) Large embryo 유전자를 이용한 식물체의 배 크기를 조절하는 방법 및 그에 따른 식물체
KR101849151B1 (ko) 식물체의 바이오매스 또는 종자 생산량을 증가시키는 애기장대 유래 pTAC10 유전자 및 이의 용도
CN115216455B (zh) Enb1基因及其编码蛋白在调控植物籽粒大小和粒重中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868841

Country of ref document: EP

Kind code of ref document: A1