WO2017090261A1 - 排煙脱硫装置 - Google Patents

排煙脱硫装置 Download PDF

Info

Publication number
WO2017090261A1
WO2017090261A1 PCT/JP2016/063218 JP2016063218W WO2017090261A1 WO 2017090261 A1 WO2017090261 A1 WO 2017090261A1 JP 2016063218 W JP2016063218 W JP 2016063218W WO 2017090261 A1 WO2017090261 A1 WO 2017090261A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
flue gas
chamber
moving bed
duct
Prior art date
Application number
PCT/JP2016/063218
Other languages
English (en)
French (fr)
Inventor
瀬戸 弘
耀二 中島
Original Assignee
株式会社セテック
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社セテック, 日揮株式会社 filed Critical 株式会社セテック
Priority to CN201680067996.5A priority Critical patent/CN108430605A/zh
Publication of WO2017090261A1 publication Critical patent/WO2017090261A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/30Particle separators, e.g. dust precipitators, using loose filtering material
    • B01D46/32Particle separators, e.g. dust precipitators, using loose filtering material the material moving during filtering
    • B01D46/34Particle separators, e.g. dust precipitators, using loose filtering material the material moving during filtering not horizontally, e.g. using shoots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow

Definitions

  • the present invention relates to a dry-type flue gas desulfurization apparatus that performs desulfurization with a desulfurizing agent in a desulfurization tower in which a moving bed is formed and has a function of collecting dust in the flue gas.
  • SOx sulfur oxides
  • nitrogen are included in the exhaust gas emitted from thermal power plants, industrial or household boilers, cement kilns, and coke ovens that use coal or heavy oil containing sulfur compounds and nitrogen compounds as fuel. It contains a lot of air pollutants such as oxide (NOx) and soot, and is a source of environmental pollution such as acid rain, photochemical smog, and PM2.5.
  • a powdered exhaust gas purifier (hereinafter abbreviated as “purifier”) is used.
  • a technique is known in which flue gas is purified by a gas-solid reaction between a purification agent that is a solid and a harmful substance that is a gas by being distributedly supplied to a flue (Patent Document 1).
  • powdered calcium hydroxide is sprayed and SOx and HCl in the flue gas are removed based on a so-called gas-solid reaction between solid and gas.
  • Dry flue gas desulfurization has advantages such as not lowering the flue gas temperature and not using a large amount of water compared to wet flue gas desulfurization.
  • the desulfurizing agent or demineralizing purifier is granulated and packed in a solid-gas desulfurization tower in which a moving bed is formed, and the purifying agent is interposed between moving bed particles in the moving bed so that the inside of the desulfurizing tower is filled.
  • a moving bed dry desulfurization system is known in which a smoke flow is made to descend and a cross flow is formed by making the flue gas flow orthogonal to the moving bed to purify the flue gas.
  • This technology eliminates the need for an electrostatic precipitator because the desulfurization tower has a dust collecting property, and does not require measures to suppress the reduction in the temperature of the flue gas, for example, a gas / gas heater, and further eliminates the need for a wastewater treatment device. There is an advantage that the cost can be kept low.
  • the moving bed dry desulfurization method tends to increase the installation area because desulfurization is performed when the flue gas flow crosses the moving bed.
  • the adhesion to the bag filter becomes a problem due to the particle size of the purifier.
  • the gas inflow rate to the bag filter is usually 0.04 m / second, and in order for particles to adhere to the bag filter surface, the particle size must be 20 ⁇ m or less. When the particle diameter is 20 ⁇ m or less, when the particle density is 2 g / cm 3 , the particle sedimentation rate is 0.02 m / second, and the adhesion to the bag filter is good.
  • the bag filter intermittently removes the adhering particles in order to suppress the increase in pressure loss, so that unreacted purifier is generated and desulfurization reaction between SOx and calcium hydroxide in the flue gas.
  • Ca (calcium) / S (sulfur) 2 to 4 times the chemical equivalent of S is consumed as Ca-based desulfurization agent (Patent Document 2).
  • Patent Document 2 In order to solve the drawbacks of the gas-solid reaction device using a bag filter, as a device that does not use a bag filter, a plurality of cyclones constituting a solid-gas desulfurization tower of flue gas and a desulfurizing agent are connected in series and discharged.
  • Patent Document 3 An apparatus is also known in which a smoke gas flow is flowed from bottom to top and a desulfurizing agent is moved from top to bottom so that they come into contact with each other as a counter flow, and the desulfurizing agent is recovered for each stage. Although this apparatus improves the gas-solid reaction efficiency, an increase in pressure loss in the gas passage is inevitable.
  • the present invention has been made under such a background, and an object of the present invention is to provide a flue gas desulfurization apparatus that can obtain high desulfurization efficiency when performing flue gas desulfurization using a moving bed dry desulfurization method.
  • the present invention relates to a flue gas desulfurization apparatus that performs dry desulfurization and collects dust on flue gas
  • a flue gas desulfurization apparatus that performs dry desulfurization and collects dust on flue gas
  • the lower side region and the upper side region of the desulfurization tower are referred to as a first chamber and a second chamber, respectively, in order to form a downward flow of moving bed particles that are granular bodies in the desulfurization tower
  • a moving bed particle supply unit for supplying moving bed particles from above
  • a desulfurization agent supply section for supplying a desulfurization agent into the desulfurization tower in order to form a downflow of the desulfurization agent for desulfurizing flue gas
  • a passage opening formed on the side walls facing each other in the first chamber and the second chamber, through which the flue gas passes;
  • a guide path for guiding the flue gas flowing out from the passage opening of the first chamber to the passage opening of the second chamber, The flue gas is brought into
  • the present invention forms a downflow of moving bed particles and a downflow of desulfurizing agent in a desulfurization tower, and also moves downflow of moving bed particles and a downflow of desulfurizing agent in a first chamber which is a lower side region. Then, in the second chamber, which is the upper side region, the downward flow is brought into contact with the downflow in a direction opposite to the direction of the flow of the flue gas in the first chamber. Therefore, high desulfurization efficiency is obtained, and there is an effect that it is not necessary to provide a separate dust collector.
  • a desulfurization apparatus includes a desulfurization tower 1 for causing gas-solid reaction between flue gas and desulfurization agent particles as shown in FIGS.
  • the first chamber 3 corresponding to this area and the second chamber 4 corresponding to the upper area are provided.
  • the first chamber 3 is formed by the first duct 31, and the second chamber 4 is formed by the second duct 41.
  • the upper end portion of the first duct 31 and the lower end portion of the second duct 41 are connected by the connecting portion 5.
  • the granular material 100 When the granular material 100 is continuously supplied from the upper end of the second duct 41, a downward flow of the granular material 100 is formed from the second duct 41 to the first duct 31 due to the natural falling of the granular material 100.
  • the This downward flow can be called a moving bed because the group of the granular material 100 moves downward.
  • reference numeral 101 is assigned to the moving bed.
  • the granular material 100 also serves as a desulfurizing agent (the desulfurizing agent forms a moving layer as particles), the granular material is inactive, and the desulfurizing agent is supplied in powder form (the desulfurizing agent forms the moving layer). There are two cases.
  • the flue gas flows into the first duct 31 from one side surface of the first duct 31, crosses the moving layer 101, and flows out from the other side surface. That is, the flue gas flows so as to be orthogonal to the moving bed 101, and both form a cross flow.
  • SOx in the flue gas reacts with calcium hydroxide in the desulfurizing agent and is fixed as calcium sulfate.
  • the flue gas rises and flows into the second duct 41 from the other side surface of the second duct 41, crosses the moving layer 101, and flows out from the one side surface. That is, if the flue gas flows in the second duct 41 so as to be orthogonal to the moving bed 101, a cross flow is formed.
  • the flow of the flue gas is indicated by arrows.
  • the flue gas flowing out from the first duct 31 may be accompanied by a part of the powder as the desulfurizing agent.
  • the smoke gas flows through the second duct 41 the powder is captured by the moving bed 101 and removed. Even when a part of the dust in the flue gas flows out without being captured by the moving layer 101 in the first duct 31, the dust is captured in the second duct 41. Therefore, the first duct 31 and the second duct 41 have a dust collecting function.
  • Each of the first duct 31 and the second duct 41 is configured as a structure in which flat rectangular tubes are arranged vertically as shown in FIG.
  • the heights H ⁇ b> 1 and H ⁇ b> 2 of the first duct 31 and the second duct 41 are set to the same dimension, for example, and the same is true for the widths W of the first duct 31 and the second duct 41.
  • the heights H1 and H2 and the widths W are not limited to being set to the same size, and may be set to different sizes.
  • the relationship between the thickness D1 of the first duct 31 and the thickness D2 of the second duct 41 is not particularly limited, but D2 may be preferably the same as D1 or larger than D1.
  • connection portion 5 is formed in a horizontally long inverted truncated pyramid shape.
  • the side surface group having the larger area is referred to as one side surface and the other side surface, and is shown in FIGS.
  • a plurality of inclined plates 61 constituting a louver are arranged in the vertical direction so as to extend to the full width, that is, from end to end.
  • Each of these inclined plates 61 is installed upward toward the outside, and between the inclined plates 61 adjacent to each other in the vertical direction is a passage for smoke emission gas. If such an inclined plate 61 is used, there exists an advantage which keeps a moving bed particle and makes gas passage easy.
  • a net (net-like body) 62 is provided along the outer surface of the group of inclined plates 61.
  • the net 62 is for preventing the granular material (hereinafter referred to as “moving bed particles”) 100 forming the moving bed 101 from flowing out of the ducts 31 and 41 on the flow of the flue gas. If such a net 62 is used, there is an advantage that the cost can be reduced compared to the case where a grid screen is used.
  • the net and the lattice screen are examples of a flexible planar body in which a large number of holes are formed.
  • the structure of the side surfaces of the first duct 31 and the second duct 41 is not limited to the structure in which the passage opening on the horizontally long slit combined with the inclined plate 61 is formed as described above. Alternatively, a structure in which a large number of holes are dispersed may be used. And the hole formed in the side surface without using the net 62 may be set to a size that prevents the moving bed particles 100 from flowing out. Further, the flue gas flows from one side surface of the first duct 31 and flows out from the other side surface, and then rises and flows in from the other side surface of the second duct 41 and flows out from the one side surface.
  • a flow path member 300 that forms a guide path that is a flow path for flue gas is provided around the first duct 31 and the second duct 41.
  • Reference numeral 301 denotes an inflow port for flue gas, which is connected to a passage for flue gas sent from a flue gas source such as a thermal power plant.
  • Reference numeral 302 denotes an outflow port, and the flue gas desulfurized in the desulfurization tower 1 is sent from the outflow port 302 to a subsequent processing apparatus.
  • 71 is a hopper that forms part of a desulfurizing agent supply unit for supplying a powdery desulfurizing agent into the connecting part 5
  • 71a is a valve for supplying and stopping the desulfurizing agent
  • 71b is a desulfurizing agent.
  • It is a supply pipe for the agent.
  • Reference numeral 72 denotes a hopper that forms part of a desulfurizing agent supply unit for supplying a powdery desulfurizing agent to the upper portion of the second duct 41
  • 72a denotes a valve for supplying and stopping the desulfurizing agent
  • 72b This is a desulfurization agent supply pipe.
  • the upper end of the second duct 41 is provided with a supply port 401 that forms a supply part of the moving bed particles for supplying the moving bed particles 100, and the moving bed particles are provided in the supply port 401.
  • a valve 402 for supplying and stopping 100 is provided.
  • a discharge port 403 that discharges the moving bed particles 100 is provided at the lower end of the first duct 31, and a valve 404 that opens and closes the discharge port 403 is provided at the discharge port 403.
  • the discharge port 403 and the valve 404 extend in the width direction of the first duct 31. Thereby, the uniformity of the density
  • a seal valve 405 having a sealing function is provided below the valve 404 in order to ensure the gas sealing performance inside the desulfurization apparatus 1.
  • the valve (discharge valve) 404 for discharging the moving bed particles 100 has a long-axis structure corresponding to the lateral width of the moving bed 101.
  • a sealing valve 405 for discharging the moving bed particles 100 having a function of sealing the gas in the moving layer 101 is provided at the lower end of the pyramid hopper 406. , Moving bed particles, powdered desulfurization agent, and soot in the flue gas are discharged.
  • the desulfurizing agent is supplied from the hopper 72 into the desulfurization tower 1 through the supply pipe 72b, and the desulfurization agent is supplied from the hopper 71 into the desulfurization tower 1 through the supply pipe 71b.
  • the desulfurization agent is mixed with the moving bed particles 100 and supplied into the desulfurization tower 1 from the supply port 401.
  • the moving bed particle 100 (granular body) also serves as a desulfurizing agent, it is formed by mixing calcium hydroxide or quick lime, coal ash, gypsum or a used desulfurizing agent (calcium sulfate). Instead of coal ash, clay minerals such as zeolite containing silica and alumina may be used.
  • the particle size of the moving bed particle 100 is set to, for example, the size of the particle size on the order of “mm”.
  • the shape of the moving bed particle 100 is not limited to a spherical shape, and may be a columnar shape. As an example, the moving bed particle 100 can include a cylindrical pellet having a particle size of 6 mm and a height of 9 mm.
  • the flue gas from a thermal power plant or the like flows into the first duct 31 from the gap between the inflow port 301 and the inclined plate 61 on one side surface of the first duct 31.
  • the desulfurizing agent also serves as the moving bed particles 100 as an example
  • the moving bed particles 100 are supplied from the supply port 401 at the upper end of the second duct 41, and thus the second duct 41 and the connecting portion. 5 and the first duct 31 are formed with a moving bed 101 which is a descending flow of the moving bed particles 100.
  • the flue gas crosses the moving layer 101 in the first duct 31, flows out from the gap between the inclined plates 61 on the other side, and rises along the flow path (guide path) formed by the flow path member 300.
  • the second duct 41 flows into the second duct 41 through the gap between the inclined plates 61 on the other side surface.
  • the flue gas flowing into the second duct 41 crosses the moving layer 101 and flows out through the gap between the inclined plate 61 on one side surface and the outflow port 302.
  • the SOx in the flue gas is absorbed by the calcium hydroxide desulfurization agent and calcium sulfate. It becomes. Further, when the exhaust gas crosses the first duct 31, the dust contained in the exhaust gas is removed by the moving layer 101, and even if the soot flows out from the first duct 31, Reliable removal when crossing.
  • the desulfurizing agent is transported to the upper part of the other duct and discharged from below the other duct. It is necessary to convey the desulfurizing agent to be on the upper part of one duct by, for example, a belt conveyor.
  • the transport system of the desulfurizing agent can be simplified.
  • the degree of reduction in the desulfurization performance of the desulfurizing agent is smaller as it is closer to the outflow port 302.
  • the closer to the inflow port 301 the lower the desulfurization agent that has higher desulfurization performance.
  • the SOx concentration in the exhaust gas on the lower stage side is higher as it is closer to the inflow port 301, in a schematic manner, the region where the SOx concentration in the exhaust gas is higher is in contact with a desulfurization agent having higher desulfurization performance. Become. For this reason, high desulfurization efficiency is obtained.
  • the desulfurization agent discharged from below the other duct is transferred by the transport system. Since it is conveyed to the upper part of one duct, the horizontal arrangement of the desulfurization agent in the other duct and the horizontal arrangement of the desulfurization agent in the one duct do not correspond to each other, so the desulfurization efficiency is lower than that in the above embodiment. Become.
  • the operation of the desulfurization apparatus has been described in the case where the desulfurizing agent also serves as the moving bed particles 100. However, when the desulfurizing agent is separate from the moving bed particles 100, the particles as the desulfurizing agent are voids between the moving bed particles 100. To form a downward flow.
  • the desulfurizing agent When the desulfurizing agent is separate from the moving bed particles 100, for example, calcium hydroxide powder having a particle size of 1 to 40 ⁇ m is used, but the particle size may be out of this range. The smaller the particle size of the desulfurizing agent, the shorter the reaction time can be. However, when the flue gas crosses the desulfurization tower 1, the desulfurizing agent may flow out to the outside through the net 62 along with the flue gas. There is. In this case, it is preferable to supply the desulfurizing agent from the lower hopper 71.
  • the reason for this is that even if the desulfurization agent flows out from the lower first duct 31 (first chamber 3), when the flue gas flows into the upper second duct 41, the desulfurization agent This is because it is captured by the moving layer 101. Therefore, it can be said that the first duct 31 (first chamber 3) functions as a reaction chamber, and the second duct 41 (second chamber 4) functions as a dust collection chamber. Whether or not it is preferable to supply the desulfurizing agent from the lower hopper 71 is determined by the balance between the particle size of the desulfurizing agent and the size of the hole of the net 62.
  • the particle size of the desulfurizing agent is For example, in the case of 40 ⁇ m or less, a mode in which the lower hopper 71 is used can be cited. Moreover, when the particle size of a desulfurization agent exceeds 40 micrometers, the aspect by which a powdery desulfurization agent is supplied to the upper end part of the 2nd duct 41 from the upper hopper 72 can be mentioned, for example.
  • the relationship between the supply position of the powdery desulfurizing agent and the particle size described above is merely an example.
  • the relationship between the thickness D1 of the first duct 31 and the thickness D2 of the second duct 41 is 0.4.
  • ⁇ D1 / (D1 + D2) ⁇ 0.6 is preferable.
  • the thickness of the first duct 31 on the lower stage is smaller than the thickness of the second duct 41 on the upper stage. Is increased in the first duct 31, the increase in pressure loss can be suppressed.
  • the effects of the present invention can be obtained even if k is out of this range, it is not limited to setting k in this range.
  • the moving bed particles 100 discharged from the lower part of the tower 1 can be reused after, for example, sieving treatment to remove the desulfurization agent and dust adhering to the moving bed particles 100. In this case, it can be said that the moving bed particles 100 are circulating with respect to the desulfurization tower 1.
  • the thickness D1 of the first duct 31 and the thickness D2 of the second duct 41 are equal, the height H1 of the first duct 31 and the height H2 of the second duct 41 are equal,
  • the device of the present invention will be referred to as a two-stage moving layer and the comparative example as a one-stage moving layer.
  • H1 H2
  • D1 and D2 were all set to 0.9 m
  • W was set to 5 m.
  • the desulfurizing agent is also used as the moving bed.
  • the simulation was performed assuming the following. a. The difference between the SOx amount per unit time that the flue gas flowing horizontally into the microcube in the moving bed and the SOx amount per unit time flowing out from the surface facing the inflow surface is Equal to the flow rate of SOx. b.
  • the desulfurizing agent was pure calcium hydroxide. Therefore, 1 mol of SO 2 can be absorbed by 1 mol of calcium hydroxide.
  • the absorption characteristic of SO2 of the desulfurizing agent follows the absorption characteristic curve of the desulfurizing agent using coal ash shown in FIG.
  • the gas flow conditions in the measurement of absorption characteristics shown in FIG. 7 are as follows: SO 2 is 1000 ppm, NO is 200 PPm, CO 2 is 10%, O 2 is 6%, H 2 O is 10%, and the temperature is 140 ° C. is there.
  • the inflow gas velocity to the moving bed is set to 4 types of 0.3, 0.4, 0.5, and 0.6 m / sec, and the desulfurization agent supply amount is set to a SOx concentration of 500 ppm in the flue gas.
  • the desulfurization agent supply amount is set to a SOx concentration of 500 ppm in the flue gas.
  • Ca / S equivalent of Ca in calcium hydroxide with respect to equivalent of S in flue gas
  • the desulfurization rate of the first stage moving bed (comparative example) is 92%.
  • the desulfurization efficiency of the two-stage moving bed (invention) is improved to 96%.
  • the desulfurization rate of the first stage moving bed is 83%, but the desulfurization efficiency of the second stage moving bed is improved to 86.5%.
  • D1 + D2 was set to 1.8 m
  • an efficient dry flue gas desulfurization device can be realized, and the dry flue gas desulfurization does not lower the flue gas temperature compared with the wet flue gas desulfurization, and therefore a gas / gas heater is unnecessary, and a large amount of water is used.
  • the moving bed desulfurization apparatus has a dust collection function, so that an electric dust collector is unnecessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

【課題】移動層乾式脱硫方式を用いた排煙脱硫を行うにあたって、設置面積を抑えながら、高い脱硫効率が得られる排煙脱硫装置を提供することにある。 【解決手段】脱硫塔の下部領域である第1室及び上部領域である第2室の各々において、互いに対向する側壁に、排煙ガスが通過するための通過口を形成し、通過口の外側にネットを設ける。また第1室の通過口から流出した排煙ガスを第2室の通過口に案内するための案内路を形成する。そして第2室の上部から第1室の下部に亘って、例えば脱硫剤を兼用する脱硫剤の下降流を形成し、排煙ガスを先ず第1室において移動層粒子の下降流に対して十字流状に接触させ、次いで第2室において第1室内の排煙ガスの流れの向きとは反対向きで下降流と十字流状に接触させる。

Description

排煙脱硫装置
 本発明は、移動層を形成した脱硫塔内にて脱硫剤により脱硫を行うと共に、排煙中の粉塵の集塵機能を有する乾式の排煙脱硫装置に関する。
 硫黄化合物及び窒素化合物を含有する石炭や重油を燃料としている火力発電所、産業用あるいは家庭用ボイラー、セメントキルン、コークス炉から排出される排煙ガス中には、硫黄酸化物(SOx)、窒素酸化物(NOx)、煤などの大気汚染物質が多く含まれており、酸性雨、光化学スモッグ、PM2.5などの環境汚染源になっている。
 従来、排煙ガス中のSOx、NOx、塩化水素(HCl)などの有害物質を除去するための乾式排煙浄化において、粉体状の排煙浄化剤(以下「浄化剤」と略称する)を煙道に分散供給して、固体である浄化剤と気体である有害物質との気固反応により、排煙ガスを浄化する技術が知られている(特許文献1)。排煙ガス中の脱硫、脱塩においては粉状の水酸化カルシウムを散布し、排煙ガス中のSOx、HClを除去するためには固体と気体とのいわゆる気固反応を基本としている。乾式排煙脱硫は、湿式排煙脱硫と比較して排煙温度を低下させない、用水を多量に使用しない、などの長所を有している。
 また脱硫性あるいは脱塩性を有する浄化剤を粒状化して、移動層が形成される固気脱硫塔に充填し、移動層内の移動層粒子の間に浄化剤を介在させて脱硫塔内を降下移動させ、排煙ガス流を移動層と直交させて十字流を形成し、排煙ガスを浄化する移動層乾式脱硫方式が知られている。この技術は、脱硫塔が集塵性を有するため電気集塵機が不要となり、排煙ガス温度の低下を抑える対策、例えばガス・ガスヒータを設けることが不要であり、更に排水処理装置も不要となり、設備費用を低く抑えることができる利点がある。しかし移動層乾式脱硫方式は、排煙ガス流が移動層を横切ることにより脱硫が行われるため、設置面積が大きくなる傾向にある。
 更に、気固反応における反応時間を確保するため浄化剤を煙道に散布し,粉体浄化剤をバグフイルターに付着させてバグフイルター表面の付着層を気固反応層とする方法もある。この場合、浄化剤の粒子径によりバグフィルターへの付着性が問題になる。バグフイルターへのガス流入速度は通常0.04m/秒であり、バグフィルター表面へ粒子が付着するためには粒子径は20μm以下の微粒子であることが必要である。粒子径20μm以下では粒子密度2g/cmの場合、粒子沈降速度は0.02m/秒であり、バグフイルターへの付着性は良好になる。
 しかし、バグフイルターは圧力損失の増加を抑制するために付着粒子を間欠的に払い落とすようにしているので、未反応浄化剤が発生し、排煙ガス中のSOxと水酸化カルシウムとの脱硫反応においてはCa(カルシウム)/S(硫黄)において、Sに対する化学当量の2~4倍のCa系脱硫剤を消費している(特許文献2)。
バグフィルターを用いた気固反応装置の欠点を解決するために、バグフィルターを使用しない装置として、排煙ガスと脱硫剤との固気脱硫塔を構成するサイクロンを複数段直列に接続し、排煙ガス流を下から上へ流すと共に脱硫剤を上から下に移動させて、両者を対向流として接触させ、各段ごとに脱硫剤を回収する装置も知られている(特許文献3)。この装置は気固反応効率は向上するが、ガス通路における圧力損失の増加が避けられない。
実開昭56-171584号 特開2010-119932号公報 特許第3999995号公報
課題を解決しようとする課題
本発明はこのような背景の下になされたものであり、移動層乾式脱硫方式を用いた排煙脱硫を行うにあたって、高い脱硫効率が得られる排煙脱硫装置を提供することにある。
 本発明は、排煙に対して乾式で脱硫を行いかつ集塵を行う処理を行う排煙脱硫装置において、
 前記脱硫塔の下部側領域及び上部側領域を夫々第1室及び第2室と呼ぶとすると、前記脱硫塔内に粒状体である移動層粒子の下降流を形成するために、第2室の上部から移動層粒子を供給する移動層粒子の供給部と、
 排煙を脱硫するための脱硫剤の下降流を形成するために前記脱硫塔内に脱硫剤を供給する脱硫剤の供給部と、
 前記第1室及び第2室における互いに対向する側壁に形成され、排煙ガスが通過するための通過口と、
 前記第1室の通過口から流出した排煙ガスを前記第2室の通過口に案内するための案内路と、を備え、
 排煙ガスを前記第1室において前記移動層粒子の下降流及び脱硫剤の下降流に対して十字流状に接触させて当該脱硫塔の外に流出させ、次いで前記第2室において前記下降流と十字流状に接触させて当該脱硫塔の外に流出するように構成され、
 第2室における排煙ガスの流れの向きは、前記第1室における排煙ガスの流れの向きに対して反対の向きであることを特徴とする。
 本発明は、脱硫塔内に移動層粒子の下降流及び脱硫剤の下降流を形成すると共に、排煙ガスを下部側領域である第1室において移動層粒子の下降流及び脱硫剤の下降流に対して十字流状に接触させ、次いで上部側領域である第2室において、第1室内の排煙ガスの流れの向きとは反対向きで前記下降流と十字流状に接触させている。従って高い脱硫効率が得られ、別途集塵装置を設ける必要がないという効果がある。
本発明の実施形態に係る排煙脱硫装置の概略を示す縦断側面図である。 本発明の実施形態に係る排煙脱硫装置を一部切り欠いて示す正面図である。 本発明の実施形態に係る排煙脱硫装置の概略を示す斜視図である。 本発明の実施形態に係る排煙脱硫装置の寸法を示すための説明図である。 比較例の排煙脱硫装置の概略を示す側面図である。 本発明の排煙脱硫装置の概略を示す側面図である 脱硫剤のSO吸収特性の一例を示す特性図である。 脱硫塔のガス流の流れ方向における上段側及び下段側の各ダクトの寸法の相対的関係と脱硫率との関係を示すグラフである。
 本発明の実施形態に係る脱硫装置は、図1~図3に示すように排煙ガスと脱硫剤粒子とを気固反応させるための脱硫塔1を備えており、この脱硫塔1は下段側の領域に相当する第1室3と上段側の領域に相当する第2室4とを備えている。第1室3は第1のダクト31により形成されており、第2室4は第2のダクト41により形成されている。第1のダクト31の上端部と第2のダクト41の下端部とは接続部5により接続されている。
 そして第2のダクト41の上端部から粒状体100を連続的に供給すると、第2のダクト41から第1のダクト31に至るまで粒状体100の自然落下による粒状体100の下降流が形成される。この下降流は粒状体100の群の層が下方に移動するものであることから移動層と呼ぶことができ、以下の説明では移動層に符号101を割り当てることとする。粒状体100が脱硫剤を兼ねる(脱硫剤が粒子として移動層を形成している)場合と、粒状体が不活性であり、脱硫剤を粉体で供給する(脱硫剤が移動層を形成している粒子空隙に粉体として存在する)場合と、の2つのケースがある。
 排煙ガスは、第1のダクト31の一方の側面から第1のダクト31内に流入し、移動層101を横切って他方の側面から流出する。即ち排煙ガスは移動層101に対して直交するように流れて、両者はいわば十字流を形成する。このとき排煙ガス中のSOxは脱硫剤中の水酸化カルシウムと反応して硫酸カルシウムとして固定される。次いで排煙ガスは上昇して第2のダクト41の他方の側面から第2のダクト41内に流入し、移動層101を横切って一方の側面から流出する。即ち排煙ガスは第2のダクト41内においても移動層101に対して直交するように流れていわば十字流を形成する。図1及び図3には、排煙ガスの流れが矢印で示されている。脱硫剤を粉体で供給する場合には、第1のダクト31から流出した排煙ガス中には脱硫剤である粉体の一部が随伴している場合があり、その場合には、排煙ガスが第2のダクト41内を流れたときに当該粉体が移動層101に捕獲されて除去される。また排煙ガス中の煤塵の一部が第1のダクト31内にて移動層101に捕獲されずに流出した場合においても、当該煤塵は第2のダクト41内で捕獲される。従って、第1のダクト31及び第2のダクト41内は集塵機能を備えていることになる。
 脱硫装置1について更に詳しく説明する。第1のダクト31及び第2のダクト41は各々図3に示すように扁平な角筒体を縦置きに配置した構造として構成されている。図4に示すように第1のダクト31及び第2のダクト41の各高さH1、H2は例えば同じ寸法に設定され、第1のダクト31及び第2のダクト41の各幅Wについても同じ寸法に設定されている。なお、各高さH1、H2について、また各幅Wについて、同じ寸法に設定されることに限定されるものではなく、互いに異なる寸法に設定してもよい。 
 第1のダクト31の厚さD1と第2のダクト41の厚さD2との関係については特に限定されないが、D2はD1と同じかあるいはD1よりも大きい方が好ましい場合がある。
 第1のダクト31及び第2のダクト41の各厚さD1、D2については、本実施形態ではD1よりもD2が大きく設定されており、このため接続部5は横長の逆角錐台形状に形成されている。 
 第1のダクト31及び第2のダクト41における互いに対向する側面の組のうち、面積の大きい方の側面の組について一方の側面、他方の側面という呼び方をすると、図2及び図3に示すように一方の側面及び他方の側面には、横幅一杯に即ち端から端に亘って各々伸びるようにルーバを構成する複数の傾斜板61が上下方向に配列されている。これら傾斜板61は各々外側に向かって上向きに設置され、互いに上下に隣接する傾斜板61同士の間は、排煙ガスの通過口になっている。このような傾斜板61を用いれば、移動層粒子を保持し、ガス通過を容易にする利点がある。
 第1のダクト31における排煙ガスの流出面である他方の側面(図2中右側の側面)及び第2のダクト41における排煙ガスの流出面である一方の側面(図2中左側の側面)には、例えば傾斜板61の群の外側面に沿ってネット(網状体)62が設けられている。ネット62は、移動層101を形成する粒状体(以下「移動層粒子」という)100が排煙ガスの流れに乗って各ダクト31、41から流出するのを防止するためのものである。このようなネット62を用いれば、格子状スクリーンを用いる場合に比べてコストを低く抑えられる利点がある。なお、ネットや格子状スクリーンは、多数の孔が形成された柔軟な面状体の例として挙げたものである。
 第1のダクト31及び第2のダクト41の側面の構造は、既述のように傾斜板61が組み合わされた横長のスリット上の通過口が形成されている構造に限られるものではなく、側面に多数の孔部が分散して形成されている構造であってもよい。そしてネット62を用いずに側面に形成された孔部を、移動層粒子100が流出しない大きさに設定するようにしてもよい。 
 また排煙ガスが第1のダクト31の一方の側面から流入して他方の側面から流出し、次いで上昇して第2のダクト41の他方の側面から流入して一方の側面から流出するように、排煙ガスの通流路である案内路を形成する流路部材300が第1のダクト31及び第2のダクト41の周囲に設けられている。301は排煙ガスの流入ポートであり、排煙ガス源例えば火力発電所から送られる排煙ガスの通流路に接続される。302は流出ポートであり、脱硫塔1にて脱硫された排煙ガスが当該流出ポート302から後段の処理装置に送られる。
 図1において、71は接続部5内に粉状の脱硫剤を供給するための脱硫剤供給部の一部をなすホッパ、71aは脱硫剤の供給、停止を行うためのバルブ、71bは、脱硫剤の供給管である。また72は、第2のダクト41の上部に粉状の脱硫剤を供給するための脱硫剤供給部の一部をなすホッパ、72aは脱硫剤の供給、停止を行うためのバルブ、72bは、脱硫剤の供給管である。
 図1に示すように、第2のダクト41の上端部には、移動層粒子100を供給するための移動層粒子の供給部をなす供給口401が設けられ、この供給口401に移動層粒子100の供給、停止を行うためのバルブ402が設けられている。また第1のダクト31の下端部には移動層粒子100を排出する排出口403が設けられ、排出口403には排出口403を開閉するバルブ404が設けられている。排出口403及びバルブ404は、第1のダクト31の幅方向に伸びている。これにより第2のダクト41及び第1のダクト31内にて移動層101の水平断面における移動層粒子100の濃度の均一性が高くなる。また脱硫装置1の内部のガスのシール性を確保するためにバルブ404の下方側にはシール機能を備えたシールバルブ405が設けられている。
 脱硫塔1の大容量化により、移動層の横幅が拡張し、第1のダクト31の下方側の角錐形ホッパー406で移動層粒子100を排出する場合、移動層101内で均一な水平断面を形成し難く、いわゆるピストンフローが形成し難くなる。そのため移動層粒子100を排出するバルブ(排出弁)404を移動層101の横幅に相応した長軸型の構造としている。しかしその結果、移動層101内のガスのシール性が困難になるため角錐型ホッパー406の下端部に移動層101内のガスのシール機能を有する移動層粒子100の排出用のシールバルブ405を設け、移動層粒子、粉状脱硫剤、及び排煙中の煤塵を排出するようにしている。
 脱硫剤を脱硫塔1に供給する形態としては、脱硫剤が移動層粒子100を兼用する場合と、脱硫剤が移動層粒子100とは別個に供給される場合と、の両方がある。後者の場合には、脱硫剤をホッパ72から供給管72bを介して脱硫塔1内に供給する場合と、脱硫剤をホッパ71から供給管71bを介して脱硫塔1内に供給する場合と、脱硫剤を移動層粒子100と混ぜて供給口401から脱硫塔1内に供給する場合と、がある。 
 移動層粒子100(粒状体)は、脱硫剤を兼ねる場合には、水酸化カルシウムあるいは生石灰、石炭灰、石膏あるいは使用済み脱硫剤(硫酸カルシウム)を混合して成形したものを用いる。石炭灰の代わりにシリカ、アルミナを含むゼオライトのような粘土鉱物でも良い。移動層粒子100の粒径は、例えば粒径のサイズが「mm」オーダの大きさに設定される。移動層粒子100の形状は球状に限らず柱状などであってもよい。一例として、移動層粒子100は、一例として粒径が6mm、高さが9mmの円柱状のペレットを挙げることができる。
 このように構成された脱硫装置においては、火力発電所等の排煙ガスが流入ポート301及び第1のダクト31における一方の側面の傾斜板61の隙間から第1のダクト31内に流入する。そして脱硫剤が移動層粒子100を兼用する場合を例にとると、移動層粒子100は、第2のダクト41の上端部の供給口401から供給され、このため第2のダクト41、接続部5及び第1のダクト31内には、移動層粒子100の下降流である移動層101が形成される。
 排煙ガスは第1のダクト31内の移動層101を横切り、他方の側面の傾斜板61の隙間から流出し、流路部材300により構成される通流路(案内路)に沿って上昇し、第2のダクト41の他方の側面の傾斜板61の隙間から第2のダクト41内に流入する。第2のダクト41内に流入した排煙ガスは、移動層101を横切り、一方の側面の傾斜板61の隙間及び流出ポート302を介して流出される。
 こうして排煙ガスが下段側の第1のダクト31内、上段側の第2のダクト41内を順次通過するときに、排煙ガス中のSOxは水酸化カルシウムの脱硫剤に吸収されて硫酸カルシウムとなる。また排煙ガスが第1のダクト31を横切るときに排煙ガス中に含まれている煤塵が移動層101により除去され、第1のダクト31から煤塵が流出したとしても第2のダクト41を横切るときに確実に除去される。
 ここで仮に2つのダクトを横に並べて、排ガスを一方のダクト、他方のダクトの順に横切る手法を想定すると、他方のダクトの上部に脱硫剤を搬送し、そして当該他方のダクトの下方から排出される脱硫剤を一方のダクトの上部まで例えばベルトコンベアで搬送する必要がある。これに対して上述実施形態のように、脱硫塔の下部側である第1のダクト31内を通過させ、次いで当該脱硫塔の上部側である第2のダクト41を通過させるようにすれば、脱硫剤の搬送系を簡素化できる利点がある。
 また、上述実施形態のように、第1のダクト31内を横切る排煙ガスの流れの向きと、第2のダクト41内を横切る排ガスの流れの向きとを反対にすると、上段側(第2のダクト41側)において水平方向で見たときに、流出ポート302に近づくほど排ガス中のSOx濃度は小さい。このため流出ポート302に近いほど、脱硫剤の脱硫性能の低下の程度は小さい。
 従って下段側(第1のダクト31側)においては、水平方向で見たとき、流入ポート301に近いほど、脱硫性能が高い脱硫剤が降りてくることになる。ここで下段側の排ガス中のSOx濃度は流入ポート301に近いほど高いことから、模式的な言い方をすれば、排ガス中のSOx濃度が高い領域ほど、脱硫性能が高い脱硫剤と接触することになる。このため高い脱硫効率が得られる。これに対して、2つのダクトを横に並べて、排ガスを一方のダクト、他方のダクトの順に横切る既述の想定手法の場合には、他方のダクトの下方から排出された脱硫剤は搬送系により一方のダクトの上部に搬送されるので、他方のダクトにおける脱硫剤の水平方向の配列と一方のダクトにおける脱硫剤の水平方向の配列とが対応しなくなるので、上述実施形態よりも脱硫効率は低くなる。
脱硫剤が移動層粒子100を兼用する場合について脱硫装置の作用について述べたが、脱硫剤が移動層粒子100と別体の場合には、脱硫剤である粒子は移動層粒子100の間の空隙に介在して下降流を形成する。
 脱硫剤は、移動層粒子100とは別体である場合には例えば粒径が1μmから40μmの水酸化カルシウムの粉体が用いられるが、この範囲から外れている粒径であってもよい。 
 脱硫剤の粒径が小さいほど、反応時間を短縮し得るが、排煙ガスが脱硫塔1内を横切ったときに脱硫剤が排煙ガスに随伴してネット62を介して外側に流出するおそれがある。この場合には、下方側のホッパ71から脱硫剤を供給することが好ましい。
 その理由は、下段側の第1のダクト31(第1室3)内から脱硫剤が流出したとしても、排煙ガスが上段側の第2のダクト41内に流入したときに、脱硫剤が移動層101に捕獲されるからである。従って、第1のダクト31(第1室3)は反応室、第2のダクト41(第2室4)は集塵室として夫々機能していると言うことができる。 
 脱硫剤を下方側のホッパ71から供給することが好ましいか否かは、脱硫剤の粒径とネット62の孔部の大きさとの兼ね合いで決まってくるが、一例として、脱硫剤の粒径が例えば40μm以下の場合に下方側のホッパ71を使用する態様を挙げることができる。また脱硫剤の粒径が例えば40μmを越える場合には、粉状脱硫剤が上方側のホッパ72から第2のダクト41の上端部に供給される態様を挙げることができる。なお、既述の粉状脱硫剤の供給位置と粒径との関係は一例に過ぎない。
 排煙ガス中の粉塵濃度が低い場合例えば0.1g/Nm未満の場合には、第1のダクト31の厚さD1と第2のダクト41の厚さD2との関係を、0.4≦D1/(D1+D2)≦0.6とすることが好ましい。しかしながらk{=D1/(D1+D2)}がこの範囲から外れていても本発明の効果は得られることから、kをこの範囲に設定することに限られるものではない。
 更に排煙ガスが随伴する粉塵濃度が高い場合例えば0.1g/Nm以上の場合には、k=D1/(D1+D2)が0.2以上、0.5以下である構成、即ち0.2≦D1/(D1+D2)≦0.5を採用してもよい。この場合には、粉塵濃度が高くても、上段側の第2のダクト41の厚さに比べて下段側の第1のダクト31の厚さが小さくなるので、移動層101の下降流の流速が第1のダクト31にて増大することから、圧力損失の増加の抑制が図れる。しかしながらkがこの範囲から外れていても本発明の効果は得られることから、kをこの範囲に設定することに限られるものではない
脱硫剤と移動層粒子100とが別個の場合には、脱硫塔1の下部から排出された移動層粒子100は、例えば篩分け処理を行って移動層粒子100に付着している脱硫剤及び煤塵を取り除いた後、再使用することができる。この場合には移動層粒子100は脱硫塔1に対して循環していると言うことができる。
 ここで、第1のダクト31の厚さD1と第2のダクト41の厚さD2とが等しくかつ第1のダクト31の高さH1と第2のダクト41の高さH2とが等しく、第1のダクト31及び第2のダクト41の各容積が等しい本発明の脱硫装置と、図5に示す比較例と、について脱硫効率をシミュレーションにより求めて比較した。便宜上、本発明の装置を2段移動層、比較例を1段移動層と呼ぶものとする。図5に示す1段移動層は、厚さが(D1+D2)、高さがH1(=H2)、横幅が2段移動層と同じに設定される。具体的な寸法としては、H1(H2)を10m、D1、D2をいずれも0.9m、横幅Wを5mに設定した。1段移動層及び2段移動層は、いずれも脱硫剤が移動層を兼用しているものとする。
 シミュレーションは次のように仮定して行った。
a.移動層内の微小立方体に水平に流入する排煙ガスが持ち込む単位時間あたりのSOx量と、その流入面に対向する面から流出する単位時間あたりのSOx量と、の差は、脱硫剤中のSOxの流量に等しい。
b.脱硫剤は純水酸化カルシウムであるとした。従って水酸化カルシウム1モルで1モルのSOを吸収できる。
c.脱硫剤のSO2の吸収特性は、図7に示す、石炭灰を利用した脱硫剤の吸収特性曲線に従うものとした。なお、図7に示す吸収特性の測定におけるガスの流通条件は、SOが1000ppm、NOが200PPm、COが10%、Oが6%、HOが10%、温度が140℃である。
 シミュレーションにおいて、移動層への流入ガス速度を、0.3、0.4、0.5、0.6m/秒の4通りに設定し、脱硫剤供給量を排煙ガス中のSOx濃度500ppmに対して、Ca/S(排煙ガス中のSの当量に対する水酸化カルシウム中のCaの当量)を1.0、1.2、1.6倍の3通りに設定した場合、1段移動層、2段型の脱硫効率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1から分かるように、例えばCa/S=1.2、ガス速度0.3m/秒、の場合を評価してみると、1段移動層(比較例)の脱硫率は92%であるが、2段移動層(本発明)の脱硫効率は96%まで向上する。またCa/S=1.2、ガス速度0.3m/秒においては、1段移動層の脱硫率は83%であるが、2段移動層の脱硫効率は86.5%まで向上する。 
またCa/S=1.2の場合、脱硫率90%以上を得ようとすると、1段移動層では、空間速度(SVh-1)=600であるが、2段移動層では、空間速度(SVh-1)=800となる。 
図8は、2段移動層においてk=D1/(D1+D2)を横軸にとり、脱硫率を縦軸にとったグラフである。D1+D2は1.8m、排煙ガスのガス速度は0.3m/s(秒)に設定した。排煙ガス中の粉塵濃度があまり高くなく、ガス通過による移動層での圧力損失が問題にならなければ、k=0.4~0.6とすれば、高い脱硫効率が得られることが分かる。
 図5に示す1段移動層と図6に示す2段移動層とについて、同一の排煙ガス条件において脱硫性能をシミュレーションにより比較した結果を次に示す。 
 排煙ガス処理量:50,000 Nm/hr、 75,640 m/hr-140℃
 排煙ガス温度 :140℃
 排煙ガス水分 :10 %
 SOx濃度   :500 ppm
 煤塵濃度   :2g/Nm
 脱硫剤    :石炭灰利用脱硫剤
1段脱硫塔   :移動層幅5m、高さ10m、厚さ1.8m、
2段脱硫塔     ;移動層幅5m、高さ10m×2、厚さ下段0.9m、上段0.9m 
 ガス速度      ;0.42m/sec
 空間速度(SVhr-1); 840 /hr
 以上の脱硫性能において、1段移動層、2段移動層による脱硫塔の空間速度はSVh-1=840、と同じに設定し、 Ca/S=1.2における1段移動層の脱硫効率は87.5%、2段移動層の脱硫効率は91.4%になる。
 本発明により、効率的な乾式排煙脱硫装置を実現でき、乾式排煙脱硫は、湿式排煙脱硫と比較して排煙温度を低下させないことよりガス・ガスヒーターが不要であり、用水を多量に使用せず排水処理が不要になるなどの長所を有し、また移動層脱硫装置は集塵機能を有することより電気集塵機が不要になる。

 

Claims (7)

  1.  排煙に対して乾式で脱硫を行いかつ集塵を行う排煙脱硫装置において、
     前記脱硫塔の下部側領域及び上部側領域を夫々第1室及び第2室と呼ぶとすると、前記脱硫塔内に粒状体である移動層粒子の下降流を形成するために、第2室の上部から移動層粒子を供給する移動層粒子の供給部と、
     排煙を脱硫するための脱硫剤の下降流を形成するために前記脱硫塔内に脱硫剤を供給する脱硫剤の供給部と、
     前記第1室及び第2室における互いに対向する側壁に形成され、排煙ガスが通過するための通過口と、
     前記第1室の通過口から流出した排煙ガスを前記第2室の通過口に案内するための案内路と、を備え、
     排煙ガスを前記第1室において前記移動層粒子の下降流及び脱硫剤の下降流に対して十字流状に接触させて当該脱硫塔の外に流出させ、次いで前記第2室において前記下降流と十字流状に接触させて当該脱硫塔の外に流出するように構成され、
     第2室における排煙ガスの流れの向きは、前記第1室における排煙ガスの流れの向きに対して反対の向きであることを特徴とする排煙脱硫装置。
  2.  排煙ガスが随伴する粉塵濃度が0.1g/Nm未満の場合、前記第1室の排煙ガスの流れ方向に沿った長さ寸法である厚さ寸法をD1、前記第2室の排煙ガスの流れ方向に沿った長さ寸法である厚さ寸法をD2とすると、
    0.4≦D1/(D1+D2)≦0.6とし、
     排煙ガスが随伴する粉塵濃度が0.1g/Nm以上の場合、
     0.2≦D1/(D1+D2)≦0.5であることを特徴とする請求項1に記載の排煙脱硫装置。
  3.  前記第1室と第2室との間には、側壁に排煙ガスが通過するための通過口が形成されていない領域が介在することを特徴とする請求項1記載の排煙脱硫装置。
  4.  前記脱硫剤は移動層粒子を兼用しており、
     前記脱硫剤の供給部は、移動層粒子の供給部を兼用していることを特徴とする請求項1記載の排煙脱硫装置。
  5.  前記脱硫塔内の移動層粒子は、脱硫性能を有しておらず、脱硫塔内にて移動層を形成すると共に循環して使用され、
     前記脱硫剤は、移動層粒子よりも粒径が小さい粉体であり、移動層を形成している移動層粒子の間の空隙に介在して下降流を形成していることを特徴とする請求項1記載の排煙脱硫装置。
  6.  前記脱硫剤の供給部は、前記第1室の上部または前記第2室の上部から脱硫剤を供給するように設けられていることを特徴とする請求項5記載の排煙脱硫装置。
  7.  前記通過口は、各々横長に形成されると共に複数段設けられ、
     複数段の通過口の各々に対応する位置には、脱硫塔の外側かつ上方側に向いた傾斜板が設けられ、排煙ガスが流出する側の傾斜板の外方側には、移動層粒子の飛散を防止するための網状体が設けられていることを特徴とする請求項1に記載の排煙脱硫装置。

     
PCT/JP2016/063218 2015-11-25 2016-04-27 排煙脱硫装置 WO2017090261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680067996.5A CN108430605A (zh) 2015-11-25 2016-04-27 排烟脱硫装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230001A JP6137643B2 (ja) 2015-11-25 2015-11-25 乾式排煙移動層浄化装置
JP2015-230001 2015-11-25

Publications (1)

Publication Number Publication Date
WO2017090261A1 true WO2017090261A1 (ja) 2017-06-01

Family

ID=58763296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063218 WO2017090261A1 (ja) 2015-11-25 2016-04-27 排煙脱硫装置

Country Status (3)

Country Link
JP (1) JP6137643B2 (ja)
CN (1) CN108430605A (ja)
WO (1) WO2017090261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112933920A (zh) * 2021-02-01 2021-06-11 中国科学院过程工程研究所 一种烟气的脱硫脱硝除尘一体化的反应装置及脱硫脱硝除尘方法
CN115806843A (zh) * 2022-12-05 2023-03-17 中国科学院过程工程研究所 一种用于高炉煤气的干法脱硫化氢塔

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104283A (en) * 1978-02-02 1979-08-16 Nec Corp Manufacture of helix type delay circuit
JPS56171584U (ja) * 1980-05-23 1981-12-18
JPS57107226A (en) * 1980-12-24 1982-07-03 Kubota Ltd Dry type gas absorber
JPS58145428A (ja) * 1982-02-23 1983-08-30 Ricoh Co Ltd プラスチツクの射出成形方法
JPS63310624A (ja) * 1987-06-11 1988-12-19 Hokkaido Electric Power Co Inc:The 排煙乾式処理装置
JPH04290517A (ja) * 1991-03-19 1992-10-15 Kawasaki Heavy Ind Ltd 排ガス処理方法及び装置
JP2010512984A (ja) * 2006-12-14 2010-04-30 グロコウスキー、ホルスト 金属製造における鉱石および/または他の金属含有材料の焼結工程の排ガスを浄化する方法および装置
JP2010119932A (ja) * 2008-11-18 2010-06-03 Setekku:Kk 移動層固気反応装置における粉体状浄化剤の供給方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620627U (ja) * 1979-07-27 1981-02-24
JPS5878136U (ja) * 1981-11-17 1983-05-26 川崎重工業株式会社 焼却炉排ガスの乾式移動層反応装置
JPS6053337U (ja) * 1983-09-20 1985-04-15 川崎重工業株式会社 移動層の移動粒子保持板の詰り除去構造
JPH02227113A (ja) * 1989-03-01 1990-09-10 Sumitomo Heavy Ind Ltd 2段式乾式脱硫装置のガスシール方法
JP4695126B2 (ja) * 2007-09-20 2011-06-08 ジェイパワー・エンテック株式会社 排ガスの脱硫脱硝装置
CN101259370A (zh) * 2007-12-20 2008-09-10 丁雄 多介质烟气净化反应塔
CN101264419A (zh) * 2008-05-09 2008-09-17 丁雄 烟气净化反应塔

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104283A (en) * 1978-02-02 1979-08-16 Nec Corp Manufacture of helix type delay circuit
JPS56171584U (ja) * 1980-05-23 1981-12-18
JPS57107226A (en) * 1980-12-24 1982-07-03 Kubota Ltd Dry type gas absorber
JPS58145428A (ja) * 1982-02-23 1983-08-30 Ricoh Co Ltd プラスチツクの射出成形方法
JPS63310624A (ja) * 1987-06-11 1988-12-19 Hokkaido Electric Power Co Inc:The 排煙乾式処理装置
JPH04290517A (ja) * 1991-03-19 1992-10-15 Kawasaki Heavy Ind Ltd 排ガス処理方法及び装置
JP2010512984A (ja) * 2006-12-14 2010-04-30 グロコウスキー、ホルスト 金属製造における鉱石および/または他の金属含有材料の焼結工程の排ガスを浄化する方法および装置
JP2010119932A (ja) * 2008-11-18 2010-06-03 Setekku:Kk 移動層固気反応装置における粉体状浄化剤の供給方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112933920A (zh) * 2021-02-01 2021-06-11 中国科学院过程工程研究所 一种烟气的脱硫脱硝除尘一体化的反应装置及脱硫脱硝除尘方法
CN115806843A (zh) * 2022-12-05 2023-03-17 中国科学院过程工程研究所 一种用于高炉煤气的干法脱硫化氢塔

Also Published As

Publication number Publication date
JP2017094292A (ja) 2017-06-01
CN108430605A (zh) 2018-08-21
JP6137643B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
KR102003148B1 (ko) 코크스로 연도 가스의 탈황 및 탈질 통합정화공정 및 장치
CN208356505U (zh) 一种用于催化裂化装置烟气的半干法脱硫除尘系统
WO2007031551A1 (en) Method of removing sulfur trioxide from a flue gas stream
WO2017179107A1 (ja) 排ガスの処理システム
WO2018041171A1 (zh) 烟气脱硝方法
CN102350205A (zh) 一种常温半干式烟气净化方法及系统
CN205796927U (zh) 逆流式一体化活性焦烟气净化装置
CN104307326B (zh) 低温湿式电离氧化脱硝、超净化工艺
CN1137759C (zh) 一种垃圾焚烧尾气全面净化的方法及其装置
WO2017090261A1 (ja) 排煙脱硫装置
CN111298629A (zh) 一种协同重金属脱除的模块化脱硫除尘装置
CN204952658U (zh) 烧结球团烟气资源化系统
CN213492812U (zh) 烟气处理系统
CN112675698B (zh) 一种分仓室湍动床脱硫脱硝除尘装置及其工艺
CN205796941U (zh) 逆流式一体化活性焦烟气净化装置
CN106582233A (zh) 一种催化裂化再生烟气的干式脱硫脱硝除尘系统
CN101462022B (zh) 一种循环流化床烟气脱硫装置
CA3207274A1 (en) A system and method for dry sorption
US9700838B2 (en) Circulating dry scrubber system and method
CN106807168A (zh) 一种脱硫脱硝除尘器
CN201337883Y (zh) 一种循环流化床烟气脱硫装置
CN110624409A (zh) 一种冶炼烟气制酸设备及其烟气净化装置
CN110449022A (zh) 一种法兰型入口污染物固体脱除剂喷射装置
CN204159214U (zh) 多功能烟气脱硫脱硝系统
CN107213768A (zh) 一种利用筛分气流激波悬浮液脱硫脱硝的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868212

Country of ref document: EP

Kind code of ref document: A1