WO2017090228A1 - 計測装置 - Google Patents

計測装置 Download PDF

Info

Publication number
WO2017090228A1
WO2017090228A1 PCT/JP2016/004680 JP2016004680W WO2017090228A1 WO 2017090228 A1 WO2017090228 A1 WO 2017090228A1 JP 2016004680 W JP2016004680 W JP 2016004680W WO 2017090228 A1 WO2017090228 A1 WO 2017090228A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
angle
laser
unit
measuring device
Prior art date
Application number
PCT/JP2016/004680
Other languages
English (en)
French (fr)
Inventor
山田 和宏
義和 岩井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017090228A1 publication Critical patent/WO2017090228A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to a measurement apparatus capable of performing three-dimensional measurement with a resolution equal to or higher than a predetermined value at positions near and far from the measurement apparatus in a measurement area having a long predetermined direction.
  • Patent Document 1 discloses that a plurality of laser light sources with different projection angles are mounted on a turntable to perform scanning, and three-dimensional measurement is performed from distance information measured by reflected laser light. Yes.
  • the measuring apparatus of Patent Document 2 projects one laser beam onto a polygon mirror having a plurality of surfaces with different angles with respect to the rotation axis.
  • An apparatus is disclosed in which a single laser beam is scanned by a polygon mirror having different projection angles, and the measurement apparatus performs three-dimensional measurement from the projection direction and distance information.
  • the laser projection intervals in the vertical direction with respect to the scanning direction are arranged at equal angular intervals. Therefore, in the measurement far from the measuring device, the resolution in the vertical direction in the scanning direction is smaller than that in the vicinity. It has a problem that the resolution is lower than the predetermined resolution. In addition, if the laser projection interval is reduced in order to improve the resolution, there is a problem that a lot of laser light is required.
  • the present disclosure solves the above-described conventional problems, and an object of the present disclosure is to provide a measurement device that performs three-dimensional measurement with a resolution equal to or higher than a predetermined value in the vicinity and distance of the measurement device while keeping a constant number of laser beams.
  • a measurement device is a measurement device that scans laser light in a predetermined direction with the longest measurement area, and includes n (n is an integer of 3 or more) lasers.
  • a light projecting unit that projects light
  • a rotating unit that rotates the light projecting unit around a rotation axis perpendicular to the predetermined direction so as to scan the n laser beams in the predetermined direction, and the n number of light beams
  • a light receiving unit that receives reflected light reflected by an object in the measurement area, a calculation unit that calculates a distance to the object using the reflected light received by the light receiving unit, and the light projection
  • a control unit that controls the rotating unit, and in the n laser beams, a small angle laser beam having a small angle with respect to a reference plane perpendicular to the rotation axis in the measurement area, and The first angle between the small-angle laser beam and the adjacent laser beam Septum, the second angular distance smaller than said small angle large
  • the measurement device of the present disclosure it is possible to provide a measurement device that performs three-dimensional measurement with a resolution equal to or higher than a predetermined value near and far from the measurement device while keeping a constant number of laser beams.
  • FIG. 1 is an image diagram of a measurement area in the first embodiment.
  • FIG. 2 is a schematic diagram of the measurement apparatus according to the first embodiment.
  • FIG. 3 is a block diagram of the measuring apparatus according to the first embodiment.
  • FIG. 4 is a diagram showing the trajectory of the laser light in the first embodiment.
  • FIG. 5 is a diagram showing a track surface where the laser beam is the maximum distance in the first embodiment.
  • FIG. 6 is a diagram showing the trajectory of the laser light on the diagonal plane in the first embodiment.
  • FIG. 7 is a diagram showing the trajectory of the laser light in the first embodiment.
  • FIG. 8 is a diagram showing the trajectory of the laser light in the comparative example.
  • FIG. 9 is a diagram showing another orbit of laser light in the first embodiment.
  • FIG. 1 is an image diagram of a measurement area in the first embodiment.
  • FIG. 2 is a schematic diagram of the measurement apparatus according to the first embodiment.
  • FIG. 3 is a block diagram of the measuring apparatus according to the first embodiment.
  • FIG. 10 is an image diagram of a measurement area in the second embodiment.
  • FIG. 11 is a schematic diagram of a measuring apparatus according to the second embodiment.
  • FIG. 12 is a diagram showing a track surface where the laser beam is the maximum distance in the second embodiment.
  • FIG. 13 is a diagram illustrating a trajectory of laser light on a diagonal plane in the second embodiment.
  • FIG. 14 is a diagram showing the trajectory of the laser light in the second embodiment.
  • FIG. 15 is a diagram illustrating a laser beam trajectory in the comparative example.
  • Embodiment 1 When measuring a specific area for monitoring purposes, it is necessary to detect an object such as a person, both in the vicinity of the measuring apparatus and in the distance. That is, even when performing measurement using a rectangular parallelepiped-shaped three-dimensional space with any of the area width, depth, and height as a measurement area, the measurement device is not less than a predetermined value regardless of whether it is near or far. It is necessary to measure with resolution.
  • FIG. 1 is an image diagram of a measurement area in the first embodiment.
  • the measurement area is surrounded by six surfaces including an upper surface A1, a lower surface A2, a front surface B1, a rear surface B2, a right surface C1, and a left surface C2.
  • the measuring device 1 is arranged in the center of the measurement area and measures an object such as a person. At this time, the measuring device 1 needs to detect an object with a resolution equal to or higher than a predetermined value both near and far from the measuring device 1, that is, near the center of the depth and near the end portions (front surface B1, rear surface B2).
  • FIG. 2 is a schematic diagram of the measuring apparatus according to the first embodiment.
  • the measuring device 1 includes a rotating unit 10, a light projecting unit 20, and a light receiving unit 30.
  • Rotating unit 10 is composed of an electric motor that generates rotational power.
  • the rotating unit 10 rotates the light projecting unit 20 by 360 degrees or more by the rotation axis 11 perpendicular to the scanning direction of the laser light projected from the light projecting unit 20.
  • the rotation unit 10 uses a rotation axis 11 perpendicular to the Z direction so as to scan the laser light projected from the light projecting unit 20 in the Z direction, which is the direction of the longest side in the measurement area.
  • the light projecting unit 20 is rotated.
  • the light projecting unit 20 includes a laser light source that projects n (n is an integer of 3 or more) laser beams.
  • the light projecting unit 20 may include a lens for correcting an ellipse of the laser beam Lk and a collimator lens.
  • the light projecting unit 20 may be combined with optics or a detector that corrects the temporal change in the amount of laser light.
  • the light receiving unit 30 is composed of a combination of an avalanche photodiode and a condenser lens.
  • the light receiving unit 30 receives reflected light that is reflected by an object in the measurement area from the laser light projected by the light projecting unit 20.
  • the number of light receiving units 30 may be one when a wide-angle condensing optical system is used.
  • the element E0 is disposed on a plane perpendicular to the rotation axis of the rotation unit.
  • the laser light L0 emitted from the element E0 is projected in a direction along a reference plane perpendicular to the rotation axis 11.
  • the laser beam L0 closest to the direction perpendicular to the rotation axis 11 is the reference laser beam of the measuring device 1.
  • the elements Ek other than the element E0 are arranged symmetrically about the element E0, and are arranged in an orientation that forms an angle ⁇ k with the reference plane perpendicular to the rotation axis 11.
  • the laser beam Lk projected from the element Ek is inclined at an angle ⁇ k from the projection direction of the laser beam L0 to the direction of the rotation axis 11.
  • the angle ⁇ k indicating the projection direction of the laser beam Lk increases.
  • a first angle interval between a small angle laser beam having a relatively small angle ⁇ k with respect to a reference plane perpendicular to the rotation axis 11 in the measurement area and a laser beam adjacent to the small angle laser beam Is smaller than the second angle interval between the large-angle laser beam projected at a larger angle ⁇ k with respect to the reference plane than the small-angle laser beam and the laser beam adjacent to the large-angle laser beam.
  • the angle difference between the angle ⁇ k and the angle ⁇ (k ⁇ 1) that is, the angle interval ⁇ k between the laser beam Lk and the adjacent laser beam L (k ⁇ 1) also increases. It may be bigger. That is, in the angle interval ⁇ k between the laser beam Lk and the adjacent laser beam L (k ⁇ 1), the angle interval ⁇ 1 between the laser beam L1 and the adjacent laser beam L0 is the smallest, and the angle ⁇ k with respect to the reference plane. Is the largest angle interval ⁇ 8 between the laser beam L8 having the largest and the laser beam L7 adjacent to the laser beam L8. As the angle ⁇ k with respect to the reference plane increases, the angle interval ⁇ k increases.
  • FIG. 3 is a block diagram of the measuring apparatus according to the first embodiment.
  • the measuring device 1 includes n elements Ek having a rotating unit 10, a light projecting unit 20, and a light receiving unit 30, a calculation unit 50, and a control unit 70.
  • the measuring device 1 may further include a rotation angle detection unit 12, a recording unit 40, and a time measuring unit 60.
  • the rotation angle detection unit 12 resets the rotation angle ⁇ to zero when the rotation unit 10 rotates and the measuring device 1 reaches a predetermined angular position. Thereafter, the rotation angle detection unit 12 detects the rotation angle ⁇ using the rotation angular velocity of the rotation unit 10 and the elapsed time since the zero reset, and transmits the detected rotation angle ⁇ to the calculation unit 50. To do.
  • the rotation angle detection unit 12 is configured by, for example, an encoder.
  • the recording unit 40 includes the arrangement positions of the n elements Ek and the projection angles of the laser beams Lk projected by the n elements Ek (elevation angles when the rotation axis is vertical), that is, the laser beams Lk.
  • the angle ⁇ k and the angle interval ⁇ k between the laser beam L0 and the laser beam L0 are recorded.
  • the recording unit 40 is configured by, for example, a nonvolatile memory.
  • the calculation unit 50 calculates the distance to the object in the measurement area when the light receiving unit 30 receives the reflected light of the laser light projected by the light projecting unit 20. That is, the calculation unit 50 calculates the distance to the surface of the object using the reflected light received by the light receiving unit 30 and reflected from the surface of the object. Then, the calculation unit 50 projects the time and light amount of the laser light projected by the light projecting unit 20, the time and light amount of the laser light received by the light receiving unit 30, and the times detected by the rotation angle detection unit 12.
  • the calculation unit 50 has a function for detecting and determining an object, a function for setting a detection area, and a function for determining the inside and outside of the measurement area. That is, the calculation unit 50 calculates the trajectory of the laser light Lk inside and outside the measurement area from the angle ⁇ k of the laser light Lk of the recording unit 40 and the rotation angle detected by the rotation angle detection unit 12. The calculation unit 50 transmits the calculation results inside and outside the measurement area of the trajectory of the laser beam Lk to the control unit 70.
  • the timer 60 starts measuring the laser reflection time when the control unit 70 controls the start of the projection of the laser beam on the light projecting unit 20 and measures the laser reflection time when the light receiving unit 30 receives the laser. To complete.
  • the time measuring unit 60 also measures other time flows and times. The time measuring unit 60 transmits the reflection time, the time flow, and the time to the calculation unit 50.
  • the control unit 70 controls the projection of the laser light from the light projecting unit 20 and the rotation of the rotating unit 10.
  • the control unit 70 receives the calculation result of the laser beam inside and outside the measurement area from the calculation unit 50.
  • the control unit 70 instructs the light projection unit 20 to project the laser light with a light amount determined in the light projecting unit 20 when in the measurement area, and instructs the light projection unit 20 to interrupt the projection of the laser light when out of the measurement area. That is, when the calculation unit 50 calculates that the laser beam Lj is out of the measurement area using the angle of the laser beam Lj from the reference plane and the rotation angle ⁇ of the rotation unit 10, the laser beam The projection of Lj is interrupted.
  • indicates the measurement start of the reflection time to the time measuring part 60, when the projection of a laser beam is started. Further, the control unit 70 transmits the amount of laser light instructed to the light projecting unit 20 to the calculation unit 50.
  • each of the calculating part 50, the time measuring part 60, and the control part 70 is implement
  • FIG. 4 is a diagram showing the trajectory of the laser beam in the first embodiment.
  • the measurement apparatus 1 is configured so that the rotation axis 11 is parallel to the vertical direction (Y direction) of the measurement area, and the element E0 has an intermediate height H / 2 between the upper surface A1 and the lower surface A2. Located in the center of the measurement area. And the measuring device 1 rotates around the rotating shaft 11, and projects the laser beam Lk along the horizontal direction (X direction). The measurement apparatus 1 scans the laser beam in the longest depth direction (Z direction) of the measurement area. As shown in FIG. 2, each of the plurality of elements Ek having the light projecting unit 20 projects the laser light Lk at an angle ⁇ k with respect to the reference plane. In the case of FIG. 4, the reference plane is a plane (horizontal plane) parallel to the XZ plane.
  • the trajectory of the laser beam on the right surface C1 when there is no object in the measurement area and the laser beam projected from the measuring device 1 has arrived on the right surface C1 will be described with reference to FIG.
  • the laser beam L0 projected from the element E0 is scanned at the position of the reference plane parallel to the reference plane perpendicular to the rotation axis 11.
  • the trajectory of the laser beam L0 on the right surface C1 coincides with a straight line intersecting the reference surface perpendicular to the rotation axis 11 and the right surface C1 as shown in FIG. Since the orbit of the laser beam L0 is parallel to the upper surface A1 and the lower surface A2, scanning is performed without deviating from the right surface C1 of the measurement area.
  • the trajectory of the laser beam Lk on the right surface C1 is a conic curve that is a line of intersection between the conical surface and the right surface C1. That is, the trajectory of the laser beam Lk on the right surface C1 is a hyperbola having a shape corresponding to the angular relationship between the rotation axis 11, the right surface C1, and the angle ⁇ k. As the angle ⁇ k increases, the eccentricity of the hyperbola of the trajectory drawn on the right surface C1 by the laser light Lk projected at the angle ⁇ k decreases.
  • the laser light Lk in a range where the angle ⁇ k is larger than the predetermined angle ⁇ s intersects the upper surface A1 or the lower surface A2 during scanning, and is within the measurement area. Will not reach the front surface B1 or the rear surface B2. That is, the laser beam Lk having an angle ⁇ k of about 0 degrees is used for measurement from the vicinity of the measuring device to the far side, and the laser beam Lk in a range where the angle ⁇ k is larger than the predetermined angle ⁇ s is measured in the vicinity of the measuring device 1. Used only for.
  • the distance R between the two laser beams on the object to be measured is the distance w / 2 from the measuring device 1 to the right surface C1 of the measurement area as shown in FIG.
  • the angle interval ⁇ k can be increased as the distance to the measurement position is shorter. Therefore, in order to realize a resolution equal to or higher than a predetermined value even at a distance, the angle interval ⁇ k between adjacent lasers is reduced when the angle ⁇ k is near 0 degrees, and the angle interval ⁇ k of the laser light Lk is larger than the predetermined angle ⁇ s. Should be placed larger. By doing so, the measuring apparatus 1 can obtain a resolution equal to or higher than a predetermined value both near and far, and is suitable for monitoring for detecting an object such as a person. Therefore, the element Ek that projects the laser beam Lk is preferably arranged so as to satisfy the relationship of the following expression 2 at the angular interval ⁇ k shown in FIG.
  • FIG. 5 is a diagram showing a plane through which a plurality of laser beams pass at a rotation angle at which the distance to which the laser beams are projected in the first embodiment is maximized within the measurement area.
  • the measuring apparatus 1 is configured so that the rotation axis 11 is parallel to the vertical direction (Y direction) of the measurement area, and the element E0 is at an intermediate height H / 2 between the upper surface A1 and the lower surface A2. Located in the center. And the measuring device 1 rotates centering on the rotating shaft 11 which is a perpendicular direction (Y direction), and projects a laser beam to a horizontal direction (X direction). At this time, the element Ek having the light projecting unit 20 of the measuring device 1 projects the laser beam Lk at an angle ⁇ k with respect to the horizontal reference plane as shown in FIG. In this case, when the rotation angle ⁇ of the rotation unit 10 is an angle parallel to the plane Q including the diagonal lines of the upper surface A1 and the lower surface A2, the laser light is projected farthest in the measurement area.
  • the plane Q is a plane including the rotation axis 11 and intersects two opposite sides (an intersection line of the right surface C1 and the front surface B1 and an intersection line of the left surface C2 and the rear surface B2) facing the rotation axis 11 and the two opposite sides. It is a plane defined by two intersecting sides (each diagonal line of the upper surface A1 and the lower surface A2).
  • the plane Q is the plane having the largest area among the cross sections obtained by cutting the measurement area along the plane including the rotation axis 11.
  • the point where the optical axis of the laser beam L0 of the element E0 and the rotation axis 11 intersect is defined as the origin 0 (0, 0, 0), and the axis orthogonal to the Y axis on the plane Q at the origin 0 is defined as the S axis. And define the SY coordinate system. The following will be described using the SY coordinate system in the plane Q. Points where the rotation shaft 11 intersects the upper surface A1 and the lower surface A2 are defined as P1 (0, Y1) and P2 (0, -Y1).
  • the points intersecting the S axis with the front surface B1 and the rear surface B2 are P3 ( ⁇ S1,0), P4 (S1,0) ⁇ in the XYZ coordinate system, ( ⁇ X1,0, ⁇ Z1), (X1,0, Z1)).
  • FIG. 6 is a diagram showing the trajectory of the laser beam on the diagonal plane in the first embodiment.
  • FIG. 6 shows the trajectory of the laser light Lk in the right half (S ⁇ 0) of the plane Q.
  • the left half (S ⁇ 0) of the plane Q is the trajectory of the laser light Lk with the right half as the target on the Y axis.
  • the laser beam Li is measured far from the measuring device, and the laser beam Lj is measured in the vicinity of the measuring device.
  • m 2.
  • the coordinates (S, Y) of each position are as shown in FIG.
  • the maximum distance interval R in the Y direction of the adjacent laser beams Lk is the difference between the Y coordinates of “ ⁇ ” of the adjacent laser beams Li and the laser beam L (j ⁇ 1) adjacent to the laser beam Lj. Is obtained by the difference between the Y coordinates of “ ⁇ ” and “ ⁇ ” having the same value.
  • the maximum distance interval R for the laser beam Li is obtained by Equation 3
  • the maximum distance interval R for the laser beam Lj is obtained by Equation 4.
  • the maximum distance interval R between the adjacent laser beams Lk on the plane Q is smaller than the size R1 of the object to be detected, detection in the entire measurement area becomes possible. Therefore, the maximum distance interval R obtained by Expression 3 and Expression 4 may be R ⁇ R1. And the relationship of Formula 5 and Formula 6 which added the conditions from which the laser beam Lk becomes laser beam Li or laser beam Lj should just be satisfied.
  • a distance interval R between the laser beam Lk and the adjacent laser beam L (k ⁇ 1) is a predetermined distance on a plane Q that includes the rotation axis 11 and has the largest area in the measurement area.
  • the interval may be equal to or smaller than the resolution interval, that is, smaller than the size R1 of the object to be detected. That is, the distance interval in the direction parallel to the rotation axis between the laser beam Lj and the adjacent laser beam is equal to or less than the distance interval that is equal to or less than the predetermined resolution at any position in the measurement area.
  • Table 1 shows the resolutions of the example obtained by Equations 5 and 6 and the example and the comparative example in which the number of laser beams is the same.
  • the angle interval ⁇ j between the laser beam Lj and the adjacent laser beam L (j ⁇ 1), which is the laser beams L3 to L8, is equal to the laser beam L ( It is larger than the angle interval ⁇ i with i-1). Further, the angle interval ⁇ i between the laser beam L1 and the laser beam L (i ⁇ 1) adjacent to the laser beam L1 to L2 is substantially the same as ⁇ 1 and ⁇ 2 in Table 1.
  • the “substantially the same angle” refers to an angle having a difference within ⁇ 0.2 degrees.
  • the angle interval ⁇ j increases as the angle from the reference plane (that is, the laser beam L0) increases, and the reference laser beam L0, the laser beam L8 having the largest angle, and the laser beam L7 adjacent to the laser beam L8.
  • the angular interval is the largest. Therefore, in the embodiment, as shown in FIG. 7, the laser beam trajectory with a uniform distance can be drawn on the right surface C ⁇ b> 1 from the vicinity of the measuring device to the side 75 m ahead in the Z direction. Further, at 75 m ahead in the Z direction, the interval between the laser beams Lk is 0.75 m, and the resolution is 1.33 (lines / m). That is, the measuring apparatus 1 according to the embodiment can measure an object having a minimum size of 0.75 m in the entire measurement range.
  • the angular interval between adjacent laser beams is set to a constant value (2.30 degrees). Therefore, in the comparative example, as shown in FIG. 8, the trajectory of the plurality of laser beams Lk is drawn in the vicinity of the measuring device, but the trajectory of the laser beam Lk is only the trajectory of the reference laser beam L0 at 75 m ahead in the Z direction. . In addition, at a distance of 75 m in the Z direction, the distance interval of the laser light Lk is 3.01 m, and the resolution is 0.33 (lines / m). That is, the measurement device of the comparative example cannot measure an object having a minimum size of 0.75 m in the entire measurement range.
  • the measurement area in a predetermined measurement area, it is possible to increase the resolution in the distance of the measurement apparatus with a constant number of lasers, and obtain a minimum resolution that is equal to or greater than a predetermined value in the vicinity and the distance.
  • the angle of view can be maximized while maintaining a resolution equal to or higher than a predetermined value with a certain number of lasers, the measurement area can be maximized.
  • the measurement area is measured with 17 laser beams Lk as shown in FIG. 7.
  • a predetermined number of laser beams Lk may be projected at any position different in the direction perpendicular to the rotation axis. That is, in this case, if there are more than a predetermined number of laser beams in the sub-area, a predetermined number of laser beams may be projected, and projection of other laser beams may be interrupted.
  • FIG. 9 is a diagram showing another orbit of the laser beam in the first embodiment.
  • one laser beam Lk is always scanned with respect to the subarea obtained by dividing the Y direction of the measurement area into five equal parts.
  • the laser beam L0 is always scanned, and in the other sub-areas, for example, the laser beam L8, the laser beam L7, the laser beam L6,.
  • the control unit 70 performs ON / OFF control of the light projecting unit 20.
  • control is performed so that one laser beam Lk is scanned for each of the sub-areas obtained by dividing the measurement area in the direction of the rotation axis. Therefore, measurement is performed with a resolution equal to or higher than a predetermined value in the entire measurement area.
  • power consumption of the light projecting unit 20 can be reduced.
  • the light receiving unit 30 can also be turned ON / OFF in accordance with the light projecting unit 20 to further reduce power consumption.
  • the laser beam L0 perpendicular to the rotation axis 11 is used as the reference laser beam.
  • the reference laser beam may not be a laser beam perpendicular to the rotation axis 11.
  • the laser beam angle interval ⁇ k is set so that the distance L between adjacent laser beams Lk is equal to or smaller than the size R1 of the object to be measured, using the laser beam closest to the vertical direction of the rotation axis 11 as the reference laser beam. You only have to set it.
  • the measurement apparatus 1 projects 17 laser beams Lk.
  • the projected laser beam Lk may be three or more, and the angle of the laser beam Lk from the reference laser beam. It is only necessary that the interval is set so as to gradually increase. That is, it is only necessary to project three or more laser beams Lk with two or more angular intervals of the laser beams Lk.
  • the control unit 70 may decrease the rotation speed of the rotation unit 10 as the laser light projection distance increases.
  • the control unit 70 may decrease the rotation speed of the rotation unit 10 as the distance to the object calculated by the calculation unit 50 increases.
  • the control unit 70 may rotate the rotation unit within a range of the rotation angle ⁇ in which the projection distance of the laser light becomes large in the measurement area (for example, a range toward the front surface B1 and the rear surface B2 and a range including the front and rear thereof).
  • the rotational speed of 10 may be slowed down. By reducing the rotation speed of the rotation unit 10, the light receiving unit 30 can accurately receive reflected light from a region far from the measuring device.
  • the element Ek is arranged with the laser beam L0 as the center, but the element Ek may not be arranged symmetrically.
  • control unit 70 may gradually increase the intensity of the laser light to increase the measurement sensitivity.
  • the plane Q has been described as the plane having the largest area in the measurement area, but the angle between the laser beam Lj and the adjacent laser beam L (j ⁇ 1) in other planes in the measurement area regardless of the plane Q.
  • the interval is larger than the angular interval between the laser beam Li and the adjacent laser beam L (i ⁇ 1).
  • the laser output, the measurement waiting time (measurement waiting time from projecting the laser to returning to the object), the measurement frequency in the scanning direction can be optimized.
  • the laser light Lj projected from the light projecting unit 20 that measures the vicinity (elements having a large angle ⁇ in FIG. 2, for example, the elements E3 to E8) is projected by the light projecting unit 20 that measures the distance (elements having a small angle ⁇ ).
  • the laser intensity can be made smaller than the laser beam Li projected from the elements E0 to E2), and the power consumption can be reduced.
  • the light projecting unit 20 that measures the vicinity can suppress multiple detection or erroneous detection of light reflected from an object outside the measurement area by reducing the intensity of the laser light.
  • the laser light Lj for measuring the vicinity has a small scanning distance per unit scanning angle, the resolution in the scanning direction equivalent to the measurement at a distant position can be obtained even if the measurement frequency is less than that of the laser light Li for measuring to a distant position.
  • the measurement frequency of the large angle laser beam projected at a larger angle ⁇ k with respect to the reference surface than the small angle laser beam with a relatively small angle ⁇ k with respect to the reference surface perpendicular to the rotation axis 11 in the measurement area It may be less than light.
  • the round-trip time until the laser beam is reflected back to the object is short. For this reason, the measurement of the vicinity does not need to wait for the same time as the measurement of a distant place, and the next measurement can be performed in a short time.
  • the measuring device 1 is installed in the center of the rectangular parallelepiped measuring area, but in the second embodiment, the measuring device 2 is installed at a position offset from the center of the measuring area or outside the measuring area.
  • the measuring device 2 is arranged at an offset position will be described with reference to FIGS.
  • symbol is provided and description is abbreviate
  • FIG. 10 is an image diagram of the measurement area in the second embodiment.
  • FIG. 11 is a schematic diagram of the measuring apparatus according to the second embodiment.
  • the measurement device 2 is different from the measurement device 1 of the first embodiment in the arrangement of each element.
  • the element E ⁇ b> 0 is disposed on a plane perpendicular to the rotation shaft 11 of the rotating unit 10.
  • the angle ⁇ k increases and the angle interval ⁇ k also increases as the symbol k of the element Ek increases as in the first embodiment.
  • FIG. 12 is a diagram showing the orbital plane where the laser beam in the second embodiment becomes the maximum distance.
  • the measuring device 2 is installed at the upper end of the measurement area so that the rotation axis 11 is parallel to the vertical direction (Y direction) of the measurement area and the element E0 is at the height H of the upper surface A1. And the measuring device 2 rotates centering on the rotating shaft 11 parallel to a perpendicular direction (Y direction), and projects a laser beam to a horizontal direction (X direction).
  • the element Ek which is the light projecting unit 20 of the measuring device 2 projects the laser light Lk at an angle ⁇ k with respect to the horizontal direction as shown in FIG. In this case, the laser beam is projected to the farthest distance on the plane Q1 and the plane Q2 including the two diagonal lines of the upper surface A1 and the lower surface A2.
  • FIG. 13 is a diagram showing the trajectory of the laser beam on the diagonal plane in the second embodiment.
  • FIG. 13 shows the trajectory of the laser beam Lk on the plane Q2.
  • the plane Q1 is a trajectory of the laser beam Lk that is symmetric about the Y axis with respect to the plane Q2, and the description thereof is omitted.
  • m 5.
  • the maximum distance interval R between the adjacent laser beams Lk is obtained using Equations 3 and 4, and Equations 5 and 6 are used to detect the object size R1. If you satisfy the relationship.
  • Table 2 shows the resolutions of the examples obtained by the formulas 5 and 6 and the comparative example having the same number of laser beams as the examples.
  • the angle interval ⁇ j between the laser beam Lj and the adjacent laser beam L (j ⁇ 1), which is the laser beams L6 to L16, is equal to the laser beam L ( It is larger than the angle interval ⁇ i with i-1). Further, the angle interval ⁇ i between the laser light L and the laser light L (i ⁇ 1) adjacent to the laser light L1 to L5 is substantially the same as ⁇ 1 to ⁇ 5 in Table 2.
  • the “substantially the same angle” refers to an angle having a difference within ⁇ 0.2 degrees.
  • the angle interval ⁇ j increases as the angle from the reference surface (that is, the laser beam L0) increases, and the reference laser beam L0, the laser beam L16 having the largest angle, and the laser beam L15 adjacent to each other are adjacent to each other.
  • the angular interval is the largest. Therefore, in the embodiment, as shown in FIG. 14, a laser beam trajectory in which the distance between the entire area from the vicinity of the measuring device 2 to the side 75 m ahead in the Z direction is uniformized can be drawn on the right surface C1. Further, at 75 m ahead in the Z direction, the interval between the laser beams Lk is 0.75 m, and the resolution is 1.33 (lines / m). That is, the measurement apparatus 2 of the embodiment can measure an object having a minimum size of 0.75 m in the entire measurement range.
  • the angular interval between adjacent laser beams is set to a constant value (1.63 degrees). Therefore, in the comparative example, as shown in FIG. 15, the trajectories of a plurality of laser beams Lk are drawn in the vicinity of the measuring apparatus, but the trajectories of the laser beams Lk are 75 m ahead in the Z direction, and the reference laser beams L0 and L1 It becomes only an orbit. Further, at 75 m ahead in the Z direction, the interval between the laser beams Lk is 2.13 m, and the resolution is 0.47 (lines / m). That is, the measurement device of the comparative example cannot measure an object having a minimum size of 0.75 m in the entire measurement range.
  • the resolution is increased in the predetermined measurement area even in the distance of the measurement device, and the resolution is equal to or higher than the predetermined value. Can be obtained.
  • the laser beam L0 is projected horizontally, but the laser beam L0 may be projected to an intermediate position (position of height H / 2) of the right surface C1.
  • the elements Ek other than the element E0 are arranged symmetrically about the element E0 as in the first embodiment, and the rotation shaft 11 is inclined 18.43 degrees from the vertical direction Y.
  • the reference laser beam L0 draws an orbit at an intermediate position (position of height H / 2) of the right surface C1.
  • the laser beam Lk draws a trajectory similar to that in FIG. 7 of the first embodiment on the right surface C1.
  • the measurement apparatus can perform three-dimensional measurement with improved resolution at a long distance, three-dimensional measurement can be performed with a resolution greater than or equal to a predetermined value even at a remote position in a measurement area having a long predetermined direction. It is useful as a measuring device to perform.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

計測エリアの所定方向に向けてレーザ光を走査させる計測装置(1)であって、n本のレーザ光を投射する投光部(20)と、n本のレーザ光を所定方向に走査するように、所定方向に垂直な回転軸(11)で投光部を回動させる回動部(10)と、n本のレーザ光が計測エリア内の物体において反射された反射光を受光する受光部(30)と、受光部が受光した反射光を用いて物体までの距離を算出する演算部(50)と、投光部(20)、及び、回動部(10)の制御を行う制御部(70)とを備え、n本のレーザ光において、小角度レーザ光と当該小角度レーザ光が隣り合うレーザ光との第1角度間隔は、小角度レーザ光よりも計測エリア内で回転軸に垂直な基準面に対して大きな角度で投射される大角度レーザ光と当該大角度レーザ光が隣り合うレーザ光との第2角度間隔より大きい。

Description

計測装置
 本開示は、所定の方向が長い計測エリアにおいて、計測装置の近傍及び遠方の位置で3次元計測を所定値以上の解像度で行うことができる計測装置に関するものである。
 従来、特許文献1の計測装置は、投射角度の異なる複数のレーザの光源を回転台に搭載し走査を行い、反射したレーザ光で計測された距離情報から3次元計測を行うことが開示されている。
 また、特許文献2の計測装置は、1本のレーザ光を回転軸に対し異なる角度のついた面を複数もつポリゴンミラーに投射する。そして、1本のレーザ光が異なる投射角度のポリゴンミラーで走査され、計測装置が投射方位と距離情報とから、3次元計測を行う装置が開示されている。
米国特許第7969558号明細書 特開2005-291788号公報
 しかしながら、前記従来の計測装置では、走査方向に対して垂直方向のレーザ投射間隔は等角度間隔で配置されているため、計測装置から遠方の測定は、走査方向の垂直方向の解像度が近傍に比べて低下し、所定値の解像度より低くなるという課題を有していた。また、解像度を向上させるためにレーザ投射間隔を小さくすると、多くのレーザ光が必要になるという課題を有していた。
 本開示は、前記従来の課題を解決するもので、レーザ光を一定の本数のままで、計測装置の近傍及び遠方で所定値以上の解像度で3次元計測を行う計測装置を提供することを目的とする。
 前記従来の課題を解決するために、本開示の計測装置は、計測エリアの最も長い所定方向に向けてレーザ光を走査させる計測装置であって、n本(nは3以上の整数)のレーザ光を投射する投光部と、前記n本のレーザ光を前記所定方向に走査するように、前記所定方向に垂直な回転軸で前記投光部を回動させる回動部と、前記n本のレーザ光が前記計測エリア内の物体において反射された反射光を受光する受光部と、前記受光部が受光した前記反射光を用いて前記物体までの距離を算出する演算部と、前記投光部、及び、前記回動部の制御を行う制御部と、を備え、前記n本のレーザ光において、前記計測エリア内で前記回転軸に垂直な基準面に対する角度が小さい小角度レーザ光と当該小角度レーザ光が隣り合うレーザ光との第1角度間隔は、前記小角度レーザ光よりも前記基準面に対して大きな角度で投射される大角度レーザ光と当該大角度レーザ光が隣り合うレーザ光との第2角度間隔より小さい。
 本構成によって、計測装置の遠方でも所定値以上の解像度での3次元計測を行うことが可能で、計測装置の近傍でも遠方でも同じ大きさの物体を検知することが可能である。
 本開示の計測装置によれば、レーザ光を一定の本数のままで、計測装置の近傍及び遠方で所定値以上の解像度で3次元計測を行う計測装置を提供することができる。
図1は、実施の形態1における計測エリアのイメージ図である。 図2は、実施の形態1における計測装置の概要図である。 図3は、実施の形態1における計測装置のブロック図である。 図4は、実施の形態1におけるレーザ光の軌道を示す図である。 図5は、実施の形態1におけるレーザ光が最大距離になる軌道面を示す図である。 図6は、実施の形態1における対角の平面でのレーザ光の軌道を示す図である。 図7は、実施の形態1におけるレーザ光の軌道を示す図である。 図8は、比較例におけるレーザ光の軌道を示す図である。 図9は、実施の形態1におけるレーザ光の他の軌道を示す図である。 図10は、実施の形態2における計測エリアのイメージ図である。 図11は、実施の形態2における計測装置の概要図である。 図12は、実施の形態2におけるレーザ光が最大距離になる軌道面を示す図である。 図13は、実施の形態2における対角の平面でのレーザ光の軌道を示す図である。 図14は、実施の形態2におけるレーザ光の軌道を示す図である。 図15は、比較例におけるレーザ光の軌道を示す図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。
 (実施の形態1)
 特定のエリアを監視用途で計測する場合、計測装置の近傍においても遠方においても、人などの物体を検知する必要がある。すなわち、エリアの幅、奥行、及び高さのいずれかが極端に長い直方体形状の3次元空間を計測エリアとする計測を行う場合でも、計測装置は、近傍、遠方に拘らず、所定値以上の解像度で計測する必要がある。
 図1は、実施の形態1における計測エリアのイメージ図である。
 計測エリアは、例えば、空港ロビー等のエリアで幅W(=12m)、高さH(=4m)に比べ、奥行D(=150m)が極端に長いエリアである。つまり、計測エリアは、Z方向における奥行Dが最も長い直方体形状の3次元空間である。計測エリアは、上面A1、下面A2、前面B1、後面B2、右面C1、及び左面C2の6面で囲まれている。計測装置1は、当該計測エリアの中央に配置され、人などの物体を計測する。このとき、計測装置1は、計測装置1の近傍でも遠方でも、つまり、奥行の中央付近でも端部(前面B1、後面B2)付近でも所定値以上の解像度で物体を検知する必要がある。
 図2は、実施の形態1における計測装置の概要図である。計測装置1は、回動部10と、投光部20と、受光部30で構成されている。
 回動部10は、回転動力を発生させる電気モータで構成される。回動部10は、投光部20から投射されるレーザ光を走査する方向に垂直な回転軸11で投光部20を360度以上回動させる。回動部10は、具体的には、投光部20から投射されるレーザ光を計測エリアのうち最も長い辺の方向であるZ方向に走査するように、Z方向に垂直な回転軸11で投光部20を回動させる。
 投光部20はn本(nは3以上の整数)のレーザ光を投射するレーザ光源で構成されている。投光部20は、レーザ光Lkのビームの楕円補正用レンズ及びコリメータレンズを備えていてもよい。また、投光部20は、レーザ光の光量の経時変化を補正する光学や検出器が組合されていてもよい。
 受光部30は、アバランシェフォトダイオードと集光レンズと組合せで構成されている。受光部30は、投光部20が投射したレーザ光が計測エリア内の物体において反射された反射光を受光する。受光部30は、広角の集光光学系を用いる場合は1個でもよい。
 投光部20及び受光部30は、同じ向きで一体型となったn個(図2では17個)の素子Ek(k=0~8の整数)で構成される。素子E0は、回動部の回転軸に対して垂直な面上に配置される。そして、素子E0から発光されるレーザ光L0は回転軸11に対して垂直な基準面に沿った方向に投射される。回転軸11に垂直な方向に最も近いレーザ光L0は、計測装置1の基準のレーザ光である。素子E0以外の素子Ekは、素子E0を中心に対称に配置され、かつ、回転軸11に対して垂直な基準面と角度θkをなす向きで配置される。そして、素子Ekから投射されるレーザ光Lkは、レーザ光L0の投射方向にから回転軸11の方向に投射方向が角度θk傾いている。
 レーザ光Lkの符号kが大きくなるに従い、当該レーザ光Lkの投射方向を示す角度θkは大きくなる。また、n本のレーザ光Lkにおいて、計測エリア内で回転軸11に垂直な基準面に対する角度θkが比較的小さい小角度レーザ光と当該小角度レーザ光が隣り合うレーザ光との第1角度間隔は、小角度レーザ光よりも基準面に対して大きな角度θkで投射される大角度レーザ光と当該大角度レーザ光が隣り合うレーザ光との第2角度間隔より小さい。そして、基準面との角度θkが大きくなるに従って、角度θkと角度θ(k-1)との角度差、つまり、レーザ光Lkと隣り合うレーザ光L(k-1)との角度間隔Δθkも大きくなっていてもよい。つまり、レーザ光Lkと隣り合うレーザ光L(k-1)との角度間隔Δθkにおいて、レーザ光L1とレーザ光L1が隣り合うレーザ光L0との角度間隔Δθ1が最も小さく、基準面に対する角度θkが最も大きいレーザ光L8とレーザ光L8が隣り合うレーザ光L7との角度間隔Δθ8が最も大きい。そして、基準面に対する角度θkが大きくなるに従って、角度間隔Δθkは、大きくなる。図2では、符号k=8の場合の角度θkと角度間隔Δθkとを記載している。
 図3は、実施の形態1における計測装置のブロック図である。
 計測装置1は、回動部10、投光部20及び受光部30を有するn個の素子Ek、演算部50、及び制御部70を備える。計測装置1は、さらに、回動角検出部12、記録部40及び計時部60を備えてもよい。
 回動角検出部12は、回動部10が回動して、計測装置1が所定の角度位置になったとき、回動角度ωをゼロリセットする。その後、回動角検出部12は、回動部10の回転角速度とゼロリセットしてからの経過時間とを用いて回動角度ωを検出し、演算部50に検出した回動角度ωを送信する。回動角検出部12は、例えば、エンコーダなどにより構成される。
 記録部40は、n個の素子Ekのそれぞれの配置位置と、n個の素子Ekそれぞれが投射するレーザ光Lkの投射角(回転軸を鉛直とした場合の仰俯角)、つまり、レーザ光Lkとレーザ光L0との角度θk及び角度間隔Δθkを記録している。記録部40は、例えば、不揮発性のメモリなどにより構成される。
 演算部50は、投光部20が投射したレーザ光の反射光を受光部30が受光することで、計測エリア内にある物体までの距離を算出する。つまり、演算部50は、受光部30が受光した、物体の表面において反射された反射光を用いて物体の表面までの距離を算出する。そして、演算部50は、投光部20が投射したレーザ光の投射した時刻及び光量と、受光部30で受光したレーザ光の受光した時刻及び光量と、回動角検出部12が検知した回動角度ωと、記録部40が記録しているレーザ光Lkの角度θk及び角度間隔Δθkとにより、計測エリア内の物体の表面におけるレーザ光が反射された点の方位角、仰角、距離、及び反射率を求めることで、物体の3次元データを構成する。また、演算部50は、3次元データを構成する以外に、物体の検知、判断する機能、検知エリアを設定し、計測エリア内外を判断する機能を備えている。つまり、演算部50は、記録部40のレーザ光Lkの角度θkと、回動角検出部12で検出中の回動角からレーザ光Lkの軌道が計測エリア内外を演算する。演算部50はレーザ光Lkの軌道の計測エリア内外の演算結果を制御部70に送信する。
 計時部60は、制御部70が投光部20にレーザ光の投射開始を制御したときにレーザの反射時間の測定を開始し、受光部30がレーザを受光したときにレーザの反射時間の計測を完了する。また、計時部60は、その他の時間の流れや時刻も計測する。計時部60は、反射時間と、時間の流れや時刻とを演算部50に送信する。
 制御部70は、投光部20からのレーザ光の投射と、回動部10の回動を制御する。制御部70は、演算部50からレーザ光が計測エリアの内外の演算結果を受信する。制御部70は、計測エリア内のとき投光部20に定められた光量でレーザ光の投射を指示し、計測エリア外のとき投光部20にレーザ光の投射中断を指示する。つまり、制御部70は、演算部50がレーザ光Ljの基準面からの角度と回動部10の回動角度ωとを用いてレーザ光Ljが計測エリア外であると演算したとき、レーザ光Ljの投射を中断させる。また、制御部70は、レーザ光の投射を開始したとき、計時部60に反射時間の計測開始を指示する。また、制御部70は、演算部50に投光部20に指示したレーザ光の光量を送信する。なお、演算部50、計時部60、および制御部70のそれぞれは、プロセッサおよびメモリに記録されたプログラム、コンピュータ、専用回路などによって実現される。
 次に、計測装置1のレーザ光の軌道について図4を用いて説明する。
 図4は、実施の形態1におけるレーザ光の軌道を示す図である。
 図1の計測エリアにおいて、計測装置1は、回転軸11が計測エリアの垂直方向(Y方向)と平行で、素子E0が上面A1と下面A2との中間の高さH/2になるように計測エリアの中央に配置されている。そして、計測装置1は、回転軸11を中心に回動し、水平方向(X方向)に沿ってレーザ光Lkを投射する。計測装置1は、計測エリアの最も長い奥行きの方向(Z方向)に向けてレーザ光を走査させる。投光部20を有する複数の素子Ekの各々は、図2に示すように基準面に対して角度θkでレーザ光Lkを各々投射する。図4の場合、基準面は、X-Z平面に平行な面(水平面)である。
 図4を用いて、計測エリアに物体がなく、計測装置1から投写されたレーザ光が右面C1に到着したときの右面C1におけるレーザ光の軌道を説明する。素子E0から投射されるレーザ光L0は、回転軸11に垂直な基準面と平行に、当該基準面の位置で走査される。これにより、レーザ光L0の右面C1における軌道は、図4のように回転軸11に垂直な基準面と右面C1との交わる直線と一致する。レーザ光L0の軌道は、上面A1及び下面A2と平行であるので、計測エリアの右面C1から外れることなく走査される。
 素子E0以外の素子Ekから投射されるレーザ光Lkは、基準面に対して角度θkの方向に投射されるため、回動部10の回転により、円錐面に沿って走査される。レーザ光Lkの右面C1における軌道は、円錐面と右面C1との交線である円錐曲線となる。つまり、レーザ光Lkの右面C1における軌道は、回転軸11と右面C1と角度θkとの角度関係に応じた形状の双曲線となる。角度θkが大きくなるに従い、当該角度θkで投射されるレーザ光Lkが右面C1上に描く軌道の双曲線の離心率は、小さくなる。このため、角度θkが所定の角度θs(本実施の形態では、tan-1(H/W))よりも大きい範囲におけるレーザ光Lkは、走査中に上面A1または下面A2と交わり、計測エリア内の前面B1や後面B2に到達しなくなる。すなわち、角度θkが0度付近のレーザ光Lkは計測装置の近傍から遠方までの計測に使用され、角度θkが所定の角度θsよりも大きい範囲におけるレーザ光Lkは、計測装置1の近傍の計測のみに使用される。
 ところで、被計測物での2本のレーザ光の距離間隔Rは、計測装置1から計測エリアの右面C1までの距離を図1に示したように幅w/2とし、当該幅w/2と、レーザ光Lkの角度θkと、当該レーザ光Lkと隣り合うレーザ光L(k-1)の角度θ(k-1)と、レーザ光Lk及びレーザ光L(k-1)の間の角度間隔Δθkとを用いた式1で表される。
 R=w/2×tanθk-w/2×tanθ(k-1)
  ≒w/2×tan(Δθk)            (式1)
 計測装置1で所定値以上の解像度(検出したい物体のサイズR1)を実現させるためには、測定位置までの距離が短いほど、角度間隔Δθkを大きくすることができる。よって、遠方でも所定値以上の解像度を実現させるために、角度θkが0度付近において隣り合うレーザの角度間隔Δθkを小さくし、角度θkが所定の角度θsよりも大きいレーザ光Lkの角度間隔Δθkを大きく配置すべきである。こうすることで、計測装置1は、近傍でも遠方でも所定値以上の解像度を得ることができ、人などの物体を検知する監視用に適する。したがって、レーザ光Lkを投射する素子Ekは、図2に示す角度間隔Δθkにおいて、次の式2の関係を満たすように配置されるとよい。
 k≧ 2のとき
   Δθk≧Δθ(k-1)
   θk-θ(k-1)≧θ(k-1)-θ(k-2) (式2)
 次に、計測装置1からのレーザ光が最も遠くまで投射され、隣り合うレーザ光の距離間隔が最も広がる場合について図5を用いて説明する。
 図5は、実施の形態1におけるレーザ光が投射される距離が計測エリア内で最大になる回動角度において複数のレーザ光が通過する平面を示す図である。
 図5において、計測装置1は、回転軸11が計測エリアの垂直方向(Y方向)と平行で、素子E0が上面A1と下面A2との中間の高さH/2になるように計測エリアの中央に配置されている。そして、計測装置1は、垂直方向(Y方向)である回転軸11を中心に回動し、水平方向(X方向)にレーザ光を投射する。このとき、計測装置1の投光部20を有する素子Ekは、図2のように水平方向の基準面に対して角度θkでレーザ光Lk投射する。この場合、回動部10の回動角度ωが、上面A1及び下面A2の各々の対角線を含む平面Qに平行な角度である場合、レーザ光が計測エリア内において最も遠くまで投射される。
 平面Qは、回転軸11を含む平面であり、回転軸11に向い合う2本の対辺(右面C1及び前面B1の交線と左面C2及び後面B2の交線)と、2本の対辺に交差する2本の交差辺(上面A1及び下面A2の各々の対角線)とにより規定される平面である。そして、平面Qは計測エリアを回転軸11を含む平面で切り取った断面のうちで最も面積が広い平面である。
 平面Qにおいて、素子E0のレーザ光L0の光軸と回転軸11とが交差する点を原点0(0,0,0)とし、平面Q上でY軸に原点0で直交する軸をS軸とし、SY座標系を定義する。以下は平面QにおけるSY座標系で説明する。回転軸11が上面A1及び下面A2と交差する点を、P1(0,Y1)、P2(0,-Y1)とする。そして、S軸と前面B1及び後面B2と交差する点をP3(-S1,0)、P4(S1,0){XYZ座標系では、(-X1,0,-Z1)、(X1,0,Z1))とする。
 次に、平面Qでのレーザ光Lkの軌道について図6を用いて説明する。
 図6は、実施の形態1における対角の平面でのレーザ光の軌道を示す図である。図6は、平面Qの右半分(S≧0)のレーザ光Lkの軌道を示している。平面Qの左半分(S≦0)は、右半分をY軸で対象にしたレーザ光Lkの軌道となる。
 図6に示すように、レーザ光Lkは、平面Qの対辺(S=S1)に軌道が到達するレーザ光Li(iは1~mの整数)と、平面Qの対辺(S=S1)に軌道が到達せずに、交差辺(Y=Y1及び-Y1)に軌道が到達するレーザ光Lj(jはm+1~nの整数)からなる。レーザ光Liは計測装置の遠方まで計測し、レーザ光Ljは計測装置の近傍を計測することとなる。なお、本実施の形態では、m=2である。
 対辺(S=S1)上にレーザ光Liが到達する位置を「●」、交差辺(Y=Y1及びY=-Y1)上にレーザ光Ljが到達する位置を「○」、Y=Y1―R1、及びY=-Y1+R1上にレーザ光Lkが到達する位置を「□」で示す。各々の位置の座標(S,Y)は図6に示した通りである。隣り合うレーザ光LkのY方向における最大の距離間隔Rは、隣り合うレーザ光Liの「●」のY座標の差、及び、レーザ光Ljと隣り合うレーザ光L(j-1)で、Sの値が同じ「○」と「□」のY座標の差で求められる。そして、レーザ光Liについての最大の距離間隔Rは、式3により求められ、レーザ光Ljについての最大の距離間隔Rは式4により求められる。
 R=S1×tanθk-S1×tanθ(k-1) (式3)
 R=Y1-Y1/tanθk×tanθ(k-1) (式4)
 平面Qの隣り合うレーザ光Lkの最大の距離間隔Rが、検出したい物体のサイズR1より小さければ計測エリア全体での検出が可能となる。そのため、式3及び式4で求められる最大の距離間隔Rについて、R≦R1とすればよい。そして、レーザ光Lkがレーザ光Li、又は、レーザ光Ljになる条件を加えた式5及び式6の関係を満足すればよい。
 S1×tanθk≦Y1、k≧1のとき
    S1×tanθk-S1×tanθ(k-1)≦R1 (式5)
 S1×tanθk>Y1、k≧1のとき
    Y1-Y1/tanθk×tanθ(k-1)≦R1 (式6)
 つまり、図6に示すように、回転軸11を含みながら計測エリア内で最も広い面積になる平面Qにおいて、レーザ光Lkと隣り合うレーザ光L(k-1)との距離間隔Rが所定の解像度になる間隔以下、つまり、検出したい物体のサイズR1以下であればよい。つまり、レーザ光Ljと隣り合うレーザ光との回転軸に平行な方向における距離間隔は、計測エリア内のいずれの位置においても所定の解像度以下になる距離間隔以下である。
 例えば、素子E0のレーザ光L0の光軸と回転軸11とが交差する点である原点0を基準としたときの、Z方向-75m~75m、Y方向-2m~2m、X方向-6m~6mの計測エリアの場合に、式5及び式6で求めた実施例と、実施例とレーザ光の本数が同じ比較例との解像度について表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例は、表1に示すように、レーザ光L3~L8である、レーザ光Ljと隣り合うレーザ光L(j-1)との角度間隔Δθjは、レーザ光Liと隣り合うレーザ光L(i-1)との角度間隔Δθiより大きい。また、レーザ光L1~L2である、レーザ光Liと隣り合うレーザ光L(i-1)との角度間隔Δθiは、表1のΔθ1、Δθ2のように略同一である。略同一角度とは、±0.2度以内の差の関係にある角度である。更に、角度間隔Δθjは、基準面(つまりレーザ光L0)からの角度が大きくなるに従い大きくなり、基準のレーザ光L0と角度が最も大きいレーザ光L8とレーザ光L8が隣り合うレーザ光L7との角度間隔が最も大きくなっている。そのため、実施例は図7に示すように計測装置付近からZ方向の75m先の辺まで距離間隔が全面的に均一化されたレーザ光の軌道を右面C1に描くことができる。また、Z方向の75m先においては、レーザ光Lkの間隔は0.75mで、解像度は1.33(本/m)である。つまり、実施例の計測装置1は、計測範囲の全領域で最低サイズ0.75mの物体を計測することができる。
 比較例は、表1に示すように隣り合うレーザ光の角度間隔を一定値(2.30度)にした場合である。そのため、比較例は図8に示すように計測装置の近傍では複数本のレーザ光Lkの軌道を描くが、Z方向の75m先ではレーザ光Lkの軌道は基準のレーザ光L0の軌道のみとなる。また、Z方向の75m先においては、レーザ光Lkの距離間隔は3.01mで、解像度は0.33(本/m)である。つまり、比較例の計測装置は、計測範囲の全領域で最低サイズ0.75mの物体を計測することができない。
 かかる構成によれば、所定の計測エリアにおいて、一定のレーザ本数で計測装置の遠方において解像度を高め、近傍も遠方も所定値以上の最低解像度を得ることが可能である。また、一定のレーザ本数で、所定値以上の解像度を維持したまま画角を最大化することができるため、計測エリアを最大化することができる。
 なお、本実施の形態において、図7のように17本のレーザ光Lkで計測エリアを計測するとしたが、計測エリアを回転軸の方向に分割した複数のサブエリアのそれぞれについて、当該サブエリアの回転軸に垂直な方向に異なるいずれの位置であっても所定数のレーザ光Lkを投射してもよい。つまり、この場合、サブエリアにおいて所定数を超えるレーザ光があれば、所定数を超えるレーザ光を所定数だけ投射させ、それ以外のレーザ光の投射を中断させるとしてもよい。
 図9は、実施の形態1におけるレーザ光の他の軌道を示す図である。
 例えば、図9に示すように、計測エリアのY方向を5等分したサブエリアに対して、常に1本のレーザ光Lkが走査されるようにする。中央のサブエリアでは、レーザ光L0が常に走査され、その他のサブエリアでは、例えばレーザ光L8、レーザ光L7、レーザ光L6、・・・、レーザ光L1と常にいずれかのレーザ光Lkのみが投射されているように、制御部70が投光部20をON/OFF制御する。これにより、計測エリアを回転軸の方向に分割したサブエリアのそれぞれについて、1本のレーザ光Lkが走査されるように制御しているため、計測エリアの全領域で所定値以上の解像度で計測を行うことができ、かつ、投光部20の消費電力を低減することができる。また、受光部30も投光部20に合せてON/OFF制御することで、更なる消費電力の低減を行うこともできる。
 なお、本実施の形態において、回転軸11に垂直なレーザ光L0を基準のレーザ光としたが、基準のレーザ光が回転軸11に垂直なレーザ光でなくてもよい。その場合は、回転軸11の垂直方向に最も近いレーザ光を基準のレーザ光として、隣り合うレーザ光Lkの距離間隔Rが計測する物体のサイズR1以下になるようにレーザ光の角度間隔Δθkを設定すればよい。
 なお、本実施の形態において、計測装置1は、レーザ光Lkを17本投射するとしたが、投射されるレーザ光Lkは、3本以上であれば良く、基準のレーザ光からレーザ光Lkの角度間隔が徐々に広がるように設定されていればよい。つまり、レーザ光Lkの角度間隔が2個以上となる、3本以上のレーザ光Lkが投射されればよい。
 なお、計測エリアにおいて、レーザ光の投射距離が大きくなるに従い、制御部70は、回動部10の回動速度を遅くしてもよい。例えば、制御部70は、演算部50が演算した物体までの距離が大きくなるに従い、回動部10の回動速度を遅くしてもよい。また、例えば、制御部70は、計測エリア内においてレーザ光の投射距離が大きくなる回動角度ωの範囲(例えば、前面B1及び後面B2に向かう範囲及びその前後を含む範囲)において、回動部10の回動速度を遅くしてもよい。回動部10の回動速度を遅くなることで、受光部30が計測装置から遠方の領域からの反射光を精度よく受光することができる。
 なお、実施の形態において、素子Ekはレーザ光L0を中心に対象配置するとしたとしたが、対称配置にしなくてもよい。
 また、レーザ光の投射距離が大きくなるに従い、制御部70は、レーザ光の強度を徐々に強くし、測定感度を上げるとしてもよい。
 なお、平面Qは計測エリア内で最も面積が広い平面として説明したが、平面Qに関わらず計測エリア内のその他の平面においてもレーザ光Ljと隣り合うレーザ光L(j-1)との角度間隔は、レーザ光Liと隣り合うレーザ光L(i-1)との角度間隔より大きくなる。
 また、本実施の形態は、各レーザ光測定する最大距離が決まるため、レーザの出力、計測待ち時間(レーザを投射してから物体に当たって戻ってくるまでの計測待ち時間)、走査方向に対する測定頻度の最適化が可能である。例えば、近傍を計測する投光部20(図2において角度θが大きい素子、例えば、素子E3~E8)から投射されるレーザ光Ljは、遠方まで計測する投光部20(角度θが小さい素子、例えば、素子E0~E2)から投射されるレーザ光Liよりもレーザ強度を小さくし消費電力を下げることができる。つまり、n本のレーザ光Lkのうち、計測エリア内で回転軸11に垂直な基準面に対する角度θkが比較的小さい小角度レーザ光よりも基準面に対して大きな角度θkで投射される大角度レーザ光の強度を、小角度レーザ光よりも小さくしてもよい。また、近傍を計測する投光部20は、レーザ光の強度を小さくすることで、多重反射あるいは物体が計測エリア外の物体に反射した光の誤検知を抑えられる。
 また、近傍を計測するレーザ光Ljは、単位走査角あたりの走査距離が小さいため、遠方まで計測するレーザ光Liよりも測定頻度を少なくしても、遠方の計測と同等の走査方向の解像度を得ることができる。つまり、計測エリア内で回転軸11に垂直な基準面に対する角度θkが比較的小さい小角度レーザ光より基準面に対して大きな角度θkで投射される大角度レーザ光の測定頻度を、小角度レーザ光よりも少なくしてもよい。さらに、近傍の計測は、計測エリアの物体との距離が近いため、レーザ光が物体に反射して返ってくるまでの往復時間が短い。このため、近傍の計測は、遠方の計測の場合と同じ時間待つ必要はなく、短時間で次の計測を行うことができる。
 (実施の形態2)
 実施の形態1では、直方体状の計測エリアの中央に計測装置1を設置したが、実施の形態2は、計測装置2を計測エリアの中央からオフセットした位置、或いは、計測エリア外に設置する。計測装置2がオフセットされた位置に配置された場合について、図10~図15を用いて説明する。実施の形態1と同じ構成については、同じ符号を付与し説明を省略する。
 図10は、実施の形態2における計測エリアのイメージ図である。
 計測エリアは、例えば、駅のホーム等のエリアで幅W(=4m)、高さH(=12m)に比べ、奥行D(=150m)が極端に長いエリアである。つまり、計測エリアは、実施の形態1と同様に、Z方向における奥行Dが最も長いエリアである。
 図11は、実施の形態2における計測装置の概要図である。計測装置2は、各素子の配置が実施の形態1の計測装置1と異なる。具体的には、計測装置2では、素子E0は、回動部10の回転軸11に対して垂直な面上に配置される。また、計測装置2では、素子E0以外の素子Ekは、素子E0の下側に全て配置される。n個の素子Ekは、実施の形態1と同様に、素子Ekの符号kが大きくなるに従い、角度θkは大きくなると共に、角度間隔Δθkも大きくなる。
 図12は、実施の形態2におけるレーザ光が最大距離になる軌道面を示す図である。
 図12において、計測装置2は、回転軸11が計測エリアの垂直方向(Y方向)と平行で、素子E0が上面A1の高さHになるように計測エリアの上端に設置されている。そして、計測装置2は、垂直方向(Y方向)に平行な回転軸11を中心に回動し、水平方向(X方向)にレーザ光を投射する。このとき、計測装置2の投光部20である素子Ekは、図11のように水平方向に対して角度θkでレーザ光Lk投射する。この場合、上面A1及び下面A2の各々の2本の対角線である交差辺を含む平面Q1及び平面Q2で、レーザ光が最も遠くまで投射される。
 次に、平面Q1及び平面Q2でのレーザ光Lkの軌道について図13を用いて説明する。
 図13は、実施の形態2における対角の平面でのレーザ光の軌道を示す図である。図13は、平面Q2のレーザ光Lkの軌道を示している。なお、平面Q1は、平面Q2をY軸で対称にしたレーザ光Lkの軌道となるため説明を省略する。
 レーザ光Lkは、実施の形態1と同様に、平面Q2の対辺(S=S1)に軌道が到達するレーザ光Li(iは1~mの整数)と、交差辺(Y=-Y1)に軌道が到達するレーザ光Lj(jはm+1~nの整数)からなる。なお、本実施の形態では、m=5である。隣り合うレーザ光Lkの最大の距離間隔Rは、実施の形態1の図6と同様に、式3及び式4を用いて求められ、物体のサイズR1を検出するには、式5及び式6の関係を満足すればよい。
 例えば、素子E0のレーザ光L0の光軸と回転軸11とが交差する点である原点0を基準としたときの、Z方向-75m~75m、Y方向12m、X方向4mの計測エリアの場合に、式5及び式6で求めた実施例と、実施例とレーザ光の本数が同じ比較例との解像度について表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例は、表2に示すように、レーザ光L6~L16である、レーザ光Ljと隣り合うレーザ光L(j-1)との角度間隔Δθjは、レーザ光Liと隣り合うレーザ光L(i-1)との角度間隔Δθiより大きい。また、レーザ光L1~L5である、レーザ光Liと隣り合うレーザ光L(i-1)との角度間隔Δθiは、表2のΔθ1~Δθ5のように略同一である。略同一角度とは、±0.2度以内の差の関係にある角度である。更に、角度間隔Δθjは、基準面(つまりレーザ光L0)からの角度が大きくなるに従い大きくなり、基準のレーザ光L0と角度が最も大きいレーザ光L16とレーザ光L16が隣り合うレーザ光L15との角度間隔が最も大きくなっている。そのため、実施例は図14に示すように計測装置2付近からZ方向の75m先の辺まで距離間隔が全面的に均一化されたレーザ光の軌道を右面C1に描くことができる。また、Z方向の75m先においては、レーザ光Lkの間隔は0.75mで、解像度は1.33(本/m)である。つまり、実施例の計測装置2は、計測範囲の全領域で最低サイズ0.75mの物体を計測することができる。
 比較例は、表2に示すように隣り合うレーザ光の角度間隔を一定値(1.63度)にした場合である。そのため、比較例は図15に示すように計測装置の近傍では複数本のレーザ光Lkの軌道を描くが、Z方向の75m先ではレーザ光Lkの軌道は基準のレーザ光L0及びレーザ光L1の軌道のみとなる。また、Z方向の75m先においては、レーザ光Lkの間隔は2.13mで、解像度は0.47(本/m)である。つまり、比較例の計測装置は、計測範囲の全領域で最低サイズ0.75mの物体を計測することができない。
 かかる構成によれば、計測装置を計測エリアの中央からオフセットした位置、或いは、計測エリア外に設置しても、所定の計測エリアにおいて、計測装置の遠方においても解像度を高め、所定値以上の解像度を得ることができる。
 なお、本実施の形態において、レーザ光L0を水平に投射するとしたが、レーザ光L0を右面C1の中間位置(高さH/2の位置)に投射するとしてもよい。その場合は、計測装置は実施の形態1のように素子E0以外の素子Ekが素子E0を中心に対称に配置され、回転軸11を垂直方向Yから18.43度傾斜させる。これにより、基準のレーザ光L0は右面C1の中間位置(高さH/2の位置)に軌道を描くこととなる。そして、レーザ光Lkは、右面C1において実施の形態1の図7と同様の軌道を描くこととなる。
 本開示にかかる計測装置は、遠方での解像度を向上させた3次元計測を行うことが可能になるので、所定の方向が長い計測エリアの遠方の位置でも3次元計測を所定値以上の解像度で行う計測装置等として有用である。
  1、2 計測装置
 10 回動部
 11 回転軸
 12 回動角検出部
 20 投光部
 30 受光部
 40 記録部
 50 演算部
 60 計時部
 70 制御部
 E0、Ek 素子
 L0、Lk、L(k-1) レーザ光
 θk、θ(k-1) 角度
 Δθk 角度間隔
 R 距離間隔
 R1 サイズ

Claims (10)

  1.  計測エリアの最も長い所定方向に向けてレーザ光を走査させる計測装置であって、
     n本(nは3以上の整数)のレーザ光を投射する投光部と、
     前記n本のレーザ光を前記所定方向に走査するように、前記所定方向に垂直な回転軸で前記投光部を回動させる回動部と、
     前記n本のレーザ光が前記計測エリア内の物体において反射された反射光を受光する受光部と、
     前記受光部が受光した前記反射光を用いて前記物体までの距離を算出する演算部と、
     前記投光部、及び、前記回動部の制御を行う制御部と、を備え、
     前記n本のレーザ光において、前記計測エリア内で前記回転軸に垂直な基準面に対する角度が小さい小角度レーザ光と当該小角度レーザ光が隣り合うレーザ光との第1角度間隔は、前記小角度レーザ光よりも前記基準面に対して大きな角度で投射される大角度レーザ光と当該大角度レーザ光が隣り合うレーザ光との第2角度間隔より小さい、
     計測装置。
  2.  前記n本のレーザ光において、隣り合うレーザ光との角度間隔は、前記基準面に対する角度が大きいレーザ光ほど大きい、
     請求項1に記載の計測装置。
  3.  前記n本のレーザ光において、前記基準面に対する角度が最も大きい第nレーザ光と当該第nレーザ光が隣り合うレーザ光との角度間隔は、互いに隣り合うレーザ光の角度間隔のうちで最も大きい、
     請求項1または2に記載の計測装置。
  4.  前記n本のレーザ光は、前記計測エリア内で前記回転軸を含む平面の前記回転軸の対辺に軌道が到達する第iレーザ光(iは1~mの整数)と、前記対辺に軌道が到達しない第jレーザ光(jはm+1~nの整数)とからなり、
     前記第jレーザ光と隣り合うレーザ光との前記回転軸に平行な方向における距離間隔は、前記計測エリア内のいずれの位置においても所定の解像度になる距離間隔以下である、
     請求項1から3のいずれか1項に記載の計測装置。
  5.  前記平面は、前記計測エリア内で最も面積が広い平面であり、
     前記第iレーザ光と隣り合うレーザ光との角度間隔は略同一である、
     請求項4に記載の計測装置。
  6.  前記演算部が前記第jレーザ光の前記基準面からの角度と前記回動部の回動角度とを用いて前記第jレーザ光が計測エリア外であると演算したとき、
     前記制御部は、第jレーザ光の投射を中断させる、
     請求項4または5に記載の計測装置。
  7.  前記制御部は、前記演算部が算出した前記距離が大きくなるに従い、前記回動部の回動速度を遅くする、
     請求項1から5のいずれか1項に記載の計測装置。
  8.  前記制御部は、前記計測エリア内の前記回転軸に平行な平面を前記回転軸の方向に分割した複数のサブエリアのそれぞれについて、当該サブエリアの前記回転軸に垂直な方向に異なるいずれの位置であっても所定数のレーザ光を投射する
     請求項1から7のいずれか1項に記載の計測装置。
  9.  前記大角度レーザ光は、前記小角度レーザ光よりもレーザ強度が小さい、
     請求項1から8のいずれか1項に記載の計測装置。
  10.  前記大角度レーザ光は、前記小角度レーザ光よりも測定頻度が少ない、
     請求項1から9のいずれか1項に記載の計測装置。
PCT/JP2016/004680 2015-11-27 2016-10-25 計測装置 WO2017090228A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231288 2015-11-27
JP2015231288 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090228A1 true WO2017090228A1 (ja) 2017-06-01

Family

ID=58764169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004680 WO2017090228A1 (ja) 2015-11-27 2016-10-25 計測装置

Country Status (1)

Country Link
WO (1) WO2017090228A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200016942A (ko) * 2017-06-07 2020-02-17 헤사이 포토닉스 테크놀로지 씨오., 엘티디 멀티 라인 레이저 레이더
JP2021511483A (ja) * 2018-09-28 2021-05-06 ウェイモ エルエルシー 走査ライダにおける地形適応型パルスパワー
CN113552584A (zh) * 2020-11-03 2021-10-26 M·H·帕诺蒂安 双激光测量装置和使用其的在线订购系统
JP2022091922A (ja) * 2021-05-31 2022-06-21 阿波▲羅▼智▲聯▼(北京)科技有限公司 路側感知設備及びインテリジェント交通システム
JP2022113661A (ja) * 2021-01-23 2022-08-04 エイチ. パノシアン,マイケル レーザ距離測定デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525769A (ja) * 2004-12-23 2008-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 光学式近傍領域センサ
JP2012189366A (ja) * 2011-03-09 2012-10-04 Ihi Corp 監視方法及び監視装置
JP2013539531A (ja) * 2010-07-22 2013-10-24 レニショウ パブリック リミテッド カンパニー レーザ走査装置および使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525769A (ja) * 2004-12-23 2008-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 光学式近傍領域センサ
JP2013539531A (ja) * 2010-07-22 2013-10-24 レニショウ パブリック リミテッド カンパニー レーザ走査装置および使用方法
JP2012189366A (ja) * 2011-03-09 2012-10-04 Ihi Corp 監視方法及び監視装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200016942A (ko) * 2017-06-07 2020-02-17 헤사이 포토닉스 테크놀로지 씨오., 엘티디 멀티 라인 레이저 레이더
JP2020522717A (ja) * 2017-06-07 2020-07-30 上海禾賽光電科技有限公司Hesai Photonics Technology Co.,Ltd マルチラインレーダー
KR102641651B1 (ko) * 2017-06-07 2024-02-29 헤사이 테크놀로지 씨오., 엘티디. 멀티 라인 레이저 레이더
KR20240000630A (ko) * 2017-06-07 2024-01-02 헤사이 테크놀로지 씨오., 엘티디. 멀티 라인 레이저 레이더
KR102616109B1 (ko) * 2017-06-07 2023-12-21 헤사이 테크놀로지 씨오., 엘티디. 멀티 라인 레이저 레이더
US11543503B2 (en) 2017-06-07 2023-01-03 Hesai Technology Co., Ltd. Multi-line laser radar
JP7159224B2 (ja) 2017-06-07 2022-10-24 上海禾賽科技有限公司 マルチラインレーダー
JP7149329B2 (ja) 2018-09-28 2022-10-06 ウェイモ エルエルシー 走査ライダにおける地形適応型パルスパワー
JP2022145723A (ja) * 2018-09-28 2022-10-04 ウェイモ エルエルシー 走査ライダにおける地形適応型パルスパワー
JP7314368B2 (ja) 2018-09-28 2023-07-25 ウェイモ エルエルシー 走査ライダにおける地形適応型パルスパワー
JP2021511483A (ja) * 2018-09-28 2021-05-06 ウェイモ エルエルシー 走査ライダにおける地形適応型パルスパワー
CN114527474A (zh) * 2020-11-03 2022-05-24 M·H·帕诺蒂安 电子设备、计算机实现的系统和距离测量方法
CN113552584A (zh) * 2020-11-03 2021-10-26 M·H·帕诺蒂安 双激光测量装置和使用其的在线订购系统
JP2022113661A (ja) * 2021-01-23 2022-08-04 エイチ. パノシアン,マイケル レーザ距離測定デバイス
JP7426420B2 (ja) 2021-01-23 2024-02-01 エイチ. パノシアン,マイケル レーザ距離測定デバイス
JP2022091922A (ja) * 2021-05-31 2022-06-21 阿波▲羅▼智▲聯▼(北京)科技有限公司 路側感知設備及びインテリジェント交通システム

Similar Documents

Publication Publication Date Title
WO2017090228A1 (ja) 計測装置
CN211653129U (zh) 一种二维扫描装置及具有该二维扫描装置的激光雷达装置
JP6982424B2 (ja) 測量システム
JP2015180956A5 (ja)
JP5484976B2 (ja) 光走査装置及び距離測定装置
US10564265B2 (en) Measurement device and measurement method
US10649071B2 (en) Scanning optical system and radar
EP3812700B1 (en) Surveying instrument
JP6753961B2 (ja) レーザー受信機に入射する受信ビームと回転レーザービームを比較するための方法
US20210041237A1 (en) Surveying Instrument
JP6907947B2 (ja) 光走査型の対象物検出装置
JP2010066101A (ja) レーザレーダ及びレーザレーダによる境界監視方法
JP6259664B2 (ja) 走査光学系、光走査装置、及び距離測定装置
US11828931B2 (en) Scanner system and scan method
JP2017133949A (ja) 壁面計測装置、飛行ロボットおよび壁面検査システム
JP2017173258A (ja) 距離測定装置、距離測定方法及びプログラム
JP7416647B2 (ja) 測量装置
JP6676974B2 (ja) 対象物検出装置
WO2017065048A1 (ja) 光走査型の対象物検出装置
JP2008171444A (ja) 光走査型タッチパネル
CN105700131A (zh) 一种后视光学扫描镜组与扫描装置
US10605917B2 (en) Optical-scanning-type object detection device having a mirror surface to be inclined in a direction crossing a rotation axis
JP2002188918A (ja) 無人車位置計測方式
JP2018163129A (ja) 物体検知方法及び物体検知装置
CN116648635A (zh) 用于查明轮廓剖面的方法、2d激光扫描器以及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP