WO2017088768A1 - 吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵 - Google Patents

吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵 Download PDF

Info

Publication number
WO2017088768A1
WO2017088768A1 PCT/CN2016/106961 CN2016106961W WO2017088768A1 WO 2017088768 A1 WO2017088768 A1 WO 2017088768A1 CN 2016106961 W CN2016106961 W CN 2016106961W WO 2017088768 A1 WO2017088768 A1 WO 2017088768A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow guiding
condenser
absorption refrigeration
refrigeration unit
heat exchange
Prior art date
Application number
PCT/CN2016/106961
Other languages
English (en)
French (fr)
Inventor
邱伟
杨如民
武祥辉
武维建
刘彦武
Original Assignee
四川捷元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川捷元科技有限公司 filed Critical 四川捷元科技有限公司
Publication of WO2017088768A1 publication Critical patent/WO2017088768A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention relates to the field of production of a lithium bromide absorption refrigerating machine, in particular to a small absorption refrigerating machine capable of being a separate unit of a refrigerating matrix and an inclined inclined diversion condenser, an absorption refrigerating unit and a refrigerating matrix therein.
  • the absorption chiller has the advantages of energy saving, environmental protection, etc. It is easy to use new energy such as solar energy and industrial waste heat waste heat, and has been continuously developed. Miniaturization and familyization will be another trend after it has been put into industrial applications.
  • the lithium bromide absorption chiller uses pure water as the refrigerant, that is, it relies on pure water to evaporate and absorb heat in a high vacuum environment to realize the refrigeration function.
  • the refrigerant vapor after the endothermic evaporation is absorbed, transported, heated and regenerated, condensed by the lithium bromide solution, and returned to the liquid state again, and then again absorbs heat and evaporates, and the source continuously performs the refrigeration cycle.
  • the means for cooling and condensing the heated regenerated refrigerant vapor to return it to a liquid state for re-evaporation absorption is called a condenser.
  • the shell-and-tube condenser structure used in the conventional condenser is to distribute a plurality of rows of heat exchange tubes in the condenser.
  • the heat exchange tubes are formed on the surface of the heat exchange tubes. Water droplets, and collect and free to drip under the influence of gravity.
  • the condensed water is continuously dropped into the lower row of heat exchange tubes during the dropping process, forming a continuous water film on the surface of the heat exchange tube, increasing the heat transfer resistance between the vapor and the heat exchange tube, which is not conducive to the refrigerant vapor and the exchange Heat pipe contact is not efficient.
  • the absorption refrigerating machine with high heat exchange efficiency has excellent energy-saving potential, and it has the tendency and power to continuously evolve toward miniaturization.
  • the market urgently needs to develop light weight, high heat transfer efficiency, corrosion resistance, etc. Energy-saving and environment-friendly absorption chiller with performance.
  • the present invention aims to provide a condenser having a high heat exchange efficiency and a good condensation effect for an absorption refrigeration unit.
  • the condenser is an inclined cooling condenser of an absorption refrigeration unit.
  • the so-called absorption refrigeration unit refers to a small lithium bromide absorption chiller with a complete refrigeration function, which can be used alone or in combination with a large-scale refrigeration matrix.
  • An inclined cooling condenser for an absorption refrigeration unit comprising:
  • the refrigerant vapor flows outside the heat exchange tube, and the cooling water flows inside the heat exchange tube;
  • the refrigerant vapor When the refrigerant vapor comes into contact with the heat exchange tube, it exchanges heat with the cooling water inside the heat exchange tube to be liquefied into condensed water, and the condensed water is collected by the flow guiding groove and is guided to flow out.
  • the flow guiding groove is a rectangular shallow groove; the flow guiding groove is inclined with a horizontal plane.
  • the heat exchange tube is disposed above the flow guiding groove, and the arrangement surface of the heat exchange tube is parallel to the bottom surface of the groove.
  • the absorption refrigeration unit is provided with a regenerator on one side of the condenser
  • a slope type liquid barrier is provided for trapping droplets entrained in the refrigerant vapor, and only the refrigerant vapor is allowed to pass.
  • a bottom portion of the bottom of the flow guiding groove is provided with a plurality of lower water holes, and the condensed water flows through the bottom of the guiding groove and flows out from the lower water hole.
  • water holes on the adjacent two-layer flow guiding grooves are aligned in the vertical direction.
  • a supporting strip is formed at an angle with the edge of the guiding groove, and the supporting strip is used for supporting the upper and lower pipes and changing the flow of the condensed water in the guiding groove.
  • Direction creating turbulence.
  • the flow guiding groove is made of engineering plastic; the heat exchange tube is made of stainless steel material.
  • Another object of the present invention is to provide an absorption refrigeration unit comprising the above-described absorption refrigeration unit inclined surface flow condenser.
  • the third object of the present invention is to provide an absorption refrigeration matrix, comprising:
  • the absorption refrigeration unit includes the absorption type refrigerating unit inclined surface flow guiding condenser described above.
  • the inclined surface diversion condenser and the absorption refrigeration unit of the present invention collect condensed water liquefied and condensed on the heat exchange tube by providing a flow guiding groove under each layer of the heat exchange tube so as not to continue to drip to the lower layer heat exchange.
  • the surface of the tube forms a water film to block the contact between the refrigerant vapor and the heat exchange tube; and the inclination of the flow guiding groove and the heat exchange tube to the horizontal plane can accelerate the flow of the condensed water in the flow guiding groove.
  • the average thickness of the condensed water film surrounding the entire heat transfer tube arc surface is reduced.
  • the refrigerant vapor is continuously redirected by the guide channels of each layer, and the local turbulence enhances the convective heat transfer coefficient between the refrigerant vapor and the heat exchange tubes, so that the working efficiency of the entire condenser is improved.
  • Figure 1 is a cross-sectional view showing the structure of a condenser guide groove and a regenerator on one side of the present invention
  • Figure 2 is a perspective view showing the structure of the condenser guide groove of the present invention.
  • Figure 3 is a structural exploded view of the condenser guide groove of the present invention.
  • Heat exchange tubes 110, 112 (some of the pipes in the figure are omitted);
  • Support bar 205
  • Figure 1 is a cross-sectional view showing the structure of a bevel diversion condenser 103 and a regenerator 101 on one side of the present invention. Figure.
  • the important components of the absorption refrigeration unit are the regenerator 101 on the left side and the condenser 103 on the right side, with a sloped liquid barrier 102 in the middle.
  • the function of the left regenerator 101 is to heat the dilute lithium bromide solution, so that the refrigerant water absorbed in the dilute solution is continuously vaporized into a refrigerant vapor, and the refrigerant vapor enters the condenser 103 on the right side to be cooled and then condensed.
  • High-pressure low-temperature liquid refrigerant water when the refrigerant water in the condenser 103 enters the evaporator of the refrigeration unit through the orifice, a large amount of heat of the cold water flowing in the evaporator tube is vaporized, thereby achieving the purpose of cooling and cooling the cold water.
  • the condenser 103 of the present invention functions to cool and condense the refrigerant vapor generated by the regenerator to become refrigerant water.
  • the condenser 103 includes a plurality of rows of heat exchange tubes 110, 112 (only a portion of the heat exchange tubes are shown) and flow guiding grooves 114, 116.
  • the heat exchange tubes 110 and 112 are arranged in an upper and lower layer; cooling water flows through the heat exchange tubes 110 and 112 for cooling and condensing the refrigerant vapor entering the condenser 103.
  • Flow guiding grooves 114 and 116 are respectively disposed under the heat exchange tubes 110 and 112, and the flow guiding grooves 114 and 116 are rectangular shallow grooves (see FIGS. 2 and 3).
  • the refrigerant vapor is cooled and liquefied on the surfaces of the heat exchange tubes 110, 112 to form small water droplets; the small water droplets are continuously collected and collected by the flow guiding grooves 114, 116, and are discharged, thereby preventing the water droplets from continuing to drip to the lower rows of heat exchange tubes, thereby preventing A continuous water film is formed on the surface of the heat exchange tube below to reduce the heat transfer resistance between the vapor and the heat exchange tube.
  • the flow guiding grooves 114, 116 are parallel to the heat exchange tubes 110, 112, and both have an inclination angle of about 10 ° with the horizontal plane. This inclination angle facilitates the accelerated discharge of the refrigerant water collected in the flow guiding grooves 114, 116 by gravity.
  • the sloping liquid barrier 102 is disposed on the upper side edge of the flow guiding grooves 114, 116 for intercepting the droplets entrained in the refrigerant vapor generated by the evaporation of the left regenerator 101, and only allows the refrigerant vapor to pass over the sloping liquid.
  • the plate 102 enters the condenser 103 on the right side.
  • Fig. 2 is a perspective view showing the structure of the inclined flow guiding condenser 103 of the present invention.
  • the bottom of the upper guide groove 114 is provided with a support bar 205 at an angle of 45° to 135° to the edge of the guide groove 114.
  • the support bar 205 functions to support the upper heat exchange tube and A gap is formed between the heat exchange tube and the groove bottom of the flow guiding groove 114, so that the condensed water at the bottom of the groove is quickly discharged.
  • 10 drain holes 206 are provided at the bottom of the bottom of the guide groove 114, and the condensed water flows through the bottom of the guide groove 114, is guided by the support bar 205, and flows out from the drain hole 206. .
  • Figure 3 is a structural exploded view of the ramp flow condenser 103 of the present invention.
  • the upper row of guide grooves 114 and the lower row of guide grooves 116 are pulled apart by a distance, and the two flow guiding grooves 116 are arranged in parallel, and the angles of inclination are the same.
  • 10 drain holes 206 on the edge of the upper row of guide grooves 114 and 10 drain holes 308 on the edge of the lower guide groove 116 are vertically aligned in the vertical direction to make condensed water When drained by gravity, the water flow in the upper drain hole 206 flows directly from the aligned lower drain hole 308, and the discharge between the upper and lower rows of flow guide grooves 116 is not disturbed.
  • the outer diameter of the heat exchange tube 110 is 2.5-3.5 mm
  • the shortest center distance of the heat exchange tubes 110 in the upper and lower rows is 7 mm
  • the center distance of the heat exchange tubes 110 adjacent to the same row is 4 mm. So densely arranged, an extremely high heat transfer area is achieved per unit volume.
  • the guide trough is made entirely of engineering plastics, and its density is small and light, which is beneficial to miniaturization of the refrigeration unit.
  • the heat exchange tubes are made of stainless steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

提供一种吸收式制冷单元斜面导流冷凝器(103)和采用该斜面导流冷凝器(103)的吸收式制冷单元和制冷矩阵。斜面导流冷凝器(103)包括:多层呈上下层排列的导流槽(114、116);在各层导流槽(114、116)的上方铺设换热管(110、112);冷媒蒸汽在换热管(110、112)外部流动,冷却水在换热管(110、112)内部流通;冷媒蒸汽与换热管(110、112)接触时,与换热管(110、112)内部的冷却水发生热交换而液化成冷凝水,冷凝水被导流槽(114、116)收集并导流流出。该斜面导流冷凝器(103)及吸收式制冷单元,通过在每层换热管(110、112)下方设置导流槽(114、116)来收集在换热管(110、112)上液化凝结的冷凝水,使其不继续滴落到下层换热管(110、112)的表面形成水膜,阻隔冷媒蒸汽与换热管(110、112)的接触;并且,将导流槽(114、116)和换热管(110、112)与水平面倾斜,可加快导流槽(114、116)内冷凝水的流动。

Description

吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵 技术领域
本发明涉及溴化锂吸收式制冷机生产领域,特别涉及到能够作为制冷矩阵独立单元的小型吸收式制冷机及其内部的斜面导流冷凝器、吸收式制冷单元和制冷矩阵。
背景技术
吸收式制冷机具有节能、环保等优点,易于使用太阳能和工业余热废热等新型能源,得到了不断的发展。小型化、家庭化将会是其付诸工业应用领域后的又一趋势。
溴化锂吸收式制冷机是以纯水为冷媒,即依靠纯水在高真空环境下蒸发吸热实现制冷功能的。吸热蒸发后的冷媒蒸汽被溴化锂溶液吸收、搬运、加热再生、冷凝,重新变回液态后,再次吸热蒸发,源源不断的进行制冷循环。
在前述循环过程中,对加热再生后的冷媒蒸气进行冷却、凝结,使其变回液态以便重新蒸发吸收的装置叫做冷凝器。
传统的冷凝器所采用的管壳式冷凝器结构,是在冷凝器内分布多排换热管,当冷媒蒸汽进入冷凝器内与换热管发生热交换放热液化后在换热管表面形成水滴,并在重力的作用下汇集和自由滴落。这种结构中,冷凝水在下滴过程中不断滴到下方各排换热管,在换热管表面形成连续水膜,增加蒸气与换热管之间的传热阻力,不利于冷媒蒸汽与换热管的接触,热交换效率不高。
事实上,换热效率高的吸收式制冷机具有优秀的节能潜力,使其有不断向小型化家庭化方向进化的趋势和动力,市场迫切需要发展具备重量轻、传热效率高、抗腐蚀等性能的节能环保型吸收式制冷机。
发明内容
本发明为了解决以上技术问题,目的之一,在于为吸收式制冷单元提供一种热交换效率高、冷凝效果好的冷凝器。所述冷凝器为吸收式制冷单元斜面导流冷凝器。所谓吸收式制冷单元,指的是具有完整制冷功能的小型溴化锂吸收式制冷机,可以单独使用,也具备组合扩展成大规模制冷矩阵的能力。
具体技术方案如下:
一种吸收式制冷单元斜面导流冷凝器,包括:
若干排呈上下层排列的导流槽;
在各层导流槽的上方铺设换热管;
冷媒蒸气在所述换热管外部流动,冷却水在所述换热管内部流通;
冷媒蒸气与所述换热管接触时,与换热管内部的冷却水发生热交换而液化成冷凝水,冷凝水被所述导流槽收集并导流流出。
进一步的,所述导流槽是长方形的浅槽;所述导流槽与水平面倾斜。
进一步的,所述换热管设置在所述导流槽上方,且所述换热管的排列面与槽底面平行。
进一步的,所述吸收式制冷单元在所述冷凝器一侧设有再生器;
在所述再生器与所述吸收式制冷单元斜面导流冷凝器之间,设有斜坡式隔液板,用于截留冷媒蒸气中夹带的液滴,只允许冷媒蒸气通过。
进一步的,所述导流槽槽底最低处设有若干下水孔,冷凝水流经所述导流槽槽底并从所述下水孔流出。
进一步的,所述相邻两层导流槽上的下水孔在竖直方向上对齐。
进一步的,在所述导流槽的的上下两面,设置与所述导流槽边缘呈一定夹角的支撑条,所述支撑条用于支撑上下管道,并改变导流槽内冷凝水的流动方向,产生紊流。
进一步的,所述导流槽由工程塑料制成;换热管采用不锈钢材料制成。
本发明目的之二,是提供一种吸收式制冷单元,包括前文所述的吸收式制冷单元斜面导流冷凝器。
本发明目的之三,是提供一种吸收式制冷矩阵,包括:
若干个吸收式制冷单元;
所述吸收式制冷单元包括前文所述的吸收式制冷单元斜面导流冷凝器。
本发明的有益效果在于:
本发明的斜面导流冷凝器及吸收式制冷单元,通过在每层换热管下方设置导流槽来收集在换热管上液化凝结的冷凝水,使其不继续滴落到下层换热 管的表面形成水膜,阻隔冷媒蒸汽与换热管的接触;并且,将导流槽和换热管与水平面倾斜,可加快导流槽内冷凝水的流动。因而,使包围整个换热管弧面的冷凝水膜的平均厚度得以降低。同时,冷媒蒸气被各层导流槽引导不断改向,局部紊流强化了冷媒蒸气与换热管之间的对流传热系数,使整个冷凝器的工作效率提高。
附图说明
图1是本发明冷凝器导流槽与一侧的再生器结构的横截面视图;
图2是本发明冷凝器导流槽的结构立体图;
图3是本发明冷凝器导流槽的结构爆炸图。
其中,部分结构标记如下:
再生器101
斜坡式隔液板102;
冷凝器103;
换热管110、112(图中部分管道省略);
导流槽114、116;
支撑条205;
下水孔206、308。
具体实施方式
附图构成本说明书的一部分;下面将参考附图对本发明的各种具体实施方式进行描述。应能理解的是,为了方便说明,本发明使用了表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”等来描述本发明的各种示例结构部分和元件,但这些方向术语仅仅是依据附图中所显示的示例方位来确定的。由于本发明所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。在可能的情况下,本发明中使用的相同或者相类似的附图标记,指的是相同的部件。
图1是本发明斜面导流冷凝器103与一侧的再生器101结构的横截面视 图。
如图1所示为吸收式制冷单元的重要部件:左侧的再生器101和右侧的冷凝器103,中间为斜坡式隔液板102。
需要补充说明:左侧再生器101的作用是将溴化锂稀溶液进行加热,使稀溶液中吸收的冷媒水不断汽化变成冷媒蒸气,冷媒蒸气进入右侧的冷凝器103遇冷降温后凝结,成为高压低温的液态冷媒水;当冷凝器103内的冷媒水通过节流孔进入制冷单元的蒸发器时,大量吸收蒸发器管程内流动的冷水的热量而汽化,从而达到给冷水降温制冷的目的。本发明的冷凝器103的作用即是将再生器产生的冷媒蒸气进行冷却凝结,变成冷媒水。
如图1、图2所示,冷凝器103包括多排换热管110、112(图中仅示出了部分换热管)和导流槽114、116。
换热管110、112呈上下层排列;换热管110、112内流通有冷却水,用于对进入冷凝器103内的冷媒蒸气降温冷凝。换热管110、112之下分别设有导流槽114、116,导流槽114、116是长方形的浅槽(见图2、图3)。冷媒蒸气在换热管110、112表面被冷却液化后形成小水滴;小水滴不断汇集落下被导流槽114、116收集并导出,避免了水滴继续滴落到下方各排换热管,从而防止在下方的换热管表面形成连续水膜,降低蒸气与换热管之间的传热阻力。
导流槽114、116与换热管110、112平行,且都与水平面呈约为10°的倾角,这种倾角有利于导流槽114、116内收集的冷媒水在重力作用下加速排出。
斜坡式隔液板102设置在导流槽114、116的较高一侧边缘,用于截留左侧再生器101加热蒸发产生的冷媒蒸汽中夹带的液滴,只允许冷媒蒸汽越过斜坡式隔液板102进入右侧的冷凝器103。
图2是本发明斜面导流冷凝器103的结构立体图。
如图2所示,上层导流槽114的槽底设有与导流槽114边缘呈45°至135°夹角的支撑条205,支撑条205的作用是支撑上部的换热管,并且使换热管与导流槽114的槽底之间形成缝隙,方便槽底的冷凝水快速流出。
此外,作为一个实施例,导流槽114的槽底下沿最低处设有10个下水孔206,冷凝水流经所述导流槽114槽底,经支撑条205导流并从下水孔206中流出。
图3是本发明斜面导流冷凝器103的结构爆炸图。
如图3所示,上排导流槽114和下排导流槽116被拉开了一段距离,两块导流槽116平行设置,且倾斜的角度相同。上排导流槽114边沿的10个下水孔206与下层导流槽116边沿的10个下水孔308(部分下水孔308被上排导流槽114挡住)在竖直方向上下对齐,使冷凝水在重力作用下排走时,上层下水孔206中的水流直接从对齐的下层下水孔308中流过,上下两排导流槽116之间的泄流相互不受干扰。
此外,本发明中换热管110的外径为2.5-3.5mm,上下两排所述换热管110的最短圆心距为7mm,同一排相邻所述换热管110的圆心距为4mm,如此密集排列,在单位体积上取得极高的传热面积。导流槽全部由工程塑料制成,其密度小、重量轻,有利于制冷单元小型化。换热管由不锈钢制成。
尽管参考附图中出示的具体实施方式将对本发明进行描述,但是应当理解,在不背离本发明教导的精神、范围和背景下,本发明的斜面导流冷凝器和采用该斜面导流冷凝器的吸收式制冷单元和制冷矩阵可以有许多变化形式,例如倾斜角度和换热管的尺寸和距离的改变,等等。本领域技术内普通技术人员还将意识到有不同的方式来改变本发明所公开的实施例中的参数、尺寸,但这均落入本发明和权利要求的精神和范围内。

Claims (10)

  1. 一种吸收式制冷单元斜面导流冷凝器,其特征在于,包括:
    多层呈上下层排列的导流槽;
    在各层所述导流槽的上方铺设换热管;
    冷媒蒸气在所述换热管外部流动,冷却水在所述换热管内部流通;
    所述冷媒蒸气与所述换热管接触时,与所述换热管内部的所述冷却水发生热交换而液化成冷凝水,所述冷凝水被所述导流槽收集并导流流出。
  2. 如权利要求1所述的吸收式制冷单元斜面导流冷凝器,其特征在于:
    所述导流槽是长方形的槽;
    形成所述导流槽的槽底壁与水平面倾斜。
  3. 如权利要求2所述的吸收式制冷单元斜面导流冷凝器,其特征在于:
    所述换热管设置在所述导流槽上方,且所述换热管的排列面与所述导流槽的所述槽底壁平行。
  4. 如权利要求1-3中任一项所述的吸收式制冷单元斜面导流冷凝器,其特征在于:
    所述吸收式制冷单元在所述冷凝器一侧设有再生器;
    在所述再生器与所述吸收式制冷单元斜面导流冷凝器之间,设有斜坡式隔液板,用于截留冷媒蒸气中夹带的液体,只允许冷媒蒸气通过。
  5. 如权利要求2所述的吸收式制冷单元斜面导流冷凝器,其特征在于:
    所述导流槽的所述槽底壁最低处设有多个下水孔,冷凝水流经所述导流槽的所述槽底壁并从所述下水孔流出。
  6. 如权利要求5所述的吸收式制冷单元斜面导流冷凝器,其特征在于:
    相邻两层所述导流槽的所述下水孔在竖直方向上对齐。
  7. 如权利要求2、3或5所述的吸收式制冷单元斜面导流冷凝器,其特征 在于:
    形成所述导流槽的槽底壁的上下两面设置有支撑条,所述支撑条与所述导流槽的边缘呈45°至135°夹角,所述支撑条用于支撑上下管道,并改变所述导流槽内冷凝水的流动方向以产生紊流。
  8. 如权利要求1-7任一项所述的吸收式制冷单元斜面导流冷凝器,其特征在于:
    所述导流槽由工程塑料制成;换热管采用不锈钢材料制成。
  9. 一种吸收式制冷单元,其特征在于,包括:
    权利要求1-8任一项所述的吸收式制冷单元斜面导流冷凝器。
  10. 一种吸收式制冷矩阵,其特征在于,包括:
    多个吸收式制冷单元;
    所述吸收式制冷单元包括权利要求1-8任一项所述的吸收式制冷单元斜面导流冷凝器。
PCT/CN2016/106961 2015-11-26 2016-11-23 吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵 WO2017088768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510846815.6 2015-11-26
CN201510846815.6A CN106802031B (zh) 2015-11-26 2015-11-26 吸收式制冷单元斜面导流冷凝器

Publications (1)

Publication Number Publication Date
WO2017088768A1 true WO2017088768A1 (zh) 2017-06-01

Family

ID=58762930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106961 WO2017088768A1 (zh) 2015-11-26 2016-11-23 吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵

Country Status (2)

Country Link
CN (1) CN106802031B (zh)
WO (1) WO2017088768A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403584A (zh) * 2019-12-23 2020-07-10 杭州大和热磁电子有限公司 一种适用于非气密封装的热电模块及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101368B1 (ko) * 2018-06-29 2020-05-29 주식회사 이케이 바이오가스 고질화 시스템
CN113068995B (zh) * 2020-01-06 2021-12-24 宁波方太厨具有限公司 一种蒸箱及其蒸汽量控制方法
CN112033053A (zh) * 2020-08-21 2020-12-04 上海特艺压力容器有限公司 一种高效冷凝器
CN114832443A (zh) * 2022-04-06 2022-08-02 合肥精祥仪表有限公司 一种高效过滤的消气过滤器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249032A (zh) * 1997-03-17 2000-03-29 株式会社日立制作所 液体分配装置、流下液膜式热交换器及吸收式冷冻机
CN1425123A (zh) * 1999-11-22 2003-06-18 株式会社荏原制作所 吸收式冷冻机
CN1502954A (zh) * 2002-11-20 2004-06-09 上海理工大学 全板翅式热质交换器组成的溴化锂吸收式制冷装置
US20080078532A1 (en) * 2006-09-29 2008-04-03 Denso Corporation Adsorption module and method of manufacturing the same
CN101713598A (zh) * 2008-09-29 2010-05-26 三洋电机株式会社 吸收式冷冻机
JP2011027296A (ja) * 2009-07-23 2011-02-10 Hitachi Appliances Inc 液体分配装置及びこれを用いたシェル型熱交換器、並びにこれらを用いた吸収式冷凍機
US20130014538A1 (en) * 2011-07-11 2013-01-17 Palo Alto Research Center Incorporated Plate-Based Adsorption Chiller Subassembly
KR101407660B1 (ko) * 2013-06-05 2014-06-17 한국생산기술연구원 흡착식 냉동기용 판형 열교환기의 형상을 가지는 흡착탑
CN205425541U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元斜面导流冷凝器
CN205425528U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元浅槽式换热机构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249032A (zh) * 1997-03-17 2000-03-29 株式会社日立制作所 液体分配装置、流下液膜式热交换器及吸收式冷冻机
CN1425123A (zh) * 1999-11-22 2003-06-18 株式会社荏原制作所 吸收式冷冻机
CN1502954A (zh) * 2002-11-20 2004-06-09 上海理工大学 全板翅式热质交换器组成的溴化锂吸收式制冷装置
US20080078532A1 (en) * 2006-09-29 2008-04-03 Denso Corporation Adsorption module and method of manufacturing the same
CN101713598A (zh) * 2008-09-29 2010-05-26 三洋电机株式会社 吸收式冷冻机
JP2011027296A (ja) * 2009-07-23 2011-02-10 Hitachi Appliances Inc 液体分配装置及びこれを用いたシェル型熱交換器、並びにこれらを用いた吸収式冷凍機
US20130014538A1 (en) * 2011-07-11 2013-01-17 Palo Alto Research Center Incorporated Plate-Based Adsorption Chiller Subassembly
KR101407660B1 (ko) * 2013-06-05 2014-06-17 한국생산기술연구원 흡착식 냉동기용 판형 열교환기의 형상을 가지는 흡착탑
CN205425541U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元斜面导流冷凝器
CN205425528U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元浅槽式换热机构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403584A (zh) * 2019-12-23 2020-07-10 杭州大和热磁电子有限公司 一种适用于非气密封装的热电模块及其制造方法
CN111403584B (zh) * 2019-12-23 2023-03-10 杭州大和热磁电子有限公司 一种适用于非气密封装的热电模块及其制造方法

Also Published As

Publication number Publication date
CN106802031A (zh) 2017-06-06
CN106802031B (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2017088768A1 (zh) 吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵
TWI320094B (en) Spray type heat exchang device
CN205425941U (zh) 一种卧式降膜蒸发器的布液器
CN104748604B (zh) 一种带有疏水带的珠状凝结强化换热表面结构
WO2021228101A1 (zh) 一种复叠式蒸发冷凝换热器
CN104214995B (zh) 一种浸泡薄膜式换热器
JP2006200852A (ja) 吸収式冷凍機における吸収器
CN205425541U (zh) 吸收式制冷单元斜面导流冷凝器
CN205425533U (zh) 吸收式制冷单元无循环泵冷媒蒸发器
CN205425528U (zh) 吸收式制冷单元浅槽式换热机构
WO2017088763A1 (zh) 吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵
CN206207784U (zh) 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵
WO2018072315A1 (zh) 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵
WO2017088772A1 (zh) 吸收式制冷单元无循环泵冷媒蒸发器、制冷单元及矩阵
JPH09152289A (ja) 吸収式冷凍機
TW202242334A (zh) 蒸發器
CN206160562U (zh) 一种带排水槽的蒸发器管道
CN206207783U (zh) 吸收式制冷单元及吸收式制冷矩阵
JP2011226762A (ja) 吸収式冷温水機
KR20120080297A (ko) 용액받침대를 구비한 흡수식 냉온수기
CN112178983B (zh) 冷媒循环设备的传热管排布结构及冷媒循环设备
CN219178341U (zh) 散热装置及其散热板
CN220321669U (zh) 一种自清洁冷凝器
CN217004988U (zh) 一种翅片蒸发器组件
CN207471850U (zh) 一种蒸发冷换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867991

Country of ref document: EP

Kind code of ref document: A1