WO2018072315A1 - 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵 - Google Patents

吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵 Download PDF

Info

Publication number
WO2018072315A1
WO2018072315A1 PCT/CN2016/112160 CN2016112160W WO2018072315A1 WO 2018072315 A1 WO2018072315 A1 WO 2018072315A1 CN 2016112160 W CN2016112160 W CN 2016112160W WO 2018072315 A1 WO2018072315 A1 WO 2018072315A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
absorption refrigeration
refrigeration unit
tube
internal heat
Prior art date
Application number
PCT/CN2016/112160
Other languages
English (en)
French (fr)
Inventor
邱伟
杨如民
武祥辉
武维建
刘彦武
Original Assignee
四川捷元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川捷元科技有限公司 filed Critical 四川捷元科技有限公司
Publication of WO2018072315A1 publication Critical patent/WO2018072315A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to the field of absorption refrigerating machines, and in particular to an internal component of an absorption refrigerating machine, and more particularly to a condenser, an evaporator, an absorber and a regenerator of an absorption refrigerating machine.
  • An absorption refrigerating machine which uses a binary solution as a working medium, wherein a low-boiling component is used as a refrigerant, that is, it is cooled by evaporation thereof; a high-boiling component is used as an absorbent, that is, an absorption effect of the refrigerant vapor is utilized.
  • a lithium bromide absorption refrigerating machine uses pure water as a refrigerant, that is, it relies on pure water to evaporate and absorb heat in a high vacuum environment to realize a cooling function.
  • the refrigerant vapor after the endothermic evaporation is absorbed, transported, heated and regenerated, condensed by the lithium bromide solution, and returned to the liquid state again, and then again absorbs heat and evaporates, and the source continuously performs the refrigeration cycle.
  • absorption chillers condensers, evaporators, absorbers and regenerators are the main components of the refrigeration cycle, where the heat exchange tubes are made of brass or other metallic materials with a high heat transfer coefficient, which leads to absorption.
  • the overall weight of the refrigerator is large, and it is difficult to reduce the weight of the absorption refrigerator.
  • the metal is easily corroded by the solution, and generates non-condensable gas such as hydrogen, which reduces the working efficiency of the absorption refrigerating machine; the metal heat exchange tube has high requirements on the sealing process and the sealing cost is large.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an internal heat exchange component of an absorption refrigeration unit, wherein the heat exchange tube and the heat exchange wall plate are made of plastic, so that under the premise of satisfying heat exchange performance, The absorption chiller achieves light weight.
  • the heat exchange tube made of plastic is easy to seal; the plastic has strong corrosion resistance, can avoid non-condensable gas, and increases the working efficiency of the absorption refrigerator.
  • Plastics include general purpose plastics, engineering plastics and reinforced engineering plastics.
  • Another object of the present invention is to provide an absorption refrigeration unit including the internal heat exchange unit of the above absorption refrigeration unit.
  • a third object of the present invention is to provide an absorption refrigeration system having the above absorption refrigeration unit matrix.
  • An internal heat exchange component of an absorption refrigeration unit which is any one of a regenerator, an absorber, a condenser, an evaporator, or a solution heat exchanger.
  • the internal heat exchange assembly of the absorption refrigeration unit includes a shell-and-tube heat exchanger.
  • the shell-and-tube heat exchanger has a shell-and-tube heat exchanger housing and a heat exchange tube.
  • the heat exchange tube is disposed in the shell-and-tube heat exchanger housing.
  • the heat exchange tubes are made of plastic.
  • the internal heat exchange component of the absorption refrigeration unit When the internal heat exchange component of the absorption refrigeration unit is a solution heat exchanger, the internal heat exchange component of the absorption refrigeration unit includes a plate heat exchanger; the plate heat exchanger has a plate heat exchanger casing and a heat exchange wall plate.
  • the heat exchange wall plate is disposed in the plate heat exchanger housing; the heat exchange wall plate is made of plastic.
  • the heat exchange tubes in the condenser, the evaporator, the absorber and the regenerator are made of a relatively high metal material with a heat transfer coefficient.
  • the heat exchange wall of the solution heat exchanger is also made of a metal material.
  • the density of the metal material is large, resulting in a large overall weight of the absorption refrigerator.
  • the metal heat exchange tube and the heat dissipating wall plate also have the problems that the solution is corroded to generate non-condensable gas, which affects the working efficiency of the absorption refrigerating machine, and has high sealing process requirements and high sealing cost.
  • Plastics have a lower density than metal materials.
  • the weight of plastic in the same volume is much lower than that of metallic materials (such as brass).
  • metallic materials such as brass.
  • the inventors made the heat exchange tubes and the heat exchange wall plates made of plastic.
  • the absorption refrigerating machine manufactured by using the internal heat exchange component of the absorption refrigerating unit provided by the embodiment of the invention can greatly reduce the weight of the whole machine.
  • the heat exchange tubes and heat exchange panels made of plastic are easy to seal.
  • the plastic has stronger corrosion resistance, can avoid corrosion by solution and generate non-condensable gas, and increases the working efficiency of the absorption refrigerator.
  • the tube wall thickness of the heat exchange tubes is from 0.1 to 0.5 mm.
  • the tube wall thickness of the heat exchange tubes is 0.15 mm.
  • a plurality of rows of heat exchange tubes are arranged in an upper and lower layer; a plurality of support strips are disposed between the adjacent two rows of heat exchange tubes; and the support strips are used to support the adjacent two rows of heat exchange tubes.
  • the support strip is made of plastic.
  • the support strips and heat exchange tubes are made of the same plastic.
  • the heat exchange tube has an outer diameter of from 3 mm to 5 mm.
  • the center distance of adjacent heat exchange tubes located in the same row is 4 mm to 6 mm.
  • the center distance between the upper and lower adjacent heat exchange tubes is 5 mm to 8 mm.
  • the heat exchange tube has an outer diameter of 3 mm. Adjacent heat exchange tubes located in the same row have a center-to-center distance of 4 mm. The center distance between the upper and lower adjacent heat exchange tubes is 7 mm.
  • the shell-and-tube heat exchanger housing is made of plastic.
  • the shell and tube heat exchanger housing and the heat exchange tubes are made of the same plastic.
  • the heat exchange wall panel has a thickness of from 0.1 mm to 0.5 mm.
  • the heat exchange wall panel has a thickness of 0.15 mm.
  • the heat exchange wall plate is provided with textured ridges for supporting the heat exchange wall and turbulent flow of the fluid flowing through the ridges to increase the heat transfer coefficient.
  • the ribs are made of plastic.
  • the ribs and the heat exchange wall are made of the same plastic.
  • the heat exchange panels are arranged in multiple layers.
  • the wall spacing of the adjacent two layers of the heat exchange wall plate is 0.5 mm to 3 mm.
  • the wall spacing of the adjacent two layers of heat exchange panels is 1 mm.
  • the plate heat exchanger housing is made of plastic.
  • the plate heat exchanger housing and the heat exchange wall are made of the same plastic.
  • the internal heat exchange component of the absorption refrigeration unit is an evaporator.
  • the inside of the heat exchange tube is used for the flow of cold water, and the heat exchange tube and the shell-and-tube heat exchanger housing are used for the flow of the refrigerant water.
  • each row of heat exchange tubes is provided with a sloped liquid barrier on one side of the absorber, and the sloped liquid barrier is used to trap refrigerant water, allowing only refrigerant vapor to pass.
  • the internal heat exchange component of the absorption refrigeration unit is a condenser; the inside of the heat exchange tube is used for cooling water flow, and the heat exchange tube and the shell-and-tube heat exchanger housing are used for supplying The refrigerant vapor flows.
  • each row of heat exchange tubes is provided with a sloped liquid barrier on one side of the regenerator, and the sloped liquid barrier is used to trap droplets in the refrigerant vapor, allowing only the refrigerant vapor to pass through. .
  • the internal heat exchange component of the absorption refrigeration unit is an absorber or a regenerator, and the heat exchanger casing and the heat exchange tube together form a shell-and-tube heat exchanger.
  • Heat exchange tube and shell-and-tube heat exchanger housing Used for the flow of lithium bromide solution.
  • the internal heat exchange component of the absorption refrigeration unit is an absorber, the inside of the heat exchange tube is used for cooling water flow; when the internal heat exchange component of the absorption refrigeration unit is a regenerator, the inside of the heat exchange tube is used for hot water supply.
  • the internal heat exchange assembly of the absorption refrigeration unit further includes a solution distributor; the solution distributor is disposed at an upper portion of the shell-and-tube heat exchanger; the solution dispenser has a cavity inside, and the lower portion of the solution distributor is A solution spray surface for spraying a solution onto the lower heat exchange tube.
  • the solution dispenser is made of plastic.
  • the solution dispenser and the shell-and-tube heat exchanger housing are made of the same plastic.
  • the spray surface size of the solution is the same as the upper end surface of the shell and tube heat exchanger.
  • a plurality of bleed holes are provided in the solution spraying surface of the solution dispenser for uniformly dispersing the solution to the surface of the heat exchange tube below.
  • each row of heat exchange tubes is provided with a slope type liquid barrier on one side of the evaporator, and a slope type liquid barrier is used for The refrigerant water is trapped and only the refrigerant vapor is allowed to pass.
  • the internal heat exchange component of the absorption refrigeration unit is a regenerator
  • each row of heat exchange tubes is provided with a slope type liquid barrier on one side of the condenser, and the slope type liquid barrier plate is used for trapping droplets in the refrigerant vapor, and only allows The refrigerant vapor passes.
  • the absorption refrigeration unit includes the internal heat exchange component of any of the above absorption refrigeration units.
  • the absorption refrigeration matrix includes a plurality of the above-described absorption refrigeration units.
  • the heat exchange tube and the heat exchange wall plate are made of plastic.
  • the absorption refrigerating machine manufactured by using the internal heat exchange component of the absorption refrigerating unit provided by the embodiment of the invention can greatly reduce the weight of the whole machine.
  • the heat exchange tubes made of plastic are easy to seal.
  • the plastic has stronger corrosion resistance, can avoid corrosion by solution and generate non-condensable gas, and increases the working efficiency of the absorption refrigerator.
  • the absorption refrigeration unit provided by the embodiment of the invention has the above-mentioned internal heat exchange component of the absorption refrigeration unit, and therefore has the advantages of low weight, easy sealing, stronger corrosion resistance and high work efficiency.
  • the absorption refrigeration system provided by the embodiment of the present invention has the above-described absorption refrigeration unit, it also has the advantages of low weight, easy sealing, stronger corrosion resistance, and high work efficiency.
  • Figure 1 is a front elevational view showing the structure of a condenser and a side regenerator in an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the structure of a condenser and a side regenerator in an embodiment of the present invention
  • FIG. 3 is an exploded view showing the structure of a condenser and a side regenerator in an embodiment of the present invention
  • FIG. 4 is a view showing an assembled state of an evaporator and a side absorber in an embodiment of the present invention
  • Figure 5 is a cross-sectional view showing the structure of an evaporator and a side absorber in an embodiment of the present invention
  • Figure 6 is an exploded view showing the structure of the evaporator and the side absorber in the embodiment of the present invention.
  • Figure 7 is a perspective view showing the structure of a solution heat exchanger according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a bare heat exchange wall panel after removing parts thereof according to an embodiment of the present invention.
  • orientation or positional relationship of the terms "upper”, “lower” and the like is based on the orientation or positional relationship shown in the drawings, or is conventionally placed when the invention product is used.
  • Orientation or positional relationship, or a position or positional relationship that is conventionally understood by those skilled in the art, such terms are merely for the purpose of describing the invention and simplifying the description, and do not indicate or imply that the device or component referred to has a particular orientation, The construction and operation in a particular orientation are not to be construed as limiting the invention.
  • the condenser, the evaporator, the absorber, the regenerator and the solution heat exchanger are the main components for realizing the refrigeration cycle, wherein the heat exchange tube and the heat exchange wall plate use a metal material having a relatively high heat transfer coefficient.
  • a metal material having a relatively high heat transfer coefficient Made of, for example, brass, this results in an overall weight of the absorption refrigerating machine, making it difficult to achieve weight reduction of the absorption refrigerating machine.
  • the metal is easily corroded by the solution and generates non-condensable gas such as hydrogen, which reduces the working efficiency of the absorption refrigerating machine.
  • the present embodiment provides an internal heat exchange assembly of an absorption refrigeration unit, which may be any one of a condenser, an evaporator, an absorber, a regenerator, or a solution heat exchanger.
  • the heat exchange tube of the condenser, the evaporator, the absorber or the regenerator is a thin-walled heat exchange tube made of plastic
  • the heat exchange wall of the solution heat exchanger is a thin-walled plate made of plastic, thereby satisfying Under the premise of heat exchange performance, the absorption refrigerator is lighter.
  • the plastic has strong anti-corrosion performance, can avoid non-condensable gas, and increases the working efficiency of the absorption refrigerating machine.
  • plastic refers to engineering-plastics, such as polycarbonate (PC), polyamide (polyamide, PA), polyacetal (Polyoxy Methylene, POM), poly Polyphenylene Oxide (PPO), polyester (PET, PBT), polyphenylene sulfide (PPS), polyaryl ester, and the like.
  • FIG. 1 there is shown a front view of a structure of a condenser 100 and a side regenerator 200 in an embodiment of the present invention.
  • the right side is the condenser 100
  • the left side is the regenerator 200
  • a sloped liquid barrier 501 between the condenser 100 and the regenerator 200.
  • the ramped liquid barrier 501 can be considered part of the condenser 100 and can also be considered part of the regenerator 200.
  • the function of the regenerator 200 on the left side is to heat the dilute lithium bromide solution, so that the refrigerant water absorbed in the dilute solution is continuously vaporized into refrigerant vapor, and the refrigerant vapor enters the condenser 100 on the right side to be cooled and then condensed to become high pressure and low temperature. Liquid refrigerant water.
  • the refrigerant water in the condenser 100 enters the evaporator of the refrigerator through the orifice, a large amount of heat is absorbed from the cold water flowing in the evaporator tube to vaporize, thereby achieving the purpose of cooling and cooling the cold water.
  • the condenser 100 of the present invention functions to cool and condense the refrigerant vapor generated by the regenerator 200 to become refrigerant water.
  • the sloping liquid barrier 501 is used to trap the droplets entrained in the refrigerant vapor generated by the heating and evaporation of the regenerator 200 on the left side, and only allows the refrigerant vapor to pass through the sloping liquid barrier 501 to enter the condenser 100.
  • the condenser 100 will be described below.
  • Fig. 2 is a cross-sectional view showing the structure of a condenser 100 and a side regenerator 200 in an embodiment of the present invention.
  • the condenser 100 is a shell-and-tube heat exchanger comprising a shell-and-tube heat exchanger housing 101 and a heat exchange tube 102.
  • a plurality of rows of heat exchange tubes 102 are arranged in upper and lower layers (only a portion of the heat exchange tubes 102 are shown in the figures. It will be understood that in other embodiments, the heat exchange tubes 102 may be in other arrangements.
  • the heat exchange tube 102 is fixed in the shell-and-tube heat exchanger housing 101. In operation, cooling water flows through the heat exchange tubes 102, and refrigerant vapor from the regenerator 200 is between the heat exchange tubes 102 and the shell-and-tube heat exchanger housing 101. flow. The cooling water in the heat exchange tube 102 is used to cool and condense the refrigerant vapor to obtain refrigerant water.
  • the heat exchange tubes 102 are made of plastic, and the tube wall thickness of the heat exchange tubes 102 is 0.1 mm to 0.5 mm. In the present embodiment, the tube wall thickness of the heat exchange tube 102 is 0.15 mm. Compared with the metal heat exchange tube, the extremely thin thickness increases the heat exchange area by more than ten times in the same volume, which makes up for the problem that the heat transfer performance of the plastic is insufficient, so that the heat transfer performance of the heat exchange tube 102 can reach the absorption type. Refrigerator requirements. Since the heat exchange tube 102 is made of plastic, the weight of the condenser 100 can be greatly reduced as compared with the use of the metal heat pipe, thereby achieving weight reduction.
  • the plastic Since the plastic has excellent corrosion resistance, it can also avoid the generation of non-condensable gas due to corrosion of the heat exchange tube 102, thereby increasing the working efficiency of the absorption refrigerator. At the same time, the heat exchange tube 102 made of plastic is easier to seal than the metal heat exchange tube.
  • the shell In order to ensure the sealing performance of the condenser, the shell can only be made of thick steel plate or casting, which further increases The weight of the condenser is poor and the corrosion resistance is poor.
  • the shell-and-tube heat exchanger case 101 of the condenser 100 is also made of plastic, so that the seal between the shell-and-tube heat exchanger case 101 and the heat exchange tube 102 can be easily performed.
  • the thickness of the shell-and-tube heat exchanger housing 101 can be reduced.
  • the weight of the condenser 100 is further alleviated, and the corrosion resistance of the condenser 100 is also enhanced.
  • the shell-and-tube heat exchanger housing 101 and the heat exchange tube 102 may be made of the same kind of plastic and integrally molded by an injection molding process to provide excellent sealing performance.
  • the inventors In addition to achieving weight reduction of the condenser 100, the inventors also desire to achieve miniaturization of the condenser 100.
  • the miniaturized condenser 100 enables the absorption refrigerator to have a smaller overall volume, and can be applied to a home or other commercial application where refrigeration power is not critical.
  • the inventors found in the process of miniaturization of the condenser 100 that the heat exchange efficiency of the condenser 100 is not high, and it is difficult to satisfy the use requirements after miniaturization.
  • the inventors have found through research that the heat exchange efficiency of the condenser 100 is not high because the refrigerant vapor enters the condenser 100 and undergoes heat exchange with the heat exchange tube 102 to form a water droplet on the surface of the heat exchange tube 102 after heat exchange and liquefaction. Collecting and freely dropping under the action of gravity, the condensed water is continuously dropped into the lower rows of heat exchange tubes 102 during the dropping process, and a descending water film is formed on the surface of the heat exchange tubes 102, especially at the lower arc of the heat exchange tubes 102.
  • the thickness of the water film tends to be very thick, increasing the heat transfer resistance between the refrigerant vapor and the heat exchange tube 102, which is disadvantageous for the contact of the refrigerant vapor with the heat exchange tube 102, resulting in inefficient heat exchange.
  • the inventors optimized the outer diameter of the heat exchange tubes 102 and the center distance between adjacent heat exchange tubes 102.
  • the outer diameter of the heat exchange tube 102 is set to 3 mm to 5 mm
  • the center distance of the adjacent heat exchange tubes 102 in the same row is set to 4 mm to 6 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 102 is set to 5 mm. ⁇ 8mm.
  • the outer diameter of the heat exchange tube 102 is 3 mm
  • the center distance of the adjacent heat exchange tubes 102 in the same row is 4 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 102 is 7 mm.
  • the first condensed refrigerant water does not drip onto the surface of the lower heat exchange tube 102 to form a water film, so that the thickness of the water film suspended on the lower surface of the heat exchange tube 102 is lowered, thereby improving the overall working efficiency of the condenser 100. In this way, the condenser 100 is miniaturized.
  • Fig. 3 is an exploded view showing the structure of the condenser 100 and the side regenerator 200 in the embodiment of the present invention.
  • a plurality of support strips 103 are disposed at equal intervals, and the support strips 103 are disposed across the heat exchange tubes 102 and perpendicular to the heat exchange tubes 102.
  • the support strip 103 is used to support the two rows of heat exchange tubes 102 adjacent to each other and to withstand the structural stress caused by the high vacuum in the shell-and-tube heat exchanger housing 101.
  • the support strip 103 is made of plastic to ensure weight reduction.
  • the support strip 103 and the heat exchange tube 102 are made of the same plastic to facilitate manufacturing.
  • the wall thickness of the heat exchange tube 102 can be adjusted between 0.1 mm and 0.5 mm; the outer diameter of the heat exchange tube 102 can be adjusted between 3 mm and 5 mm; The center distance of the adjacent heat exchange tubes 102 of the same row may be adjusted between 4 mm and 6 mm; the center distance of the upper and lower adjacent heat exchange tubes 102 may be adjusted between 5 mm and 8 mm.
  • the regenerator 200 will be described below.
  • the regenerator 200 includes a shell and tube heat exchanger housing 201, a heat exchange tube 202, and a solution distributor 203.
  • a plurality of rows of heat exchange tubes 202 are arranged in upper and lower layers (only a portion of the heat exchange tubes 202 are shown in the figure. It will be understood that in other embodiments, the heat exchange tubes 202 may be in other arrangements.
  • the heat exchange tube 202 is fixed in the shell-and-tube heat exchanger housing 201, thereby forming a tube shell Heat exchanger 210. In operation, hot water flows through the heat exchange tubes 202, and the heat exchange tubes 202 and the shell-and-tube heat exchanger housing 201 are used to supply a dilute lithium bromide solution.
  • the hot water in the heat exchange tube 202 is used to heat the dilute lithium bromide solution, so that the refrigerant water absorbed in the dilute solution is continuously vaporized into refrigerant vapor.
  • the solution dispenser 203 is a rectangular parallelepiped having a cavity inside for the flow of a dilute lithium bromide solution.
  • the lower portion of the solution dispenser 203 is a solution spray surface 204.
  • the solution distributor 203 is disposed at the upper portion of the shell-and-tube heat exchanger 210, and the solution spray surface 204 is the same size as the upper end surface of the shell-and-tube heat exchanger 210. Referring again to FIG. 3, a plurality of bleed holes 205 are evenly disposed on the solution spray surface 204.
  • the bleed hole 205 is a long hole extending in the width direction of the solution spraying surface 204 and three rows are formed at equal intervals to form a row. In the longitudinal direction of the solution spraying surface 204, a plurality of rows of bleed holes 205 are provided at equal intervals. The bleed hole 205 is used to uniformly spray the dilute lithium bromide solution in the cavity to the lower heat exchange tube 202.
  • the shell-and-tube heat exchanger housing 201 of the regenerator 200 and the shell-and-tube heat exchanger housing 101 of the condenser 100 are of a unitary structure, and the heat exchange tubes 202 of the regenerator 200 and the condenser 100 The heat exchange tubes 102 are separated by a sloping liquid barrier 501.
  • the heat exchange tube 202 is made of plastic, and the tube wall thickness of the heat exchange tube 202 is 0.1 mm to 0.5 mm. In the present embodiment, the tube wall thickness of the heat exchange tube 202 is 0.15 mm. Compared with the metal heat exchange tube, the extremely thin thickness increases the heat exchange area by more than ten times in the same volume, which makes up for the problem that the heat transfer performance of the plastic is insufficient, so that the heat transfer performance of the heat exchange tube 202 can reach the absorption type. Refrigerator requirements. Since the heat exchange tube 202 is made of plastic, the weight of the regenerator 200 can be greatly reduced as compared with the use of the metal heat pipe, thereby achieving weight reduction.
  • the heat exchange tube 202 made of plastic is easier to seal than the metal heat exchange tube.
  • the shell In order to ensure the sealing performance of the condenser, the shell can only be made of thick steel plate or casting, which further increases The weight of the condenser is poor and the corrosion resistance is poor.
  • the shell-and-tube heat exchanger housing 201 of the regenerator 200 is also made of plastic, so that the seal between the shell-and-tube heat exchanger housing 201 and the heat exchange tube 202 can be easily performed.
  • the thickness of the shell-and-tube heat exchanger housing 201 can be reduced.
  • the weight of the regenerator 200 is further reduced, and the corrosion resistance of the regenerator 200 is also enhanced.
  • the heat exchange tube 202 can be made of the same kind of plastic and integrally molded by an injection molding process to provide excellent sealing performance.
  • the solution dispenser 203 can also be made of plastic for further weight reduction.
  • the solution dispenser 203 and the shell-and-tube heat exchanger housing 201 can be made of the same type of plastic to facilitate manufacturing, assembly, and sealing.
  • the inventors In addition to realizing the weight reduction of the regenerator 200, the inventors also desire to achieve miniaturization of the regenerator 200.
  • the miniaturized regenerator 200 can make the absorption refrigerating machine as small as possible, and can be applied to a home or other commercial application where cooling power is not required.
  • the inventors found that as the cooling power is reduced, the circulating amount of the required working fluid is also reduced, and accordingly, the outer surface of the heat exchange tube 202 cannot be sufficiently wetted by the lithium bromide solution. The unfavorable phenomenon of "dry spots" appears.
  • the inventors optimized the outer diameter of the heat exchange tubes 202 and the center distance between adjacent heat exchange tubes 202.
  • the outer diameter of the heat exchange tube 202 is set to 3 mm to 5 mm
  • the center distance of the adjacent heat exchange tubes 202 in the same row is set to 4 mm to 6 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 202 is set to 5 mm. ⁇ 8mm.
  • the outer diameter of the heat exchange tube 202 is 3 mm
  • the center distance of the adjacent heat exchange tubes 102 in the same row is 4 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 202 is 7 mm.
  • the lithium bromide solution does not need to fill the entire shell-and-tube heat exchanger housing 201, and only the lithium bromide solution is required to finally immerse the heat exchange tube 202. Therefore, the deposition height of the lithium bromide solution at the gap can be adjusted according to the flow rate of the lithium bromide solution, so that the lithium bromide solution can uniformly immerse the heat exchange tube 202 when the refrigeration load is small and the flow rate of the lithium bromide solution is small. in this way, The lithium bromide solution can be ensured to be in contact with the heat exchange tube 202 without multiple pumping, thereby effectively eliminating the dry spot phenomenon, reducing the parasitic energy consumption and operating cost, and miniaturizing the regenerator 200.
  • a plurality of support strips 206 are disposed at equal intervals, and the support strips 206 are disposed across the heat exchange tubes 202 and perpendicular to the heat exchange tubes 202.
  • the support strip 206 is used to support the two rows of heat exchange tubes 202 adjacent to each other and to withstand the structural stress caused by the high vacuum in the shell-and-tube heat exchanger housing 201.
  • the support strip 206 is made of plastic to ensure weight reduction.
  • the support strip 206 and the heat exchange tube 202 are made of the same plastic to facilitate manufacturing.
  • the wall thickness of the heat exchange tube 202 may be adjusted between 0.1 mm and 0.5 mm; the outer diameter of the heat exchange tube 202 may be adjusted between 3 mm and 5 mm; The center distance of the adjacent heat exchange tubes 202 of the same row may be adjusted between 4 mm and 6 mm; the center distance of the upper and lower adjacent heat exchange tubes 202 may be adjusted between 5 mm and 8 mm.
  • Fig. 4 is a view showing an assembled state of the evaporator 300 and the side absorber 400 in the embodiment of the present invention.
  • the right side is the evaporator 300
  • the left side is the absorber 400
  • between the evaporator 300 and the absorber 400 is a sloped liquid barrier 502.
  • the ramped liquid barrier 502 can be considered part of the evaporator 300 and can also be considered part of the absorber 400.
  • the refrigerant water required for the evaporator 300 on the right side is supplied by the orifice 104 at the bottom of the condenser disposed above it.
  • the function of the evaporator 300 on the right side is to make the refrigerant water from the condenser absorb a large amount of heat of the cold water flowing in the tube of the evaporator 300 to vaporize, thereby achieving the purpose of cooling and cooling the cold water.
  • the generated refrigerant vapor enters the left absorber 400.
  • the concentrated solution required for the absorber 400 is supplied from a supply port 207 at the bottom of the regenerator disposed above it.
  • the absorber 400 cools the lithium bromide concentrated solution, so that the lithium bromide concentrated solution continuously absorbs the refrigerant vapor to become a dilute lithium bromide solution.
  • the resulting dilute lithium bromide solution is recycled to the regenerator to complete the refrigeration cycle.
  • the ramped liquid barrier 502 is used to trap droplets entrained in the refrigerant vapor, allowing only the refrigerant vapor to pass over the ramped liquid barrier 502 into the absorber 400.
  • the evaporator 300 will be described below.
  • FIG. 5 shows the structure of an evaporator 300 and a side absorber 400 in an embodiment of the present invention. Cutaway view.
  • the evaporator 300 is a shell-and-tube heat exchanger including a shell-and-tube heat exchanger housing 301 and a heat exchange tube 302.
  • a plurality of rows of heat exchange tubes 302 are arranged in upper and lower layers (only a portion of the heat exchange tubes 302 are shown in the figures. It will be understood that in other embodiments, the heat exchange tubes 302 may be in other arrangements.
  • the heat exchange tube 302 is fixed in the shell-and-tube heat exchanger housing 301. In operation, cold water flows through the heat exchange tubes 302, and refrigerant water from the condenser flows between the heat exchange tubes 102 and the shell-and-tube heat exchanger housing 101. The refrigerant water absorbs a large amount of heat of the cold water in the heat exchange tube 302 and vaporizes to obtain a refrigerant vapor, thereby achieving the purpose of cooling and cooling the cold water.
  • the heat exchange tube 302 is made of plastic, and the wall thickness of the heat exchange tube 302 is 0.1 mm to 0.5 mm. In the present embodiment, the wall thickness of the heat exchange tube 302 is 0.15 mm. Compared with the metal heat exchange tube, the extremely thin thickness increases the heat exchange area by more than ten times in the same volume, which makes up for the problem that the heat transfer performance of the plastic is insufficient, so that the heat transfer performance of the heat exchange tube 302 can reach the absorption type. Refrigerator requirements. Since the heat exchange tube 302 is made of plastic, the weight of the evaporator 300 can be greatly reduced as compared with the use of the metal heat pipe, thereby achieving weight reduction.
  • the plastic Since the plastic has excellent corrosion resistance, it can also avoid the generation of non-condensable gas due to corrosion of the heat exchange tube 302, thereby increasing the working efficiency of the absorption refrigerator.
  • the heat exchange tube 302 made of plastic is easier to seal than the metal heat exchange tube.
  • the evaporation temperature of the evaporator 300 is usually set at about 5 ° C for various refrigeration applications that meet the needs of human comfort, which requires the shell-and-tube heat exchanger shell of the evaporator 300.
  • the saturation pressure of the body 301 must be maintained at about 872 Pa. This kind of pressure has high requirements on air tightness.
  • the inventors have found through research that the traditional evaporator using metal heat exchange tubes is difficult to seal due to metal.
  • the housing can only be Made of thick steel plate or casting, which further increases the weight of the evaporator and has poor corrosion resistance.
  • the shell-and-tube heat exchanger housing 301 of the evaporator 300 is also made of plastic, so that the seal between the shell-and-tube heat exchanger housing 301 and the heat exchange tube 302 can be easily performed.
  • the thickness of the shell-and-tube heat exchanger housing 301 can be reduced.
  • the shell-and-tube heat exchanger housing 301 and the heat exchange tube 302 may be made of the same kind of plastic and integrally molded by an injection molding process to provide excellent sealing performance.
  • the inventors In addition to achieving weight reduction of the evaporator 300, the inventors also desire to achieve miniaturization of the evaporator 300.
  • the miniaturized evaporator 300 enables the absorption refrigerator to have a smaller overall volume, and thus can be applied to a home or other commercial application where refrigeration power is not critical.
  • the inventors have found that since the specific heat capacity of the refrigerant water is large, the flow rate of the refrigerant water required to complete the rated cooling capacity is relatively small, and a complicated refrigerant distributor is required to set the refrigerant water.
  • the refrigerant water is sufficiently wetted by the heat exchange tubes 302 and a water film having a uniform thickness (referred to as a falling film) is formed along the surface of the heat transfer tubes 302.
  • a falling film a water film having a uniform thickness
  • the refrigerant water evaporates, the refrigerant water is continuously reduced, so that the heat exchange tube 302 cannot be sufficiently wetted to cause a "dry spot" on the outer surface of the heat exchange tube 302.
  • the appearance of dry spots greatly reduces the heat transfer coefficient of the evaporator 300.
  • the inventors optimized the outer diameter of the heat exchange tubes 302 and the center distance between adjacent heat exchange tubes 302.
  • the outer diameter of the heat exchange tube 302 is set to 3 mm to 5 mm
  • the center distance of the adjacent heat exchange tubes 302 in the same row is set to 4 mm to 6 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 302 is set to 5 mm. ⁇ 8mm.
  • the outer diameter of the heat exchange tube 302 is 3 mm
  • the center distance of the adjacent heat exchange tubes 302 in the same row is 4 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 302 is 7 mm.
  • the outer diameter of the heat exchange tube 302 is only 3 mm, and the gap between the adjacent heat exchange tubes 302 of the same row is only 1 mm, so that the small gap can exert the beneficial effect of the surface tension of the refrigerant water.
  • a part of the refrigerant water forms a pile at the gap, diffuses and wets the heat exchange tube 302, and another portion drops through the gap to the heat exchange tube 302 of the lower layer.
  • the refrigerant water flows through the heat exchange tubes 302 of each layer in sequence.
  • the refrigerant water flows from the orifice 104 through the layer heat exchange tubes 302, all of which are completed by gravity.
  • the refrigerant water supplied from the orifice 104 passes through the uppermost heat exchange tube 302, and reaches the lowermost heat exchange tube 302, which is completely evaporated, and no refrigerant is required. Pump.
  • the gap can automatically adjust the accumulation height of the refrigerant water at the gap according to the flow rate of the refrigerant water.
  • the flow rate of the refrigerant water is large, the height of the liquid accumulated in the gap will flood the heat transfer tube 302, and the flow rate flowing through the gap is also large.
  • the flow rate of the refrigerant water is small, the liquid accumulated in the gap is low in height, but due to the wettability of the surface of the heat exchange tube 302, the refrigerant liquid will infiltrate the heat exchange tube 302, reducing the chance of "dry spots" on the surface of the heat exchange tube 302. Increase the heat transfer coefficient. In this way, it is not necessary to provide a dedicated refrigerant pump and a refrigerant distributor, which reduces the running cost and also facilitates miniaturization of the evaporator 300.
  • Figure 6 is an exploded view of the structure of the evaporator 300 and the side absorber 400 in the embodiment of the present invention.
  • a plurality of support strips 303 are disposed at equal intervals, and the support strips 303 are disposed to intersect with the heat exchange tubes 302 and perpendicular to the heat exchange tubes 302.
  • the support bar 303 is used to support the two rows of heat exchange tubes 302 adjacent to each other and to withstand the structural stress caused by the high vacuum in the shell-and-tube heat exchanger housing 301.
  • the support bar 303 is made of plastic to ensure weight reduction.
  • the support strip 303 and the heat exchange tube 302 are made of the same plastic to facilitate manufacturing.
  • the wall thickness of the heat exchange tube 302 can be adjusted between 0.1 mm and 0.5 mm; the outer diameter of the heat exchange tube 302 can be adjusted between 3 mm and 5 mm; The center distance of the adjacent heat exchange tubes 302 of the same row may be adjusted between 4 mm and 6 mm; the center distance of the upper and lower adjacent heat exchange tubes 302 may be adjusted between 5 mm and 8 mm.
  • the absorber 400 will be described below.
  • the absorber 400 includes a shell and tube heat exchanger housing 401, a heat exchange tube 402, and a solution distributor 403.
  • a plurality of rows of heat exchange tubes 402 are arranged in upper and lower layers (only a portion of the heat exchange tubes 402 are shown in the figures. It will be understood that in other embodiments, the heat exchange tubes 402 may be in other arrangements.
  • the heat exchange tube 402 is fixed in the shell-and-tube heat exchanger housing 401 to constitute the shell-and-tube heat exchanger 410. During operation, there is cold in the heat exchange tube 402, and the heat exchange tube 402 and the shell-and-tube heat exchanger housing 401 are used to supply a lithium bromide concentrated solution.
  • the cold water in the heat exchange tube 402 is used to cool the lithium bromide concentrated solution, so that the lithium bromide concentrated solution continuously absorbs the refrigerant vapor.
  • the solution dispenser 403 is a rectangular parallelepiped having a cavity inside for the flow of a lithium bromide concentrated solution.
  • the lower portion of the solution dispenser 403 is a solution spray surface 404.
  • the solution distributor 403 is disposed at the upper portion of the shell-and-tube heat exchanger 410, and the solution The spray surface 404 is the same size as the upper end surface of the shell-and-tube heat exchanger 410. Referring again to FIG. 6, a plurality of bleed holes 405 are evenly disposed on the solution spray surface 404.
  • the bleed hole 405 is a long hole extending in the width direction of the solution spraying surface 404 and three rows are formed at equal intervals to form a row. In the longitudinal direction of the solution spraying surface 404, a plurality of rows of bleed holes 405 are provided at equal intervals. The bleed hole 405 is used to uniformly spray the dilute lithium bromide solution in the cavity to the lower heat exchange tube 402.
  • the shell-and-tube heat exchanger housing 401 of the absorber 400 and the shell-and-tube heat exchanger housing 301 of the evaporator 300 are of a unitary structure, and the heat exchange tubes 402 of the absorber 400 and the evaporator 300 are The heat exchange tubes 302 are separated by a sloping liquid barrier 502.
  • the heat exchange tube 402 is made of plastic, and the wall thickness of the heat exchange tube 402 is 0.1 mm to 0.5 mm. In the present embodiment, the wall thickness of the heat exchange tube 402 is 0.15 mm. Compared with the metal heat exchange tube, the extremely thin thickness increases the heat exchange area by more than ten times in the same volume, which makes up for the problem that the heat transfer performance of the plastic is insufficient, so that the heat transfer performance of the heat exchange tube 402 can reach the absorption type. Refrigerator requirements. Since the heat exchange tube 402 is made of plastic, the weight of the absorber 400 can be greatly reduced as compared with the use of the metal heat pipe, thereby achieving weight reduction. Since the plastic has excellent corrosion resistance, it is also possible to avoid generation of non-condensable gas due to corrosion of the absorber 400, which increases the working efficiency of the absorption refrigerator. The heat exchange tube 302 made of plastic is easier to seal than the metal heat exchange tube.
  • the inventors have found through research that the traditional absorber using metal heat exchange tubes is difficult to seal due to metal.
  • the shell can only be made of thick steel plates or castings, thereby further increasing The weight of the absorber is poor and the corrosion resistance is poor.
  • the shell-and-tube heat exchanger housing 401 of the absorber 400 is also made of plastic, so that the seal between the shell-and-tube heat exchanger housing 401 and the heat exchange tube 402 can be easily performed.
  • the thickness of the shell-and-tube heat exchanger housing 401 can be reduced.
  • the weight of the absorber 400 is further reduced, and the corrosion resistance of the absorber 400 is also enhanced.
  • the shell-and-tube heat exchanger housing 401 and the heat exchange tube 402 may be made of the same kind of plastic and integrally molded by an injection molding process to provide excellent sealing performance.
  • the solution dispenser 403 can also be made of plastic for further weight reduction.
  • the solution distributor 403 and the shell-and-tube heat exchanger housing 401 can be made of the same type of plastic to facilitate manufacturing, assembly, and sealing.
  • the inventors In addition to achieving weight reduction of the absorber 400, the inventors also desire to achieve miniaturization of the absorber 400.
  • the miniaturized absorber 400 enables the absorption refrigerator to have a smaller overall volume, and can be applied to homes or other applications where the cooling power is not critical.
  • the inventors have found that as the cooling power is lowered, the required circulation amount of the working fluid is also lowered, and accordingly, the outer surface of the heat exchange tube 402 cannot be sufficiently wetted by the lithium bromide solution. The unfavorable phenomenon of "dry spots" appears.
  • the inventors optimized the outer diameter of the heat exchange tubes 402 and the center distance between adjacent heat exchange tubes 402.
  • the outer diameter of the heat exchange tube 402 is set to 3 mm to 5 mm
  • the center distance of the adjacent heat exchange tubes 402 in the same row is set to 4 mm to 6 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 402 is set to 5 mm. ⁇ 8mm.
  • the outer diameter of the heat exchange tube 402 is 3 mm
  • the center distance of the adjacent heat exchange tubes 402 in the same row is 4 mm
  • the center distance of the upper and lower adjacent heat exchange tubes 402 is 7 mm.
  • the lithium bromide solution does not need to fill the entire shell-and-tube heat exchanger housing 401, and only the lithium bromide solution is required to finally immerse the heat exchange tube 402. Therefore, the deposition height of the lithium bromide solution at the gap can be adjusted according to the flow rate of the lithium bromide solution, so that the lithium bromide solution can uniformly immerse the heat exchange tube 402 when the refrigeration load is small and the flow rate of the lithium bromide solution is small. In this way, the contact of the lithium bromide solution with the heat exchange tube 402 can be ensured without multiple pumping, the dry spot phenomenon is effectively eliminated, the parasitic energy consumption and the running cost are reduced, and the absorber 400 can be miniaturized.
  • a plurality of support strips 406 are disposed at equal intervals, and the support strips 406 are disposed across the heat exchange tubes 402 and perpendicular to the heat exchange tubes 402.
  • the support strip 406 is used to support the two rows of heat exchange tubes 402 adjacent to each other and to withstand the high vacuum in the shell-and-tube heat exchanger housing 401. Structural stress.
  • the support bar 406 is made of plastic to ensure weight reduction.
  • the support strip 406 and the heat exchange tube 402 are made of the same plastic to facilitate manufacturing.
  • the wall thickness of the heat exchange tube 402 may be adjusted between 0.1 mm and 0.5 mm; the outer diameter of the heat exchange tube 402 may be adjusted between 3 mm and 5 mm; The center distance of the adjacent heat exchange tubes 402 of the same row may be adjusted between 4 mm and 6 mm; the center distance of the upper and lower adjacent heat exchange tubes 402 may be adjusted between 5 mm and 8 mm.
  • Fig. 7 is a perspective view showing the structure of a solution heat exchanger 600 according to an embodiment of the present invention.
  • the solution heat exchanger 600 is a plate heat exchanger for performing heat exchange between a lithium bromide concentrated solution and a lithium bromide solution.
  • FIG. 8 is a structural schematic view of the exposed heat exchange wall 620 after the solution heat exchanger 600 has removed some components in the embodiment of the present invention.
  • a plurality of heat exchange walls 620 are arranged in a plurality of layers, wherein the interior of the plate heat exchanger casing 624 is evenly spaced by a plurality of heat exchange walls 620 to form a passage for the hot and cold solution to flow:
  • the dilute solution channel 612 and the concentrated solution channel 614 are separated.
  • the low temperature lithium bromide solution and the high temperature lithium bromide concentrated solution are simultaneously contacted with the heat exchange wall plate 620, and the heat exchange wall plate 620 becomes a medium for heat exchange between the low temperature lithium bromide solution and the high temperature lithium bromide concentrated solution.
  • the four corners of the solution heat exchanger 600 are respectively provided with inlets and outlets for the solution channels, respectively: a concentrated solution inlet 406 in the upper left corner, a concentrated solution outlet 402 in the lower left corner, a dilute solution inlet 401 in the lower right corner, and a thin upper left corner.
  • Solution outlet 408 a concentrated solution inlet 406 in the upper left corner, a concentrated solution outlet 402 in the lower left corner, a dilute solution inlet 401 in the lower right corner, and a thin upper left corner.
  • a solution pump 631 a concentrated solution to the channel 604 of the shell side of the absorber 400, and a dilute solution to the passage 609 of the regenerator 200.
  • the solution pump 631 is used to power the dilute solution flowing in the solution heat exchanger 600, pump it from the dilute solution inlet 601 in the lower right corner to the dilute solution outlet 608 in the upper left corner, and transport it to the regenerator 200 through the connecting pipe.
  • the solution dispenser (not shown).
  • the surface of the heat exchange wall 620 is stamped with a densely distributed, longitudinally and transversely-shaped rib-shaped rib 622 for supporting the heat exchange wall 620.
  • the pressure generated by the vacuum causes turbulence in the fluid flowing through the ribs 622 to increase the heat transfer coefficient.
  • the heat exchange wall 620 is made of plastic, and the thickness of the heat exchange wall 620 is 0.1mm ⁇ 0.5mm. In the present embodiment, the thickness of the heat exchange wall 620 is 0.15 mm. Compared with the metal heat exchange wall, such an extremely thin thickness compensates for the problem of insufficient heat transfer performance of the plastic, so that the heat transfer performance of the heat exchange wall 620 can reach the requirements of the absorption refrigerator. Since the heat exchange wall plate 620 is made of plastic, the weight of the solution heat exchanger 600 can be greatly reduced with respect to the use of the metal heat exchange wall plate, thereby achieving weight reduction.
  • the plastic Since the plastic has excellent corrosion resistance, it can also avoid the generation of non-condensable gas due to corrosion of the heat exchange wall 620, which increases the working efficiency of the absorption refrigerator. At the same time, the heat exchange wall 620 made of plastic is easier to seal than the metal heat exchange wall.
  • the inventors have found through research that the traditional solution heat exchanger using metal heat exchanger wall plate is difficult to seal due to metal.
  • the shell In order to ensure the sealing performance of the solution heat exchanger, the shell can only be made of thick steel plate or casting. In order to further increase the weight of the solution heat exchanger and the corrosion resistance is poor.
  • the plate heat exchanger housing 624 of the solution heat exchanger 600 is also made of plastic, so that the seal between the tube-and-plate heat exchanger housing 624 and the heat exchange wall 620 can be easily performed.
  • the thickness of the plate heat exchanger housing 624 can be reduced.
  • the weight of the solution heat exchanger 600 is further alleviated, and the corrosion resistance of the solution heat exchanger 600 is also enhanced.
  • the plate heat exchanger housing 624 and the heat exchange wall 620 may be made of the same kind of plastic and integrally molded by an injection molding process to provide excellent sealing performance.
  • the ribs 622 are made of plastic to ensure weight reduction.
  • the ribs 622 and the heat exchange wall 620 are made of the same plastic to facilitate manufacturing.
  • the spacing between the walls of the adjacent two layers of the heat exchange wall 620 is 0.5 mm to 3 mm. In the present embodiment, the spacing between the walls of the adjacent two layers of the heat exchange wall 620 is 1 mm. At the same time, since the thickness of the heat exchange wall plate 620 is 0.15 mm, the structure of the solution heat exchanger 600 is made more compact, and a larger heat exchange area is provided per unit volume, which is advantageous for miniaturization of the solution heat exchanger 600.
  • the condenser 100, the regenerator 200, the evaporator 300, the absorber 400, and the solution heat exchanger 600 described in this embodiment are used as part of an absorption refrigeration unit to constitute an absorption refrigeration unit.
  • absorption refrigeration units may also constitute an absorption refrigeration matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

提供了一种吸收式制冷单元内部换热组件、吸收式制冷单元及吸收式制冷矩阵。吸收式制冷单元内部换热组件为再生器(200)、吸收器(400)、冷凝器(100)、蒸发器(300)或溶液热交换器(600)中的任意一种。当吸收式制冷单元内部换热组件为再生器(200)、吸收器(400)、冷凝器(100)或蒸发器(300)中的任意一种时,吸收式制冷单元内部换热组件包括管壳式换热器,其换热管(102,202,302,402)由塑料制成。当吸收式制冷单元内部换热组件为溶液热交换器(600)时,吸收式制冷单元内部换热组件包括板式换热器,其换热壁板(620)由塑料制成。采用该内部换热组件的吸收式制冷单元能降低整机重量、避免不凝气体的产生、提高密封性能。

Description

吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵 技术领域
本发明涉及吸收式制冷机领域,具体涉及一种吸收式制冷机的内部组件,尤其涉及吸收式制冷机的冷凝器、蒸发器、吸收器和再生器。
背景技术
吸收式制冷机,其利用二元溶液作为工质,其中低沸点组分用作冷媒,即利用它的蒸发来制冷;高沸点组分用作吸收剂,即利用它对冷媒蒸汽的吸收作用来完成工作循环。例如溴化锂吸收式制冷机,其以纯水为冷媒,即依靠纯水在高真空环境下蒸发吸热实现制冷功能。吸热蒸发后的冷媒蒸汽被溴化锂溶液吸收、搬运、加热再生、冷凝,重新变回液态后,再次吸热蒸发,源源不断的进行制冷循环。
在吸收式制冷机中,冷凝器、蒸发器、吸收器和再生器是实现制冷循环的主要部件,其中的换热管利用传热系数比较高的黄铜或其它金属材料制成,这导致吸收式制冷机整体重量大,难以实现吸收式制冷机的轻量化。同时,金属容易被溶液腐蚀,并产生氢气等不凝气体,降低吸收式制冷机的工作效率;金属换热管对密封工艺要求高,密封代价大。
发明内容
本发明的目的即在于克服现有技术的不足,提供一种吸收式制冷单元内部换热组件,其换热管和换热壁板采用塑料制成,从而在满足换热性能的前提下,使得吸收式制冷机实现了轻量化。同时塑料制作的换热管,密封容易;塑料抗腐蚀性能强,能够避免不凝气体,增加了吸收式制冷机的工作效率。塑料包括通用塑料、工程塑料和增强工程塑料。
本发明的另一个目的在于提供一种具备上述吸收式制冷单元内部换热组件的吸收式制冷单元。
本发明的第三个目的在于提供一种具备上述吸收式制冷单元的吸收式制冷 矩阵。
本发明的实施例通过以下技术方案实现:
吸收式制冷单元内部换热组件,其为再生器、吸收器、冷凝器、蒸发器或溶液热交换器中的任意一种。当吸收式制冷单元内部换热组件为再生器、吸收器、冷凝器或蒸发器中的任意一种时,吸收式制冷单元内部换热组件包括管壳式换热器。管壳式换热器具备管壳式换热器壳体和换热管。换热管设置在管壳式换热器壳体内。换热管由塑料制成。当吸收式制冷单元内部换热组件为溶液热交换器时,吸收式制冷单元内部换热组件包括板式换热器;板式换热器具备板式换热器壳体和换热壁板。换热壁板设置在板式换热器壳体内;换热壁板由塑料制成。
发明人经过研究发现,为了提高传热性能,冷凝器、蒸发器、吸收器和再生器中的换热管利用传热系数比较高金属材料制成。溶液热交换器的换热壁板也由金属材料制成。然而金属材料密度大,导致吸收式制冷机整体重量大。另外,金属换热管和散热壁板还存在被溶液腐蚀产生不凝气体影响吸收式制冷机工作效率,以及密封工艺要求高、密封代价大的问题。相比金属材料,塑料的密度低。相同体积下塑料的重量远低于金属材料(例如黄铜)。为此,发明人将换热管和换热壁板由塑料制成。采用本发明实施例提供的吸收式制冷单元内部换热组件制造的吸收式制冷机,其整机重量能够大大降低。塑料制作的换热管和换热壁板密封容易。塑料的抗腐蚀性能更强,能够避免被溶液腐蚀而产生不凝气体,增加了吸收式制冷机的工作效率。
在本发明的一种实施例中,换热管的管壁厚度为0.1~0.5mm。
在本发明的一种实施例中,换热管的管壁厚度为0.15mm。
在本发明的一种实施例中,若干排换热管呈上下层排列;相邻两排换热管之间间隔设置有多个支撑条;支撑条用于支撑相邻两排换热管。
在本发明的一种实施例中,支撑条由塑料制成。
在本发明的一种实施例中,支撑条和换热管由同种塑料制成。
在本发明的一种实施例中,换热管的外径为3mm~5mm。位于同一排的相邻的换热管的中心距为4mm~6mm。上下相邻的换热管的中心距为5mm~8mm。
在本发明的一种实施例中,换热管的外径为3mm。位于同一排的相邻的换热管的中心距为4mm。上下相邻的换热管的中心距为7mm。
在本发明的一种实施例中,当吸收式制冷单元内部换热组件为再生器、吸收器、冷凝器或蒸发器中的任意一种时,管壳式换热器壳体由塑料制成。
在本发明的一种实施例中,管壳式换热器壳体和换热管由同种塑料制成。
在本发明的一种实施例中,换热壁板的厚度为0.1mm~0.5mm。
在本发明的一种实施例中,换热壁板的厚度为0.15mm。
在本发明的一种实施例中,换热壁板上分布有织纹状凸条,用于支撑换热壁板,并使流过凸条的流体产生紊流以提高传热系数。
在本发明的一种实施例中,凸条由塑料制成。
在本发明的一种实施例中,凸条和换热壁板由同种塑料制成。
在本发明的一种实施例中,换热壁板呈多层排列。相邻两层的换热壁板的板壁间距为0.5mm~3mm。
在本发明的一种实施例中,相邻两层的换热壁板的板壁间距为1mm。
在本发明的一种实施例中,当吸收式制冷单元内部换热组件为溶液热交换器时,板式换热器壳体由塑料制成。
在本发明的一种实施例中,板式换热器壳体和换热壁板由同种塑料制成。
在本发明的一种实施例中,吸收式制冷单元内部换热组件为蒸发器。换热管内部用于供冷水流动,换热管与管壳式换热器壳体之间用于供冷媒水流动。
在本发明的一种实施例中,每一排换热管朝向吸收器的一侧设置有斜坡式隔液板,斜坡式隔液板用于截留冷媒水,只允许冷媒蒸汽通过。
在本发明的一种实施例中,吸收式制冷单元内部换热组件为冷凝器;换热管内部用于供冷却水流动,换热管与管壳式换热器壳体之间用于供冷媒蒸汽流动。
在本发明的一种实施例中,每一排换热管朝向再生器的一侧设置有斜坡式隔液板,斜坡式隔液板用于截留冷媒蒸汽中的液滴,只允许冷媒蒸汽通过。
在本发明的一种实施例中,吸收式制冷单元内部换热组件为吸收器或再生器,换热器壳体和换热管共同构成管壳式换热器。换热管与管壳式换热器壳体 之间用于供溴化锂溶液流动。当吸收式制冷单元内部换热组件为吸收器时,换热管内部用于供冷却水流动;吸收式制冷单元内部换热组件为再生器时,换热管内部用于供热水流动。
在本发明的一种实施例中,吸收式制冷单元内部换热组件还包括溶液分配器;溶液分配器设置在管壳式换热器上部;溶液分配器内部具有腔体,溶液分配器下部为用于向下方的换热管喷洒溶液的溶液喷洒面。
在本发明的一种实施例中,溶液分配器由塑料制成。
在本发明的一种实施例中,溶液分配器和管壳式换热器壳体由同种塑料制成。
在本发明的一种实施例中,溶液喷洒面尺寸与管壳式换热器上端面相同。在溶液分配器的溶液喷洒面设置有若干泄流孔,用于将溶液均匀的分散到下方的换热管表面。
在本发明的一种实施例中,吸收式制冷单元内部换热组件为吸收器时,每一排换热管朝向蒸发器的一侧设置有斜坡式隔液板,斜坡式隔液板用于截留冷媒水,只允许冷媒蒸汽通过。吸收式制冷单元内部换热组件为再生器时,每一排换热管朝向冷凝器的一侧设置有斜坡式隔液板,斜坡式隔液板用于截留冷媒蒸汽中的液滴,只允许冷媒蒸汽通过。
吸收式制冷单元,包括上述任意一种吸收式制冷单元内部换热组件。
吸收式制冷矩阵,包括若干个上述的吸收式制冷单元。
本发明的技术方案至少具有如下优点和有益效果:
本发明实施例提供的吸收式制冷单元内部换热组件中,换热管和换热壁板由塑料制成。采用本发明实施例提供的吸收式制冷单元内部换热组件制造的吸收式制冷机,其整机重量能够大大降低。同时,塑料制作的换热管密封容易。塑料的抗腐蚀性能更强,能够避免被溶液腐蚀而产生不凝气体,增加了吸收式制冷机的工作效率。
本发明实施例提供的吸收式制冷单元,由于具备上述的吸收式制冷单元内部换热组件,因此也具有重量低、密封容易、抗腐蚀性能更强、工作效率高的有益效果。
本发明实施例提供的吸收式制冷矩阵,由于具备上述的吸收式制冷单元,因此也具有重量低、密封容易、抗腐蚀性能更强、工作效率高的有益效果。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面对实施例中需要使用的附图作简单介绍。应当理解,以下附图仅示出了本发明的某些实施方式,不应被看作是对本发明范围的限制。对于本领域技术人员而言,在不付出创造性劳动的情况下,能够根据这些附图获得其他附图。
图1为本发明实施例中,冷凝器与一侧再生器的结构主视图;
图2为本发明实施例中,冷凝器与一侧再生器的结构剖视图;
图3为本发明实施例中,冷凝器与一侧再生器的结构爆炸图;
图4为本发明实施例中,蒸发器与一侧吸收器的装配状态图;
图5为本发明实施例中,蒸发器与一侧吸收器的结构剖视图;
图6为本发明实施例中,蒸发器与一侧吸收器的结构爆炸图;
图7为本发明实施例中,溶液热交换器的立体结构示意图;
图8为本发明实施例中,拆除了部分部件后裸露的换热壁板的结构示意图。
图中:100-冷凝器;101-管壳式换热器壳体;102-换热管;103-支撑条;104-节流孔;200-再生器;201-管壳式换热器壳体;202-换热管;203-溶液分配器;204-溶液喷洒面;205-泄流孔;206-支撑条;207-供给孔;210-管壳式换热器;501-斜坡式隔液板;300-蒸发器;301-管壳式换热器壳体;302-换热管;303-支撑条;400-吸收器;401-管壳式换热器壳体;402-换热管;403-溶液分配器;404-溶液喷洒面;405-泄流孔;406-支撑条;410-管壳式换热器;502-斜坡式隔液板;600-溶液热交换器;601-稀溶液入口;602-浓溶液出口;604-浓溶液前往吸收器壳程的通道;606-浓溶液入口;608-稀溶液出口;609-稀溶液前往再生器的通道;612-稀溶液通道;614-浓溶液通道;620-换热壁板;622-凸条;624-板式换热器壳体;631-溶液泵。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例 是本发明的一部分实施例,而不是全部的实施例。
因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的部分实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征和技术方案可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,这类术语仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例:
在吸收式制冷机中,冷凝器、蒸发器、吸收器、再生器和溶液热交换器是实现制冷循环的主要部件,其中的换热管和换热壁板利用传热系数比较高的金属材料(例如黄铜)制成,这导致吸收式制冷机整体重量大,难以实现吸收式制冷机的轻量化。同时,金属容易被溶液腐蚀,并产生氢气等不凝气体,降低吸收式制冷机的工作效率。
为此,本实施例提供一种吸收式制冷单元内部换热组件,该内部组件可以是冷凝器、蒸发器、吸收器、再生器或溶液热交换器中的任意一种。冷凝器、蒸发器、吸收器或再生器的换热管为采用塑料制成的薄壁换热管,溶液热交换器的换热壁板为采用塑料制成的薄壁板件,从而在满足换热性能的前提下,使得吸收式制冷机实现了轻量化。同时塑料抗腐蚀性能强,能够避免不凝气体,增加了吸收式制冷机的工作效率。
在本实施例中,所谓塑料是指工程塑料(engineering-plastics),例如聚碳酸酯(Polycarbonate,PC)、聚酰胺(尼龙,Polyamide,PA)、聚甲醛(Polyacetal,Polyoxy Methylene,POM)、聚苯醚(Polyphenylene Oxide,PPO)、聚酯(PET,PBT)、聚苯硫醚(Polyphenylene Sulfide,PPS)、聚芳基酯等。
本实施例以溴化锂吸收式制冷机内部的冷凝器、蒸发器、吸收器、再生器和溶液热交换器为例进行说明。
冷凝器100和再生器200
参照图1,图1为本发明实施例中,冷凝器100与一侧再生器200的结构主视图。在图1中,右侧为冷凝器100,左侧为再生器200,在冷凝器100和再生器200之间为斜坡式隔液板501。斜坡式隔液板501可以看作冷凝器100的一部分,也可以看作再生器200的一部分。左侧的再生器200的作用是将溴化锂稀溶液进行加热,使稀溶液中吸收的冷媒水不断汽化变成冷媒蒸汽,冷媒蒸汽进入右侧的冷凝器100遇冷降温后凝结,成为高压低温的液态冷媒水。当冷凝器100内的冷媒水通过节流孔进入制冷机的蒸发器时,大量吸收蒸发器管程内流动的冷水的热量而汽化,从而达到给冷水降温制冷的目的。本发明的冷凝器100的作用即是将再生器200产生的冷媒蒸汽进行冷却凝结,变成冷媒水。斜坡式隔液板501用于截留左侧为再生器200加热蒸发产生的冷媒蒸汽中夹带的液滴,只允许冷媒蒸汽越过斜坡式隔液板501而进入冷凝器100。
下面对冷凝器100进行说明。
参照图2,图2为本发明实施例中,冷凝器100与一侧再生器200的结构剖视图。
冷凝器100为管壳式换热器,包括管壳式换热器壳体101和换热管102。在本实施例中,若干排换热管102呈上下层排列(图中仅示出了部分换热管102。可以理解的,在其他具体实施方式中,换热管102可以采用其他排列方式。)换热管102固定在管壳式换热器壳体101中。在工作时,换热管102内流通有冷却水,来自再生器200的冷媒蒸汽在换热管102和管壳式换热器壳体101之间 流动。换热管102中的冷却水用于对冷媒蒸汽进行降温冷凝,得到冷媒水。
冷凝器100中,换热管102由塑料制成,换热管102的管壁厚度为0.1mm~0.5mm。在本实施例中,换热管102的管壁厚度为0.15mm。相对于金属换热管,这样极薄的厚度在同体积下增大了十倍以上的换热面积,弥补了塑料传热性能不足的问题,使得换热管102的传热性能能够达到吸收式制冷机的要求。由于换热管102由塑料制成,相对于采用金属散热管,冷凝器100的重量能够大幅度降低,从而实现了轻量化。由于塑料具备优良的抗腐蚀性能,从而也能够避免由于换热管102被腐蚀而产生不凝气体,增加了吸收式制冷机的工作效率。同时,塑料制作的换热管102相对于金属换热管,其密封更加容易。
发明人经过研究发现,传统的采用金属换热管的冷凝器,由于金属的密封难度较大,为了保证冷凝器的密封性能,使得其壳体只能采用厚钢板或者铸件制成,从而进一步增加了冷凝器的重量,且耐腐蚀性差。
为此,在本实施例中,冷凝器100的管壳式换热器壳体101也采用塑料制成,使得管壳式换热器壳体101和换热管102之间的密封能够容易的实现,管壳式换热器壳体101的厚度能够降低。这样,进一步减轻了冷凝器100的重量,冷凝器100的抗腐蚀性能也得到增强。作为一种实施例,管壳式换热器壳体101和换热管102可以采用相同种类的塑料制成,通过注塑工艺一体成型,从而提供优良的密封性能。
除了实现冷凝器100的轻量化,发明人还希望实现冷凝器100的小型化。小型化的冷凝器100能够使吸收式制冷机整体体积更小,从而能够适用于家庭或其他对制冷功率要求不高的商业场合。然而,发明人在冷凝器100小型化的过程中发现,冷凝器100的热交换效率不高,在小型化后难以满足使用要求。发明人经过研究发现,冷凝器100的换热效率不高的原因在于:当冷媒蒸汽进入冷凝器100内与换热管102发生热交换放热液化后在换热管102表面形成水滴,并在重力的作用下汇集和自由滴落,冷凝水在下滴过程中不断滴到下方各排换热管102,在换热管102表面形成下降水膜,尤其是在换热管102的下部弧线处水膜的厚度往往很厚,增加冷媒蒸汽与换热管102之间的传热阻力,不利于冷媒蒸汽与换热管102的接触,从而导致热交换效率不高。
为此,发明人对换热管102的外径以及相邻换热管102之间的中心距进行了优化。将换热管102的外径设置为3mm~5mm,将位于同一排的相邻的换热管102的中心距设置为4mm~6mm,将上下相邻的换热管102的中心距设置为5mm~8mm。在本实施例中,换热管102的外径为3mm;位于同一排的相邻的换热管102的中心距为4mm;上下相邻的换热管102的中心距为7mm。采用上述的小管径、大密度排列的换热管102,在单位体积上获得较大的热交换面积,从而在满足高换热效率的前提下实现更小的体积。同一排的相邻的换热管102之间的间隙仅为1mm,这样小的间隙能够发挥冷媒水表面张力的有益作用,使得换热管102表面冷凝的冷媒水在间隙处汇集并下滴。先冷凝的冷媒水不会滴落到下层换热管102的表面形成水膜,使悬挂在换热管102下部弧面的水膜厚度得以降低,从而提高了冷凝器100的整体工作效率。如此,使得冷凝器100得以小型化。
参照图3,图3为本发明实施例中,冷凝器100与一侧再生器200的结构爆炸图。在相邻两排换热管102之间,等间距设置有多个支撑条103,支撑条103与换热管102交叉设置且与换热管102相互垂直。支撑条103用于支撑上下相邻的两排换热管102,并承受管壳式换热器壳体101内高真空带来的结构应力。在本实施例中,支撑条103由塑料制成,以保证轻量化。作为一种实施例,支撑条103与换热管102采用同种塑料制成,以便于制造。
需要说明的是,在其他具体实施方式中,换热管102的管壁厚度可以在0.1mm~0.5mm之间进行调整;换热管102的外径可以在3mm~5mm之间进行调整;位于同一排的相邻的换热管102的中心距可以在4mm~6mm之间进行调整;上下相邻的换热管102的中心距可以在5mm~8mm之间进行调整。
下面对再生器200进行说明。
再次参照图2,再生器200包括管壳式换热器壳体201、换热管202和溶液分配器203。在本实施例中,若干排换热管202呈上下层排列(图中仅示出了部分换热管202。可以理解的,在其他具体实施方式中,换热管202可以采用其他排列方式。),换热管202固定在管壳式换热器壳体201中,从而构成管壳 式换热器210。在工作时,换热管202内流通有热水,换热管202与所述管壳式换热器壳体201之间用于供溴化锂稀溶液流动。换热管202中的热水用于对溴化锂稀溶液进行加热,使稀溶液中吸收的冷媒水不断汽化变成冷媒蒸汽。溶液分配器203为长方体,内部具有腔体,腔体用于供溴化锂稀溶液流动。溶液分配器203的下部为溶液喷洒面204。溶液分配器203设置在管壳式换热器210的上部,溶液喷洒面204与管壳式换热器210上端面的尺寸相同。再次参照图3,溶液喷洒面204上均匀设置有多个泄流孔205。作为一种实施例,泄流孔205为长条孔,在溶液喷洒面204的宽度方向上延伸且等间距开设三个形成一排。在溶液喷洒面204的长度方向上,等间距设置多排泄流孔205。泄流孔205用于将腔体中的溴化锂稀溶液均匀的喷洒至下方的换热管202。
再次参照图2,再生器200的管壳式换热器壳体201与冷凝器100的管壳式换热器壳体101为一体式结构,再生器200的换热管202与冷凝器100的换热管102被斜坡式隔液板501分隔开。
再生器200中,换热管202由塑料制成,换热管202的管壁厚度为0.1mm~0.5mm。在本实施例中,换热管202的管壁厚度为0.15mm。相对于金属换热管,这样极薄的厚度在同体积下增大了十倍以上的换热面积,弥补了塑料传热性能不足的问题,使得换热管202的传热性能能够达到吸收式制冷机的要求。由于换热管202由塑料制成,相对于采用金属散热管,再生器200的重量能够大幅度降低,从而实现了轻量化。由于塑料具备优良的抗腐蚀性能,从而也能够避免由于再生器200被腐蚀而产生不凝气体,增加了吸收式制冷机的工作效率。塑料制作的换热管202相对于金属换热管,其密封更加容易。
发明人经过研究发现,传统的采用金属换热管的冷凝器,由于金属的密封难度较大,为了保证冷凝器的密封性能,使得其壳体只能采用厚钢板或者铸件制成,从而进一步增加了冷凝器的重量,且耐腐蚀性差。
为此,在本实施例中,再生器200的管壳式换热器壳体201也采用塑料制成,使得管壳式换热器壳体201和换热管202之间的密封能够容易的实现,管壳式换热器壳体201的厚度能够降低。这样,进一步减轻了再生器200的重量,再生器200的抗腐蚀性能也得到增强。作为一种实施例,管壳式换热器壳体201 和换热管202可以采用相同种类的塑料制成,通过注塑工艺一体成型,从而提供优良的密封性能。
在本实施例中,溶液分配器203也可以采用塑料制成,以达到进一步的轻量化。作为一种实施例,溶液分配器203和管壳式换热器壳体201可以采用相同种类的塑料制成,以方便制造、装配和密封。
除了实现再生器200的轻量化,发明人还希望实现再生器200的小型化。小型化的再生器200能够使吸收式制冷机整体体积更小,从而能够适用于家庭或其他对制冷功率要求不高的商业场合。然而,发明人在再生器200小型化的过程中发现,随着制冷功率的降低,所需要的工质的循环量也随之降低,相应地出现换热管202外表面不能被溴化锂溶液充分湿润而出现“干斑”的不利现象。为了避免出现干斑,发明人尝试加大循环泵的流量,把远远多于实际要求的循环量的工质液体,不断地从再生器200底部的积液池中喷淋到顶部的换热管202上。然而这样增加了循环泵的流量,增加了寄生能量消耗和运行成本。悖于吸收式制冷机向小型化、家庭化发展的趋势。
为此,发明人对换热管202的外径以及相邻换热管202之间的中心距进行了优化。将换热管202的外径设置为3mm~5mm,将位于同一排的相邻的换热管202的中心距设置为4mm~6mm,将上下相邻的换热管202的中心距设置为5mm~8mm。在本实施例中,换热管202的外径为3mm;位于同一排的相邻的换热管102的中心距为4mm;上下相邻的换热管202的中心距为7mm。采用上述的小管径、大密度排列的换热管202,在单位体积上获得较大的热交换面积,从而在满足高换热效率的前提下实现更小的体积。同一排的相邻的换热管202之间的间隙仅为1mm,在该间隙处,溴化锂溶液的表面张力和重力联合作用,使得溴化锂溶液在该间隙处既有下滴流动,也有扩散和堆积,从而能够保证冷媒水始终浸没换热管202。溴化锂溶液与换热管202进行浸没式和降膜式联合换热。同时,在溴化锂溶液表面张力的作用下,溴化锂溶液无需充满整个管壳式换热器壳体201,仅仅需要溴化锂溶液能够始终终浸没换热管202即可。因此能够根据溴化锂溶液流量的大小调节溴化锂溶液在间隙处的沉积高度,使得在制冷负荷小、溴化锂溶液流量小时,溴化锂溶液也能均匀的浸没换热管202。如此, 无需多次泵送即可保证溴化锂溶液与换热管202的接触,有效杜绝了干斑现象,降低了寄生能量消耗和运行成本,使得再生器200得以小型化。
再次参照图3,在相邻两排换热管202之间,等间距设置有多个支撑条206,支撑条206与换热管202交叉设置且与换热管202相互垂直。支撑条206用于支撑上下相邻的两排换热管202,并承受管壳式换热器壳体201内高真空带来的结构应力。在本实施例中,支撑条206由塑料制成,以保证轻量化。作为一种实施例,支撑条206与换热管202采用同种塑料制成,以便于制造。
需要说明的是,在其他具体实施方式中,换热管202的管壁厚度可以在0.1mm~0.5mm之间进行调整;换热管202的外径可以在3mm~5mm之间进行调整;位于同一排的相邻的换热管202的中心距可以在4mm~6mm之间进行调整;上下相邻的换热管202的中心距可以在5mm~8mm之间进行调整。
蒸发器300与吸收器400
参照图4,图4为本发明实施例中,蒸发器300与一侧吸收器400的装配状态图。在图4中,右侧为蒸发器300,左侧为吸收器400,在蒸发器300和吸收器400之间为斜坡式隔液板502。斜坡式隔液板502可以看作蒸发器300的一部分,也可以看作吸收器400的一部分。右侧的蒸发器300所需要的冷媒水由设置在其上方的冷凝器底部的节流孔104供给。右侧的蒸发器300的作用是使来自冷凝器的冷媒水大量吸收蒸发器300管程内流动的冷水的热量而汽化,从而达到给冷水降温制冷的目的。产生的冷媒蒸汽进入左侧吸收器400。吸收器400所需要的浓溶液由设置在其上方的再生器底部的供给孔207供给。吸收器400对溴化锂浓溶液进行冷却,使溴化锂浓溶液不断吸收冷媒蒸汽从而变成溴化锂稀溶液。得到的溴化锂稀溶液用于循环回再生器,从而完成制冷循环。斜坡式隔液板502用于截留冷媒蒸汽中夹带的液滴,只允许冷媒蒸汽越过斜坡式隔液板502而进入吸收器400。
下面对蒸发器300进行说明。
参照图5,图5为本发明实施例中,蒸发器300与一侧吸收器400的结构 剖视图。
蒸发器300为管壳式换热器,包括管壳式换热器壳体301和换热管302。在本实施例中,若干排换热管302呈上下层排列(图中仅示出了部分换热管302。可以理解的,在其他具体实施方式中,换热管302可以采用其他排列方式。),换热管302固定在管壳式换热器壳体301中。在工作时,换热管302内流通有冷水,来自冷凝器的冷媒水在换热管102和管壳式换热器壳体101之间流动。冷媒水大量吸收换热管302中冷水的热量而汽化,得到冷媒蒸汽,从而达到给冷水降温制冷的目的。
蒸发器300中,换热管302由塑料制成,换热管302的管壁厚度为0.1mm~0.5mm。在本实施例中,换热管302的管壁厚度为0.15mm。相对于金属换热管,这样极薄的厚度在同体积下增大了十倍以上的换热面积,弥补了塑料传热性能不足的问题,使得换热管302的传热性能能够达到吸收式制冷机的要求。由于换热管302由塑料制成,相对于采用金属散热管,蒸发器300的重量能够大幅度降低,从而实现了轻量化。由于塑料具备优良的抗腐蚀性能,从而也能够避免由于换热管302被腐蚀而产生不凝气体,增加了吸收式制冷机的工作效率。塑料制作的换热管302相对于金属换热管,其密封更加容易。
受纯水的物理化学性质所限,对于满足人体舒适性需要的各种制冷应用场合,蒸发器300的蒸发温度通常设置在5℃左右,这就要求蒸发器300的管壳式换热器壳体301的饱和压力必须保持在872Pa左右。这种压力对气密性要求很高,发明人经过研究发现,传统的采用金属换热管的蒸发器,由于金属的密封难度较大,为了保证蒸发器的密封性能,使得其壳体只能采用厚钢板或者铸件制成,从而进一步增加了蒸发器的重量,且耐腐蚀性差。
为此,在本实施例中,蒸发器300的管壳式换热器壳体301也采用塑料制成,使得管壳式换热器壳体301和换热管302之间的密封能够容易的实现,管壳式换热器壳体301的厚度能够降低。这样,进一步减轻了蒸发器300的重量,蒸发器300的抗腐蚀性能也得到增强。作为一种实施例,管壳式换热器壳体301和换热管302可以采用相同种类的塑料制成,通过注塑工艺一体成型,从而提供优良的密封性能。
除了实现蒸发器300的轻量化,发明人还希望实现蒸发器300的小型化。小型化的蒸发器300能够使吸收式制冷机整体体积更小,从而能够适用于家庭或其他对制冷功率要求不高的商业场合。然而,发明人在冷凝器100小型化的过程中发现,由于冷媒水的比热容很大,完成额定制冷量所需要蒸发的冷媒水的流量就比较少,需要设置复杂的冷媒分配器以把冷媒水精确地分配到各换热管302上,使冷媒水充分浸润换热管302并沿换热管302表面形成厚度均匀下降的水膜(简称降膜)。随着冷媒水的蒸发,冷媒水不断减少,以至于不能充分湿润换热管302而造成换热管302外表出现“干斑”的现象。干斑的出现,使蒸发器300的换热系数大大降低。因而,为了保证充分湿润,需要配置专用的冷媒泵,使用远远多于实际蒸发量的冷媒水,在冷媒泵泵送下,不断地从蒸发器300的底部把没有蒸发的冷媒水喷淋到蒸发器300的顶部。冷媒泵的存在,一方面增加制冷机的体积重量,使蒸发器300难以小型化,另一方面增加运行成本。
为此,发明人对换热管302的外径以及相邻换热管302之间的中心距进行了优化。将换热管302的外径设置为3mm~5mm,将位于同一排的相邻的换热管302的中心距设置为4mm~6mm,将上下相邻的换热管302的中心距设置为5mm~8mm。在本实施例中,换热管302的外径为3mm;位于同一排的相邻的换热管302的中心距为4mm;上下相邻的换热管302的中心距为7mm。采用上述的小管径、大密度排列的换热管302,在单位体积上获得较大的热交换面积,从而在满足高换热效率的前提下实现更小的体积。换热管302的外径只有3mm,同一排的相邻的换热管302之间的间隙仅为1mm,这样小的间隙能够发挥冷媒水表面张力的有益作用。在冷媒水表面张力和重力的联合作用下,冷媒水一部分在间隙处形成堆积、扩散并润湿该排换热管302,另一部分通过间隙滴落到下层的换热管302上。接着,在换热管302的各个间隙处,冷媒水一部分通过间隙滴落到下层,另一部分堆积扩散并润湿该换热管302。以此类推,冷媒水依次流过各层换热管302。冷媒水从节流孔104流经个层换热管302,全部依靠重力作用完成。在额定制冷工况下稳态工作时,从节流孔104供给的冷媒水经最上排换热管302,到达最下排换热管302时,恰好被完全蒸发,毋须使用冷媒 泵。冷媒水流经间隙时,在表面张力和重力的双重作用下,在间隙处既有流动,又有堆积;间隙可根据冷媒水流量的大小自动调节冷媒水在间隙处的堆积高度。当冷媒水流量大时,间隙处堆积的液体高度会淹没换热管302,同时流过间隙的流量也大。当冷媒水流量较小时,间隙处堆积的液体高度低,但由于换热管302表面的可湿润性,冷媒液体会浸润换热管302,减少换热管302表面出现“干斑”的机会,提高传热系数。如此,无需设置专用的冷媒泵和冷媒分配器,降低了运行成本,也有利于蒸发器300的小型化。
参照图6,图6为本发明实施例中,蒸发器300与一侧吸收器400的结构爆炸图。在相邻两排换热管302之间,等间距设置有多个支撑条303,支撑条303与换热管302交叉设置且与换热管302相互垂直。支撑条303用于支撑上下相邻的两排换热管302,并承受管壳式换热器壳体301内高真空带来的结构应力。在本实施例中,支撑条303由塑料制成,以保证轻量化。作为一种实施例,支撑条303与换热管302采用同种塑料制成,以便于制造。
需要说明的是,在其他具体实施方式中,换热管302的管壁厚度可以在0.1mm~0.5mm之间进行调整;换热管302的外径可以在3mm~5mm之间进行调整;位于同一排的相邻的换热管302的中心距可以在4mm~6mm之间进行调整;上下相邻的换热管302的中心距可以在5mm~8mm之间进行调整。
下面对吸收器400进行说明。
再次参照图5,吸收器400包括管壳式换热器壳体401、换热管402和溶液分配器403。在本实施例中,若干排换热管402呈上下层排列(图中仅示出了部分换热管402。可以理解的,在其他具体实施方式中,换热管402可以采用其他排列方式。),换热管402固定在管壳式换热器壳体401中,从而构成管壳式换热器410。在工作时,换热管402内流通有冷,换热管402与所述管壳式换热器壳体401之间用于供溴化锂浓溶液流动。换热管402中的冷水用于对溴化锂浓溶液进行冷却,使溴化锂浓溶液不断吸收冷媒蒸汽。溶液分配器403为长方体,内部具有腔体,腔体用于供溴化锂浓溶液流动。溶液分配器403的下部为溶液喷洒面404。溶液分配器403设置在管壳式换热器410的上部,溶液 喷洒面404与管壳式换热器410上端面的尺寸相同。再次参照图6,溶液喷洒面404上均匀设置有多个泄流孔405。作为一种实施例,泄流孔405为长条孔,在溶液喷洒面404的宽度方向上延伸且等间距开设三个形成一排。在溶液喷洒面404的长度方向上,等间距设置多排泄流孔405。泄流孔405用于将腔体中的溴化锂稀溶液均匀的喷洒至下方的换热管402。
再次参照图5,吸收器400的管壳式换热器壳体401与蒸发器300的管壳式换热器壳体301为一体式结构,吸收器400的换热管402与蒸发器300的换热管302被斜坡式隔液板502分隔开。
吸收器400中,换热管402由塑料制成,换热管402的管壁厚度为0.1mm~0.5mm。在本实施例中,换热管402的管壁厚度为0.15mm。相对于金属换热管,这样极薄的厚度在同体积下增大了十倍以上的换热面积,弥补了塑料传热性能不足的问题,使得换热管402的传热性能能够达到吸收式制冷机的要求。由于换热管402由塑料制成,相对于采用金属散热管,吸收器400的重量能够大幅度降低,从而实现了轻量化。由于塑料具备优良的抗腐蚀性能,从而也能够避免由于吸收器400被腐蚀而产生不凝气体,增加了吸收式制冷机的工作效率。塑料制作的换热管302相对于金属换热管,其密封更加容易。
发明人经过研究发现,传统的采用金属换热管的吸收器,由于金属的密封难度较大,为了保证吸收器的密封性能,使得其壳体只能采用厚钢板或者铸件制成,从而进一步增加了吸收器的重量,且耐腐蚀性差。
为此,在本实施例中,吸收器400的管壳式换热器壳体401也采用塑料制成,使得管壳式换热器壳体401和换热管402之间的密封能够容易的实现,管壳式换热器壳体401的厚度能够降低。这样,进一步减轻了吸收器400的重量,吸收器400的抗腐蚀性能也得到增强。作为一种实施例,管壳式换热器壳体401和换热管402可以采用相同种类的塑料制成,通过注塑工艺一体成型,从而提供优良的密封性能。
在本实施例中,溶液分配器403也可以采用塑料制成,以达到进一步的轻量化。作为一种实施例,溶液分配器403和管壳式换热器壳体401可以采用相同种类的塑料制成,以方便制造、装配和密封。
除了实现吸收器400的轻量化,发明人还希望实现吸收器400的小型化。小型化的吸收器400能够使吸收式制冷机整体体积更小,从而能够适用于家庭或其他对制冷功率要求不高的场合。然而,发明人在吸收器400小型化的过程中发现,随着制冷功率的降低,所需要的工质的循环量也随之降低,相应地出现换热管402外表面不能被溴化锂溶液充分湿润而出现“干斑”的不利现象。为了避免出现干斑,发明人尝试加大循环泵的流量,把远远多于实际要求的循环量的工质液体,不断地从吸收器400底部的积液池中喷淋到顶部的换热管402上。然而这样增加了循环泵的流量,增加了寄生能量消耗和运行成本。悖于吸收式制冷机向小型化、家庭化发展的趋势。
为此,发明人对换热管402的外径以及相邻换热管402之间的中心距进行了优化。将换热管402的外径设置为3mm~5mm,将位于同一排的相邻的换热管402的中心距设置为4mm~6mm,将上下相邻的换热管402的中心距设置为5mm~8mm。在本实施例中,换热管402的外径为3mm;位于同一排的相邻的换热管402的中心距为4mm;上下相邻的换热管402的中心距为7mm。采用上述的小管径、大密度排列的换热管402,在单位体积上获得较大的热交换面积,从而在满足高换热效率的前提下实现更小的体积。同一排的相邻的换热管402之间的间隙仅为1mm,在该间隙处,溴化锂溶液的表面张力和重力联合作用,使得溴化锂溶液在该间隙处既有下滴流动,也有扩散和堆积,从而能够保证冷媒水始终浸没换热管402。溴化锂溶液与换热管402进行浸没式和降膜式联合换热。同时,在溴化锂溶液表面张力的作用下,溴化锂溶液无需充满整个管壳式换热器壳体401,仅仅需要溴化锂溶液能够始终终浸没换热管402即可。因此能够根据溴化锂溶液流量的大小调节溴化锂溶液在间隙处的沉积高度,使得在制冷负荷小、溴化锂溶液流量小时,溴化锂溶液也能均匀的浸没换热管402。如此,无需多次泵送即可保证溴化锂溶液与换热管402的接触,有效杜绝了干斑现象,降低了寄生能量消耗和运行成本,使得吸收器400得以小型化。
再次参照图3,在相邻两排换热管402之间,等间距设置有多个支撑条406,支撑条406与换热管402交叉设置且与换热管402相互垂直。支撑条406用于支撑上下相邻的两排换热管402,并承受管壳式换热器壳体401内高真空带来 的结构应力。在本实施例中,支撑条406由塑料制成,以保证轻量化。作为一种实施例,支撑条406与换热管402采用同种塑料制成,以便于制造。
需要说明的是,在其他具体实施方式中,换热管402的管壁厚度可以在0.1mm~0.5mm之间进行调整;换热管402的外径可以在3mm~5mm之间进行调整;位于同一排的相邻的换热管402的中心距可以在4mm~6mm之间进行调整;上下相邻的换热管402的中心距可以在5mm~8mm之间进行调整。
溶液热交换器600
图7是本发明实施例中溶液热交换器600的立体结构示意图。
溶液热交换器600为板式换热器,其用于对溴化锂浓溶液和溴化锂稀溶液进行热交换。
图8是本发明实施例中溶液热交换器600拆除了部分部件后裸露的换热壁板620的结构示意图。
溶液热交换器600中,多块换热壁板620呈多层排列,其中板式换热器壳体624内部用多块换热壁板620均匀隔开,形成冷热溶液流通的通道:即相互隔开的稀溶液通道612和浓溶液通道614。低温的溴化锂稀溶液和高温的溴化锂浓溶液同时与换热壁板620接触,换热壁板620即成为低温的溴化锂稀溶液和高温的溴化锂浓溶液热交换的媒介。溶液热交换器600的四个角上还分别设有溶液通道的出入口,分别是:左上角的浓溶液入口406、左下角的浓溶液出口402、右下角的稀溶液入口401、左上角的稀溶液出口408。
图8中还可以看到溶液泵631、浓溶液前往吸收器400壳程的通道604和稀溶液前往再生器200的通道609。溶液泵631用于给溶液热交换器600内流动的稀溶液提供动力,将其从右下角的稀溶液入口601泵送到左上角的稀溶液出口608,并通过连接管输送到再生器200的溶液分配器中(图上未画出)。
如图8所示,换热壁板620表面上冲压形成有密集分布、纵横相间的织纹状的凸条622,这种织纹状的凸条622用于支撑换热壁板620所受到的真空所产生的压力,同时使流过凸条622的流体产生紊流,以提高传热系数。
溶液热交换器600中,换热壁板620由塑料制成,换热壁板620的厚度为 0.1mm~0.5mm。在本实施例中,换热壁板620的厚度为0.15mm。相对于金属换热壁板,这样极薄的厚度弥补了塑料传热性能不足的问题,使得换热壁板620的传热性能能够达到吸收式制冷机的要求。由于换热壁板620由塑料制成,相对于采用金属换热壁板,溶液热交换器600的重量能够大幅度降低,从而实现了轻量化。由于塑料具备优良的抗腐蚀性能,从而也能够避免由于换热壁板620被腐蚀而产生不凝气体,增加了吸收式制冷机的工作效率。同时,塑料制作的换热壁板620相对于金属换热壁板,其密封更加容易。
发明人经过研究发现,传统的采用金属换热壁板的溶液热交换器,由于金属的密封难度较大,为了保证溶液热交换器的密封性能,使得其壳体只能采用厚钢板或者铸件制成,从而进一步增加了溶液热交换器的重量,且耐腐蚀性差。
为此,在本实施例中,溶液热交换器600的板式换热器壳体624也采用塑料制成,使得管板式换热器壳体624和换热壁板620之间的密封能够容易的实现,板式换热器壳体624的厚度能够降低。这样,进一步减轻了溶液热交换器600的重量,溶液热交换器600的抗腐蚀性能也得到增强。作为一种实施例,板式换热器壳体624和换热壁板620可以采用相同种类的塑料制成,通过注塑工艺一体成型,从而提供优良的密封性能。
在本实施例中,凸条622由塑料制成,以保证轻量化。作为一种实施例,凸条622与换热壁板620采用同种塑料制成,以便于制造。
相邻两层的换热壁板620的板壁间距为0.5mm~3mm,在本实施例中相邻两层的换热壁板620的板壁间距为1mm。同时由于换热壁板620的厚度为0.15mm,从而使得溶液热交换器600的结构更加紧凑,并在单位体积上提供更大的换热面积,有利于溶液热交换器600的小型化。
本实施例中描述的冷凝器100、再生器200、蒸发器300、吸收器400和溶液热交换器600作为吸收式制冷单元的一部分,用于构成吸收式制冷单元。若干个吸收式制冷单元还可以构成吸收式制冷矩阵。
以上所述仅为本发明的部分实施例而已,并不用于限制本发明,对于本领 域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (31)

  1. 吸收式制冷单元内部换热组件,其特征在于:
    所述吸收式制冷单元内部换热组件为再生器、吸收器、冷凝器、蒸发器或溶液热交换器中的任意一种;
    当所述吸收式制冷单元内部换热组件为再生器、吸收器、冷凝器或蒸发器中的任意一种时,所述吸收式制冷单元内部换热组件包括管壳式换热器;所述管壳式换热器具备管壳式换热器壳体和换热管;所述换热管设置在所述管壳式换热器壳体内;所述换热管由塑料制成;
    当所述吸收式制冷单元内部换热组件为溶液热交换器时,所述吸收式制冷单元内部换热组件包括板式换热器;所述板式换热器具备板式换热器壳体和换热壁板;所述换热壁板设置在所述板式换热器壳体内;所述换热壁板由塑料制成。
  2. 根据权利要求1所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热管的管壁厚度为0.1~0.5mm。
  3. 根据权利要求2所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热管的管壁厚度为0.15mm。
  4. 根据权利要求1所述的吸收式制冷单元内部换热组件,其特征在于:
    若干排所述换热管呈上下层排列;相邻两排所述换热管之间间隔设置有多个支撑条;所述支撑条用于支撑相邻两排所述换热管。
  5. 根据权利要求4所述的吸收式制冷单元内部换热组件,其特征在于:
    所述支撑条由塑料制成。
  6. 根据权利要求5所述的吸收式制冷单元内部换热组件,其特征在于:
    所述支撑条和所述换热管由同种塑料制成。
  7. 根据权利要求1所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热管的外径为3mm~5mm;
    位于同一排的相邻的所述换热管的中心距为4mm~6mm;
    上下相邻的所述换热管的中心距为5mm~8mm。
  8. 根据权利要求7所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热管的外径为3mm;
    位于同一排的相邻的所述换热管的中心距为4mm;
    上下相邻的所述换热管的中心距为7mm。
  9. 根据权利要求1所述的吸收式制冷单元内部换热组件,其特征在于:
    当所述吸收式制冷单元内部换热组件为再生器、吸收器、冷凝器或蒸发器中的任意一种时,所述管壳式换热器壳体由塑料制成。
  10. 根据权利要求9所述的吸收式制冷单元内部换热组件,其特征在于:
    所述管壳式换热器壳体和所述换热管由同种塑料制成。
  11. 根据权利要求1~10中任意一项所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热壁板的厚度为0.1mm~0.5mm。
  12. 根据权利要求11所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热壁板的厚度为0.15mm。
  13. 根据权利要求1~10中任意一项所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热壁板上分布有织纹状凸条,用于支撑所述换热壁板,并使流过所述凸条的流体产生紊流以提高传热系数。
  14. 根据权利要求13所述的吸收式制冷单元内部换热组件,其特征在于:
    所述凸条由塑料制成。
  15. 根据权利要求14所述的吸收式制冷单元内部换热组件,其特征在于:
    所述凸条和所述换热壁板由同种塑料制成。
  16. 根据权利要求1~10中任意一项所述的吸收式制冷单元内部换热组件,其特征在于:
    所述换热壁板呈多层排列;
    相邻两层的所述换热壁板的板壁间距为0.5mm~3mm。
  17. 根据权利要求16所述的吸收式制冷单元内部换热组件,其特征在于:
    相邻两层的所述换热壁板的板壁间距为1mm。
  18. 根据权利要求1~10中任意一项所述的吸收式制冷单元内部换热组件,其特征在于:
    当所述吸收式制冷单元内部换热组件为溶液热交换器时,所述板式换热器壳体由塑料制成。
  19. 根据权利要求18所述的吸收式制冷单元内部换热组件,其特征在于:
    所述板式换热器壳体和所述换热壁板由同种塑料制成。
  20. 根据权利要求1~10中任意一项所述的吸收式制冷单元内部换热组件,其特征在于:
    所述吸收式制冷单元内部换热组件为蒸发器;所述换热管内部用于供冷水流动,所述换热管与所述管壳式换热器壳体之间用于供冷媒水流动。
  21. 根据权利要求20所述的吸收式制冷单元内部换热组件,其特征在于:
    每一排所述换热管朝向吸收器的一侧设置有斜坡式隔液板,所述斜坡式隔液板用于截留冷媒水,只允许冷媒蒸汽通过。
  22. 根据权利要求1~10中任意一项所述的吸收式制冷单元内部换热组件,其特征在于:
    所述吸收式制冷单元内部换热组件为冷凝器;所述换热管内部用于供冷却水流动,所述换热管与管壳式换热器壳体之间用于供冷媒蒸汽流动。
  23. 根据权利要求22所述的吸收式制冷单元内部换热组件,其特征在于:
    每一排所述换热管朝向再生器的一侧设置有斜坡式隔液板,所述斜坡式隔液板用于截留冷媒蒸汽中的液滴,只允许冷媒蒸汽通过。
  24. 根据权利要求1~10中任意一项所述的吸收式制冷单元内部换热组件,其特征在于:
    所述吸收式制冷单元内部换热组件为吸收器或再生器,所述换热器壳体和所述换热管共同构成管壳式换热器;
    所述换热管与管壳式换热器壳体之间用于供溴化锂溶液流动;
    当所述吸收式制冷单元内部换热组件为吸收器时,所述换热管内部用于供冷却水流动;所述吸收式制冷单元内部换热组件为再生器时,所述换热管内部用于供热水流动。
  25. 根据权利要求24所述的吸收式制冷单元内部换热组件,其特征在于:
    所述吸收式制冷单元内部换热组件还包括溶液分配器;所述溶液分配器设置在所述管壳式换热器上部;所述溶液分配器内部具有腔体,所述溶液分配器下部为用于向下方的换热管喷洒溶液的溶液喷洒面。
  26. 根据权利要求25所述的吸收式制冷单元内部换热组件,其特征在于:
    所述溶液分配器由塑料制成。
  27. 根据权利要求26所述的吸收式制冷单元内部换热组件,其特征在于:
    所述溶液分配器和管壳式换热器壳体由同种塑料制成。
  28. 根据权利要求24所述的吸收式制冷单元内部换热组件,其特征在于:
    所述溶液喷洒面尺寸与所述管壳式换热器上端面相同;
    在所述溶液分配器的溶液喷洒面设置有若干泄流孔,用于将溶液均匀的分散到下方的换热管表面。
  29. 根据权利要求24所述的吸收式制冷单元内部换热组件,其特征在于:
    所述吸收式制冷单元内部换热组件为吸收器时,每一排所述换热管朝向蒸发器的一侧设置有斜坡式隔液板,所述斜坡式隔液板用于截留冷媒水,只允许冷媒蒸汽通过;
    所述吸收式制冷单元内部换热组件为再生器时,每一排所述换热管朝向冷凝器的一侧设置有斜坡式隔液板,所述斜坡式隔液板用于截留冷媒蒸汽中的液滴,只允许冷媒蒸汽通过。
  30. 吸收式制冷单元,其特征在于:
    包括权利要求1~29中任意一项所述的吸收式制冷单元内部换热组件。
  31. 吸收式制冷矩阵,其特征在于:
    包括若干个权利要求30所述的吸收式制冷单元。
PCT/CN2016/112160 2016-10-17 2016-12-26 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵 WO2018072315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610903854.XA CN106288497A (zh) 2016-10-17 2016-10-17 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵
CN201610903854.X 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018072315A1 true WO2018072315A1 (zh) 2018-04-26

Family

ID=57718444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112160 WO2018072315A1 (zh) 2016-10-17 2016-12-26 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵

Country Status (2)

Country Link
CN (1) CN106288497A (zh)
WO (1) WO2018072315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606812A (zh) * 2021-07-30 2021-11-05 华能嘉祥发电有限公司 一种蒸汽双效吸收制冷机安装结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336714B (zh) * 2019-08-30 2024-04-12 同方节能工程技术有限公司 一种吸收式冷温水机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216793A (ja) * 2009-03-16 2010-09-30 Masahisa Fujimoto 吸収冷却器、熱交換器
JP2012141101A (ja) * 2010-12-29 2012-07-26 Makoto Izumi 吸収式冷凍機
CN205425528U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元浅槽式换热机构
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN105849476A (zh) * 2013-10-21 2016-08-10 索拉尔弗罗斯特实验室有限公司 呈板设计的调节吸收式制冷机
CN206207784U (zh) * 2016-10-17 2017-05-31 四川捷元科技有限公司 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616390A (en) * 1984-10-18 1986-10-14 Maccracken Calvin D Superdensity assembly method and system for plastic heat exchanger resists large buoyancy forces and provides fast melt down in phase change thermal storage
US4955435A (en) * 1987-04-08 1990-09-11 Du Pont Canada, Inc. Heat exchanger fabricated from polymer compositions
CN101105380B (zh) * 2006-07-12 2010-08-18 天津膜科力科技有限公司 导热中空纤维及其热交换装置
CN102200399A (zh) * 2011-05-10 2011-09-28 天津大学 非金属微细管束换热器
CN205425505U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元内置式溶液热交换器
CN205425533U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元无循环泵冷媒蒸发器
CN205279544U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元节流装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216793A (ja) * 2009-03-16 2010-09-30 Masahisa Fujimoto 吸収冷却器、熱交換器
JP2012141101A (ja) * 2010-12-29 2012-07-26 Makoto Izumi 吸収式冷凍機
CN105849476A (zh) * 2013-10-21 2016-08-10 索拉尔弗罗斯特实验室有限公司 呈板设计的调节吸收式制冷机
CN205425528U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元浅槽式换热机构
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN206207784U (zh) * 2016-10-17 2017-05-31 四川捷元科技有限公司 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606812A (zh) * 2021-07-30 2021-11-05 华能嘉祥发电有限公司 一种蒸汽双效吸收制冷机安装结构

Also Published As

Publication number Publication date
CN106288497A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN111642103A (zh) 高热流密度多孔热沉流动冷却装置
CN101534627A (zh) 高效整体式喷雾冷却系统
WO2021169837A1 (zh) 一种相变冷却系统及其工作方法
WO2017088768A1 (zh) 吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵
WO2018072315A1 (zh) 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵
JP2000227262A (ja) 吸収冷凍機及びその製造方法
US11662156B2 (en) Arrangement for a latent-heat exchanger chamber
CN206207784U (zh) 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵
WO2017088763A1 (zh) 吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵
CN205425528U (zh) 吸收式制冷单元浅槽式换热机构
CN205425533U (zh) 吸收式制冷单元无循环泵冷媒蒸发器
WO2017088772A1 (zh) 吸收式制冷单元无循环泵冷媒蒸发器、制冷单元及矩阵
CN116858004B (zh) 一种余热系统储液器及其余热回收系统
WO2018072314A1 (zh) 吸收式制冷单元及吸收式制冷矩阵
CN107917553A (zh) 微板降膜蒸发冷换热器
CN206207783U (zh) 吸收式制冷单元及吸收式制冷矩阵
TWM592640U (zh) 蒸發器之穩流增壓裝置
KR101343424B1 (ko) 재생증발식 냉방기
CN116858002B (zh) 一种余热回收环路热管系统
WO2022138018A1 (ja) 吸収式冷凍機用吸収器、吸収式冷凍機用熱交換ユニット、及び吸収式冷凍機
CN212538376U (zh) 一种兼具有风冷和蒸发冷的两用型换热器
WO2022168460A1 (ja) 吸収式冷凍機用蒸発器ユニット、熱交換ユニット、及び吸収式冷凍機
JP2756523B2 (ja) 吸収冷凍機の液分配器
JP2020153596A (ja) シェルアンドチューブ式熱交換器及び冷凍サイクル装置
CN116858001A (zh) 一种蒸发器及其余热回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919255

Country of ref document: EP

Kind code of ref document: A1