WO2017088763A1 - 吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵 - Google Patents

吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵 Download PDF

Info

Publication number
WO2017088763A1
WO2017088763A1 PCT/CN2016/106943 CN2016106943W WO2017088763A1 WO 2017088763 A1 WO2017088763 A1 WO 2017088763A1 CN 2016106943 W CN2016106943 W CN 2016106943W WO 2017088763 A1 WO2017088763 A1 WO 2017088763A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
solution
refrigeration unit
absorption refrigeration
exchange mechanism
Prior art date
Application number
PCT/CN2016/106943
Other languages
English (en)
French (fr)
Inventor
邱伟
杨如民
武祥辉
武维建
刘彦武
Original Assignee
四川捷元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川捷元科技有限公司 filed Critical 四川捷元科技有限公司
Publication of WO2017088763A1 publication Critical patent/WO2017088763A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/02Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a liquid as sorbent, e.g. brine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention relates to the field of production of a lithium bromide absorption refrigerating machine, in particular to a small absorption refrigerating machine capable of being a separate unit of a refrigerating matrix and a shallow trough heat exchange mechanism therein.
  • the absorption chiller has the advantages of energy saving, environmental protection, etc. It is easy to use new energy such as solar energy and industrial waste heat waste heat, and has been continuously developed. Miniaturization and familyization will be another trend after it has been put into industrial applications.
  • the lithium bromide absorption chiller uses pure water as the refrigerant, that is, it relies on pure water to evaporate and absorb heat in a high vacuum environment to realize the refrigeration function.
  • the refrigerant vapor after the endothermic evaporation is absorbed, transported, heated and regenerated, condensed by the lithium bromide solution, and returned to the liquid state again, and then again absorbs heat and evaporates, and the source continuously performs the refrigeration cycle.
  • the absorption chiller has various heat exchangers.
  • the heat exchange structure of the most common heat exchanger is a shell-and-tube type, and a multi-layer heat exchange tube is provided.
  • the solution In order to make the absorption refrigerator work effectively, the solution must be sprayed onto the surface of the heat exchange tube reliably and uniformly.
  • the device that implements the function of the spray solution is the solution dispenser.
  • the solution dispenser In the conventional absorption refrigerating machine, since the heat exchange pipe diameter is generally coarse, the solution distributor is erected on the upper part of the shell-and-tube heat exchanger, and the solution is uniformly sprayed to the outer surface of the top row of the heat exchange tubes, after which, The solution relies on the action of gravity to sequentially flow through the outer surfaces of the rows of pipes.
  • the solution distribution is required to be uniform and accurate, so that the solution dispenser structure is complicated, the production cost is high, and it is difficult to miniaturize.
  • the evaporation temperature of the evaporator is generally set at about 5 °C.
  • the saturation pressure of the evaporator chamber is maintained at about 872 Pa.
  • the chiller is in a high vacuum environment and requires high air tightness.
  • the traditional large-scale industrial absorption chillers mostly use heavy steel plates or castings as the casing of the chiller, and copper pipes with relatively large diameters are used as heat exchange tubes. Shell and tube heat exchanger structure. Therefore, the industrial absorption type refrigerator is characterized by being bulky, heavy, and easily corroded by a lithium bromide solution to generate a non-condensable gas.
  • the present invention aims to provide a heat exchange mechanism having high heat exchange efficiency for an absorption refrigeration unit.
  • the heat exchange mechanism is a shallow trough heat exchange mechanism of an absorption refrigeration unit including a shallow trough heat exchanger and a solution distributor, and is used for components of a refrigerating unit such as a regenerator and an absorber.
  • the so-called absorption refrigeration unit refers to a small lithium bromide absorption chiller with a complete refrigeration function, which can be used alone or in combination with a large-scale refrigeration matrix.
  • a shallow trough heat exchange mechanism for an absorption refrigeration unit comprising:
  • the shallow trough heat exchanger is composed of a plurality of drainage channels arranged in the upper and lower layers and a heat exchange tube;
  • the solution dispenser is a closed cuboid, the inside is a cavity, and the lower part is a solution spraying surface, and the solution is sprayed to the upper end surface of the shallow trough heat exchanger below.
  • the flow guiding groove is a rectangular shallow groove, which is arranged in a staggered manner with the heat exchange tube; the heat exchange tube is disposed at an upper portion of the flow guiding groove, and the arrangement surface and the groove of the heat exchange tube The bottom surface is parallel.
  • a lithium bromide solution flows outside the heat exchange tube, and water flows inside the heat exchange tube;
  • the flow guiding groove makes the flow path of the lithium bromide solution form a zigzag shape for prolonging the heat exchange time of the lithium bromide solution and the heat exchange tube and generating turbulent flow.
  • a slope type liquid barrier is provided at one side edge of the flow guiding groove for trapping the liquid droplets, and only gas is allowed to pass.
  • a supporting strip is formed at an angle with the edge of the guiding groove, and the supporting strip is used for supporting the upper and lower pipes, and changing the lithium bromide solution in the guiding groove
  • the direction of flow creates turbulence.
  • the angle between the support strip and the edge of the guide groove is 45° to 135°.
  • the shallow trough heat exchanger adopts a immersion heat exchange mode, and a plurality of drain holes are distributed at the bottom of the diversion tank, so that the lithium bromide solution flows to the lower layer guide trough, and the lithium bromide solution is immersed in the heat exchange. tube.
  • drain holes on the adjacent two-layer flow guiding grooves are arranged in a staggered manner in the vertical direction.
  • a support strip is formed on the outside of the solution dispenser and outside the spray surface at an angle to the edge of the solution dispenser, and the support strip is used to support the internal cavity of the solution dispenser and the lower heat exchange tube to withstand the vacuum The pressure generated.
  • the spray surface size of the solution is the same as the upper end surface of the shallow trough heat exchanger
  • a plurality of vent holes are arranged on the solution spraying surface of the solution dispenser, and the solution is uniformly dispersed to the surface of the lower heat exchange tube, so that the solution flows through the heat exchange tubes from the top to the bottom through each row of the heat exchange tubes.
  • the heat exchange fluid undergoes heat exchange.
  • the bleed hole is a rectangular hole.
  • drain hole is laterally disposed on the spray surface of the solution dispenser and located between adjacent support strips.
  • the solution distributor of the shallow trough heat exchange mechanism and the rows of the flow guiding grooves are all made of engineering plastics; the heat exchange tubes are made of stainless steel material.
  • Another object of the present invention is to provide an absorption refrigeration unit comprising the shallow-slot heat exchange mechanism of the absorption refrigeration unit described above.
  • a third object of the present invention is to provide an absorption refrigeration matrix comprising a plurality of absorption refrigeration units
  • the absorption refrigeration unit includes the shallow-slot heat exchange mechanism of the absorption refrigeration unit described above.
  • the invention fully infiltrates the solution into the heat exchange tube, effectively eliminates the phenomenon of dry spots, and reduces the splash phenomenon of the solution; and causes the solution to flow along the elongated "Z"-shaped path, thereby increasing the contact heat exchange time with the heat exchange tube and generating turbulence.
  • Flow which is beneficial to improve heat exchange efficiency; simplify the structure of the solution distributor, realize the heat exchanger and
  • the reduction in the volume of the solution dispenser facilitates miniaturization of the absorption refrigeration unit using the heat exchange mechanism.
  • FIG. 1 is a cross-sectional partial structural view of a shallow trough heat exchange mechanism of an absorption refrigeration unit of the present invention
  • FIG. 2 is an assembled perspective view of the shallow trough heat exchange mechanism of the absorption refrigeration unit of the present invention with a part of the device removed;
  • Figure 3 is an exploded view of the assembly of the shallow trough heat exchange mechanism of the absorption refrigeration unit after removing some of the components;
  • FIG. 4 is a schematic view showing the arrangement structure of the heat exchange tubes of the shallow trough heat exchange mechanism of the absorption refrigeration unit of the present invention.
  • Figure 1 is a cross-sectional partial structural view of a shallow trough heat exchange mechanism of an absorption refrigeration unit of the present invention.
  • the shallow trough heat exchange mechanism of the absorption refrigeration unit is suitable for both the regenerator and the absorber of the refrigeration unit.
  • the function of the regenerator is to heat the dilute lithium bromide solution by using a heat exchange tube (102 in FIG. 1) through which hot water flows, so that the water molecules in the dilute solution are continuously vaporized, and the water vapor enters the condenser to be condensed into refrigerant water;
  • the function of the absorber is to cool the lithium bromide concentrated solution by using a heat exchange tube (102 in FIG. 1) through which cooling water flows, so that the surface vapor pressure of the concentrated solution is lowered, so that the solution continuously absorbs the refrigerant flowing from the evaporator. Vapor.
  • the shallow trough heat exchange mechanism of the absorption refrigeration unit of the invention is suitable for heating a dilute solution and for cooling a concentrated solution.
  • the heat transfer structure is the same for both applications.
  • the regenerator is described below as an example.
  • FIG. 1 is a partial structural view showing a cross section of a shallow-slot heat exchange mechanism of an absorption refrigeration unit, in which the regenerator 100 includes a solution distributor 101, a heat exchange tube 102 (see FIG. 4), and a first row of flow guiding grooves 103. The second row of the flow guiding grooves 104 and the liquid barrier 105.
  • the regenerator 100 is a shell-and-tube heat exchange structure composed of a plurality of heat exchange tubes densely arranged in both horizontal and vertical directions, and we stratify these heat exchange tubes from top to bottom in the vertical direction.
  • Fig. 1 only the arrangement of the three layers of heat exchange tubes is presented, and the following layers are identical in structure and are not shown.
  • Hot water flows through the heat exchange tubes 102 for heating the dilute solution flowing outside the heat exchange tubes.
  • the flow guiding grooves 103 and 104 are disposed between each layer of the heat exchange tubes, and the guiding grooves 103 and 104 not only serve as a guiding flow but also support the heat exchange tubes disposed thereon, and the dilute solution flows through the guiding grooves. In contact with the heat exchange tube, the longer the process, the longer the heat exchange contact time, and the better the heat exchange effect.
  • a solution distributor 101 is disposed above the top flow guiding groove 103.
  • the structure of the solution distributor 101 is similar to that of the flow guiding grooves 103, 104, and no heat exchange tube is disposed thereon, and a plurality of drain holes 209 are provided (see FIG. 2).
  • the bleed hole 209 can distribute the dilute solution flowing over the solution distributor 101 to the surface of the heat exchange tube 102 on the lower top flow guiding groove 103.
  • a condenser 106 On the side of the regenerator 100 is a condenser 106.
  • the moisture in the dilute solution is continuously evaporated in the regenerator 100 to form water vapor.
  • the water vapor needs to enter the condenser 106 to exotherm and condense, but the water droplets in the water vapor cannot enter the condenser.
  • a sloped liquid barrier 105 is provided at a side edge near the condenser 106 for trapping droplets entrained in the refrigerant vapor evaporated from the dilute solution, and only the refrigerant vapor is allowed to flow to the condenser 106.
  • Figure 2 is a view of the shallow trough heat exchange mechanism of the absorption refrigeration unit of the present invention with some components removed (including parts) An assembled perspective view of the heat exchange tube 102 and the solution distributor 101.
  • the first row of guide grooves 103 can be visually seen, and a plurality of rows of support bars 208 are alternately disposed on both sides of the groove bottom of the flow guiding groove 103 at an angle of 45° to 135° with the edge of the flow guiding groove 103.
  • the support strip 208 is used to support the heat exchange tubes to withstand the vacuum pressure, and causes the dilute solution flowing in the flow guide grooves 103 to change the flow direction to generate turbulence.
  • the angle between the adjacent two rows of support strips and the edge of the solution dispenser is opposite, the purpose of which is to change the flow direction of the fluid.
  • the bottom of the guide trough 103 is further provided with a plurality of bleed holes 209 for uniformly distributing the dilute solution to the lower heat exchange tubes 102; as can be seen from FIG. 2, the bleed holes 209 are rectangular. Alternately disposed with the support bars 208, the dilute solution flows into the lower flow guiding grooves from the bleed holes 209 after being disturbed by each row of the support bars 208.
  • the support bar 208 at the bottom of the guide groove 103 cooperates with the bleed hole 209, so that the dilute solution flowing in the flow guiding groove 103 can uniformly infiltrate the heat exchange tube and cause turbulent flow of the solution, thereby improving heat exchange efficiency.
  • Figure 3 is an exploded view of the assembly of the shallow trough heat exchange mechanism of the absorption refrigeration unit after removing some of the components (including the heat exchange tubes).
  • the first layer is the solution distributor 101
  • the second layer is the first layer guiding channel 103
  • the third layer is the lower layer guiding channel 104.
  • the three layer guiding structure is taken as an example to describe the dilute solution through the solution distributor 101 and the guide.
  • the flow path after the flow channel 103 is diverted.
  • the drain holes on the adjacent two-layer guide grooves (103, 104 in the figure) and the drain holes 209 on the solution distributor 101 are staggered in the vertical direction to avoid the dilute solution dripping from the upper drain hole.
  • the shallow trough heat exchange mechanism can ensure that the solution is always immersed in the heat exchange tube and immersed heat exchange with the heat exchange tube. There is no need to rely on multiple pumping of the solution pump to ensure contact of the solution with the heat exchange tubes.
  • This shallow trough heat exchange mechanism which requires only one-time pumping, saves parasitic energy consumption of the solution pump.
  • FIG. 4 is a schematic view showing the arrangement structure of the heat exchange tubes of the shallow trough heat exchange mechanism of the absorption refrigeration unit of the present invention.
  • Figure 4 is a schematic cross-sectional view of two rows of heat exchange tubes, in the same layer, the center distance D of adjacent heat exchange tubes 504 and 506 is 4 mm; in the upper and lower layers, adjacent heat exchange tubes 506 and 508 The center distance is 7mm.
  • the heat exchange tubes all use the same 3mm pipe diameter. This extremely thin heat exchange tube and the compact arrangement structure achieve a very high heat transfer area per unit volume, which improves the efficiency of the heat exchanger.
  • the solution distributor in the regenerator 100 is made of engineering plastic with strong anti-corrosion performance and easy to form, which effectively reduces the weight of the refrigeration unit.
  • the heat exchange tube is made of stainless steel, which improves the corrosion resistance and effectively ensures the airtightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种吸收式制冷单元浅槽式换热机构及使用该换热机构的制冷单元和制冷矩阵,换热机构包括:浅槽式换热器,由多排呈上下层排列的导流槽(103、104)和换热管(102)组成;溶液分配器(101),设置在浅槽式换热器上部;溶液分配器(101)是封闭型长方体,内部为腔体,下部为溶液喷洒面,向下方的浅槽式换热器上端面喷洒溶液。该浅槽式换热机构使溶液充分浸润换热管,有效消除干斑现象,并减少溶液的飞溅现象;使溶液沿加长的"之"字型路径流动,既增加与换热管(102)的接触换热时间又产生紊流,有利于提高换热效率;简化溶液分配器(101)结构,实现换热器和溶液分配器(101)体积的减小,有利于采用该换热机构的吸收式制冷单元小型化。

Description

吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵 技术领域
本发明涉及溴化锂吸收式制冷机生产领域,特别涉及到能够作为制冷矩阵独立单元的小型吸收式制冷机及其内部的浅槽式换热机构。
背景技术
吸收式制冷机具有节能、环保等优点,易于使用太阳能和工业余热废热等新型能源,得到了不断的发展。小型化、家庭化将会是其付诸工业应用领域后的又一趋势。
溴化锂吸收式制冷机是以纯水为冷媒,即依靠纯水在高真空环境下蒸发吸热实现制冷功能的。吸热蒸发后的冷媒蒸汽被溴化锂溶液吸收、搬运、加热再生、冷凝,重新变回液态后,再次吸热蒸发,源源不断的进行制冷循环。
一方面,完成上述循环的过程中,伴随着多次热量交换或转移,因而,吸收式制冷机中具有各种换热器。最常见的换热器的换热结构为管壳式,设有多层换热管,为了使吸收式制冷机有效工作,必须可靠、均匀地将溶液喷洒到换热管表面上。
实现喷洒溶液功能的器件即是溶液分配器。在传统的吸收式制冷机中,由于换热管径一般比较粗,溶液分配器架设在管壳式换热器的上部,溶液均匀地喷洒到最顶一排的换热管外表面,此后,溶液依靠重力的作用,依次流过下设各排管道的外表面。为了减少干斑现象以提高换热效率,要求溶液分配均匀、准确,从而使溶液分配器结构复杂、生产成本高且难以小型化。
另一方面,受纯水的物理化学性质所限,蒸发器的蒸发温度一般设定在5℃左右。相应的,蒸发器内腔的饱和压力保持在872Pa左右。与大气压力(101KPa)相比,制冷机处在高真空环境下,对气密性要求很高。为了保证高真空下的气密性,传统的大型工业型吸收式制冷机多数采用厚重的钢板或者铸件作为制冷机的壳体,配以管径相对较粗的铜管作为换热管,形成常用的管壳式换热器结构。因此,工业型吸收式制冷机的特点是体积大,重量重,而且易于被溴化锂溶液腐蚀并产生不凝气体。
在小型化、家庭化的过程中,一个棘手的问题是:随着制冷功率的降低,所需要的冷媒的循环量以及溴化锂溶液的循环量也随之降低,相应地出现换 热管外表面不能被冷媒或者溴化锂溶液充分湿润而出现“干斑”的不利现象。
为了避免出现干斑,传统的吸收式制冷机一般需要加大循环泵的流量,把远远多于实际循环量的液体,不断地从再生器或者吸收器底部的积液池中喷淋到顶部的换热管上。
无谓的增加循环泵的流量,增加了寄生能量消耗和运行成本。也有悖于吸收式制冷机向小型化、家庭化发展的趋势。
发明内容
本发明为了解决以上技术问题,目的之一,在于为吸收式制冷单元提供一种热交换效率高的换热机构。所述换热机构,是包括浅槽式换热器和溶液分配器在内的吸收式制冷单元浅槽式换热机构,用于再生器和吸收器等制冷单元部件。所谓吸收式制冷单元,指的是具有完整制冷功能的小型溴化锂吸收式制冷机,可以单独使用,也具备组合扩展成大规模制冷矩阵的能力。
具体技术方案如下:
一种吸收式制冷单元浅槽式换热机构,包括:
浅槽式换热器,由若干排呈上下层排列的导流槽和换热管组成;
溶液分配器,设置在所述浅槽式换热器上部;
所述溶液分配器是封闭型长方体,内部为腔体,下部为溶液喷洒面,向下方的浅槽式换热器上端面喷洒溶液。
进一步的,所述导流槽是长方形的浅槽,与所述的换热管交错层叠设置;所述换热管设置在所述导流槽上部,且所述换热管的排列面与槽底面平行。
进一步的,溴化锂溶液在所述换热管外部流动,水在所述换热管内部流通;
溴化锂溶液与所述换热管接触时,与换热管内部的水发生热交换;
所述导流槽使得溴化锂溶液的流动路径构成“之”字型,用于延长溴化锂溶液与换热管的热交换时间并产生紊流。
进一步的,在所述导流槽的一侧边缘设有斜坡式隔液板,用于截留液滴,只允许气体通过。
进一步的,在所述导流槽的的上下两面,设有与所述导流槽边缘呈一定夹角的支撑条,所述支撑条用于支撑上下管道,并改变导流槽内溴化锂溶液 的流动方向,产生紊流。
进一步的,所述支撑条与导流槽边缘的夹角为45°至135°。
进一步的,所述浅槽式换热器采用浸润式换热方式,在所述导流槽的底部,分布有若干排泄流孔,使溴化锂溶液流向下层导流槽,并保持溴化锂溶液浸没换热管。
进一步的,相邻两层导流槽上的泄流孔在竖直方向上相互错开排列。
进一步的,在所述溶液分配器内部及喷洒面外侧设置与溶液分配器边缘呈一定夹角的支撑条,所述支撑条用于支撑溶液分配器内部腔体及下部换热管,以承受真空所产生的压力。
进一步的,相邻两排支撑条与所述溶液分配器边缘的夹角方向相反。
进一步的,所述溶液喷洒面尺寸与浅槽式换热器上端面相同;
在所述溶液分配器的溶液喷洒面设置若干泄流孔,将溶液均匀的分散到下部的换热管表面,使得溶液从上至下逐层流经每排换热管时与换热管内部的热交换液发生热交换。
进一步的,所述泄流孔为长方形孔洞。
进一步的,所述泄流孔横向设置在溶液分配器喷洒面,位于相邻支撑条之间。
进一步的,浅槽式换热机构的所述溶液分配器及各排所述导流槽,全部由工程塑料制成;换热管采用不锈钢材料制成。
本发明的目的之二,在于提供一种吸收式制冷单元,包括权前文所述的吸收式制冷单元浅槽式换热机构。
本发明的目的之三,在于提供一种吸收式制冷矩阵,包括多个吸收式制冷单元;
所述吸收式制冷单元包括前文所述的吸收式制冷单元浅槽式换热机构。
本发明的有益效果在于:
本发明使溶液充分浸润换热管,有效消除干斑现象,并减少溶液的飞溅现象;使溶液沿加长的“之”字型路径流动,既增加与换热管的接触换热时间又产生紊流,有利于提高换热效率;简化溶液分配器结构,实现换热器和 溶液分配器体积的减小,有利于采用该换热机构的吸收式制冷单元小型化。
附图说明
图1是本发明吸收式制冷单元浅槽式换热机构的横截面部分结构视图;
图2是本发明吸收式制冷单元浅槽式换热机构拆除了部分器件后的装配立体图;
图3是拆除了部分器件后吸收式制冷单元浅槽式换热机构装配爆炸图;
图4为本发明吸收式制冷单元浅槽式换热机构换热管的排列结构示意图。
其中图中部分标记如下:
溶液分配器101;
换热管102;
首排导流槽103;
第二排导流槽104;
隔液板105;
冷凝器/吸收器106;
溶液分配器101的底部207;
支撑条208;
泄流孔209;
首排导流槽103的低部210;
换热管504、506、508。
具体实施方式
附图构成本说明书的一部分;下面将参考附图对本发明的各种具体实施方式进行描述。应能理解的是,为了方便说明,本发明使用了表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”等来描述本发明的各种示例结构部分和元件,但这些方向术语仅仅是依据附图中所显示的示例方位来确定的。由于本发明所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。在可能的情况下,本发明中使用的相同或者相类似的附图标记,指的是相同的部件。
图1是本发明吸收式制冷单元浅槽式换热机构的横截面部分结构视图。
吸收式制冷单元浅槽式换热机构同时适用于制冷单元的再生器和吸收器。再生器的作用是使用内部流通有热水的换热管(图1中的102)对溴化锂稀溶液进行加热,使稀溶液中的水分子不断汽化,水蒸气进入冷凝器冷凝成冷媒水;而吸收器的作用是使用内部流通有冷却水的换热管(图1中的102)对溴化锂浓溶液进行冷却,使浓溶液的表面蒸气压力下降,从而使溶液不断地吸收蒸发器中流来的冷媒蒸气。本发明的吸收式制冷单元浅槽式换热机构既适用加热稀溶液,又适用于冷却浓溶液。两种应用下的换热结构完全相同。下文以再生器为例进行描述。
图1示出了吸收式制冷单元浅槽式换热机构横截面的部分结构视图,图中再生器100包括:溶液分配器101、换热管102(见图4)、首排导流槽103、第二排导流槽104和隔液板105。
事实上,再生器100是由多根换热管在水平和垂直两个方向密集排列所组成的管壳式换热结构,我们沿垂直方向从上到下把这些换热管分层。图1中仅呈现了3层换热管的布置,下面若干层结构与之相同,故未示出。换热管102内部流通有热水,用于对换热管外流过的稀溶液进行加热。
每层换热管之间设置导流槽103、104,导流槽103、104不仅起到导流的作用,还用于支撑安置在其上面的换热管,稀溶液从导流槽中流过时与换热管接触,流程越长,换热接触的时间越长,热交换的效果越好。
在顶层导流槽103之上设有溶液分配器101,溶液分配器101的结构与导流槽103、104相似,其上没有安置换热管,设有若干泄流孔209(参见图2),泄流孔209可以将溶液分配器101上流过的稀溶液分配到下方的顶层导流槽103上的换热管102表面。
在再生器100一侧为冷凝器106,稀溶液中的水分在再生器100中不断被蒸发形成水蒸气,水蒸气需要进入冷凝器106中放热凝结,但水蒸气中的水滴不能进入冷凝器106,故而在靠近冷凝器106的一侧端边缘设有斜坡式隔液板105,用于截留稀溶液蒸发出的冷媒蒸气中夹带的液滴,只允许冷媒蒸气前往冷凝器106。
图2是本发明吸收式制冷单元浅槽式换热机构拆除了部分器件(包括部 分换热管102和溶液分配器101后的装配立体图。
图2中可以直观的看到首排导流槽103,在导流槽103的槽底两面均交替设有与导流槽103边缘呈45°至135°夹角的若干排支撑条208,所述支撑条208用于支撑换热管以承受真空压力,并且使得在导流槽103内流动的稀溶液改变流动方向,产生紊流。
相邻两排支撑条与溶液分配器边缘的夹角方向相反,其目的是改变流体的流动方向。
导流槽103底部还设有若干泄流孔209,泄流孔209用于将稀溶液均匀地分配到下方的换热管102上;从图2中可以看出,泄流孔209为长方形,与支撑条208交替设置,稀溶液经每排支撑条208干扰后从泄流孔209中流入下层导流槽。导流槽103底部的支撑条208和泄流孔209共同作用,使得在导流槽103内流动的稀溶液能够均匀浸润换热管并使溶液产生紊流,提高了换热效率。
图3是拆除了部分器件(包括换热管)后吸收式制冷单元浅槽式换热机构装配爆炸图。
图3中第一层为溶液分配器101,第二层为首层导流槽103,第三层为下层导流槽104,以三层导流结构为例描述稀溶液经溶液分配器101和导流槽103导流后的流动路线。相邻两层导流槽(图中为103、104)上的泄流孔,以及溶液分配器101上的泄流孔209在竖直方向相互错开,以避免上层泄流孔滴下的稀溶液未及与换热管充分换热就直接通过下层泄流孔滴到更下层;同时泄流孔209与支撑条的配合使得稀溶液在重力作用下的流动构成“之”字型流程,如图中箭头A的流动路径所示,用于延长稀溶液与换热管的热交换时间。这种结构迫使溶液在导流槽103、104中不断改向,局部的紊流强化了溶液与换热管之间的对流传热系数。
这种浅槽式换热机构,能够保证溶液始终浸没换热管,与换热管进行浸没式换热。毋须依靠溶液泵的多次泵送来保证溶液与换热管的接触。这种仅需要一次性泵送的浅槽式换热机构,可节省溶液泵寄生能耗。
图4为本发明吸收式制冷单元浅槽式换热机构换热管的排列结构示意图;
图4所示为两排换热管的横截面结构示意图,在同一层,相邻的换热管504和506的圆心距离D为4mm;在上下层,相邻的换热管506和508的圆心距离为7mm。换热管都采用相同的3mm管径,这种极细的换热管加上用紧凑的排列结构在单位体积上取得极高的传热面积,提高了热交器的效率。
再生器100中的溶液分配器,导流槽均以防腐蚀性能强、易于成型的工程塑料制成,有效的减轻了制冷单元的重量。换热管采用不锈钢材料制成,提高了耐腐蚀性并有效保证了气密性。
尽管参考附图中出示的具体实施方式将对本发明进行描述,但是应当理解,在不背离本发明教导的精神、范围和背景下,本发明的吸收式制冷单元浅槽式换热机构及使用该换热机构的制冷单元和制冷矩阵可以有许多变化形式。本领域技术内普通技术人员还将意识到有不同的方式来改变本发明所公开的实施例中的参数、尺寸,但这均落入本发明和权利要求的精神和范围内。

Claims (15)

  1. 一种吸收式制冷单元浅槽式换热机构,其特征在于,包括:
    浅槽式换热器,由多排呈上下层排列的导流槽和换热管组成;
    溶液分配器,设置在所述浅槽式换热器上部;
    所述溶液分配器是封闭型长方体,内部为腔体,下部为溶液喷洒面,向下方的浅槽式换热器上端面喷洒溶液。
  2. 如权利要求1所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    所述导流槽是长方形的浅槽,与所述的换热管交错层叠设置;
    所述换热管设置在所述导流槽上部,且所述换热管的排列面与所述导流槽的槽底壁平行。
  3. 如权利要求1或2所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    溴化锂溶液在所述换热管外部流动,水在所述换热管内部流通;
    所述溴化锂溶液与所述换热管接触时,与所述换热管内部的所述水发生热交换;
    所述导流槽使得溴化锂溶液的流动路径构成“之”字型,用于延长所述溴化锂溶液与所述换热管的热交换时间并产生紊流。
  4. 如权利要求1或2所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    在所述导流槽的一侧边缘设有斜坡式隔液板,用于截留液滴,只允许气体通过。
  5. 如权利要求1或2所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    在所述导流槽的槽底壁的上下两面分别设有与所述导流槽的边缘呈45°至135°夹角的支撑条,所述支撑条用于支撑上下管道,并改变所述导流槽内溴化锂溶液的流动方向,产生紊流。
  6. 如权利要求1所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    所述浅槽式换热器采用浸润式换热方式,在所述导流槽的底部,分布有多个泄流孔,使所述溴化锂溶液流向下层导流槽,并保持所述溴化锂溶液浸没所述换热管。
  7. 如权利要求6所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    相邻两层导流槽上的泄流孔在竖直方向上相互错开排列。
  8. 如权利要求1所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    在所述溶液分配器内部及喷洒面外侧设置与溶液分配器边缘呈一定夹角的支撑条,所述支撑条用于支撑溶液分配器内部腔体及下部换热管,以承受真空所产生的压力。
  9. 如权利要求8所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    相邻两排支撑条与所述溶液分配器边缘的夹角方向相反。
  10. 如权利要求1所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    所述溶液喷洒面的尺寸与所述浅槽式换热器的上端面相同;
    在所述溶液分配器的所述溶液喷洒面设置多个泄流孔,将溶液均匀的分散到下部的换热管表面,使得溶液从上至下逐层流经每排换热管时与换热管内部的热交换液发生热交换。
  11. 如权利要求10所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    所述泄流孔为长方形孔洞。
  12. 如权利要求10所述的吸收式制冷单元浅槽式换热机构,其特征在于:
    所述泄流孔横向设置在溶液分配器喷洒面,位于相邻支撑条之间。
  13. 如权利要求1-12所述的吸收式制冷单元浅槽式换热机构,其特征在 于:
    所述浅槽式换热机构的所述溶液分配器及各排所述导流槽,全部由工程塑料制成;所述换热管采用不锈钢材料制成。
  14. 一种吸收式制冷单元,其特征在于:
    包括权利要求1-13任一项所述的吸收式制冷单元浅槽式换热机构。
  15. 一种吸收式制冷矩阵,其特征在于:
    包括多个吸收式制冷单元;
    所述吸收式制冷单元包括权利要求1-13任一项所述的吸收式制冷单元浅槽式换热机构。
PCT/CN2016/106943 2015-11-26 2016-11-23 吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵 WO2017088763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510843932.7 2015-11-26
CN201510843932.7A CN106802026A (zh) 2015-11-26 2015-11-26 吸收式制冷单元浅槽式换热机构

Publications (1)

Publication Number Publication Date
WO2017088763A1 true WO2017088763A1 (zh) 2017-06-01

Family

ID=58763902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106943 WO2017088763A1 (zh) 2015-11-26 2016-11-23 吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵

Country Status (2)

Country Link
CN (1) CN106802026A (zh)
WO (1) WO2017088763A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115408875A (zh) * 2022-09-16 2022-11-29 苏州清动碳零信息科技有限公司 一种基于Modelica语言的溴化锂吸收式制冷系统动态仿真方法
CN117109328A (zh) * 2023-10-25 2023-11-24 宁德时代新能源科技股份有限公司 一种换热装置、箱体、电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251164A (zh) * 1997-03-25 2000-04-19 三洋电机株式会社 吸收式制冷装置吸收器
CN103391799A (zh) * 2010-08-10 2013-11-13 佐治亚科技研究公司 蒸气-液体热量和/或质量交换装置
CN205425528U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元浅槽式换热机构
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215248B2 (ja) * 1993-12-20 2001-10-02 川重冷熱工業株式会社 吸収冷温水機・冷凍機における冷媒凍結防止装置
US6314752B1 (en) * 1998-12-18 2001-11-13 The Ohio State University Research Foundation Mass and heat transfer devices and methods of use
KR100926641B1 (ko) * 2008-03-27 2009-11-13 엘에스엠트론 주식회사 액체분배장치 및 이를 구비하는 흡수식 냉온수기
CN201748826U (zh) * 2010-08-20 2011-02-16 上海瀚艺冷冻机械有限公司 壳管式换热器
CN104214995B (zh) * 2014-09-05 2016-04-20 哈尔滨工业大学 一种浸泡薄膜式换热器
CN104697360B (zh) * 2015-03-03 2016-09-14 郑州大学 壳程均流螺旋支撑纵流式换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251164A (zh) * 1997-03-25 2000-04-19 三洋电机株式会社 吸收式制冷装置吸收器
CN103391799A (zh) * 2010-08-10 2013-11-13 佐治亚科技研究公司 蒸气-液体热量和/或质量交换装置
CN205425528U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元浅槽式换热机构
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115408875A (zh) * 2022-09-16 2022-11-29 苏州清动碳零信息科技有限公司 一种基于Modelica语言的溴化锂吸收式制冷系统动态仿真方法
CN115408875B (zh) * 2022-09-16 2024-02-02 苏州清动碳零信息科技有限公司 基于Modelica语言的溴化锂吸收式制冷系统动态仿真方法
CN117109328A (zh) * 2023-10-25 2023-11-24 宁德时代新能源科技股份有限公司 一种换热装置、箱体、电池及用电装置
CN117109328B (zh) * 2023-10-25 2024-04-09 宁德时代新能源科技股份有限公司 一种换热装置、箱体、电池及用电装置

Also Published As

Publication number Publication date
CN106802026A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
CN101534627A (zh) 高效整体式喷雾冷却系统
WO2009089694A1 (fr) Unité frigorifique à absorption avec refroidissement par évaporation à chute libre
CN105157281A (zh) 具有翅片的套管蒸发式冷凝器
WO2017088768A1 (zh) 吸收式制冷单元斜面导流冷凝器、制冷单元和制冷矩阵
WO2017088763A1 (zh) 吸收式制冷单元浅槽式换热机构、制冷单元和制冷矩阵
CN103983046B (zh) 宽窄通道板式满液发生器和降膜吸收器及氨水吸收制冷机
CN103925750A (zh) 一种新型蒸发式冷凝器
CN201535592U (zh) 一种采用降膜式发生器的溴化锂吸收式冷水机组
US20070138662A1 (en) Closed evaporative cooling tower
CN205425528U (zh) 吸收式制冷单元浅槽式换热机构
CN205425533U (zh) 吸收式制冷单元无循环泵冷媒蒸发器
CN211120728U (zh) 一种节水型高效冷却塔
CN206207784U (zh) 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵
WO2018072315A1 (zh) 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵
WO2017088772A1 (zh) 吸收式制冷单元无循环泵冷媒蒸发器、制冷单元及矩阵
JP2008202824A (ja) 吸収式冷凍装置
CN205174937U (zh) 具有翅片的套管蒸发式冷凝器
WO2019006886A1 (zh) 一种新型蒸发器
CN201837272U (zh) 斜置波纹管蒸发空冷器
CN102393152B (zh) 带翅片的混流型蒸发式冷凝器及其冷凝盘管
CN106931817B (zh) 一种移动式空气热阱
JP5055071B2 (ja) 吸収式冷凍機
CN212538376U (zh) 一种兼具有风冷和蒸发冷的两用型换热器
WO2018072314A1 (zh) 吸收式制冷单元及吸收式制冷矩阵
CN103615910B (zh) 高效冷凝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867986

Country of ref document: EP

Kind code of ref document: A1