WO2017088519A1 - 兼容emc的快速式电热水器加热控制方法 - Google Patents

兼容emc的快速式电热水器加热控制方法 Download PDF

Info

Publication number
WO2017088519A1
WO2017088519A1 PCT/CN2016/093590 CN2016093590W WO2017088519A1 WO 2017088519 A1 WO2017088519 A1 WO 2017088519A1 CN 2016093590 W CN2016093590 W CN 2016093590W WO 2017088519 A1 WO2017088519 A1 WO 2017088519A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
water heater
heating
emc
waveform
Prior art date
Application number
PCT/CN2016/093590
Other languages
English (en)
French (fr)
Inventor
张长明
薛磊明
周杰
许伟
Original Assignee
阿里斯顿热能产品(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里斯顿热能产品(中国)有限公司 filed Critical 阿里斯顿热能产品(中国)有限公司
Publication of WO2017088519A1 publication Critical patent/WO2017088519A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/407Control of fluid heaters characterised by the type of controllers using electrical switching, e.g. TRIAC

Definitions

  • the invention relates to a heating control method for a fast electric water heater, in particular to a control method for a fast electric water heater compatible with EMC.
  • the fast electric water heater comprises two independent two-way thyristor switching elements, which respectively control two different power heating tubes, so that the heating tubes work in different equivalent power positions.
  • the control method of the present invention controls the two independent triacs.
  • the EMC-compliant rapid electric water heater heating control method comprises: connecting the water heater and the lamp in parallel to the AC main power in the user's electricity environment, using full wave control, when working under different power of the water heater Test the voltage output waveforms at both ends of the two heating tubes, and record the multiple sets of waveform data when the lamp is not flashing; set the first heating tube power to P01, the second heating tube power to P02, and the waveform control period to T/2.
  • T represents the cycle of AC mains
  • the control period of a set of waveforms is t unit cycles
  • the corresponding duration is t*(T/2)
  • the first heating tube conducts x in t unit cycles
  • the other heats up The tube turns on y in t unit periods
  • the recombination of adjacent power gears may be a combination of two gears, a third gear combination or a third gear combination.
  • Pa be the equivalent output power of the previous waveform
  • Pb be the equivalent output power of the latter waveform
  • the fast electric water heater controlled by this method satisfies the EMC requirement without additional filtering components such as filters;
  • the rapid electric water heater controlled by the method minimizes the impact of the fast electric water heater on the user's home power grid (such as causing the lighting to flicker);
  • the rapid electric water heater controlled by the method realizes small increment or decrement adjustment of the output power, thereby achieving stepless adjustment of the body sense of the water temperature of the water heater.
  • Figure 1 is a test wiring diagram of the present invention.
  • Figure 2 is a schematic diagram of a heating control circuit in a fast electric water heater.
  • Figure 3 is a pulse waveform for controlling the IO port of the thyristor.
  • Figure 4 is divided into 26 small parts because it is too large.
  • Figure 4-1 to Figure 4-26 show the 26 sets of waveforms obtained by the test.
  • Figure 5 is a flow chart of the lookup table when the controller software is working.
  • the present invention is directed to providing a rapid (ie, thermal) water heater heating control method for the problem that the shear wave control has EMC in the absence of a large filter and other safety devices, and the conventional full wave control has flicker.
  • the present invention adopts full-wave control, in order to test the flicker problem, the test is carried out according to the conditions shown in Fig. 1, and in different power users with different user conditions (we looked for domestic Field-testing in a harsh electrical environment After the test, some waveforms shown in Figure 4-1 to Figure 4-26 are obtained. These waveforms ensure that the lamp does not flash when the water heater is working.
  • an experimental air-opening is set between the air-opening and the water heater, and a 10-meter wire (2.5mm 2 ) 1 is connected between the two air-openings.
  • a 10-meter wire (2.5mm 2 ) 1 is connected between the two air-openings.
  • the experimental air-opening and water heater are connected by a 30-meter wire (2.5mm 2 ) 2 .
  • Energy-saving lamps and incandescent lamps can be used for the lamps. It is found in the experiment that the two will not cause different experimental results.
  • Full-wave control is used to test the voltage output waveforms at both ends of the two heating tubes when the water heater is working at different powers, and record multiple sets of waveform data when the lamps are not flashing.
  • the 26 waveforms shown in Figure 4-1 to Figure 4-26, corresponding to different equivalent powers, can achieve the mapping of power gears, which will be further described below in conjunction with the control waveforms.
  • the sinusoidal waveform of the virtual real plus is the AC mains (the period T for 20Hz is 20ms, the period T for 60HZ is 16.67ms, this example takes 50HZ as an example).
  • the length of the different waveforms is the length of its control period, the solid line waveform indicates conduction, and the dotted line indicates non-conduction.
  • the model has two sets of heating tubes, and the upper and lower waveforms respectively correspond to the output waveforms of the first heating tube and the second heating tube. For example, the waveform of FIG.
  • control period is 14 unit periods (time length 14*10 ms), the first heating tube is not turned on, and the second heating tube is turned on in the first, fourth, eighth, and eleventh unit periods.
  • the waveform of Fig. 4-2 shows that the control period is 13 unit periods (time length 13*10 ms), the first heating tube is not turned on, and the second heating tube is turned on in the first, fourth, eighth, and eleventh unit periods.
  • the waveform of Fig. 4-3 shows that the control period is 7 unit periods (time length 7*10 ms), the first heating tube is not turned on, and the second heating tube is turned on in the first and fourth unit periods. Other waveforms are the same.
  • the waveform shown in Figure 4 is the output terminal waveform, which can be realized by the corresponding controller of the controller (microcontroller).
  • the control circuit from the IO port of the MCU to the bidirectional thyristor is shown in Figure 2.
  • the IO port of the MCU is connected to the optocoupler U1.
  • the output of the optocoupler U1 controls the conduction of the bidirectional thyristor U2.
  • the bidirectional thyristor U2 is connected in series in the heating tube.
  • the water heater includes two such control circuits that control two heating tubes. According to the machine zero-crossing detection circuit, there is a zero point in 10ms.
  • the single-chip microcomputer IO gives a trigger pulse square wave, so that the optocoupler will be turned on and trigger the two-way controllable.
  • the silicon is turned on, the bidirectional thyristor will be turned off automatically when it is turned on until the next zero point arrives; if the 10ms does not need to be turned on, the microcontroller IO does not give a trigger pulse during the unit period.
  • the solid line represents pulse triggering and the dotted line represents no trigger.
  • the heating power control method of the present invention is described in detail below.
  • the power of the first heating pipe (corresponding to the upper waveform) is P01
  • the power of the second heating pipe (corresponding to the lower waveform) is P02
  • the control period of one set of waveforms is t
  • the unit period, the corresponding duration is t*10ms
  • the first heating tube conducts x in t unit cycles
  • the other heating tube turns on y in t unit periods
  • the above formula can calculate the equivalent output power of the above 26 waveforms to form 26 basic power gears.
  • the program uses two adjacent gears to recombine in one time period, so that a new one will be generated between the two gear positions.
  • Effective power gear to reduce the power difference between gears.
  • Pa is the equivalent output power of the waveform of Figure 4-1
  • Pb is the equivalent output power of the waveform of Figure 4-2
  • the third or more combination is the same, so that other new intermediate powers can be obtained with different time ratios.
  • the invention optimizes and controls the control signal of the thyristor, so that the fast electric water heater can meet the EMC requirement without increasing the high-cost electronic components such as the filter, and minimize the use of the high-power water heater to the user's electricity environment. Affect and achieve near-infinite heating power regulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种兼容EMC的快速式电热水器加热控制方法,将热水器和灯(3)并联接入交流市电,采用全波控制,对热水器不同功率下工作时测试两个加热管两端的电压输出波形,记录灯(3)不闪烁时的多组波形数据;对每组波形计算出等效输出功率,构成基础功率档位;对相邻功率档位再组合产生组合功率档位,以减小档位之间功率差,将基础功率和组合功率按照大小顺序排好存入表格;热水器工作时,控制器计算加热所需要的功率P,查表选择使用大于或等于P且与P最接近的功率进行加热。通过优化控制可控硅的控制信号,使热水器能在不增加滤波器等高成本电子元器件情况下,满足EMC要求,最大限度减少热水器对用户用电环境的影响,并实现接近无极的加热功率调节。

Description

兼容EMC的快速式电热水器加热控制方法 技术领域
本发明涉及一种快速式电热水器的加热控制方法,尤其是一种兼容EMC的快速式电热水器的控制方法。
背景技术
目前,在现有技术中,大部分的实现无极调温的快速电热水器都是采用切波控制的方法,在没有增加额外的电子器件(滤波器等)的情况下,无法满足兼容EMC的要求。还有一部分的快速式电热水器,通过常规软件全波控制方法可以解决兼容EMC的问题,但是对于供电情况不是很好的地区,会产生在快速式电热水器工作时候家里照明灯闪烁,以及影响其它家电正常工作的问题。
发明内容
本发明的目的在于克服现有技术的不足,设计一种控制方法,可以量化控制加热管的输出功率。所以使采用了该种方法控制的快速式电热水器,既能满足无极调温的功能要求,又能解决EMC兼容问题,同时还可以避免照明灯闪烁问题。
快速式电热水器包括两个独立的双向可控硅开关元件,这两个双向可控硅分别控制两个不同功率的加热管,使得加热管工作在不同的等效功率档位。本发明的控制方法会控制这两个独立的双向可控硅。
按照发明提供的技术方案,所述兼容EMC的快速式电热水器加热控制方法包括:在用户用电环境中将热水器和灯并联接入交流市电,采用全波控制,对热水器不同功率下工作时测试两个加热管两端的电压输出波形,记录灯不闪烁时的多组波形数据;设第一加热管功率为P01,第二加热管功率为P02,波形的控制周期以T/2为单位周期,T表示交流市电的周期,一组波形的控制周期为t个单位周期,对应时长为t*(T/2),第一加热管在t个单位周期内导通x个,另一个加热管在t个单位周期内导通y个,则该组波形对应等效输出功率Pout=(x*P01+y*P02)/t;
对每组波形计算出等效输出功率,构成基础功率档位;对相邻功率档位 在一个时间周期内的再组合会产生介于这些档位之间的新的等效功率档位,来减小档位之间功率差,将基础功率和组合产生的功率按照大小顺序排好存入表格;热水器工作时,控制器接收用户指令,计算加热所需要的功率P,查找表格,选择使用大于或等于P且与P最接近的功率进行加热。
其中,对基础功率档位中阶跃大于阈值的相邻功率档位才进行组合以产生新的等效功率档位。
对相邻功率档位的再组合可以采用两档组合、三档组合或三档以上组合。
设Pa为前一波形的等效输出功率,Pb为后一波形的等效输出功率,Pa和Pb组合产生新的等效功率的方法为:若Pa功率执行时间为t1,Pb执行时间为t2,则新的等效功率Px=(Pa*t1+Pb*t2)/(t1+t2)。
本发明与已有技术相比具有以下优点:
1,使用该方法控制的快速式电热水器在没有滤波器等额外滤波元器件的情况下,满足EMC要求;
2,使用该方法控制的快速式电热水器最大限度的减少此快速式电热水器对用户家电网的影响(比如引起照明灯闪烁);
3,使用该方法控制的快速式电热水器实现对输出功率的小幅递增或递减调节,从而实现热水器输出水温的体感上的无级调节。
附图说明
图1是本发明的测试接线图。
图2是快速式电热水器中加热控制电路原理图。
图3是控制可控硅的IO口的脉冲波形。
图4由于过大,划分为26个小部分,其中图4-1~图4-26分别为测试得到的26组波形。
图5是控制器软件工作时查表流程图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细地说明。
针对切波控制在没有大滤波器等安规器件时存在EMC的问题,以及常规全波控制存在闪烁的问题,本发明意在提供一种快速式(即热式)热水器的加热控制方法,能同时克服这两个问题:为了兼容EMC,本发明采用全波控制,为了测试闪烁问题,按照如图1所示的条件进行测试,并在不同用户条件各异的用电环境(我们寻找了国内外多地较为恶劣的用电环境)中实地测 试后得出图4-1~图4-26所示的一些波形,这些波形确保热水器在工作的时候,灯不会闪烁。
如图1所示,在入户空开和热水器之间设置一个实验空开,两个空开之间采用10米电线(2.5mm2)1连接,热水器和灯3并联接入实验空开之后的线路上,实验空开和热水器之间由30米电线(2.5mm2)2连接。灯可以采用节能灯、白炽灯,实验中发现二者并不会导致实验结果的不同。
采用全波控制,对热水器不同功率下工作时测试两个加热管两端的电压输出波形,记录灯不闪烁时的多组波形数据。图4-1~图4-26所示的26个波形,对应不同的等效功率,可以实现功率档位的映射,下面将结合控制波形进一步描述。
虚实交加的正弦波形是交流市电(对于50HZ的周期T为20ms,对于60HZ的周期T为16.67ms,本实例以50HZ为例)经过双向可控硅的控制后的加热管两端的输出波形。不同波形长短即为其控制周期长短,实线波形表示导通,虚线则为不导通。软件控制周期以T/2=10ms为单位周期。该机型有2组加热管,上下两个波形分别对应第一加热管、第二加热管的输出波形。例如图4-1的波形表示控制周期为14个单位周期(时长14*10ms),第一加热管不导通,第二加热管在第1、4、8、11单位周期内导通。图4-2的波形表示控制周期为13个单位周期(时长13*10ms),第一加热管不导通,第二加热管在第1、4、8、11单位周期内导通。图4-3的波形表示控制周期为7个单位周期(时长7*10ms),第一加热管不导通,第二加热管在第1、4单位周期内导通。其它波形同理。
图4所示波形为输出终端波形,需控制器(单片机)对应的控制方可实现。从单片机IO口到双向可控硅的控制电路如图2所示,单片机IO口连接光耦U1,光耦U1的输出控制双向可控硅U2的导通,双向可控硅U2串联在加热管的电源回路中。热水器包括两路这样的控制电路,分别控制两个加热管。根据机器过零点检测电路,10ms有一个零点,在零点到来的时候,如果该10ms单位周期需要导通,则单片机IO给出一个触发脉冲方波,这样光耦就会导通并触发双向可控硅导通,双向可控硅一旦导通会维持到下个零点到来的时候并自动关闭;如果此10ms不需要导通,则单片机IO在该单位周期内不给触发脉冲即可。比如要控制两组加热管输出图4-1的波形,则需要分别给控制双向可控硅的IO口脉冲波形如图3所示即可:上下两个波形分 别对应图4-1中上下两个波形,实线代表有脉冲触发,虚线则代表不触发。
本发明的加热功率控制方法详细描述如下。
假设第一加热管(对应上波形)功率为P01,第二加热管(对应下波形)功率为P02,波形的控制周期以T/2=10ms为单位周期,一组波形的控制周期为t个单位周期,对应时长为t*10ms,第一加热管在t个单位周期内导通x个,另一个加热管在t个单位周期内导通y个,则该组波形对应等效输出功率Pout=(x*P01+y*P02)/t。
上述公式可以计算出以上26个波形的等效输出功率,构成26个基础功率档位。对于有些相邻档位之间功率阶跃大的情况,程序中采用两个相邻档位在一个时间周期内的再组合,从而在介于这两个档位之间会产生一个新的等效功率档位,来减小档位之间功率差。对于一些特殊点还可以采用三档或更多档组合,进而实现对热水器输出功率的小幅递增或递减调节,也就实现体感上的无极调温。
例如:假设Pa为图4-1波形的等效输出功率,Pb为图4-2波形的等效输出功率,Pa和Pb组合产生新的等效功率的过程:若Pa功率执行时间为t1,Pb执行时间为t2,则新的等效功率Px=(Pa*t1+Pb*t2)/(t1+t2)。三档或更多档组合同理,如此用不同时间比可以得出其他新的中间功率。
结合以上基础功率和组合产生的功率按照大小顺序排好存入表格,命名为P1,P2....PN,软件执行中对功率表格的查找流程如图5所示:首先计算加热所需要的功率P,从小到大查功率表格,读取P1,判断是否P<=P1,若是则使用P1进行加热,若否,则继续查功率表格,读取P2,判断是否P<=P2,若是则使用P2进行加热,若否,则继续查功率表格,依次类推。
本发明通过优化控制可控硅的控制信号,使快速式电热水器能在不增加滤波器等高成本电子元器件情况下,满足EMC要求,最大限度减少大功率热水器使用时对用户用电环境的影响,并实现接近无极的加热功率调节。

Claims (4)

  1. 兼容EMC的快速式电热水器加热控制方法,所述快速式电热水器包括两个独立的双向可控硅开关元件,分别控制两个不同功率的加热管,使得加热管工作在不同的等效功率档位,其特征是:在用户用电环境中将热水器和灯并联接入交流市电,采用全波控制,对热水器不同功率下工作时测试两个加热管两端的电压输出波形,记录灯不闪烁时的多组波形数据;设第一加热管功率为P01,第二加热管功率为P02,波形的控制周期以T/2为单位周期,T表示交流市电的周期,一组波形的控制周期为t个单位周期,对应时长为t*(T/2),第一加热管在t个单位周期内导通x个,另一个加热管在t个单位周期内导通y个,则该组波形对应等效输出功率Pout=(x*P01+y*P02)/t;
    对每组波形计算出等效输出功率,构成基础功率档位;对相邻功率档位在一个时间周期内的再组合会产生介于这些档位之间的新的等效功率档位,来减小档位之间功率差,将基础功率和组合产生的功率按照大小顺序排好存入表格;热水器工作时,控制器接收用户指令,计算加热所需要的功率P,查找表格,选择使用大于或等于P且与P最接近的功率进行加热。
  2. 如权利要求1所述兼容EMC的快速式电热水器加热控制方法,其特征是:对基础功率档位中阶跃大于阈值的相邻功率档位才进行组合以产生新的等效功率档位。
  3. 如权利要求1所述兼容EMC的快速式电热水器加热控制方法,其特征是:对相邻功率档位的再组合采用两档组合、三档组合或三档以上组合。
  4. 如权利要求1所述兼容EMC的快速式电热水器加热控制方法,其特征是:设Pa为前一波形的等效输出功率,Pb为后一波形的等效输出功率,Pa和Pb组合产生新的等效功率的方法为:若Pa功率执行时间为t1,Pb执行时间为t2,则新的等效功率Px=(Pa*t1+Pb*t2)/(t1+t2)。
PCT/CN2016/093590 2015-11-24 2016-08-05 兼容emc的快速式电热水器加热控制方法 WO2017088519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510827276.1 2015-11-24
CN201510827276.1A CN105276824B (zh) 2015-11-24 2015-11-24 兼容emc的快速式电热水器加热控制方法

Publications (1)

Publication Number Publication Date
WO2017088519A1 true WO2017088519A1 (zh) 2017-06-01

Family

ID=55146289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093590 WO2017088519A1 (zh) 2015-11-24 2016-08-05 兼容emc的快速式电热水器加热控制方法

Country Status (2)

Country Link
CN (1) CN105276824B (zh)
WO (1) WO2017088519A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105276824B (zh) * 2015-11-24 2017-12-12 阿里斯顿热能产品(中国)有限公司 兼容emc的快速式电热水器加热控制方法
CN109002003B (zh) * 2018-08-31 2022-02-08 佛山市法力奇电器科技有限公司 一种电热水器控制电路及控制方法
CN110926037A (zh) * 2019-12-12 2020-03-27 中山市上航电子有限公司 兼容emc的大功率水器的调压控制方法
CN112781244A (zh) * 2020-06-30 2021-05-11 青岛经济技术开发区海尔热水器有限公司 一种功率输出控制方法及即热式电热水器
CN115336902A (zh) * 2022-04-28 2022-11-15 浙江苏泊尔家电制造有限公司 无极加热控制方法、控制器及烹饪装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655714B1 (fr) * 1989-12-12 1994-10-28 Aka Automatismes Chaudiere pour un fluide circulant dans un circuit d'utilisation, a resistances electriques liquides.
CN101276211A (zh) * 2008-04-18 2008-10-01 晶辉科技(深圳)有限公司 电热水器的加热控制方法
CN201293461Y (zh) * 2008-09-28 2009-08-19 海尔集团公司 电热水器控制器和具有控制器的电热水器
CN102419007A (zh) * 2010-09-27 2012-04-18 苏子祥 节能电热水器
CN105020899A (zh) * 2014-04-30 2015-11-04 青岛经济技术开发区海尔热水器有限公司 能够判断电压峰谷值进行加热的储水式电热水器及方法
CN105276824A (zh) * 2015-11-24 2016-01-27 阿里斯顿热能产品(中国)有限公司 兼容emc的快速式电热水器加热控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142143A (ja) * 1983-12-29 1985-07-27 Mitsubishi Electric Corp 貯湯式給湯機
GB0112097D0 (en) * 2001-05-18 2001-07-11 Newteam Ltd Electric shower
CN102681453B (zh) * 2012-05-18 2014-10-08 美的集团股份有限公司 电加热控制装置及其控制方法
CN203352925U (zh) * 2013-07-18 2013-12-18 深圳市电王科技有限公司 一种多功率档位电子镇流器
CN104684113A (zh) * 2013-11-26 2015-06-03 李飞宇 一种能够抑制谐波和闪烁的加热方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655714B1 (fr) * 1989-12-12 1994-10-28 Aka Automatismes Chaudiere pour un fluide circulant dans un circuit d'utilisation, a resistances electriques liquides.
CN101276211A (zh) * 2008-04-18 2008-10-01 晶辉科技(深圳)有限公司 电热水器的加热控制方法
CN201293461Y (zh) * 2008-09-28 2009-08-19 海尔集团公司 电热水器控制器和具有控制器的电热水器
CN102419007A (zh) * 2010-09-27 2012-04-18 苏子祥 节能电热水器
CN105020899A (zh) * 2014-04-30 2015-11-04 青岛经济技术开发区海尔热水器有限公司 能够判断电压峰谷值进行加热的储水式电热水器及方法
CN105276824A (zh) * 2015-11-24 2016-01-27 阿里斯顿热能产品(中国)有限公司 兼容emc的快速式电热水器加热控制方法

Also Published As

Publication number Publication date
CN105276824A (zh) 2016-01-27
CN105276824B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
WO2017088519A1 (zh) 兼容emc的快速式电热水器加热控制方法
WO2016206048A1 (zh) 单火线电子开关和负载特性检测和控制方法
CN103405161B (zh) 电炊具及其加热控制方法
CN201238406Y (zh) 一种大功率节能电磁灶智能控制装置
CN110087342B (zh) 一种脉冲频率调制的加热调功控制方法
WO2019218694A1 (zh) 一种单进单出触摸切相调光控制器
CN103124456A (zh) Led点亮装置
WO2009124433A1 (zh) 定功率限制器及照明灯具
CN208060617U (zh) Ac过零检测输出方波的电路
CN203788516U (zh) 一种智能调光高效恒流led驱动芯片
CN102436283A (zh) 一种加热功率控制电路及控制方法
CN204518177U (zh) 一种led驱动电源电路
CN104135793B (zh) 一种使用电源开关调整电器参数的电路
CN110875628A (zh) 一种可控硅单火线取电电路及取电方法
CN202166088U (zh) 一种电陶炉
TWI446831B (zh) Digital AC dimming control circuit
CN106813276A (zh) 一种电磁炉
CN202005023U (zh) 一种低功耗的市电输入led驱动电路
CN205946253U (zh) 一种led驱动控制电路及控制装置
CN204518154U (zh) 闭环控制led电源
CN202281962U (zh) 一种加热功率控制电路
CN207012066U (zh) 料理机及其控制电路
CN202840970U (zh) 单相后缘斩波调压器
CN203324877U (zh) 功率调节电路及电压力锅
CN206162237U (zh) 一种多格电饭煲与电磁电压力煲的电力控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867746

Country of ref document: EP

Kind code of ref document: A1