WO2009124433A1 - 定功率限制器及照明灯具 - Google Patents

定功率限制器及照明灯具 Download PDF

Info

Publication number
WO2009124433A1
WO2009124433A1 PCT/CN2008/070798 CN2008070798W WO2009124433A1 WO 2009124433 A1 WO2009124433 A1 WO 2009124433A1 CN 2008070798 W CN2008070798 W CN 2008070798W WO 2009124433 A1 WO2009124433 A1 WO 2009124433A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
load
power
power supply
relay
Prior art date
Application number
PCT/CN2008/070798
Other languages
English (en)
French (fr)
Inventor
杨勇练
邓宝宁
汪显方
董晓勇
刘建伟
Original Assignee
深圳和而泰智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳和而泰智能控制股份有限公司 filed Critical 深圳和而泰智能控制股份有限公司
Priority to US12/529,766 priority Critical patent/US8766559B2/en
Publication of WO2009124433A1 publication Critical patent/WO2009124433A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an energy saving device, and more particularly to a constant power limiter and a lamp mounted with the constant power limiter. Background technique
  • the technical problem to be solved by the present invention is to provide a constant power limiter for limiting the load power of a powered device or an electric appliance within a prescribed range.
  • Another technical problem to be solved by the present invention is to provide a lighting fixture in which a constant power limiter is installed.
  • the control circuit therein automatically adjusts to control the power of the bulb in the setting. In the range.
  • the technical solution of the present invention to solve the above technical problem is to provide a constant power limiter, comprising a control circuit and a power supply circuit thereof, the control circuit comprising:
  • a voltage detecting circuit for detecting a power supply voltage
  • a current detecting circuit for detecting a load current
  • a zero-crossing detection circuit for detecting an AC zero-crossing point
  • a micro control unit that receives the voltage detection circuit, the current detection circuit, and the zero-cross detection circuit And outputting a control signal to the load driving circuit to control the power of the alternating current supplied to the load.
  • a bypass circuit connected to the output port of the micro control unit for bypassing AC power directly to the load when the control circuit fails is further included.
  • the load driving circuit includes a thyristor connected in series in a load power supply line and whose control electrode is connected to an output port of the micro control unit, wherein the control is supplied to the load
  • the AC power includes controlling the conduction angle of the thyristor.
  • the bypass circuit includes a relay and a switch control circuit thereof, wherein the movable contact of the relay and one of the static contacts are serially connected in the load power supply line,
  • the switch circuit receives the control signal output by the micro control unit and controls the pull-in and release of the relay.
  • the normally closed contact of the relay is connected to the phase line of the alternating current input end, and the movable contact is connected to the power supply input end of the load.
  • the power supply circuit uses an RC step-down circuit, and the power circuit has two sets of loads: a relay and a Vcc, and the power supply of the relay and Vcc are in a series relationship.
  • a lighting fixture comprising a bulb and a constant power limiter connected to the bulb power supply line, the constant power limiter comprising a control circuit and a power supply circuit thereof, the control circuit comprising:
  • a voltage detecting circuit for detecting a power supply voltage
  • a current detecting circuit for detecting a load current
  • a zero-crossing detection circuit for detecting an AC zero-crossing point
  • a micro control unit receives an output signal of the voltage detecting circuit, the current detecting circuit, and the zero crossing detecting circuit, and outputs a control signal to the load driving circuit to control the power of the alternating current supplied to the bulb.
  • a bypass circuit connected to the micro control unit output port for directly bypassing the alternating current to the load when the control circuit fails is further included.
  • the load driving circuit includes a series connected to a load power supply line And a thyristor whose gate is connected to an output port of the micro control unit, wherein the controlling the AC power supplied to the load includes controlling a conduction angle of the thyristor.
  • the bypass circuit includes a relay and a switch control circuit thereof; wherein the movable contact of the relay and one of the static contacts are serially connected in the load power supply line, the switch circuit Receiving a control signal output by the micro control unit and controlling the pull-in and release of the relay.
  • the invention has the beneficial effects that the load power of the electric equipment or the electric appliance can be limited to a preset range, the electric energy can be effectively saved, and the grid overload and the waste of energy can be avoided.
  • the design of the bypass circuit is such that when the power limiter fails, the electrical equipment or the electrical appliance can be supplied with power as usual, without affecting the normal operation of the electrical equipment or the electrical appliance.
  • 1 is a block diagram showing the composition of a constant power limiter of the present invention
  • FIG. 2 is a circuit schematic diagram of a constant power limiter according to an embodiment of the invention.
  • 3A is a schematic diagram of a power supply circuit in the constant power limiter shown in FIG. 2;
  • FIG. 3B is a schematic diagram of the current flow direction of the power supply circuit shown in FIG. 3A during the negative half cycle of the power supply
  • FIG. 3C is a schematic diagram of the current flow direction of the power supply circuit shown in FIG. 3A when the relay is not attracted by the negative half cycle of the power supply;
  • 3D is a schematic diagram of current flow direction of the power supply circuit shown in FIG. 3A during the positive half cycle of the power supply;
  • 4A is a schematic diagram of a voltage detecting circuit in the constant power limiter shown in FIG. 2;
  • FIG. 4B is a schematic diagram of a voltage detecting circuit in an embodiment of a constant power limiter according to the present invention
  • FIG. 5A is a schematic diagram of a current detecting circuit in the constant power limiter shown in FIG.
  • FIG. 5B is a schematic diagram of a current detecting circuit in an embodiment of a constant power limiter according to the present invention
  • FIG. 6A is a schematic diagram of a zero-crossing detecting circuit in the constant power limiter shown in FIG.
  • FIG. 6B is a schematic diagram of a zero-crossing detection circuit in an embodiment of a constant power limiter according to the present invention
  • FIG. 7 is a schematic diagram of a relay driving circuit in the constant power limiter shown in FIG.
  • FIG. 8A is a schematic diagram of a thyristor driving circuit in the constant power limiter shown in FIG. 2;
  • Figure 8B is a schematic diagram of a thyristor drive circuit in accordance with an embodiment of a power limiter of the present invention. detailed description
  • a constant power limiter includes a control circuit and a power supply circuit that supplies power to the control circuit.
  • the control circuit includes: a voltage detection circuit for detecting a power supply voltage, a current detection circuit for detecting a load current, a zero-cross detection circuit for detecting an AC zero-crossing point, a load drive circuit, and a micro control unit (MCU), The output signals of the voltage detecting circuit, the current detecting circuit and the zero-crossing detecting circuit are received, and a control signal is outputted to the load driving circuit to control the power of the alternating current supplied to the load.
  • MCU micro control unit
  • the constant power limiter of the present invention further includes a bypass circuit coupled to the micro control unit output port for bypassing the alternating current directly to the load when the control circuit fails.
  • a bypass circuit coupled to the micro control unit output port for bypassing the alternating current directly to the load when the control circuit fails.
  • the bypass circuit includes a relay RY1 and its switch control circuit including transistors TR1 and TR2.
  • the load drive circuit includes a thyristor connected in series in the load supply line with its control terminal connected to the output port of the micro control unit U1.
  • the working principle is that the micro control unit (MCU) calculates the power of the load by detecting the power supply voltage and the load current, and then controls the power of the load by adjusting the conduction angle of the thyristor to achieve the power limitation. .
  • the constant power limiter of the present invention is designed with a relay as a bypass circuit, using a normally closed contact of the relay. Under normal circumstances, the relay is closed, that is, the normally closed contact is open, The bypass circuit does not work. When the controller is not working properly, the relay is released, the normally closed contact is closed, and the load current is completed through the normally closed contact to ensure normal power supply.
  • the power supply circuit the voltage detecting circuit, the current detecting circuit, the zero-crossing detecting circuit, the relay driving circuit, and the thyristor driving circuit in the embodiment shown in FIG. 1 will be described separately.
  • FIG. 3A is a schematic diagram of a power supply circuit in the constant power limiter shown in FIG. 2.
  • the power supply uses the RC step-down circuit.
  • the power supply circuit there are two sets of loads in the circuit: the relay and Vcc.
  • the power supply of the relay and Vcc are in series, which has the advantage of reducing the step-down capacitance. Capacity. Since the RC step-down circuit is a constant current source, when some or all of the load is not working, the current will flow away through the Zener tube, so the larger the capacitance, the greater the static power consumption.
  • the transistor TR1 When the relay needs to be closed, the transistor TR1 is turned on, and the current flows through the coil of the relay RY1. When the relay does not need to be pulled, the transistor TR1 is turned off, no current flows in the coil of the relay RY1, and the current passes through the ZD1 Zener diode. Form a loop.
  • FIG. 3B is a schematic diagram showing the current flow direction of the power supply circuit shown in FIG. 3A during the negative half cycle of the power supply
  • FIG. 3C is a schematic diagram showing the current flow when the power supply circuit of the power supply circuit does not pick up the negative half cycle of the power supply
  • FIG. 3D FIG. The current flow direction is schematic when the power supply is halfway.
  • 4A is a schematic diagram of a voltage detecting circuit in the constant power limiter shown in FIG. 2. Since the RC step-down circuit is non-isolated, the voltage signal can be directly sent from the AC power to the A/D port of the MCU, and the MCU can determine the mains voltage value according to the amplitude of the signal. Diode D5 is used for clamping to ensure that the MCU A/D port signal is within safe limits and will not damage the MCU.
  • FIG. 5A is a schematic diagram of a current detecting circuit in the constant power limiter shown in FIG. 2.
  • J 1 , J2, J 3 are constantan wire, and the resistance of the constantan wire can be selected by changing the length and diameter. After the thyristor SCR1 is turned on, the AC current reaches the other end of the AC power source through the bulb, the thyristor, J l, J2, and J 3 .
  • the constantan wire is connected in series in the load supply line, and its own resistance can play a role of voltage division in the circuit. The voltage drop on the constantan wire changes with the change of current.
  • the voltage signal with the change of the mains frequency is capacitively coupled by C16 and sent to the A/D port of the MCU for detection.
  • the MCU can determine the current flowing through the load based on the amplitude of the signal.
  • the function of resistors R26 and R27 is to stabilize the reference point of the signal to which C16 is coupled.
  • Fig. 6A is a schematic diagram of a zero crossing detecting circuit in the constant power limiter shown in Fig. 2. ⁇ Use resistor buck, triode shaping zero-crossing detection circuit.
  • Figure 7 is a schematic diagram of the relay drive circuit in the constant power limiter shown in Figure 2.
  • the I/O port of the control terminal has a pulse signal output.
  • the transistor TR2 is turned on during the negative half cycle of the pulse, and the current is emitted from the TR2.
  • the pole flows through the collector, charges the capacitor C2 through the resistor R20, and supplies power to the base of the TR1 through R12, so that the transistor TR1 is turned on, the current of the coil of the relay RY1 flows, the relay pulls in, and the C11 is charged at the same time.
  • capacitor C14 is discharged through the D1 diode and transistor TR2 is turned off.
  • Capacitor C2 supplies power to the base of the TR1 transistor through resistor R12, maintaining TR1 conduction and relay pull-in.
  • Resistor R2 is a pull-up resistor that ensures that the base of transistor TR2 is in a high state when there is no control signal, that is, the transistor is turned off.
  • the pull-in relay When the pull-in relay is not required, there is no pulse signal output at the control end, and the transistors TR2 and TR1 are turned off. During normal use, the MCU will send a signal to pull the relay. When the MCU fails, the signal will disappear and the relay will automatically pop open.
  • FIG. 8A is a schematic diagram of a thyristor driving circuit in the constant power limiter shown in FIG. 2.
  • FIG. 8A the I/O port of the MCU directly drives the thyristor.
  • the I/O port When the thyristor is not triggered, the I/O port is high, and when the thyristor needs to be triggered, the I/O port outputs a low-level pulse.
  • the MCU calculates the voltage signal and the current signal, and then adjusts the conduction time of the thyristor to achieve the purpose of load power control.
  • FIG. 4B is a schematic diagram of a voltage sensing circuit in an embodiment of a power limiter in accordance with the present invention. Its working principle: R3, R14, R24 form a voltage dividing circuit, when the positive half cycle of the power supply, the diode D6 is positive On, CI charging, the voltage on CI changes with the change of the power supply voltage, so the MCU can directly read the voltage value across C1 to judge the power supply voltage.
  • R25 acts as a discharge resistor for capacitor C1.
  • FIG. 5B is a schematic diagram of a current sensing circuit in an embodiment of a power limiter in accordance with the present invention.
  • TR1 is a current transformer.
  • the load current flows through the primary of TR1. It generates an induced electromotive force at the secondary of TR1. After D1 rectifies, it charges C1.
  • the voltage on C1 is proportional to the load current.
  • the MCU reads C1. The voltage value is used to determine the load current.
  • R26 acts as the discharge resistor for capacitor C1.
  • Figure 6B is a schematic diagram of a zero crossing detection circuit in an embodiment of a power limiter in accordance with the present invention.
  • the working principle The method of directly connecting to the zero-crossing detection port of the MCU after the resistor is divided by voltage, the advantage of the zero-crossing detection circuit is low cost, and the disadvantage is that the waveform does not have the standard of the zero-crossing detection circuit shown in FIG. 6A, and is susceptible to interference.
  • FIG 8B is a schematic diagram of a thyristor drive circuit in accordance with an embodiment of a power limiter of the present invention.
  • the working principle The control signal of the I/O port triggers the thyristor after the Q1 is reversed. When the driving capability of the I/O port is insufficient, the circuit needs to be used.

Description

定功率限制器及照明灯具
技术领域
本发明涉及节能装置, 特别涉及一种定功率限制器及安装有该定功率限 制器的灯具。 背景技术
由于能源的缺乏, 节能环保、 杜绝浪费已成为全球共同关注的问题。 例 如, 美国对于照明灯具的功率就有明确的限制。 而在我国, 节能增效、 降低 成本、 提高资源利用效率, 对全面建设和谐社会, 实现国民经济持续、 快速、 健康发展具有重要意义。
因此, 有必要设计一种功率限制器, 把功率限制器装在灯具里面, 如果 负载的功率超过了规定的功率, 则控制器会自动调节, 将负载的功率控制在 规定的范围内。 发明内容
本发明要解决的技术问题在于提供一种定功率限制器, 用于将用电设备 或电器的负载功率限制在规定的范围内。
本发明要解决的另一个技术问题在于提供一种照明灯具, 其中安装有定 功率限制器, 当灯泡的功率超过设定值时, 其中的控制电路会自动调节, 将 灯泡的功率控制在设定的范围内。
本发明解决上述技术问题的技术方案为, 提供一种定功率限制器, 包括 控制电路及其电源电路,所述控制电路包括:
电压检测电路, 用于检测电源电压;
电流检测电路, 用于检测负载电流;
过零检测电路, 用于检测交流电过零点;
负载驱动电路;
微控制单元, 其接收所述电压检测电路、 电流检测电路及过零检测电路 的输出信号, 并输出控制信号到所述负载驱动电路, 以控制供给负载的交流 电的功率。
在本发明所述的定功率限制器中, 还包括与所述微控制单元输出端口相 连、 用于当所述控制电路故障时直接将交流电旁路给负载的旁路电路。
在本发明所述的定功率限制器中, 所述负载驱动电路包括串联在负载供 电线路中、 其控制极与所述微控制单元的输出端口相连的可控硅, 其中所述 控制供给负载的交流电功率包括控制可控硅的导通角。
在本发明所述的定功率限制器中, 所述旁路电路包括继电器及其开关控 制电路; 其中, 所述继电器的动触点和其中一个静触点串接在负载供电线路 中, 所述开关电路接收所述微控制单元输出的控制信号并控制继电器的吸合 及释放。
在本发明所述的定功率限制器中, 所述继电器的常闭触点与交流电输入 端的相线相连, 动触点与负载的供电输入端相连。
在本发明所述的定功率限制器中, 所述电源电路釆用 RC降压电路, 所述 电源电路有两组负载: 继电器和 Vcc , 且继电器的供电和 Vcc是串连关系。
根据本发明的另一面, 提供一种照明灯具, 包括灯泡及与灯泡供电线路 相连的定功率限制器, 所述定功率限制器包括控制电路及其电源电路,所述控 制电路包括:
电压检测电路, 用于检测电源电压;
电流检测电路, 用于检测负载电流;
过零检测电路, 用于检测交流电过零点;
负载驱动电路;
微控制单元, 其接收所述电压检测电路、 电流检测电路及过零检测电路 的输出信号, 并输出控制信号到所述负载驱动电路, 以控制供给灯泡的交流 电的功率。
在本发明所述的照明灯具中, 还包括与所述微控制单元输出端口相连、 用于当所述控制电路故障时直接将交流电旁路给负载的旁路电路。
在本发明所述的照明灯具中, 所述负载驱动电路包括串联在负载供电线 路中、 其控制极与所述微控制单元的输出端口相连的可控硅, 其中所述控制 供给负载的交流电功率包括控制可控硅的导通角。
在本发明所述的照明灯具中, 所述旁路电路包括继电器及其开关控制电 路; 其中, 所述继电器的动触点和其中一个静触点串接在负载供电线路中, 所述开关电路接收所述微控制单元输出的控制信号并控制继电器的吸合及释 放。
本发明的有益效果在于: 能够将用电设备或电器的负载功率限制在预先 设定的范围内, 能够有效地节约电能, 避免电网超载及能源的浪费。 并且旁 路电路的设计使得当定功率限制器出现故障时, 用电设备或电器能照常得到 供电, 不影响用电设备或电器的正常工作。 附图说明
图 1为本发明定功率限制器的组成框图;
图 2为根据本发明一实施例的定功率限制器的电路原理图;
图 3A为图 2所示定功率限制器中电源电路的原理图;
图 3B为图 3A所示电源电路在电源负半周继电器吸合时电流流向示意图; 图 3C为图 3A所示电源电路在电源负半周继电器不吸合时电流流向示意 图;
图 3D为图 3A所示电源电路在电源正半周时电流流向示意图;
图 4A为图 2所示定功率限制器中电压检测电路的原理图;
图 4B为根据本发明定功率限制器一实施例中电压检测电路的原理图; 图 5A为图 2所示定功率限制器中电流检测电路的原理图;
图 5B为根据本发明定功率限制器一实施例中电流检测电路的原理图; 图 6A为图 2所示定功率限制器中过零检测电路的原理图;
图 6B为根据本发明定功率限制器一实施例中过零检测电路的原理图; 图 7为图 2所示定功率限制器中继电器驱动电路的原理图;
图 8A为图 2所示定功率限制器中可控硅驱动电路的原理图;
图 8B为根据本发明定功率限制器一实施例可控硅驱动电路的原理图。 具体实施方式
图 1为本发明定功率限制器的组成框图。 如图 1所示, 在本发明的构思 中, 定功率限制器包括控制电路及为该控制电路供电的电源电路。 其中, 控 制电路包括: 用于检测电源电压的电压检测电路、 用于检测负载电流的电流 检测电路、 用于检测交流电过零点的过零检测电路、 负载驱动电路及微控制 单元(MCU ), 其接收所述电压检测电路、 电流检测电路及过零检测电路的输 出信号, 并输出控制信号到所述负载驱动电路, 以控制供给负载的交流电的 功率。 本发明的定功率限制器还包括一个旁路电路, 其与所述微控制单元输 出端口相连, 用于当所述控制电路故障时直接将交流电旁路给负载。 这种情 况下, 当定功率限制器的控制电路中的任何部件, 如电压检测电路、 电流检 测电路、 过零检测电路、 负载驱动电路、 微控制单元中的一个或多个失效不 能工作的时候, 旁路电路不会受到影响, 会自动切换过去, 使得用电设备或 电器能正常工作, 但功率限制的功能就失效了。 作为一种选择, 也可以不釆 用该旁路电路。 当然, 这种情况下, 如果功率限制器出现故障, 用电设备或 电器的供电将被断开, 使其无法正常工作。
图 1 为根据本发明一实施例的定功率限制器的电路原理图。 在该实施例 中, 旁路电路包括继电器 RY1 及其开关控制电路, 该开关控制电路包括三极 管 TR1和 TR2。 负载驱动电路包括串联在负载供电线路中、其控制极与所述微 控制单元 U1 的输出端口相连的可控硅。 工作原理是, 微控制单元(MCU )通 过检测电源电压和负载电流的方式, 计算出现有负载的功率, 然后通过调整 可控硅的导通角的方式来控制负载的功率, 达到功率限制的目的。
当负载功率小于或等于设定的功率时, 可控硅全开; 当负载功率大于设 定的功率时, 减小可控硅的导通角, 从而使流过负载的平均电流减小, 根据 P=UI,功率也相应变小。 一边减小导通角, 一边检测反馈回来的电流信号, 当 负载的功率达到设定值时, 保持当前的导通角不变, 从而使负载的功率达到 稳定的设定值。 本发明的定功率限制器设计了一个继电器作为旁路电路, 使 用继电器的常闭触点。 正常情况下, 继电器是吸合的, 即常闭触点是断开的, 旁路电路是没有起作用的, 当控制器不能正常工作的时候, 继电器释放, 常 闭触点闭合, 负载电流通过常闭触点完成回路, 保证灯泡正常供电。
以下对图 1 所示实施例中的电源电路、 电压检测电路、 电流检测电路、 过零检测电路、 继电器驱动电路、 可控硅驱动电路分别进行说明。
图 3A为图 2所示定功率限制器中电源电路的原理图。 电源釆用 RC降压电 路, 对于电源电路而言, 电路中有两组负载: 继电器和 Vcc , 在这个电路中继 电器的供电和 Vcc是串连关系, 这样做的好处是可以减小降压电容的容量。 由 于 RC降压电路是一个恒流源, 当部分或全部负载没有工作的时候, 电流将通 过稳压管流走, 所以电容容量越大, 静态功耗就越大。 假设继电器需要的电 流为 Vcc后端需要的电流为 I2 , I2 > l 降压电容能提供的电流是 I。, ,那 么我们在选择降压电容 C1 的容量的时候, 只要考虑 I。 > 12就满足了, 而不是 I o > ( 12 + I i ) 。 从而减小电容的体积和成本, 并降低功耗。
当继电器需要吸合的时候, 三极管 TR1导通, 电流流过继电器 RY1 的线 圈; 当继电器不需要吸合的时候, 三极管 TR1截止, 继电器 RY1 的线圈中没 有电流流过, 电流经过 ZD1稳压二极管形成回路。
图 3B图 3A所示电源电路在电源负半周继电器吸合时电流流向示意图; 图 3C图 3A所示电源电路在电源负半周继电器不吸合时电流流向示意图; 图 3D图 3A所示电源电路在电源正半周时电流流向示意图。
图 4A为图 2所示定功率限制器中电压检测电路的原理图。 由于 RC降压 电路是非隔离的, 所以这里可以直接从交流电用电阻分压后直接将电压信号 送到 MCU的 A/D口, MCU根据信号的幅度判断市电电压值。 二极管 D5用于钳 位, 保证 MCU A/D端口的信号在安全范围内, 不会损坏 MCU。
图 5A为图 2所示定功率限制器中电流检测电路的原理图。 在本发明的定 功率限制器中, J 1 , J2, J 3是康铜丝, 康铜丝的阻值大小可以通过改变长度和 直径来选择。 可控硅 SCR1导通后, 交流电流通过灯泡、 可控硅、 J l、 J2、 J 3 到达交流电源的另一端。 康铜丝串连在负载供电线路中, 其本身的电阻在电 路中能起到分压的作用。 在康铜丝上的压降随着电流的变化而变化, 这个以 市电频率变化的电压信号通过 C16电容耦合后,送到 MCU 的 A/D口进行检测, MCU可以根据信号的幅度判断流过负载的电流。电阻 R26、 R27的作用是将 C16 耦合过来的信号的基准点稳定。
图 6A为图 2所示定功率限制器中过零检测电路的原理图。釆用电阻降压, 三极管整形的过零检测电路。
图 7为图 2所示定功率限制器中继电器驱动电路的原理图。
在电源的负半周, 需要开启继电器时, 控制端 I/O 口有脉冲信号输出, 经过 C14 , R17耦合到了 TR2三极管的基极, 三极管 TR2在脉冲的负半周期间 导通, 电流从 TR2的发射极流经集电极, 经过电阻 R20向电容 C2充电, 同时 经过 R12向 TR1基极供电, 使三极管 TR1导通, 继电器 RY1的线圈有电流流 过, 继电器吸合, 同时对 C11进行充电。 在脉冲的正半周时, 电容 C14通过 D1二极管放电, 三极管 TR2截止。 电容 C2通过电阻 R12向 TR1三极管基极供 电, 维持 TR1导通、 继电器吸合。 电阻 R2是上拉电阻, 保证在没有控制信号 的时候, 三极管 TR2的基极处于高电平状态, 即三极管截止状态。
电源的正半周,电流如图 D所示。电源电流直接经 D2二极管流到另一端, 没有流经后面的负载。 C11通过继电器 RY1、 三极管 TR1放电, 维持继电器吸 合。
不需要吸合继电器时,控制端没有脉冲信号输出,三极管 TR2、 TR1截止。 正常使用的时候 MCU就会发出信号使继电器吸合, 当 MCU出现故障的时候信 号就消失, 继电器就自动弹开。
图 8A为图 2所示定功率限制器中可控硅驱动电路的原理图。 本实施例中 釆用 MCU的 I/O端口直接驱动可控硅的方式。 不触发可控硅时, I/O口位高电 平, 需要触发可控硅时, I/O口输出低电平脉冲。 MCU釆得电压信号和电流信 号后进行计算, 然后通过调整可控硅的导通时间来实现对负载功率控制的目 的。
本领域技术人员知晓, 本发明的定功率限制器中的电压检测电路、 电流 检测电路、 过零检测电路、 负载驱动电路、 旁路电路还可以其它方式实现。 例如, 图 4B为根据本发明定功率限制器一实施例中电压检测电路的原理图。 其工作原理: R3、 R14、 R24构成分压电路, 电源的正半周时, 二极管 D6正向 导通的, CI充电, CI上的电压随着电源电压的变化而变化, 这样 MCU可以直 接读取 C1两端的电压值来判断电源电压。 R25作为电容 C1的放电电阻。
图 5B为根据本发明定功率限制器一实施例中电流检测电路的原理图。 其 工作原理: TR1是电流互感器, 负载电流流经 TR1的初级, 在 TR1的次级产生 感应电动势, 经 D1整流后向 C1 充电, C1上的电压和负载电流成正比, MCU 读取 C1上的电压值来判断负载电流。 R26作为电容 C1的放电电阻。
图 6B为根据本发明定功率限制器一实施例中过零检测电路的原理图。 其 工作原理: 釆用电阻分压后直接接到 MCU过零检测端口的方式, 这种过零检 测电路的优点是成本低, 缺点是波形没有图 6A所示过零检测电路的标准, 容 易受到干扰。
图 8B为根据本发明定功率限制器一实施例可控硅驱动电路的原理图。 其 工作原理: I/O口的控制信号通过 Q1反向后再触发可控硅, 当 I/O口的驱动 能力不足的时候, 需要釆用这种电路。
还需说明的是, 使用可控硅后, 由于正弦波被切割、 波形遭受破坏, 会 给电网带来干扰等问题。 这种情况下可增加一些抑制干扰的线路, 如在图 2 所示本发明定功率限制器实施例的电路原理图上可控硅的后面增加一个电 感。 当然, 也可以釆用本领域常用的其它技术手段来解决该干扰问题。

Claims

权 利 要 求
1、 一种定功率限制器, 包括控制电路及其电源电路,其特征在于, 所述 控制电路包括:
电压检测电路, 用于检测电源电压;
电流检测电路, 用于检测负载电流;
过零检测电路, 用于检测交流电过零点;
负载驱动电路;
微控制单元, 其接收所述电压检测电路、 电流检测电路及过零检测电路 的输出信号, 并输出控制信号到所述负载驱动电路, 以控制供给负载的交流 电的功率。
2、 根据权利要求 1所述的定功率限制器, 其特征在于, 还包括与所述微 控制单元输出端口相连、 用于当所述控制电路故障时直接将交流电旁路给负 载的旁路电路。
3、 根据权利要求 1或 2所述的定功率限制器, 其特征在于, 所述负载驱 动电路包括串联在负载供电线路中、 其控制极与所述微控制单元的输出端口 相连的可控硅, 其中所述控制供给负载的交流电功率包括控制可控硅的导通 角。
4、 根据权利要求 2所述的定功率限制器, 其特征在于, 所述旁路电路包 括继电器及其开关控制电路; 其中, 所述继电器的动触点和其中一个静触点 串接在负载供电线路中, 所述开关电路接收所述微控制单元输出的控制信号 并控制继电器的吸合及释放。
5、 根据权利要求 4所述的定功率限制器, 其特征在于, 所述继电器的常 闭触点与交流电输入端的相线相连, 动触点与负载的供电输入端相连。
6、 根据权利要求 4所述的定功率限制器, 其特征在于, 所述电源电路釆 用 RC降压电路, 所述电源电路有两组负载: 继电器和 Vcc , 且继电器的供电 和 Vcc是串连关系。
7、 一种照明灯具, 包括灯泡及与灯泡供电线路相连的定功率限制器, 所 述定功率限制器包括控制电路及其电源电路,其特征在于, 所述控制电路包 括:
电压检测电路, 用于检测电源电压;
电流检测电路, 用于检测负载电流;
过零检测电路, 用于检测交流电过零点;
负载驱动电路;
微控制单元, 其接收所述电压检测电路、 电流检测电路及过零检测电路 的输出信号, 并输出控制信号到所述负载驱动电路, 以控制供给灯泡的交流 电的功率。
8、 根据权利要求 7所述的照明灯具, 其特征在于, 还包括与所述微控制 单元输出端口相连、 用于当所述控制电路故障时直接将交流电旁路给负载的 旁路电路。
9、 根据权利要求 7或 8所述的照明灯具, 其特征在于, 所述负载驱动电 路包括串联在负载供电线路中、 其控制极与所述微控制单元的输出端口相连 的可控硅, 其中所述控制供给负载的交流电功率包括控制可控硅的导通角。
10、 根据权利要求 8 所述的照明灯具, 其特征在于, 所述旁路电路包括 继电器及其开关控制电路; 其中, 所述继电器的动触点和其中一个静触点串 接在负载供电线路中 , 所述开关电路接收所述微控制单元输出的控制信号并 控制继电器的吸合及释放。
PCT/CN2008/070798 2008-04-08 2008-04-25 定功率限制器及照明灯具 WO2009124433A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/529,766 US8766559B2 (en) 2008-04-08 2008-04-25 Constant power limiter and illumination device having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100664628A CN101257757B (zh) 2008-04-08 2008-04-08 定功率限制器及照明灯具
CN200810066462.8 2008-04-08

Publications (1)

Publication Number Publication Date
WO2009124433A1 true WO2009124433A1 (zh) 2009-10-15

Family

ID=39892131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070798 WO2009124433A1 (zh) 2008-04-08 2008-04-25 定功率限制器及照明灯具

Country Status (3)

Country Link
US (1) US8766559B2 (zh)
CN (1) CN101257757B (zh)
WO (1) WO2009124433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526726A (zh) * 2024-01-05 2024-02-06 深圳市华浩德电子有限公司 一种宽电流和宽输出电压buck恒功率控制电路

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770248B (zh) * 2008-12-31 2013-03-27 钱和革 一种间歇式供电的微功耗待机控制电路
CN102811535B (zh) * 2012-06-28 2018-03-27 深圳市舜田电子技术有限公司 基于单级变换可控整流的超高效率led恒流电源
CN103479243B (zh) * 2013-09-16 2016-09-14 九阳股份有限公司 一种安全食品加工机
CN103547032B (zh) * 2013-10-21 2016-10-19 汇高(广州)电子有限公司 一种基于可控硅恒流的led灯具
WO2015061954A1 (zh) * 2013-10-28 2015-05-07 巨铠实业股份有限公司 利用改变交流电电压导通角作为控制命令而对负载进行操作控制的方法与其调控装置
CN107491138B (zh) * 2017-08-01 2019-02-19 江阴旺达电子有限公司 功率限制器及其控制方法
CN110535666B (zh) * 2019-09-03 2021-12-31 普联技术有限公司 一种非标准PoE电源管理装置
CN116880639B (zh) * 2023-09-07 2023-11-24 广东东菱电源科技有限公司 一种使用三极管实现恒功率的电路及恒功率方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182727A (ja) * 1982-04-19 1983-10-25 Ricoh Co Ltd 定電力制御装置
US5087870A (en) * 1989-10-05 1992-02-11 Hewlett-Packard Company Constant power circuit
JPH0628042A (ja) * 1991-02-12 1994-02-04 Fuji Electric Co Ltd 電源装置の電力制限装置
CN1668159A (zh) * 2005-02-03 2005-09-14 程涛 照明电源智能节电装置
CN2753094Y (zh) * 2004-10-15 2006-01-18 王建荣 户外照明节电控制器
CN200947692Y (zh) * 2006-07-03 2007-09-12 深圳市亚特尔科技有限公司 一种照明电器用节能控制器
CN101068448A (zh) * 2007-04-25 2007-11-07 鹤山丽得电子实业有限公司 一种限制功率的电路
CN101102630A (zh) * 2006-07-07 2008-01-09 陈汉湘 户外照明灯智能光时控制器及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969959B2 (en) * 2001-07-06 2005-11-29 Lutron Electronics Co., Inc. Electronic control systems and methods
US6982858B2 (en) * 2003-04-29 2006-01-03 Digitek Technology Co., Ltd. Electronic power-saving power control circuit
CN201194438Y (zh) * 2008-04-08 2009-02-11 深圳和而泰智能控制股份有限公司 定功率限制器及照明灯具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182727A (ja) * 1982-04-19 1983-10-25 Ricoh Co Ltd 定電力制御装置
US5087870A (en) * 1989-10-05 1992-02-11 Hewlett-Packard Company Constant power circuit
JPH0628042A (ja) * 1991-02-12 1994-02-04 Fuji Electric Co Ltd 電源装置の電力制限装置
CN2753094Y (zh) * 2004-10-15 2006-01-18 王建荣 户外照明节电控制器
CN1668159A (zh) * 2005-02-03 2005-09-14 程涛 照明电源智能节电装置
CN200947692Y (zh) * 2006-07-03 2007-09-12 深圳市亚特尔科技有限公司 一种照明电器用节能控制器
CN101102630A (zh) * 2006-07-07 2008-01-09 陈汉湘 户外照明灯智能光时控制器及其控制方法
CN101068448A (zh) * 2007-04-25 2007-11-07 鹤山丽得电子实业有限公司 一种限制功率的电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526726A (zh) * 2024-01-05 2024-02-06 深圳市华浩德电子有限公司 一种宽电流和宽输出电压buck恒功率控制电路
CN117526726B (zh) * 2024-01-05 2024-03-22 深圳市华浩德电子有限公司 一种宽电流和宽输出电压buck恒功率控制电路

Also Published As

Publication number Publication date
US8766559B2 (en) 2014-07-01
CN101257757A (zh) 2008-09-03
US20110304278A1 (en) 2011-12-15
CN101257757B (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
WO2009124433A1 (zh) 定功率限制器及照明灯具
US20090243582A1 (en) Phase-cut dimming circuit
CN103975650A (zh) Led调光器兼容性的系统和方法
CN204069443U (zh) 一种电子开关
CN203788516U (zh) 一种智能调光高效恒流led驱动芯片
WO2013026344A1 (zh) 自动电压开关及其实现方法
CN206389593U (zh) 一种单火线取电装置及单火线开关
CN201956899U (zh) 一种特殊的加速启机电路及采用该电路的led驱动电路
CN201290191Y (zh) 一种适用于可控硅调光器的led调光装置
WO2014075337A1 (zh) 降低待机功耗的方法
EP2695491B1 (en) Trailing-edge-phase-controlled light modulating circuit
CN201194438Y (zh) 定功率限制器及照明灯具
CN202549726U (zh) 交流接触器组合指令开关电路
CN201039120Y (zh) 二线制电容式触摸、感应开关
CN205726514U (zh) 二线型后切调节器
CN201956995U (zh) 一种单线制单刀双掷触摸电子开关
CN202488833U (zh) 智能感控灯
CN111884191A (zh) 一种停电保护电路及其应用
CN104767408A (zh) 交直流转换开关电源
CN2922286Y (zh) 微功耗红外线遥控开关
CN204652736U (zh) 光控照明控制电路
CN201750617U (zh) 节能灯墙壁延时开关盒
CN2582149Y (zh) 微功耗感应开关
CN204291498U (zh) 一种基于变压器的隔离型led驱动电路
CN102130674A (zh) 一种单线制单刀双掷触摸电子开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12529766

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - EPO FORM 1205A SENT ON 28.03.2011

122 Ep: pct application non-entry in european phase

Ref document number: 08734156

Country of ref document: EP

Kind code of ref document: A1