WO2017086394A1 - 標的核酸の定量方法及びそのためのキット - Google Patents

標的核酸の定量方法及びそのためのキット Download PDF

Info

Publication number
WO2017086394A1
WO2017086394A1 PCT/JP2016/084136 JP2016084136W WO2017086394A1 WO 2017086394 A1 WO2017086394 A1 WO 2017086394A1 JP 2016084136 W JP2016084136 W JP 2016084136W WO 2017086394 A1 WO2017086394 A1 WO 2017086394A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
nucleic acid
target
target nucleic
primer
Prior art date
Application number
PCT/JP2016/084136
Other languages
English (en)
French (fr)
Inventor
辰彦 星野
史生 稲垣
Original Assignee
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構 filed Critical 国立研究開発法人海洋研究開発機構
Priority to CN201680066232.4A priority Critical patent/CN108291249A/zh
Priority to JP2017540803A priority patent/JP6284137B2/ja
Priority to EP16866395.3A priority patent/EP3378948B1/en
Priority to US15/775,300 priority patent/US20180320227A1/en
Publication of WO2017086394A1 publication Critical patent/WO2017086394A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • C12Q1/6855Ligating adaptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B10/00ICT specially adapted for evolutionary bioinformatics, e.g. phylogenetic tree construction or analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/10Nucleotidyl transfering
    • C12Q2521/101DNA polymerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Definitions

  • the present invention relates to a method for quantifying a target nucleic acid containing a target sequence surrounded by a conserved region, and a kit therefor.
  • next-generation sequencing technology has made it possible to simultaneously perform a large number of sequencing, making comprehensive gene decoding practical.
  • a nucleic acid containing a target gene is usually amplified by PCR to such an extent that the sequence can be detected.
  • next-generation sequencing technology it is theoretically possible to quantify the relative amount (ratio) of the target nucleic acid in the sample.
  • ratio the ratio of the target nucleic acid in the sample.
  • Patent Document 1 examples of methods that solve such problems caused by PCR amplification efficiency and combine target nucleic acid sequencing and target nucleic acid quantification include the following Patent Document 1 and Non-Patent Document 1 (all descriptions of the document). Is incorporated herein by reference), PCR is performed using a primer ligated with an adapter sequence consisting of a common sequence and a variable sequence at the end of the target nucleic acid, and using a primer having a sequence complementary to the common sequence. A method is described in which the number of copies of the target nucleic acid is calculated based on the type and number of variable sequences by carrying out and then confirming the sequence of the amplification product.
  • Patent Document 1 a specific sequence is added to the end of a target nucleic acid by a ligation reaction.
  • a restriction enzyme treatment is performed in advance.
  • the end of the target nucleic acid must be a protruding end.
  • the problem to be solved by the present invention is to solve the problem caused by the PCR amplification efficiency without carrying out the ligation reaction, and to combine the target nucleic acid sequencing and the target nucleic acid quantification. It is to provide.
  • the present inventors have (1) a single sequence using a primer that has a sequence specific to the target nucleic acid sequence and a random sequence and a known sequence upstream thereof.
  • a primer extension reaction By carrying out a primer extension reaction, a double-stranded nucleic acid having a random sequence and a target nucleic acid sequence is obtained.
  • this method is more accurate than the conventional method of estimating the number of copies of a target nucleic acid in a sample from the ratio of target nucleic acids in a sequence library, and is prepared so that two or more types of target nucleic acids are included.
  • the present inventors have found that the number of copies of a plurality of types of target nucleic acids in an environmental sample as well as the model sample can be quantified with high accuracy. The present invention has been completed based on such successful examples and knowledge.
  • a method for quantifying a target nucleic acid comprising the following steps (1) to (4).
  • (1) The single strand obtained from a single-stranded nucleic acid or a double-stranded nucleic acid containing the first sequence, the target sequence and the second sequence in the direction from the 3 ′ end to the 5 ′ end of the target nucleic acid A specific sequence, a random sequence, and a sequence complementary to the first sequence in the direction from the 5 ′ end to the 3 ′ end, and a plurality of types according to the number of types of random sequences
  • an annealing reaction, a nucleic acid extension reaction, and a nuclease reaction are performed, so that one single strand is oriented in a direction from the 5 ′ end side to the 3 ′ end side.
  • Step (2) for obtaining a first double-stranded nucleic acid comprising a sequence complementary to the sequence of 1, a sequence complementary to the target sequence and a sequence complementary to the second sequence.
  • a second primer containing a second sequence and a specific sequence
  • the step of determining the sequence of the second double-stranded nucleic acid obtained in step (2) ( 4) Based on the sequence determined in step (3), by measuring the number of combinations of the target sequence and the random sequence, the following mathematical formula (1) (1) (Where N represents the number of target nucleic acids; C represents the number of types of random sequences; and H represents the number of combinations of target and random sequences measured) Quantifying the target nucleic acid by
  • a method for amplifying a double-stranded nucleic acid comprising a target sequence of a target nucleic acid and a random sequence, comprising the following steps (1) to (2).
  • (1) The single strand obtained from a single-stranded nucleic acid or a double-stranded nucleic acid containing the first sequence, the target sequence and the second sequence in the direction from the 3 ′ end to the 5 ′ end of the target nucleic acid A specific sequence, a random sequence, and a sequence complementary to the first sequence in the direction from the 5 ′ end to the 3 ′ end, and a plurality of types according to the number of types of random sequences
  • an annealing reaction, a nucleic acid extension reaction, and a nuclease reaction are performed, so that one single strand is oriented in a direction from the 5 ′ end side to the 3 ′ end side.
  • Step (2) for obtaining a first double-stranded nucleic acid comprising a sequence complementary to the sequence of 1, a sequence complementary to the target sequence and a sequence complementary to the second sequence.
  • a second primer containing a second sequence and a specific sequence With no third primer, PCR was carried out to obtain a second double-stranded nucleic acid
  • the target nucleic acid is a nucleic acid derived from one or more organisms.
  • the target nucleic acid is a nucleic acid containing a part or all of an rRNA gene.
  • the target sequence is a variable region of an rRNA gene, and the first sequence and the second sequence are conserved regions downstream and upstream of the region, respectively. .
  • the target nucleic acid is a nucleic acid in a sample selected from the group consisting of water, soil, air, biological tissue, food, medicine and cosmetics.
  • the number of the target nucleic acids is any number from 100 to 1,000,000.
  • the random sequence is a random sequence having any number of 4 to 20; and the number of types of the random sequence is any of 10 2 to 10 15 Is the number of
  • the specific sequence is a specific sequence having a base number of 10 to 50 and comprising a sequence that is non-complementary to the sequence of the target nucleic acid.
  • a single-stranded nucleic acid comprising the first sequence, the subject sequence and the second sequence in the direction from the 3 ′ end to the 5 ′ end or the single strand
  • a kit for quantifying a target nucleic acid that is a double-stranded nucleic acid, A specific sequence, a random sequence and a sequence complementary to the first sequence in the direction from the 5 ′ end to the 3 ′ end, and a plurality of types of first primers according to the number of types of random sequences; , Nuclease, A second primer comprising a second sequence; And a third primer comprising a specific sequence.
  • the target sequence is a variable region of an rRNA gene, and the first sequence and the second sequence are conserved regions downstream and upstream of the region, respectively. .
  • the method of one embodiment of the present invention it is possible to solve the problem caused by the PCR amplification efficiency and achieve high-accuracy quantification of the copy number of the target nucleic acid together with the sequencing of the target nucleic acid.
  • the kit of one embodiment of the present invention can be used to perform the method of one embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a target nucleic acid quantification method according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating the experimental method described in Example 1 of the example.
  • FIG. 3 is a diagram showing the linearity of the quantitative values described in Example 2 of the example.
  • FIG. 4 is a diagram comparing the quantitative results in the composite system described in Example 2 of the Examples.
  • a specific embodiment of the present invention is a target nucleic acid quantification method (hereinafter referred to as the quantification method of one embodiment of the present invention), which includes at least the following steps (1) to (4).
  • step (2) By performing an annealing reaction, a nucleic acid extension reaction, and a nuclease reaction using a first primer of a kind, one single strand has a specific sequence, a random sequence in the direction from the 5 ′ end side to the 3 ′ end side, Obtained in the step (2) step (1) of obtaining a first double-stranded nucleic acid comprising a sequence complementary to the first sequence, a sequence complementary to the subject sequence and a sequence complementary to the second sequence Using the first double-stranded nucleic acid as a template, the second primer containing the second sequence and the specific sequence
  • the following mathematical formula (1) (1) Based on the sequence determined in the step (3), by measuring the number of combinations of the target sequence and the random sequence, the following mathematical formula (1) (1) (Where N represents
  • the quantification method of one embodiment of the present invention makes it possible to comprehensively quantify each sequence obtained by sequence decoding and decoding of a target nucleic acid, and the outline thereof is as follows.
  • a target nucleic acid such as a single-stranded DNA or RNA containing a target sequence that identifies the type of nucleic acid in the sample as a template
  • a sequence specific to the sequence downstream of the target sequence in the target nucleic acid sequence and its upstream is synthesized by a DNA synthesizing enzyme using a primer having a random sequence and a known adapter sequence.
  • the synthesized single-stranded nucleic acid is in the order of the adapter sequence, random sequence, and sequence complementary to the target sequence from the upstream.
  • the excess primer is degraded and removed with an enzyme specific for single-stranded nucleic acid, such as exonuclease I.
  • PCR is performed using a primer that specifically binds to the adapter sequence and a primer having a sequence specific to the sequence upstream of the target sequence in the target nucleic acid sequence, and a nucleic acid fragment containing the random sequence and the target sequence is amplified.
  • the amplified PCR product includes at least a random sequence and a target sequence.
  • the sequence of the PCR product is comprehensively determined by a next-generation sequencer using, for example, Illumina's Miseq. Since the relationship between the number of types of random sequences present at the end of the determined sequence and the number of target sequences (including target nucleic acids) in the sample follows a Poisson distribution, the number of types of random sequences includes the target sequences in the sample. It is possible to estimate the number of target nucleic acids.
  • the composition ratio obtained by quantitatively comparing the sequences of each target nucleic acid is as follows. Does not reflect the composition ratio of the number of target nucleic acids. This is due to the lack of quantification in PCR. Therefore, in order to perform quantitative analysis, a separate assay must be performed for each sequence. However, for example, hundreds to thousands of microbial species are detected per 1 ml of sample in marine sediments, so it is impossible to comprehensively quantify all these microbial species by the conventional method. It was.
  • the quantification method of one embodiment of the present invention it is possible to comprehensively quantify each sequence at the same time as decoding the nucleic acid sequence.
  • the number of types (variety) of random sequences incorporated in the resulting amplification product is determined only by the first-step single-stranded nucleic acid synthesis.
  • the PCR efficiency varies from sequence to sequence, so there may be differences in the amount of PCR products, but the variety of incorporated random sequences does not change.
  • the copy number of the target nucleic acid of the first template can be obtained by calculation if a sufficient amount of sequence is decoded by a next-generation sequencer.
  • a copy number of about 70 to 80% is calculated with respect to the total copy number of the two types of introduced target nucleic acids.
  • this is a very good value considering operational variations.
  • the mixing ratio of the two types of target nucleic acids can be accurately reproduced regardless of the mixing ratio and sequence specificity.
  • the quantitative method according to one embodiment of the present invention that can provide such a result has a high probability of having a great influence on the medical field in addition to academic fields such as ecology and biology.
  • FIG. 1 illustrates the quantification method of one embodiment of the present invention in a non-limiting and schematic manner.
  • a target that is a single-stranded nucleic acid containing the first sequence 11, the target sequence 12, and the second sequence 13 in the direction from the 3 ′ end to the 5 ′ end.
  • Nucleic acid 1 is used as a template.
  • the target nucleic acid is a double-stranded nucleic acid
  • the double-stranded nucleic acid is subjected to a denaturation reaction to obtain the target nucleic acid 1 as a single-stranded nucleic acid.
  • a first primer 2 including a specific sequence 23, a random sequence 22, and a sequence 21 complementary to the first sequence in the direction from the 5 'end to the 3' end is used.
  • a plurality of types are used according to the number of types of random sequences 22. That is, when the number of the random sequence 22 is 1,000, the number of the first primer 2 is 1,000 according to the type.
  • the first sequence 11 of the target nucleic acid 1 and the sequence 21 of the first primer 2 are hybridized.
  • the nucleic acid extension reaction the nucleic acid is extended in the 5 ′ ⁇ 3 ′ direction using target nucleic acid 1 as a template and starting from sequence 21 of first primer 2.
  • the first primer 2 that did not hybridize, the single-stranded portion of the target nucleic acid 1, and the nucleic acid when the target nucleic acid is double-stranded
  • the single strand of the specific sequence 23 the random sequence 22
  • the first sequence in the direction from the 5 ′ end to the 3 ′ end A first double-stranded nucleic acid 5 comprising a sequence 21 complementary to the sequence, a sequence 31 complementary to the target sequence, and a sequence 32 complementary to the second sequence is obtained (see (2) in FIG. 1).
  • PCR is performed using the second primer 3 including the second sequence 13 and the third primer 4 including the specific sequence 23, so that the second two A strand nucleic acid 6 is obtained (see (3) to (5) in FIG. 1).
  • the specific sequence 23, the random sequence 22 the sequence 21 complementary to the first sequence in the direction from the 5 ′ end to the 3 ′ end of the first double-stranded nucleic acid 5
  • the target sequence A nucleic acid extension reaction using the second primer 3 occurs using one strand comprising a sequence 31 complementary to the sequence and a sequence 32 complementary to the second sequence as a template (see (3) in FIG. 1).
  • a second double-stranded nucleic acid 6 is obtained (see (4) in FIG. 1).
  • the reaction proceeds with the second primer 3 and the third primer 4 using the second double-stranded nucleic acid 6 as a template (see (5) in FIG. 1), and as a result, the second double-stranded nucleic acid 6 amplifications are obtained.
  • the second double-stranded nucleic acid 6 obtained here becomes a plurality of types according to the number of types of random sequences 22.
  • the sequence of the obtained second double-stranded nucleic acid 6 is determined, and the number of combinations of the target sequence 12 and the random sequence 22 is measured based on the determined sequence, whereby the above formula (1) To quantify the target nucleic acid (see (6) in FIG. 1).
  • the target nucleic acid is not particularly limited, and examples thereof include those known as normal nucleic acids such as DNA and RNA, preferably nucleic acids derived from one or more organisms, more preferably one or Nucleic acids derived from two or more species of eubacteria, archaea, viruses, eukaryotes, protists, plants, animals or insects.
  • the target nucleic acid is a nucleic acid comprising a variable region that is a variety of species for each species and a conserved region that is common or well conserved between species downstream and upstream of the variable region. Is preferred.
  • the variable region corresponds to the target sequence
  • the conserved region downstream (3 ′ end side) of the variable region corresponds to the first region
  • the conserved region upstream (5 ′ end side) of the variable region is This corresponds to the second region.
  • the nucleic acid containing the variable region and the conserved region downstream and upstream of the variable region is not particularly limited, and examples thereof include a nucleic acid containing a part or all of a gene such as an rRNA gene and other functional genes.
  • the functional gene is not particularly limited.
  • sequencing and quantification of functional genes based on PCR is a common technical knowledge.
  • a functional gene of each target species existing in an existing database and its upstream and downstream sequences are extracted, aligned, and a common sequence (conserved region) that can be used as a primer target for PCR is found. it can.
  • the sequence of an unknown functional gene can be obtained from environmental DNA by such a method.
  • eukaryotes have many non-gene regions
  • a common sequence upstream and downstream is often used as a primer.
  • Other methods include, for example, http: // todbdb. biosciencecedbc. The method described in jp / entry / stga_howto / 5 can be referred to.
  • the term “conserved region” in the present specification is not limited to a term corresponding to a variable region in an rRNA gene, and can be said to be a region containing a sequence common among species.
  • target nucleic acids include rRNA genes.
  • rRNA genes for 16S rRNA genes that are eubacterial and archaeal rRNA genes, any of the V1 to V9 regions (target sequences) that are variable regions of 16S rRNA genes ) And a conserved region (first sequence and second sequence) downstream and upstream of the region can be a target nucleic acid.
  • the number of bases of the first sequence, the target sequence and the second sequence in the target nucleic acid is not particularly limited.
  • the first sequence and the second sequence are each specifically hybridized with the first primer.
  • the number of bases is sufficient so long as it functions as a second primer and functions as a second primer, and is preferably about 10 to 50 bases.
  • the target nucleic acid may be a nucleic acid itself or a nucleic acid contained in a sample.
  • the target nucleic acid may be a nucleic acid in a sample such as water, soil, air, biological tissue, food, medicine, and cosmetics.
  • the number of target nucleic acids is not particularly limited as long as it is a number that can be quantified.
  • it is preferable that it exists in.
  • the random sequence is not particularly limited as long as the sequence is designed so that the base sequence is random. If the random sequence consists of four types of bases A (adenine), T (thymine), C (cytosine) and G (guanine), the type and number of target nucleic acids to be quantified and the ease of design In view of the above, it is preferable that the number of bases of the random sequence is any number from 4 to 20. Similarly, the number of types of random sequences is preferably any number from 10 2 to 10 15 .
  • the sequence of the specific sequence and the number of bases are not particularly limited. Considering that the third primer having a specific sequence has a function as a primer and ease of design, the specific sequence preferably has any number of bases of 10 to 50, and further includes a target nucleic acid sequence. More preferably, it consists of a non-complementary sequence.
  • sequence complementary to the first sequence is not particularly limited as long as it contains a number of bases sufficient to hybridize specifically to the first sequence.
  • step (1) of the quantification method of one embodiment of the present invention an annealing reaction, a nucleic acid extension reaction, and a nuclease reaction using a target nucleic acid as a template and a plurality of types of first primers according to the number of types of random sequences.
  • the number of types of the first primer may be the same as the number of types of random sequences, or may be more or less than the number of types of random sequences.
  • Step (1) of the quantification method of one embodiment of the present invention can be carried out by methods commonly used by those skilled in the art for annealing reaction, nucleic acid extension reaction and nuclease reaction.
  • the annealing reaction is not particularly limited.
  • the annealing reaction may be performed under conditions that allow the first primer and the target nucleic acid to hybridize regardless of the presence or absence of a heating reaction (denaturation reaction) in the previous stage. It can be said that the first primer and the target nucleic acid are placed in the reaction.
  • a denaturation reaction for example, a reaction in which the first primer and the target nucleic acid are heated at 90 ° C. to 100 ° C.
  • the annealing reaction is performed by rapidly cooling, for example, 50 ° C.
  • the reaction can be performed at about ⁇ 65 ° C. for several tens of seconds to several minutes.
  • the annealing reaction can be, for example, a reaction that is performed at about 30 ° C. to 65 ° C. for several tens of seconds to several minutes.
  • the nucleic acid extension reaction is not particularly limited, and can be, for example, a reaction performed using a nucleic acid synthase such as DNA polymerase at a temperature suitable for the enzyme activity of the nucleic acid synthase.
  • the nuclease reaction is not particularly limited, and can be, for example, a reaction performed using a nuclease such as exonuclease or endonuclease at a temperature suitable for the nuclease. After the nuclease reaction, it is preferable to deactivate the nuclease activity to such an extent that it does not affect the subsequent PCR by heating or the like.
  • one single strand is complementary to the specific sequence, random sequence, and first sequence in the direction from the 5 ′ end to the 3 ′ end.
  • a first double-stranded nucleic acid is obtained which comprises a typical sequence, a sequence complementary to the subject sequence and a sequence complementary to the second sequence.
  • the first double-stranded nucleic acid obtained in the step (1) is used as a template and the second primer containing the second sequence and the specific sequence are used. PCR is performed using 3 primers to obtain a second double stranded nucleic acid.
  • the second primer is not particularly limited as long as it contains the second sequence.
  • the second primer may contain the second sequence itself or another sequence in addition to the second sequence. Examples of other sequences include random sequences.
  • the base length of the second sequence in the second primer is such that the second primer can function as a primer that can specifically bind to a sequence complementary to the second sequence. There is no particular limitation.
  • the third primer is not particularly limited as long as it contains a specific sequence, and may include, for example, the specific sequence itself or other sequences in addition to the specific sequence.
  • the base length of the specific sequence in the third primer is not particularly limited as long as the third primer exhibits a function as a primer that can specifically bind to a sequence complementary to the specific sequence.
  • the conditions for PCR are not particularly limited, and considering the technical common knowledge in the art, the temperature at which a denaturation reaction for single-stranded double-stranded nucleic acid, an annealing reaction, and a nucleic acid synthesizing enzyme such as a DNA polymerase cause nucleic acid elongation reaction and The reaction can be carried out by appropriately setting the time and repeating these reactions for several tens of cycles.
  • the nucleic acid synthase used in PCR may be the same as or different from the enzyme used in the nucleic acid extension reaction in step (1).
  • the second double-stranded nucleic acid obtained by performing PCR in step (2) is a specific sequence, a random sequence, a sequence complementary to the first sequence in the direction from the 5 ′ end to the 3 ′ end.
  • One single strand comprising a sequence complementary to the subject sequence and a sequence complementary to the second sequence, and the second sequence, the subject sequence, the first in the direction from the 5 ′ end to the 3 ′ end.
  • a double-stranded nucleic acid consisting of the other single strand comprising a sequence complementary to a random sequence and a sequence complementary to a specific sequence.
  • step (3) in the quantification method of one embodiment of the present invention the sequence of the second double-stranded nucleic acid obtained in step (2) is determined.
  • the method for determining the sequence of the second double-stranded nucleic acid is not particularly limited, and for example, a sequencing technique in consideration of technical common sense in the art can be applied.
  • a sequencing technique for example, a next-generation sequencing technology capable of simultaneously decoding a large number of sequences can be applied.
  • a specific sequencing technique there can be mentioned a technique of decoding a DNA sequence to which a sequence index is added, as described in the examples described later, with a DNA sequencer miseq (Illumina).
  • the nucleic acid whose sequence is to be determined can be one of the second double-stranded nucleic acids, the other single-stranded nucleic acid, or both of these nucleic acids.
  • step (4) in the quantification method of one embodiment of the present invention, by measuring the number of combinations of the target sequence and random sequence based on the sequence determined in step (3), Quantify the target nucleic acid.
  • the method for measuring the number of combinations of the target sequence and the random sequence is not particularly limited. For example, it is calculated by counting the number of types of random sequences for each sequence derived from the target organism based on the determined sequence information. can do.
  • the number of target nucleic acids can be calculated from the number of combinations of the target sequence and random sequence and the number of random sequences according to the above formula (1).
  • step (3) after step (3) and before carrying out step (4), normal PCR purification such as subjecting the PCR product obtained in step (3) to agarose gel electrophoresis to cut out the target band
  • step (4) normal PCR purification such as subjecting the PCR product obtained in step (3) to agarose gel electrophoresis to cut out the target band
  • the second double-stranded nucleic acid may be purified using means.
  • Another specific aspect of the present invention is a method for amplifying a double-stranded nucleic acid comprising a target sequence and a random sequence of a target nucleic acid (hereinafter referred to as one aspect of the present invention), comprising at least the following steps (1) to (2): Is called the amplification method.).
  • the single strand obtained from a single-stranded nucleic acid or a double-stranded nucleic acid containing the first sequence, the target sequence and the second sequence in the direction from the 3 ′ end to the 5 ′ end of the target nucleic acid A specific sequence, a random sequence, and a sequence complementary to the first sequence in the direction from the 5 ′ end to the 3 ′ end, and a plurality of types according to the number of types of random sequences Using the first primer, an annealing reaction, a nucleic acid extension reaction, and a nuclease reaction are performed, so that one single strand is oriented in a direction from the 5 ′ end side to the 3 ′ end side.
  • Step (2) for obtaining a first double-stranded nucleic acid comprising a sequence complementary to the sequence of 1, a sequence complementary to the target sequence and a sequence complementary to the second sequence.
  • a second primer containing a second sequence and a specific sequence With no third primer, PCR was carried out to obtain a second double-stranded nucleic acid
  • Steps (1) and (2) in the amplification method of one embodiment of the present invention can be carried out with reference to steps (1) and (2) of the quantification method of one embodiment of the present invention described above.
  • kits for quantifying a target nucleic acid that is a double-stranded nucleic acid hereinafter referred to as a kit according to one embodiment of the present invention
  • the kit includes at least the following components (1) to (4).
  • a specific sequence, a random sequence, and a sequence complementary to the first sequence in the direction from the 5 ′ end side to the 3 ′ end side, and a plurality of types of first sequences depending on the number of types of random sequences (2) Nuclease (3) Second primer containing the second sequence (4) Third primer containing the specific sequence
  • the method for obtaining the first primer, the second primer, and the third primer is not particularly limited as long as the first primer, the second primer, and the third primer each include a specified sequence.
  • it can be synthesized by modifying a commercially available primer containing a sequence complementary to the first sequence and sequentially adding a random sequence and a specific sequence to the 5 'end side.
  • the first primer is a primer having the same number of types as the number of types of random sequences, which is greater or less than the number of types of random sequences, or the number of types of random sequences.
  • the second primer and the third primer may be of one type or a plurality of types as long as they include the second sequence and the specific sequence, respectively.
  • the nuclease is not particularly limited as long as it is an enzyme having an activity capable of degrading a single-stranded nucleic acid, and may be either or both of an endonuclease and an exonuclease.
  • the method for obtaining the nuclease is not particularly limited, and for example, a commercially available one can be used.
  • the kit of one embodiment of the present invention may contain other components such as a buffer solution and a nucleic acid synthase in addition to the components (1) to (4).
  • the kit of one embodiment of the present invention can be used for carrying out the quantification method or amplification method of one embodiment of the present invention.
  • Target DNA genomic DNA of Methanocadococcus jannaschii and Streptomyces avermitilis (provided by RIKEN BRC) was used. Sample DNA was prepared by mixing each of these two types of genomic DNAs in the proportions shown in Table 1. The DNA concentration in the sample DNA was adjusted to 10 4 copies / ⁇ l.
  • 515F_mod primer (see SEQ ID NO: 1 in Table 2) modified with the 515F primer and the 806R primer commonly used to amplify the V4 region of the 16S rRNA gene of primers Eubacteria (bacteria) and Archaea (Archia)
  • the 806R_mod primer (see SEQ ID NO: 2 in Table 2) was used.
  • the underlined sequence indicates the adapter sequence for Illumina sequencer; N indicates A, T, G or C; and the lowercase sequence indicates the sequence that binds to the template DNA.
  • a Primer-F primer (see SEQ ID NO: 3 in Table 2) having a partial sequence of the 515F_mod primer was used.
  • 65,536 types of primers were used according to the number of types (65,536 types) of random sequences (NNNNNNNN), respectively.
  • PCR was performed using the 806R_mod primer and the Primer-F primer using the SPE product obtained by the single primer extension described in 3 above as a template.
  • a PCR reaction solution containing 5 ⁇ l of the SPE product shown in Table 4 was prepared and subjected to initial denaturation at 98 ° C. for 2 minutes, followed by reaction at 98 ° C. for 10 seconds, 55 ° C. for 15 seconds and 68 ° C. for 30 seconds.
  • PCR was performed by 40 cycles.
  • the obtained PCR product was subjected to agarose gel electrophoresis, and DNA was purified by cutting out the target band.
  • a sequence index was added to the purified DNA using the nextera index kit (Illumina). Subsequently, the DNA sequence to which the index was added was decoded using a DNA sequencer miseq (Illumina).
  • N number of copies of target DNA sequence
  • C number of types of labels (65,536 in this experiment)
  • H number of types of measured labels
  • Table 5 summarizes the results of calculating the evaluation target DNA copy number.
  • the copy number of the sequence of the target DNA introduced into the sequencing reaction was 4,761 copies, while the copy number obtained as a result of the experiment was 3,333-3,923 copies, slightly less than that. .
  • the expected value is the amount of DNA calculated from the OD value measured with an absorptiometer, and may differ from the amount of DNA actually used in the reaction.
  • Example 2. Evaluation of abundance of each microorganism in complex system [Example 2. Evaluation of abundance of each microorganism in complex system] 1.
  • Target DNA In order to compare and evaluate the quantification results by the number of sequences in the library after sequencing and the quantification results by the number of types of random sequences, genomic DNA of Methanocadococcus jannaschii and Halomonas elongata ( Halomonas elongata ) (Provided by RIKEN BRC) was used. The ratio of M.I. jannaschii and H.C. A mixture of elongata genomic DNA was used as sample DNA. The DNA concentration in the sample DNA was adjusted to 10 4 copies / ⁇ l.
  • a genomic DNA of Sulfolobus tokodaii (provided by RIKEN BRC) was serially diluted and used as sample DNA.
  • the DNA concentration in the sample DNA was adjusted to 10 4 copies / ⁇ l.
  • Environmental DNA DNA was extracted from the mud of the crater of Mt. Kanai, an active volcano in Oita Prefecture, and the hot water springing out from the crater using the PowerMax soil DNA isolation kit (MOBIO) and used as environmental DNA.
  • MOBIO PowerMax soil DNA isolation kit
  • PCR and Sequencing Template Synthesis PCR and DNA purification were carried out in the same manner as in “4. Synthesis of PCR and Sequencing Template” in Example 1.
  • a sequence index was added using an index addition reaction solution having the composition shown in Table 7. The reaction was subjected to initial denaturation at 95 ° C. for 3 minutes, followed by 8 cycles of 95 ° C. for 30 seconds, 55 ° C. for 30 seconds and 72 ° C. for 30 seconds, and finally an extension reaction at 72 ° C. for 5 minutes. Subsequently, the DNA sequence to which the index was added was decoded using a DNA sequencer miseq (Illumina).
  • Target DNA copy number calculation In the same manner as in “5. Target DNA copy number calculation” in Example 1, the obtained target DNA sequence data is processed by Mothur (http://www.mothur.org) and required. Thus, the sequences were sorted for each microorganism strain, the number of types of 8-base random sequences added to the most upstream of the 16S rRNA sequence was counted, and then the copy number of the target DNA was calculated.
  • Table 9 shows the results of comparison as described above. From Table 9, the ratio based on the number of types of random sequences was close to the theoretical value, whereas the ratio in the sequence library was M.P. Jannaschii tended to be small. The reason why such a tendency was observed is presumed to be due to the difference in the GC content of the 16S rRNA gene region between the microorganism species used this time. That is, since the GC content of MJ is 65% and the GC content of HE is 56%, it is presumed that the amplification efficiency of MJ 16S rRNA gene has decreased. In contrast, random tag quantification could be quantified regardless of the sequence specificity of the target gene. From these results, it was shown that quantification based on the number of types of random sequences can confirm the number of microorganisms present in the environment with high accuracy.
  • FIG. 4 shows a result of comparison between the number ratio and the number of bacteria quantified based on the number of types of random sequences.
  • the archaea / bacteria ratio when quantified based on the number of types of random sequences is close to the archaea / bacteria ratio measured by digital PCR compared to the archaea / bacteria ratio in the sequencing library.
  • quantification based on the number of types of random sequences can confirm the number of microorganisms present in the environment with high accuracy.
  • sequences listed in the sequence listing are as follows: [SEQ ID NO: 1] 515F_mod primer tcgtcggcagcgtcagatgtgtataagagacagnnnnnnntgycagcmgccgcggtaa [SEQ ID NO: 2] 806R_mod primer gtctcgtgggctcggagatgtgtataagagacagnnnnnnnggactachvgggtwtctaat [SEQ ID NO: 3] Primer-F primer tcgtcggcagcgtcagat
  • the target nucleic acid copy number can be quantified together with sequencing of the target nucleic acid simply and with high accuracy.
  • the method and kit of one embodiment of the present invention provide an analysis of the type and quantity of biological resources in an environment such as the ocean, an analysis of the type and quantity of bacterial flora in a living tissue such as the intestine, infectivity, and the like. It can be used in technical fields where it is required to grasp the type and number of organisms, such as exhaustive and quantitative analysis of non-infectious viruses and microbial limit testing of products such as foods and pharmaceuticals.

Abstract

本発明の目的は、ライゲーション反応を実施せずに、かつ、PCR増幅効率に起因する問題を解消して、標的核酸のシーケンシングと標的核酸の定量とを兼ね備えた方法を提供することにある。 上記目的は、(1)標的核酸の配列に特異的な配列並びにその上流にランダム配列及び既知配列を導入したプライマーを用いて、シングルプライマー伸長反応を実施することにより、ランダム配列と標的核酸の配列とを有する二本鎖核酸を得て、(2)得られた二本鎖核酸を鋳型として、既知配列に特異的なプライマー及び標的核酸の配列の一部を有するプライマーを用いてPCRを実施することによりランダム配列と標的核酸の配列とを有する二本鎖核酸の増幅物を得て、(3)得られた二本鎖核酸の増幅物を用いて、シーケンシングして標的核酸の配列と共にランダム配列を解読する方法により解決される。

Description

標的核酸の定量方法及びそのためのキット 関連出願の相互参照
本出願は、2015年11月18日出願の日本特願2015-225671号の優先権を主張し、その全記載は、ここに開示として援用される。
本発明は、保存領域に囲まれた対象配列を含む標的核酸を定量する方法及びそのためのキットに関する。
次世代シーケンシング技術の開発により、同時的に多数のシーケンシングが可能となったことから、遺伝子の網羅的解読が実用的になった。シーケンシングに際しては、通常、配列の検出が可能な程度に、標的となる遺伝子を含む核酸をPCRにより増幅する。
次世代シーケンシング技術を応用すれば、試料における標的核酸の相対量(割合)を定量することが理論上は可能である。しかし、実際には、シーケンシングにより得られるシーケンスライブラリ中の標的核酸の割合から、試料中の標的核酸のコピー数を推測することは困難である。これは、核酸のPCRによる増幅効率が、核酸の配列、GC含量、二次構造などによって相違するからである。そこで、通常は、シーケンシングとは別に、リアルタイムPCRなどにより、標的核酸を定量する方法がとられている。
このようなPCR増幅効率に起因する問題を解消して、標的核酸のシーケンシングと標的核酸の定量とを兼ね備えた方法としては、例えば、下記特許文献1及び非特許文献1(該文献の全記載はここに開示として援用される)には、標的核酸の末端に共通配列及び可変配列からなるアダプター配列をライゲーションしたものを鋳型として、該共通配列に相補的な配列を有するプライマーを用いてPCRを実施し、次いで増幅産物の配列を確認することにより、可変配列の種類及びその数を基に標的核酸のコピー数を算出する方法が記載されている。
米国特許出願公開第2011/0160078号明細書
Glenn K. Fu et al., PNAS, May 31, 2011, vol.108, no.22, pp.9026-9031
しかし、特許文献1及び非特許文献1に記載の方法は、標的核酸の末端にライゲーション反応により特定の配列を付加しているところ、ライゲーション反応を実施するためには、先立って制限酵素処理をすることにより、標的核酸の末端を突出末端としなければならない。そこで、標的核酸の配列によっては突出末端化が困難又は不可能であり、さらに制限酵素による切断効率によっては突出末端化の効率に影響を受けるという問題がある。
そこで、本発明が解決しようとする課題は、ライゲーション反応を実施せずに、かつ、PCR増幅効率に起因する問題を解消して、標的核酸のシーケンシングと標的核酸の定量とを兼ね備えた方法を提供することにある。
本発明者らは、上記課題を解決するために鋭意研究を積み重ねた結果、(1)標的核酸の配列に特異的な配列並びにその上流にランダム配列及び既知配列を導入したプライマーを用いて、シングルプライマー伸長反応を実施することにより、ランダム配列と標的核酸の配列とを有する二本鎖核酸を得て、(2)得られた二本鎖核酸を鋳型として、既知配列に特異的なプライマー及び標的核酸の配列の一部を有するプライマーを用いてPCRを実施することによりランダム配列と標的核酸の配列とを有する二本鎖核酸の増幅物を得て、(3)得られた二本鎖核酸の増幅物を用いて、シーケンシングを行い標的核酸の配列と共にランダム配列を解読する方法を創作することに成功した。さらに、本発明者らは、本方法によれば、標的核酸のシーケンシングと同時にランダム配列の多様性から標的核酸のコピー数を定量することが可能であることを見出した。
また、本方法は、従前のシーケンスライブラリ中の標的核酸の割合から試料中の標的核酸のコピー数を推測する方法に比べて精度が高く、かつ、2種類以上の標的核酸が複数含むように調製したモデル試料だけではなく、環境試料中の複数種類の標的核酸のコピー数を高精度に定量できることを見出した。本発明はこのような成功例や知見に基づいて完成するに至った発明である。
したがって、本発明の一態様によれば、下記工程(1)~(4)を含む、標的核酸の定量方法が提供される。
(1)標的核酸の3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は二本鎖核酸から得られる該一本鎖の核酸を鋳型として、5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーを用いて、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応を実施することにより、一方の一本鎖が5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む第1の二本鎖核酸を得る工程
(2)工程(1)で得られた第1の二本鎖核酸を鋳型として、第2の配列を含む第2のプライマー及び特定配列を含む第3のプライマーを用いて、PCRを実施して、第2の二本鎖核酸を得る工程
(3)工程(2)で得られた第2の二本鎖核酸の配列を決定する工程
(4)工程(3)で決定された配列に基づいて、対象配列及びランダム配列の組み合わせの数を測定することにより、下記数式(1)
Figure JPOXMLDOC01-appb-M000002
(1)
(式中、Nは標的核酸の数を表わし;Cはランダム配列の種類の数を表わし;及び、Hは測定された対象配列及びランダム配列の組み合わせの数を表わす)
により、標的核酸を定量する工程
本発明の別の一態様によれば、下記工程(1)~(2)を含む、標的核酸の対象配列及びランダム配列を含む二本鎖核酸の増幅方法が提供される。
(1)標的核酸の3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は二本鎖核酸から得られる該一本鎖の核酸を鋳型として、5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーを用いて、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応を実施することにより、一方の一本鎖が5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む第1の二本鎖核酸を得る工程
(2)工程(1)で得られた第1の二本鎖核酸を鋳型として、第2の配列を含む第2のプライマー及び特定配列を含む第3のプライマーを用いて、PCRを実施して、第2の二本鎖核酸を得る工程
好ましくは、本発明の一態様の方法において、前記標的核酸は、1種又は2種以上の生物に由来する核酸である。
好ましくは、本発明の一態様の方法において、前記標的核酸は、rRNA遺伝子の一部又は全部を含む核酸である。
好ましくは、本発明の一態様の方法において、前記対象配列はrRNA遺伝子の可変領域であり、かつ、前記第1の配列及び前記第2の配列はそれぞれ該領域の下流及び上流の保存領域である。
好ましくは、本発明の一態様の方法において、前記標的核酸は、水、土壌、空気、生体組織、食品、医薬品及び化粧品からなる群から選ばれる試料における核酸である。
好ましくは、本発明の一態様の方法において、前記標的核酸の数は、100~1,000,000のいずれかの数である。
好ましくは、本発明の一態様の方法において、前記ランダム配列は4~20のいずれかの塩基数を有するランダム配列であり;及び、前記ランダム配列の種類の数は10~1015のいずれかの数である。
好ましくは、本発明の一態様の方法において、前記特定配列は、10~50のいずれかの塩基数を有し、かつ、前記標的核酸の配列に非相補的な配列からなる特定配列である。
本発明の別の一態様によれば、3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は該一本鎖を含む二本鎖核酸である標的核酸を定量するためのキットであって、
5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーと、
ヌクレアーゼと、
第2の配列を含む第2のプライマーと、
特定配列を含む第3のプライマーと
を含む、前記キットが提供される。
好ましくは、本発明の一態様のキットにおいて、前記対象配列はrRNA遺伝子の可変領域であり、かつ、前記第1の配列及び前記第2の配列はそれぞれ該領域の下流及び上流の保存領域である。
本発明の一態様の方法によれば、PCR増幅効率に起因する問題を解消して、標的核酸のシーケンシングと共に、標的核酸のコピー数の高精度な定量を達成することができる。本発明の一態様のキットは、本発明の一態様の方法を実施するために、使用することができる。
図1は、本発明の一実施態様に係る標的核酸の定量方法の概略図である。 図2は、実施例の例1に記載の実験方法を模式化した図である。 図3は、実施例の例2に記載の定量値の直線性を示した図である。 図4は、実施例の例2に記載の複合系における定量結果を比較した図である。
以下、本発明の各態様の詳細について説明するが、本発明の技術的範囲は本項目の事項によってのみに限定されるものではなく、本発明はその目的を達成する限りにおいて種々の態様をとり得る。
本発明の具体的な一態様は、下記工程(1)~(4)を少なくとも含む、標的核酸の定量方法(以下、本発明の一態様の定量方法とよぶ。)である。
(1)標的核酸である3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は二本鎖核酸から得られる該一本鎖の核酸を鋳型として、5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーを用いて、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応を実施することにより、一方の一本鎖が5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む第1の二本鎖核酸を得る工程
(2)工程(1)で得られた第1の二本鎖核酸を鋳型として、第2の配列を含む第2のプライマー及び特定配列を含む第3のプライマーを用いて、PCRを実施して、第2の二本鎖核酸を得る工程
(3)工程(2)で得られた第2の二本鎖核酸の配列を決定する工程
(4)工程(3)で決定された配列に基づいて、対象配列及びランダム配列の組み合わせの数を測定することにより、下記数式(1)
Figure JPOXMLDOC01-appb-M000003
(1)
(式中、Nは標的核酸の数を表わし;Cはランダム配列の種類の数を表わし;及び、Hは測定された対象配列及びランダム配列の組み合わせの数を表わす)
により、標的核酸を定量する工程
本発明の一態様の定量方法は、標的核酸の配列解読及び解読により得られた各々の配列の定量を網羅的に行うことを可能とし、その概要は以下のとおりである。
試料における核酸の種類を特定するような対象配列を含む一本鎖化したDNAやRNAなどの標的核酸を鋳型として、標的核酸の配列中の対象配列の下流の配列に特異的な配列並びにその上流にランダム配列及び既知のアダプター配列を有するプライマーを用いて、DNA合成酵素により、標的核酸に相補的な一本鎖核酸を合成する。合成した一本鎖核酸は上流から、アダプター配列、ランダム配列及び対象配列に相補的な配列の順となっている。一本鎖核酸合成の後、余剰プライマーはエキソヌクレアーゼIなどの一本鎖核酸に特異的な酵素で分解及び除去する。
次にアダプター配列に特異的に結合するプライマー及び標的核酸の配列中の対象配列の上流の配列に特異的な配列を有するプライマーを用いてPCRを行い、ランダム配列及び対象配列を含む核酸断片を増幅する。増幅されたPCR産物には、少なくともランダム配列及び対象配列が含まれる。このPCR産物の配列を、例えば、イルミナ社のMiseqなどを用いた次世代シーケンサーにより網羅的に決定する。決定した配列の末端に存在するランダム配列の種類数と試料中の対象配列(を含む標的核酸)の数との関係はポアソン分布に従うことから、ランダム配列の種類数から試料中の対象配列を含む標的核酸の数を推定することが可能である。
従前の方法として、試料中にある2種類以上の標的核酸をPCRに供し、次いでシーケンシングすることにより得られたシーケンスライブラリにおいて、各標的核酸の配列を数量的に比較した構成比は、試料中の標的核酸の数の構成比を反映していない。これはPCRに定量性がないことに起因する。そこで、定量的な解析を行うためには、各々の配列について別々のアッセイを行わなければいけない。しかし、例えば、海洋堆積物では1サンプル1mlあたりに数百~数千の微生物種が検出されることから、これら全ての微生物種を網羅的に定量することは、従前の方法では不可能であった。
それに対して、本発明の一態様の定量方法では、核酸配列の解読と同時に、各々の配列の定量を高精度で網羅的に行うことが可能である。
すなわち、本発明の一態様の定量方法では、結果として得られる増幅産物に組み込まれるランダム配列の種類数(バラエティー)は最初のステップの一本鎖核酸合成によってのみ決まる。後段の20~40サイクルのPCRでは、配列毎にPCR効率が変わるのでPCR産物量に相違がある可能性はあるが、組み込まれたランダム配列のバラエティーは変化しない。
したがって、ランダム配列のバラエティーは確率論的に決定されるので、次世代シーケンサーで十分な量のシーケンスを解読すれば、最初の鋳型の標的核酸のコピー数が計算によって求めることができる。
このことは後述する実施例によって実証されており、例えば、本発明の一態様の定量方法により、導入した2種類の標的核酸の総コピー数に対して70~80%程度のコピー数が算出されるが、これは操作上のばらつきなどを考慮すると非常に優秀な値である。また、2種類の標的核酸の混合比については、混合比率や配列特異性によらずに、精度よく再現できている。このような結果が得られる本発明の一態様の定量方法は、生態学や生物学などの学術分野に加えて、医学分野に及ぼす影響は大きい蓋然性がある。
以下では、本発明の一態様の定量方法を、本発明の一態様の定量方法を非限定的かつ模式的に表した図1を参照して説明する。
図1の(1)に記載があるとおり、3’末端側から5’末端側への方向に第1の配列11、対象配列12及び第2の配列13を含む一本鎖の核酸である標的核酸1を鋳型とする。ここで、標的核酸が二本鎖の核酸である場合は、該二本鎖の核酸を変性反応に供して、一本鎖の核酸とした標的核酸1を得る。
標的核酸1に対して、5’末端側から3’末端側への方向に特定配列23、ランダム配列22及び第1の配列に相補的な配列21を含む第1のプライマー2を用いる。第1のプライマー2としては、ランダム配列22の種類の数に応じて複数種類のものを用いる。すなわち、ランダム配列22の種類が1,000種類である場合は、その種類に応じて第1のプライマー2の種類は1,000種類となる。
標的核酸1及び第1のプライマー2の存在下でアニーリング反応に供することにより、標的核酸1の第1の配列11及び第1のプライマー2の配列21がハイブリダイズする。次いで、標的核酸1及び第1のプライマー2のハイブリッドを核酸伸長反応に供することにより、標的核酸1を鋳型として、第1のプライマー2の配列21を起点として5’→3’方向に核酸が伸長する。次いで、得られた核酸伸長反応物をヌクレアーゼ反応に供することにより、ハイブリダイズしなかった余剰の第1のプライマー2、標的核酸1の一本鎖部分、標的核酸が二本鎖である場合に核酸伸長反応において鋳型とならなかった他方の一本鎖などを消化することにより、一方の一本鎖が5’末端側から3’末端側への方向に特定配列23、ランダム配列22、第1の配列に相補的な配列21、対象配列に相補的な配列31及び第2の配列に相補的な配列32を含む第1の二本鎖核酸5を得る(図1の(2)を参照)。
次いで、前記第1の二本鎖核酸5を鋳型として、第2の配列13を含む第2のプライマー3及び特定配列23を含む第3のプライマー4によるPCRを実施して、第2の二本鎖核酸6を得る(図1の(3)~(5)を参照)。このPCRでは、まず第1の二本鎖核酸5のうちの5’末端側から3’末端側への方向に特定配列23、ランダム配列22、第1の配列に相補的な配列21、対象配列に相補的な配列31及び第2の配列に相補的な配列32を含む一方の一本鎖を鋳型として、第2のプライマー3を用いた核酸伸長反応が起こり(図1の(3)を参照)、結果として第2の二本鎖核酸6が得られる(図1の(4)を参照)。次いで、第2の二本鎖核酸6を鋳型として、第2のプライマー3及び第3のプライマー4によって反応が進行し(図1の(5)を参照)、結果として第2の二本鎖核酸6の増幅物が得られる。ここで得られる第2の二本鎖核酸6は、ランダム配列22の種類の数に応じて、複数種類になる。
次いで、得られた第2の二本鎖核酸6の配列を決定し、さらに決定された配列に基づいて、対象配列12及びランダム配列22の組み合わせの数を測定することにより、上記数式(1)により、標的核酸を定量する(図1の(6)を参照)。
標的核酸は特に限定されず、例えば、DNA、RNAなどの通常核酸として知られているものが挙げられ、好ましくは1種又は2種以上の生物に由来する核酸であり、より好ましくは1種又は2種以上の真正細菌、古細菌、ウイルス、真核生物、原生生物、植物、動物又は昆虫に由来する核酸である。
標的核酸は、生物種ごとにバラエティーのある領域である可変領域と、該可変領域の下流及び上流に生物種間で共通する、又はよく保存された領域である保存領域とを含む核酸であることが好ましい。この場合、可変領域は対象配列に相当し、可変領域の下流(3’末端側)の保存領域は第1の領域に相当し、かつ、可変領域の上流(5’末端側)の保存領域は第2の領域に相当する。可変領域と可変領域の下流及び上流の保存領域とを含む核酸は特に限定されないが、例えば、rRNA遺伝子やその他の機能遺伝子などの遺伝子の一部又は全部を含む核酸を挙げることができる。
機能遺伝子は特に限定されない。当業界において、機能遺伝子をPCRに基づいてシーケンシング及び定量することは技術常識としてよくなされている。例えば、既存のデータベース上に存在するターゲットとなる各生物種の機能遺伝子並びにその上流及び下流の配列を取り出し、アライメントし、PCRで使用するプライマーのターゲットとし得る共通配列(保存領域)を見出すことができる。多くの機能遺伝子には保存領域があるので、このような方法で未知の機能遺伝子の配列(ただし、機能は既知)を環境DNAから取得することができる。例えば、真核生物の場合は非遺伝子領域が多いことから、上流及び下流の共通配列をプライマーとして使うことが多い。その他の方法としては、例えば、http://togodb.biosciencedbc.jp/entry/stga_howto/5などに記載の方法を参照できる。
なお、本明細書における「保存領域」との用語は、rRNA遺伝子における可変領域に対応する用語に限定されるものではなく、生物種間で共通する配列を含む領域ということができる。
標的核酸の具体例としてはrRNA遺伝子が挙げられ、例えば真正細菌及び古細菌のrRNA遺伝子である16S rRNA遺伝子については、16S rRNA遺伝子の可変領域であるV1~V9領域のいずれかの領域(対象配列)及び該領域の下流及び上流の保存領域(第1の配列及び第2の配列)を含む核酸を標的核酸とすることができる。
標的核酸における第1の配列、対象配列及び第2の配列の塩基数については特に限定されず、例えば、第1の配列及び第2の配列であれば、それぞれ第1のプライマーと特異的にハイブリダイズする程度及び第2のプライマーとして機能する程度の塩基数であればよく、好ましくは10~50塩基程度である。
標的核酸は核酸そのものでも試料中に含まれる核酸でもよく、例えば、水、土壌、空気、生体組織、食品、医薬品、化粧品などの試料における核酸であってもよい。標的核酸が試料中に含まれる核酸である場合は、当業界の技術常識を勘案して、事前に試料中から核酸を抽出することが好ましい。
標的核酸の数は定量できる程度の数であれば特に限定されず、例えば、本発明の一態様の定量方法の感度や検出下限及び上限を考慮すれば、100~1,000,000の範囲内にあることが好ましい。
ランダム配列は塩基の並びがランダムになるように設計された配列であれば特に限定されない。ランダム配列がA(アデニン)、T(チミン)、C(シトシン)及びG(グアニン)の4種類の塩基からなるものである場合は、定量しようとする標的核酸の種類や数及び設計の容易性を考慮すれば、ランダム配列の塩基数は4~20のいずれかの数であることが好ましい。同様に、ランダム配列の種類の数は10~1015のいずれかの数であることが好ましい。
特定配列の配列や塩基数は特に限定されない。特定配列を有する第3のプライマーがプライマーとしての機能を有することや設計の容易性を考慮すれば、特定配列は10~50のいずれかの塩基数であることが好ましく、さらに標的核酸の配列に非相補的な配列からなることがより好ましい。
第1の配列に相補的な配列は、第1の配列に特異的にハイブリダイズする程度の塩基数を含むものであれば特に限定されない。
本発明の一態様の定量方法の工程(1)では、標的核酸を鋳型として、ランダム配列の種類の数に応じて複数種類の第1のプライマーを用いて、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応を実施する。第1のプライマーの種類の数は、ランダム配列の種類の数と同一であっても、ランダム配列の種類の数よりも多くても、又は少なくてもよい。
本発明の一態様の定量方法の工程(1)は、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応は当業者によって通常用いられている方法によって実施され得る。本発明の一態様の定量方法において、アニーリング反応は特に限定されないが、例えば、前段における加熱反応(変性反応)の有無に関係なく、第1のプライマーと標的核酸とがハイブリダイズするような条件下に第1のプライマー及び標的核酸をおく反応ということができる。前段に変性反応(例えば、第1のプライマー及び標的核酸を90℃~100℃で数十秒~数分間に加熱する反応)がある場合は、アニーリング反応は、例えば、急速に冷却して50℃~65℃程度に数十秒間~数分間おく反応であることができる。前段に変性反応がない場合は、アニーリング反応は、例えば、30℃~65℃程度に数十秒間~数分間おく反応であることができる。
核酸伸長反応は特に限定されず、例えば、DNAポリメラーゼなどの核酸合成酵素を用い、該核酸合成酵素の酵素活性に適した温度で実施する反応をいうことができる。ヌクレアーゼ反応は特に限定されず、例えば、エキソヌクレアーゼやエンドヌクレアーゼなどのヌクレアーゼを用い、該ヌクレアーゼに適した温度で実施する反応をいうことができる。ヌクレアーゼ反応後は、加熱するなどして、後段のPCRに影響しない程度にヌクレアーゼの活性を失活させることが好ましい。
本発明の一態様の定量方法の工程(1)を実施することによって、一方の一本鎖が5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む第1の二本鎖核酸が得られる。
本発明の一態様の定量方法の工程(2)では、工程(1)で得られた第1の二本鎖核酸を鋳型として、第2の配列を含む第2のプライマー及び特定配列を含む第3のプライマーを用いて、PCRを実施して、第2の二本鎖核酸を得る。
第2のプライマーは第2の配列を含む限り特に限定されず、例えば、第2の配列それ自体又は第2の配列に加えて他の配列を含むものであり得る。他の配列としては、例えば、ランダム配列を挙げることができる。第2のプライマーにおける第2の配列の塩基長は、第2のプライマーが第2の配列と相補的な配列と特異的に結合し得るというプライマーとしての機能を発揮する程度の長さであれば特に限定されない。
第3のプライマーは特定配列を含む限り特に限定されず、例えば、特定配列それ自体又は特定配列に加えて他の配列を含むものであり得る。第3のプライマーにおける特定配列の塩基長は、第3のプライマーが特定配列と相補的な配列と特異的に結合し得るというプライマーとしての機能を発揮する程度の長さであれば特に限定されない。
PCRの条件は特に限定されず、当業界における技術常識を勘案して、二本鎖核酸を一本鎖化する変性反応、アニーリング反応及びDNAポリメラーゼなどの核酸合成酵素による核酸伸長反応が生じる温度及び時間を適宜設定し、これらの反応を数十サイクル繰り返すことにより実施することができる。PCRで使用する核酸合成酵素は、工程(1)における核酸伸長反応で用いる酵素と同一のものでも、それとは異なるものでも、どちらでもよい。
工程(2)においてPCRを実施することにより得られる第2の二本鎖核酸は、5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む一方の一本鎖と、5’末端側から3’末端側への方向に第2の配列、対象配列、第1の配列、ランダム配列に相補的な配列及び特定配列に相補的な配列含む他方の一本鎖からなる二本鎖の核酸である。
本発明の一態様の定量方法における工程(3)では、工程(2)で得られた第2の二本鎖核酸の配列を決定する。第2の二本鎖核酸の配列を決定する方法は特に限定されず、例えば、当業界の技術常識を勘案したシーケシング技術を適用できる。シーケシング技術としては、例えば、同時的に多数の配列を解読することができる次世代型シーケシング技術を適用することができる。具体的なシーケシング技術としては、後述する実施例に記載があるような、シーケンス用のインデックスを付加したDNAの配列を、DNAシーケンサーmiseq(Illumina社)で解読する技術を挙げることができる。配列を決定する核酸は、第2の二本鎖核酸のうちの一方の一本鎖、他方の一本鎖又はこれらの両鎖の核酸とすることができる。
本発明の一態様の定量方法における工程(4)では、工程(3)で決定された配列に基づいて、対象配列及びランダム配列の組み合わせの数を測定することにより、上記数式(1)により、標的核酸を定量する。
対象配列及びランダム配列の組み合わせの数を測定する方法は特に限定されず、例えば、決定された配列情報に基づいて、例えば対象生物由来の配列ごとにランダム配列の種類の数を計上することにより算出することができる。
標的核酸の数は、上記数式(1)に従って、対象配列及びランダム配列の組み合わせの数とランダム配列の数とから算出できる。
本発明の一態様の定量方法では、本発明の課題を解決し得る限り、上記した工程の前段若しくは後段又は工程中に、種々の工程や操作を加入することができる。例えば、工程(3)の後、工程(4)を実施する前に、工程(3)によって得られたPCR産物を、アガロースゲル電気泳動に供して目的のバンドを切り出すことなどの通常のDNA精製手段を利用して、第2の二本鎖核酸を精製してもよい。
本発明の具体的な別の一態様は、下記工程(1)~(2)を少なくとも含む、標的核酸の対象配列及びランダム配列を含む二本鎖核酸の増幅方法(以下、本発明の一態様の増幅方法とよぶ。)である。
(1)標的核酸の3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は二本鎖核酸から得られる該一本鎖の核酸を鋳型として、5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーを用いて、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応を実施することにより、一方の一本鎖が5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む第1の二本鎖核酸を得る工程
(2)工程(1)で得られた第1の二本鎖核酸を鋳型として、第2の配列を含む第2のプライマー及び特定配列を含む第3のプライマーを用いて、PCRを実施して、第2の二本鎖核酸を得る工程
本発明の一態様の増幅方法における工程(1)及び(2)は、上記した本発明の一態様の定量方法の工程(1)及び(2)を参照して実施することができる。
本発明の具体的な別の一態様は、3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は該一本鎖を含む二本鎖核酸である標的核酸を定量するためのキット(以下、本発明の一態様のキットとよぶ。)であり、該キットは以下の成分(1)~(4)を少なくとも含む。
(1)5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマー
(2)ヌクレアーゼ
(3)第2の配列を含む第2のプライマー
(4)特定配列を含む第3のプライマー
第1のプライマー、第2のプライマー及び第3のプライマーは、それぞれ特定されている配列を含むものであれば、その入手方法については特に限定されない。例えば、第1の配列に相補的な配列を含む市販されているプライマーを修飾して、5’末端側にランダム配列及び特定配列を順次付加することにより合成することができる。
第1のプライマーは、ランダム配列の種類の数よりも多い若しくは少ない、又はランダム配列の種類の数と同一の種類数のプライマーである。第2のプライマー及び第3のプライマーは、それぞれ、第2の配列及び特定配列を含む限り、一種類又は複数種類であり得る。
ヌクレアーゼは、一本鎖核酸を分解することができる活性を有する酵素であれば特に限定されず、エンドヌクレアーゼ及びエキソヌクレアーゼのいずれか又は両方であり得る。ヌクレアーゼの入手方法は特に限定されず、例えば、市販されているものを用いることができる。
本発明の一態様のキットは、上記成分(1)~(4)の他に、緩衝液や核酸合成酵素などの他の成分を含んでもよい。本発明の一態様のキットは、本発明の一態様の定量方法や増幅方法を実施するために使用することができる。
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の課題を解決し得る限り、本発明は種々の態様をとることができる。
[例1.2種の微生物を用いた各微生物の存在量評価]
1.標的DNA
標的DNAとして、メタノカルドコックス・ヤンナスキイ(Methanocaldococcus jannaschii)及びストレプトマイセス・アベルミティリス(Streptomyces avermitilis)のゲノムDNA(RIKEN BRCから提供)を用いた。これら2種のゲノムDNAのそれぞれを、表1の割合で混合したものをサンプルDNAとした。サンプルDNAにおけるDNA濃度は10コピー/μlとなるように調製した。
Figure JPOXMLDOC01-appb-T000004
2.プライマー
真正細菌(バクテリア)及び古細菌(アーキア)の16S rRNA遺伝子のV4領域を増幅するために通常使用されている515Fプライマー及び806Rプライマーを修飾した515F_modプライマー(表2の配列番号1を参照)及び806R_modプライマー(表2の配列番号2を参照)を用いた。なお、表2中において、下線部の配列はIllumina社のシーケンサー用のアダプター配列を示し;NはA、T、G又はCを示し;及び、小文字の配列は鋳型DNAに結合する配列をそれぞれ示す。また、515F_modプライマーの一部の配列を有するPrimer-Fプライマー(表2の配列番号3を参照)を用いた。515F_modプライマー及び806R_modプライマーは、ランダム配列(NNNNNNNN)の種類数(65,536種類)に応じて、それぞれ65,536種類のプライマーを用いた。
Figure JPOXMLDOC01-appb-T000005
3.シングルプライマー伸長(Single Primer Extension(SPE);図2の手順1を参照)
まず、515F_modプライマー(表2;配列番号1)を用いて、16S rRNA遺伝子の相補鎖の合成反応を行った。すなわち、表3に示す組成の各サンプルDNAを含むシングルプライマー伸長反応液を調製し、98℃で2分、55℃で30秒及び68℃で10分の反応を1サイクル行うことにより、SPE産物を得た。次いで、反応後の溶液に10~20Uのエキソヌクレアーゼ I(タカラバイオ社) 1μlを加えて全量を21μlとし、37℃で120分間インキュベーションすることにより、反応に用いられなかった余剰プライマーを消化した。次いで、エキソヌクレアーゼ Iを80℃で30分間のインキュベーションにより失活させた。
Figure JPOXMLDOC01-appb-T000006
4.PCR及びシーケンシングテンプレートの合成(図2の手順2を参照)
上記3のシングルプライマー伸長によって得られたSPE産物を鋳型として、806R_modプライマー及びPrimer-Fプライマーを用いて、PCRを実施した。すなわち、表4に示すSPE産物 5μlを含むPCR反応液を調製し、初期変性を98℃で2分間行ったのち、98℃で10秒、55℃で15秒及び68℃で30秒の反応を40サイクルすることにより、PCRを実施した。得られたPCR産物をアガロースゲル電気泳動に供し、目的のバンドを切り出すことによりDNAを精製した。精製DNAに対し、nextera index kit(Illumina社)を用いてシーケンス用のインデックスを付加した。次いで、インデックスを付加したDNAの配列を、DNAシーケンサーmiseq(Illumina社)を用いて解読した。
Figure JPOXMLDOC01-appb-T000007
5.標的DNAコピー数の算出
解読した配列のデータをMothur(http://www.mothur.org)により処理し、M.jannaschii及びS.avermitilisに分類し、16S rRNA配列の最上流に付加されている8塩基のランダム配列の種類数を計数した。標的DNAのコピー数に対して導入したランダム配列の種類数(本実験例の場合は4=65,536種類)が十分に多い場合、ランダム配列の種類数は、ポアソン分布に従うと考えられることから、ランダム配列の種類数から標的DNAのコピー数を下記の式により求めた。
Figure JPOXMLDOC01-appb-M000008
(N=標的DNA配列のコピー数、C=ラベルの種類数(本実験では65,536)、H=計測されたラベルの種類数)
6.評価
標的DNAコピー数を算出した結果をまとめたものを表5に示す。シーケンス反応に導入した標的DNAの配列のコピー数は4,761コピーであるのに対し、実験の結果として得られたコピー数はそれよりも僅かに少ない3,333~3,923コピーであった。ただし、期待値は、吸光光度計により測定されたOD値から算出したDNA量であり、実際に反応に用いられたDNA量とは相違する可能性がある。また、M.jannaschii及びS.avermitilisの比率に関してはほぼ期待値どおりとなったことから、本方法により複合微生物系における個々の微生物を正しく定量可能であることが示された。
Figure JPOXMLDOC01-appb-T000009
[例2.複合系における各微生物の存在量評価]
1.標的DNA
シーケンシング後のライブラリ中の配列の数による定量結果とランダム配列の種類数による定量結果とを比較評価するために、メタノカルドコックス・ヤンナスキイ(Methanocaldococcus jannaschii)及びハロモナス・エロンガタ(Halomonas elongata)のゲノムDNA(RIKEN BRCから提供)を用いた。表6の割合でM.jannaschii及びH.elongataのゲノムDNAを混合したものをサンプルDNAとして用いた。サンプルDNAにおけるDNA濃度は10コピー/μlとなるように調製した。
また、定量値の直線性を確認するために、スルフォロブス・トーコーダイ(Sulfolobus tokodaii)のゲノムDNA(RIKEN BRCから提供)を段階希釈して、サンプルDNAとして用いた。サンプルDNAにおけるDNA濃度は10コピー/μlとなるように調製した。
Figure JPOXMLDOC01-appb-T000010
2.環境DNA
大分県由布市の活火山である伽藍岳の火口の泥及びその近辺から湧出する熱水からPowerMax soil DNA isolateon kit(MOBIO社)を用いてDNAを抽出し、これを環境DNAとした。
3.シングルプライマー伸長(SPE)
例1の「3.シングルプライマー伸長」と同様にして、シングルプライマー伸長反応を実施した。
4.PCR及びシーケンシングテンプレートの合成
例1の「4.PCR及びシーケンシングテンプレートの合成」と同様にして、PCR及びDNAの精製を実施した。精製したDNAを用いて、表7に示す組成のインデックス付加反応液を用いてシーケンス用のインデックスを付加した。反応は95℃で3分の初期変性後、95℃で30秒、55℃で30秒及び72℃で30秒を8サイクル行い、最後に伸長反応を72℃で5分間行った。次いで、インデックスを付加したDNAの配列を、DNAシーケンサーmiseq(Illumina社)を用いて解読した。
Figure JPOXMLDOC01-appb-T000011
5.標的DNAコピー数の算出
例1の「5.標的DNAコピー数の算出」と同様にして、得られた標的DNAの配列データをMothur(http://www.mothur.org)により処理し、必要に応じて配列を微生物系統ごとにソートして、16S rRNA配列の最上流に付加されている8塩基のランダム配列の種類数を計数し、次いで標的DNAのコピー数を算出した。
6.ランダム配列の種類数に基づく定量の精度評価
上記のようにしてランダム配列の種類数に基づいて算出した標的DNAのコピー数から求めたM.jannaschii及びH.elongataのコピー数の割合と、M.jannaschii及びH.elongataの2種のゲノムDNAを混合し、通常の方法でシーケンシングを行い、得られたシーケンシングライブラリ中の各菌種の配列数の割合とを比較した。なお、通常の方法でのシーケンシングは、表8に示す組成の反応溶液を調製し、次いで初期変性98℃×2分間、(98℃、10s;55℃、15s;68℃、30s)×30サイクルの条件でPCRを実施し、得られたPCR産物についてMiseqを用いてシーケンスすることにより実施した。
Figure JPOXMLDOC01-appb-T000012
上記のようにして比較した結果を表9に示す。表9から、ランダム配列の種類数に基づく定量では理論値に近い割合となったのに対して、シーケンスライブラリ中の割合はM.jannaschiiが小さくなる傾向を示した。このような傾向がみられた理由としては、今回用いた微生物種の間に16S rRNA遺伝子の領域のGC含量の相違があったことに一因があると推測される。すなわち、MJのGC含量が65%であり、HEのGC含量が56%であることから、MJの16S rRNA遺伝子の増幅効率が低下したと推測される。それに対して、ランダムタグ定量は、対象遺伝子の配列特異性に依らずに定量できた。これらの結果より、ランダム配列の種類数に基づく定量は、高精度で環境中に存在する微生物の存在数を確認できることが示された。
Figure JPOXMLDOC01-appb-T000013
7.ランダム配列の定量値の直線性評価
既知コピー数の1.0×10、2.0×10、6.3×10及び1.0×10のS.tokodaiiの16S rRNA遺伝子をテンプレートとして定量を行った結果を図3に示す。
1.0×10では、過剰な結果となったが、2.0×10、6.3×10及び1.0×10の範囲においては良好な直線性を示し、理論値と近い結果が得られた。ラベルの種類を8塩基以上に増やすことで、さらにダイナミックレンジは広がると推測される。
8.複合系への適用評価
自然界の環境DNAにおける16S rRNA遺伝子の定量を行った。バクテリア及びアーキアの16S rRNA遺伝子のコピー数はBiomark HD(フリューダイム社)によるdigital PCRで事前に測定した結果を理論値とし、通常の方法でシーケンシングを行い、得られたシーケンシングライブラリ中の細菌数の割合とランダム配列の種類数に基づいて定量した細菌数の割合とを比較した結果を図4に示す。
図4に示すとおり、ランダム配列の種類数に基づいて定量した場合のアーキア/バクテリア比は、シーケンシングライブラリ中のアーキア/バクテリア比と比較して、digital PCRで測定したアーキア/バクテリア比と近い値になることが示された。これらの結果より、ランダム配列の種類数に基づく定量は、高精度で環境中に存在する微生物の存在数を確認できることが示された。
配列表に記載の配列は以下のとおりである:
[配列番号1]515F_modプライマー
tcgtcggcagcgtcagatgtgtataagagacagnnnnnnnntgycagcmgccgcggtaa
[配列番号2]806R_modプライマー
gtctcgtgggctcggagatgtgtataagagacagnnnnnnnnggactachvgggtwtctaat
[配列番号3]Primer-Fプライマー
tcgtcggcagcgtcagat
本発明の一態様の方法やキットによって、簡便かつ高精度に、標的核酸のシーケンシングと共に、標的核酸のコピー数の定量が可能である。これにより、本発明の一態様の方法及びキットは、例えば、海洋などの環境における生物資源の種類及び数量の解析、腸内などの生体組織内の細菌叢の種類及び数量の解析、感染性及び非感染性ウイルスの網羅的かつ定量的解析、食品や医薬品などの製品の微生物限度試験などの、生物体の種類及び数を把握することが求められる技術分野に利用可能である。
1 標的核酸
2 第1のプライマー
3 第2のプライマー
4 第3のプライマー
5 第1の二本鎖核酸
6 第2の二本鎖核酸
11 第1の配列
12 対象配列
13 第2の配列
21 第1の配列に相補的な配列
22 ランダム配列
23 特定配列
31 対象配列に相補的な配列
32 第2の配列に相補的な配列

Claims (11)

  1. 下記工程(1)~(4)を含む、標的核酸の定量方法。
    (1)標的核酸の3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は二本鎖核酸から得られる該一本鎖の核酸を鋳型として、5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーを用いて、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応を実施することにより、一方の一本鎖が5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む第1の二本鎖核酸を得る工程
    (2)工程(1)で得られた第1の二本鎖核酸を鋳型として、第2の配列を含む第2のプライマー及び特定配列を含む第3のプライマーを用いて、PCRを実施して、第2の二本鎖核酸を得る工程
    (3)工程(2)で得られた第2の二本鎖核酸の配列を決定する工程
    (4)工程(3)で決定された配列に基づいて、対象配列及びランダム配列の組み合わせの数を測定することにより、下記数式(1)
    Figure JPOXMLDOC01-appb-M000001
    (1)
    (式中、Nは標的核酸の数を表わし;Cはランダム配列の種類の数を表わし;及び、Hは測定された対象配列及びランダム配列の組み合わせの数を表わす)
    により、標的核酸を定量する工程
  2. 前記標的核酸は、1種又は2種以上の生物に由来する核酸である、請求項1に記載の標的核酸の定量方法。
  3. 前記標的核酸は、rRNA遺伝子の一部又は全部を含む核酸である、請求項1に記載の標的核酸の定量方法。
  4. 前記対象配列はrRNA遺伝子の可変領域であり、かつ、前記第1の配列及び前記第2の配列はそれぞれ該領域の下流及び上流の保存領域である、請求項1に記載の標的核酸の定量方法。
  5. 前記標的核酸は、水、土壌、空気、生体組織、食品、医薬品及び化粧品からなる群から選ばれる試料における核酸である、請求項1に記載の標的核酸の定量方法。
  6. 前記標的核酸の数は、100~1,000,000のいずれかの数である、請求項1に記載の標的核酸の定量方法。
  7. 前記ランダム配列は4~20のいずれかの塩基数を有するランダム配列であり;又は、前記ランダム配列の種類の数は10~1015のいずれかの数である、請求項1に記載の標的核酸の定量方法。
  8. 前記特定配列は、10~50のいずれかの塩基数を有し、かつ、前記標的核酸の配列に非相補的な配列からなる特定配列である、請求項1に記載の標的核酸の定量方法。
  9. 3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は該一本鎖を含む二本鎖核酸である標的核酸を定量するためのキットであって、
    5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーと、
    ヌクレアーゼと、
    第2の配列を含む第2のプライマーと、
    特定配列を含む第3のプライマーと
    を含む、前記キット。
  10. 前記対象配列はrRNA遺伝子の可変領域であり、かつ、前記第1の配列及び前記第2の配列はそれぞれ該領域の下流及び上流の保存領域である、請求項9に記載のキット。
  11. 下記工程(1)~(2)を含む、標的核酸の対象配列及びランダム配列を含む二本鎖核酸の増幅方法。
    (1)標的核酸の3’末端側から5’末端側への方向に第1の配列、対象配列及び第2の配列を含む一本鎖の核酸又は二本鎖核酸から得られる該一本鎖の核酸を鋳型として、5’末端側から3’末端側への方向に特定配列、ランダム配列及び第1の配列に相補的な配列を含み、かつ、ランダム配列の種類の数に応じて複数種類の第1のプライマーを用いて、アニーリング反応、核酸伸長反応及びヌクレアーゼ反応を実施することにより、一方の一本鎖が5’末端側から3’末端側への方向に特定配列、ランダム配列、第1の配列に相補的な配列、対象配列に相補的な配列及び第2の配列に相補的な配列を含む第1の二本鎖核酸を得る工程
    (2)工程(1)で得られた第1の二本鎖核酸を鋳型として、第2の配列を含む第2のプライマー及び特定配列を含む第3のプライマーを用いて、PCRを実施して、第2の二本鎖核酸を得る工程
PCT/JP2016/084136 2015-11-18 2016-11-17 標的核酸の定量方法及びそのためのキット WO2017086394A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680066232.4A CN108291249A (zh) 2015-11-18 2016-11-17 靶核酸的定量方法和用于该方法的试剂盒
JP2017540803A JP6284137B2 (ja) 2015-11-18 2016-11-17 標的核酸の定量方法及びそのためのキット
EP16866395.3A EP3378948B1 (en) 2015-11-18 2016-11-17 Method for quantifying target nucleic acid and kit therefor
US15/775,300 US20180320227A1 (en) 2015-11-18 2016-11-17 Method for quantifying target nucleic acid and kit therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015225671 2015-11-18
JP2015-225671 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086394A1 true WO2017086394A1 (ja) 2017-05-26

Family

ID=58718905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084136 WO2017086394A1 (ja) 2015-11-18 2016-11-17 標的核酸の定量方法及びそのためのキット

Country Status (5)

Country Link
US (1) US20180320227A1 (ja)
EP (1) EP3378948B1 (ja)
JP (2) JP6284137B2 (ja)
CN (1) CN108291249A (ja)
WO (1) WO2017086394A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018068317A (ja) * 2015-11-18 2018-05-10 国立研究開発法人海洋研究開発機構 標的核酸の定量方法のためのキット
CN116751837A (zh) * 2023-08-14 2023-09-15 湖南新领航检测技术有限公司 一种注射用利福平的无菌检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079868A (zh) * 2019-03-20 2019-08-02 上海思路迪生物医学科技有限公司 Brca1/2基因变异检测文库构建方法和试剂盒
CN113136385B (zh) * 2020-01-19 2022-10-11 上海市园林科学规划研究院 一种利用古菌分子标记otu300快速检测城市绿地土壤全氮含量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525809A (ja) * 2003-05-13 2006-11-16 ジェン−プロウブ インコーポレイテッド 抗生物質耐性微生物を同定するための方法およびキット
JP2007295896A (ja) * 2006-05-02 2007-11-15 Keio Gijuku Hiv−1プロウイルス定量法
US20110160078A1 (en) 2009-12-15 2011-06-30 Affymetrix, Inc. Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Labels
JP2012531202A (ja) * 2009-06-25 2012-12-10 フレッド ハチンソン キャンサー リサーチ センター 適応免疫を測定する方法
JP2013515458A (ja) * 2009-10-29 2013-05-09 バイオ−ラッド ラボラトリーズ インコーポレイテッド 細胞培養試料中のマイコプラズマ汚染の迅速な検出
US20150197786A1 (en) * 2012-02-28 2015-07-16 Population Genetics Technologies Ltd. Method for Attaching a Counter Sequence to a Nucleic Acid Sample

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129000A2 (en) * 2006-04-12 2007-11-15 Medical Research Council Method for determining copy number
CN101519698B (zh) * 2008-03-10 2013-05-22 周国华 一种利用序列标签定量测定核酸的方法
JP5916740B2 (ja) * 2010-10-14 2016-05-11 リーアニクス・インコーポレイテッドRheonix, Inc. 核酸標的の定量的多重同定
GB201219137D0 (en) * 2012-10-24 2012-12-05 Ge Healthcare Uk Ltd Direct nucleic acid amplification kit, reagent and method
WO2017086394A1 (ja) * 2015-11-18 2017-05-26 国立研究開発法人海洋研究開発機構 標的核酸の定量方法及びそのためのキット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525809A (ja) * 2003-05-13 2006-11-16 ジェン−プロウブ インコーポレイテッド 抗生物質耐性微生物を同定するための方法およびキット
JP2007295896A (ja) * 2006-05-02 2007-11-15 Keio Gijuku Hiv−1プロウイルス定量法
JP2012531202A (ja) * 2009-06-25 2012-12-10 フレッド ハチンソン キャンサー リサーチ センター 適応免疫を測定する方法
JP2013515458A (ja) * 2009-10-29 2013-05-09 バイオ−ラッド ラボラトリーズ インコーポレイテッド 細胞培養試料中のマイコプラズマ汚染の迅速な検出
US20110160078A1 (en) 2009-12-15 2011-06-30 Affymetrix, Inc. Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Labels
US20150197786A1 (en) * 2012-02-28 2015-07-16 Population Genetics Technologies Ltd. Method for Attaching a Counter Sequence to a Nucleic Acid Sample

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GLENN K. FU ET AL., PNAS, vol. 108, no. 22, 31 May 2011 (2011-05-31), pages 9026 - 9031
See also references of EP3378948A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018068317A (ja) * 2015-11-18 2018-05-10 国立研究開発法人海洋研究開発機構 標的核酸の定量方法のためのキット
CN116751837A (zh) * 2023-08-14 2023-09-15 湖南新领航检测技术有限公司 一种注射用利福平的无菌检测方法
CN116751837B (zh) * 2023-08-14 2023-11-07 湖南新领航检测技术有限公司 一种注射用利福平的无菌检测方法

Also Published As

Publication number Publication date
JP2018068317A (ja) 2018-05-10
CN108291249A (zh) 2018-07-17
JP6474173B2 (ja) 2019-02-27
US20180320227A1 (en) 2018-11-08
EP3378948B1 (en) 2020-11-04
JP6284137B2 (ja) 2018-02-28
JPWO2017086394A1 (ja) 2017-11-24
EP3378948A1 (en) 2018-09-26
EP3378948A4 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
Green et al. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches
JP6474173B2 (ja) 標的核酸の定量方法のためのキット
JP2021168659A (ja) 次世代ゲノムウォーキングのための方法ならびに関連する組成物およびキット
Sharma et al. Quantification of functional genes from procaryotes in soil by PCR
EP2850205B1 (en) Technique combining pcr and loop-mediated isothermal amplification for the detection of nucleic acids
Mohamad et al. Molecular beacon‐based real‐time PCR method for detection of porcine DNA in gelatin and gelatin capsules
JP2019520800A (ja) 分析標準及びその使用方法
KR20150098928A (ko) 핵산과 신호 프로브의 비대칭 등온증폭을 이용한 핵산의 검출방법
Ahsanuddin et al. Assessment of REPLI-g multiple displacement whole genome amplification (WGA) techniques for metagenomic applications
Kieser et al. Reverse complement PCR: a novel one-step PCR system for typing highly degraded DNA for human identification
US20220251669A1 (en) Compositions and methods for assessing microbial populations
Sipos et al. Addressing PCR biases in environmental microbiology studies
Redder Using EMOTE to map the exact 5′-ends of processed RNA on a transcriptome-wide scale
Postier et al. Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms
Nakatsu Microbial genetics
Ricke et al. Application of molecular methods for traceability of foodborne pathogens in food safety systems
Thies Molecular methods for studying soil ecology
AU2022264812A9 (en) Amplification of single stranded dna
Putra et al. A review of the development of Polymerase Chain Reaction technique and its uses in Scientific field
US20090305288A1 (en) Methods for amplifying nucleic acids and for analyzing nucleic acids therewith
CN116964187A (zh) 扩增子甲基化序列分析用引物的设计方法、制造方法、设计装置、设计程序及记录介质
Yim et al. Multiplex transcriptional characterizations across diverse and hybrid bacterial cell-free expression systems
Singh et al. Molecular techniques
Thies Molecular methods for studying microbial ecology in the soil and rhizosphere
CN113403367B (zh) 一种宏基因组绝对定量的检测方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540803

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15775300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016866395

Country of ref document: EP