WO2017086041A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017086041A1
WO2017086041A1 PCT/JP2016/079466 JP2016079466W WO2017086041A1 WO 2017086041 A1 WO2017086041 A1 WO 2017086041A1 JP 2016079466 W JP2016079466 W JP 2016079466W WO 2017086041 A1 WO2017086041 A1 WO 2017086041A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
protection function
protection
abnormality
units
Prior art date
Application number
PCT/JP2016/079466
Other languages
English (en)
French (fr)
Inventor
清水 直樹
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2017086041A1 publication Critical patent/WO2017086041A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a brake unit is mounted on an IPM (Intelligent Power Module) in which a power transistor and an IC for driving / protection function (Integrated Circuit) are integrated in one package.
  • IPM Intelligent Power Module
  • a power conversion device that drives and controls a motor for industrial use includes an inverter circuit that converts a DC voltage into a three-phase AC voltage and a brake circuit that brakes the motor when decelerating (for example, Patent Documents 1 and 2).
  • Such a power converter includes an inverter circuit having six sets of power transistor and diode chips and a drive / protection function IC, and a brake circuit having a set of power transistor chips and a drive / protection function IC.
  • FIG. 2 is a circuit diagram showing a configuration example of an IPM
  • FIG. 3 is a circuit diagram showing a configuration example of a semiconductor unit including a power transistor and its control circuit
  • FIG. 4 is a function showing cooperative protection between protection function units of the control circuit. It is a block diagram.
  • the IPM 1 has a power source 2 connected to its input side and a motor 3 connected to its output side.
  • the AC voltage of the power source 2 is rectified by the rectifier circuit 4 and smoothed and high frequency components are cut by the capacitors 5 and 6 to become a DC voltage.
  • This DC voltage is applied to the positive terminal P and the negative terminal N of the IPM 1.
  • the U-phase, V-phase, and W-phase output terminals that output the three-phase AC voltage converted by the IPM 1 are connected to the motor 3.
  • the IPM 1 has three power transistors on the high side (or P side), in this case, IGBTs (Insulated Gate Bipolar Transistors) 11 to 13.
  • the IPM 1 also has four IGBTs 14 to 17 arranged on the low side (or N side).
  • Diodes 21 to 26 are respectively connected in reverse parallel to the IGBTs 11 to 16 constituting the inverter circuit.
  • IGBT11 and IGBT14 are connected in series, the connection point is connected to the U-phase output terminal, the collector of IGBT11 is connected to the line of positive electrode terminal P, and the emitter of IGBT14 is connected to the line of negative electrode terminal N.
  • the IGBT 12 and the IGBT 15 are connected in series, the connection point is connected to the V-phase output terminal, the collector of the IGBT 12 is connected to the line of the positive terminal P, and the emitter of the IGBT 15 is connected to the line of the negative terminal N. .
  • the IGBT 13 and the IGBT 16 are connected in series, the connection point is connected to the W-phase output terminal, the collector of the IGBT 13 is connected to the line of the positive terminal P, and the emitter of the IGBT 16 is connected to the line of the negative terminal N. .
  • the gates of the IGBTs 11 to 13 are connected to control circuits 31 to 33, respectively.
  • the control circuits 31 to 33 are connected to a P-side PWM (PulseulWidth Modulation) input terminal, a DC power supply 41 to 43, and an alarm output terminal, respectively.
  • P-side PWM PulseulWidth Modulation
  • the gates of the IGBTs 14 to 16 are connected to the control circuits 34 to 36, respectively, and the control circuits 34 to 36 are respectively connected to the N-side PWM input terminals.
  • the gate of the IGBT 17 is connected to a control circuit 37, and the control circuit 37 is connected to a brake input terminal.
  • These low-side control circuits 34 to 37 are also connected to a common alarm output terminal and a DC power supply 44, respectively.
  • the IGBT 17 has an emitter connected to the line of the negative terminal N, a collector connected to the brake terminal B and the anode terminal of the diode 27, and a cathode terminal of the diode 27 connected to the line of the positive terminal P.
  • a regenerative energy absorbing resistor 7 is connected to the positive terminal P and the brake terminal B of the IPM 1.
  • the IGBTs 11 to 16, the diodes 21 to 26, and the control circuits 31 to 36 constitute an inverter circuit, and the IGBT 17 and the control circuit 37 constitute a brake circuit.
  • the IGBTs 11 to 16 are on / off controlled by a control signal from a host control device input to the P-side PWM input terminal and the N-side PWM input terminal.
  • a three-phase AC voltage is generated by the on / off control of the IGBTs 11 to 16, and is supplied to the motor 3 via the U-phase, V-phase, and W-phase output terminals, and the motor 3 is rotationally driven.
  • the brake circuit controls the IGBT 17 to turn on when the motor 3 decelerates, connects the resistor 7 to the positive terminal P and the negative terminal N, consumes the regenerative energy generated by the motor 3 at the resistor 7, An increase in the voltage between the negative terminals N is suppressed.
  • FIG. 3 shows one of the control circuits 31 to 37 and the IGBTs 11 to 17.
  • the control circuits 31 to 37 and the IGBTs 11 to 17 will be described as the control circuit 30 and the power transistor 10 on behalf of them.
  • control circuit 30 and the power transistor 10 constitute one semiconductor unit 50.
  • the seven semiconductor units 50 are accommodated in one package. become.
  • the semiconductor unit 50 includes an operation signal input terminal 51 that receives an operation signal (PWM signal) from a host controller, an abnormality information exchange terminal 52 for exchanging abnormality information with another semiconductor unit when an abnormality occurs, and And an alarm output terminal 53 that outputs an alarm signal to a host control device.
  • the control circuit 30 includes an on / off control circuit 61, a chip temperature detection circuit 62, an overcurrent detection circuit 63, a cutoff circuit 64, an alarm signal output circuit 65, a signal output detection circuit 66, and an abnormality information exchange circuit. 67.
  • the power transistor 10 includes an IGBT chip 71 and a temperature sensor 72 and a current sensor 73 mounted on the chip.
  • the on / off control circuit 61 of the control circuit 30 has a function of controlling the on / off of the power transistor 10 based on the operation signal received at the operation signal input terminal, and the power transistor 10 when an abnormality occurs in the power transistor 10. It has a function to protect. When this protection function operates, the on / off control circuit 61 does not operate the IGBT chip 71 even if an on signal is input as an operation signal. Further, the protection function of the on / off control circuit 61 cancels the protection operation and returns to the normal operation when the alarm signal output period or more elapses, the cause of the alarm is eliminated, and the operation signal is off.
  • the chip temperature detection circuit 62 includes a comparator 62a that determines whether or not the chip temperature detected by the temperature sensor 72 is overheated, a reference voltage 62b that serves as a reference when determining whether or not the chip temperature is overheated, and the temperature sensor 72. And a power supply 62c for supplying a voltage to the power supply.
  • the comparator 62a compares the temperature signal output from the temperature sensor 72 with the reference voltage 62b.
  • the comparator 62a outputs a low level signal when the temperature of the IGBT chip 71 is in the normal range. When the temperature of the IGBT chip 71 rises and the value of the temperature signal falls below the voltage of the reference voltage 62b, the comparator 62a The signal is output.
  • the overcurrent detection circuit 63 includes a comparator 63a that determines whether or not the current detected by the current sensor 73 is an overcurrent, and a reference voltage 63b that serves as a reference when determining whether or not it is an overcurrent.
  • the comparator 63a compares the current signal output from the current sensor 73 with the reference voltage 63b.
  • the comparator 63a outputs a low level signal when the current flowing through the IGBT chip 71 is in the normal range, the current flowing through the IGBT chip 71 rises, and the value of the current signal exceeds the voltage of the reference voltage 63b. And outputs a high level signal.
  • the interruption circuit 64 sends an interruption signal to the on / off control circuit 61 to stop the operation of the on / off control circuit 61 while suppressing the surge current.
  • the alarm signal output circuit 65 sends the detection signal to the on / off control circuit 61, stops the operation of the on / off control circuit 61, and the stop state. To maintain.
  • the overcurrent detection circuit 63 detects an overcurrent
  • the alarm signal output circuit 65 outputs a signal that is not turned on until the abnormal state is cleared after the on / off control circuit 61 is shut off by the shutoff signal of the shutoff circuit 64. This is sent to the on / off control circuit 61.
  • the alarm signal output circuit 65 also outputs the signal detected by the chip temperature detection circuit 62 or the signal detected by the overcurrent detection circuit 63 to the signal output detection circuit 66 as an alarm signal.
  • the signal output detection circuit 66 determines whether or not to output the alarm signal, and if so, the alarm signal is sent from the alarm output terminal 53 to the upper control device. Notify
  • the abnormality information exchange circuit 67 When an abnormality occurs in its own semiconductor unit 50, the abnormality information exchange circuit 67 receives an alarm signal from the alarm signal output circuit 65, and notifies the other semiconductor unit from the abnormality information exchange terminal 52 as the abnormality information signal. To do. When the abnormality information exchange circuit 67 receives an abnormality information signal from another semiconductor unit via the abnormality information exchange terminal 52, the abnormality information exchange circuit 67 notifies the alarm signal output circuit 65 of the abnormality of the other semiconductor unit. In response to the notification from the abnormality information exchange circuit 67, the alarm signal output circuit 65 sends a signal that is not turned on until the abnormal state is released to the on / off control circuit 61.
  • the cooperative protection operation between the semiconductor units in particular, between the three semiconductor units for the inverter circuit that are arranged on the low side in the IPM 1 and share the operation reference potential and the one semiconductor unit for the brake circuit.
  • the cooperative protection operation will be described.
  • the protection function parts 81 to 84 are extracted from the protection function parts of the control circuits 34 to 37, the protection function parts 81 to 83 are for the inverter circuit, and the protection function part 84 is for the brake circuit. is there.
  • the protection function unit 81 includes an abnormality detection unit 81a, a protection unit 81b, an OR circuit 81c, an abnormality information exchange terminal 81d, and an alarm output terminal 81e.
  • the abnormality detection unit 81a corresponds to the chip temperature detection circuit 62 and the overcurrent detection circuit 63 in FIG. 3, and the protection unit 81b and the OR circuit 81c correspond to the cutoff circuit 64 and the alarm signal output circuit 65. is there.
  • the abnormality information exchange terminal 81d corresponds to the abnormality information exchange circuit 67 and the abnormality information exchange terminal 52 provided for mutual communication in the IPM1, and the alarm output terminal 81e is an alarm signal to a higher-order control device of the IPM1. This corresponds to the signal output detection circuit 66 and the alarm output terminal 53 for notifying of the above.
  • the protection function unit 82 includes an abnormality detection unit 82a, a protection unit 82b, an OR circuit 82c, an abnormality information exchange terminal 82d, and an alarm output terminal 82e.
  • the protection function unit 83 includes an abnormality detection unit 83a, a protection unit 83b, an OR circuit 83c, an abnormality information exchange terminal 83d, and an alarm output terminal 83e.
  • the protection function unit 84 includes an abnormality detection unit 84a, a protection unit 84b, an OR circuit 84c, an abnormality information exchange terminal 84d, and an alarm output terminal 84e.
  • the abnormal information exchange terminals 81d, 82d, 83d, and 84d of the protection function units 81 to 84 are connected to each other by a wiring 85.
  • the alarm output terminals 81e, 82e, 83e, 84e of the protection function units 81 to 84 only the alarm output terminal 83e of the protection function unit 83 is connected to the alarm output terminal of the IPM 1 by the wiring 86.
  • the protection unit 81b receives an alarm signal to activate the protection function and turn on / off The operation of the off control circuit 61 is stopped. At the same time, an abnormality information signal is sent to the abnormality information exchange terminal 81d, and an alarm signal is sent to the alarm output terminal 81e via the OR circuit 81c.
  • the abnormality information signal received by the abnormality information exchange terminal 81d is sent to the abnormality information exchange terminals 82d, 83d and 84d of the other protection function units 82 to 84 via the wiring 85.
  • the abnormality information signals received by the abnormality information exchange terminals 82d, 83d, and 84d are sent to the respective protection units 82b, 83b, and 84b, and the operation of the on / off control circuit 61 is stopped. .
  • the abnormality information signal received by the abnormality information exchange terminal 83d is sent to the alarm output terminal 83e via the OR circuit 83c, and is sent from the alarm output terminal 83e via the wiring 86 as an alarm signal. This is notified to the upper control device of IPM1.
  • the low-side inverter circuit control circuits 34 to 36 and the brake circuit control circuit 37 are connected to each other by the abnormality information exchange terminals 81d, 82d, 83d, and 84d of the protection function units 81 to 84. . Therefore, when the inverter circuit control circuits 34 to 36 are stopped by an alarm, the brake circuit control circuit 37 is also stopped. Even if the control functions of the control circuits 34 to 36 are stopped, the motor 3 continues to rotate while decelerating without stopping. At this time, the regenerative energy generated by the motor 3 is not consumed because the IGBT 17 is turned off, and the voltage increase between the positive terminal P and the negative terminal N may not be suppressed.
  • the abnormality information exchange terminals 81d, 82d, 83d of the protection function units 81 to 83 for the inverter circuit are disconnected from the abnormality information exchange terminal 84d of the protection function unit 84 for the brake circuit, and the alarm output terminal of the protection function unit 83 is disconnected.
  • a configuration in which 83e is connected to the alarm output terminal 84e of the protection function unit 84 is conceivable.
  • the protective function units 84 to 83 for the inverter circuit do not perform the protective operation for the protective function unit 84 for the brake circuit.
  • the alarm output terminal 83e for the inverter circuit and the alarm output terminal 84e for the brake circuit may simultaneously issue an alarm in the UV phase at the rising edge of the IPM1.
  • the alarm output terminal 83e for the inverter circuit and the alarm output terminal 84e for the brake circuit are separated so that the alarm can be output separately.
  • the number of connection pins increases, so that an additional photocoupler for taking out an alarm from the IPM 1 is required, resulting in an increase in cost.
  • the protection function units 81 to 84 second abnormality information dedicated to alarm input for sending an alarm signal to the alarm output terminals 81e, 82e, 83e, 84e via the OR circuits 81c, 82c, 83c, 84c.
  • a configuration in which an exchange terminal is added is also conceivable.
  • the abnormality information exchange terminals 81d, 82d, and 83d of the protection function units 81 to 83 for the inverter circuit are connected to the second abnormality information exchange terminal of the protection function unit 84 for the brake circuit, and the alarm of the protection function unit 84 is connected.
  • An alarm signal is sent from the output terminal 84e to the host control device.
  • the protection units 81b, 82b, and 83b are validated by the abnormality information signal from the abnormality information exchange terminals 81d, 82d, and 83d.
  • the protection function unit 84 for the brake circuit the alarm signal received by the second abnormality information exchange terminal is transmitted to the alarm output terminal 84e via the OR circuit 84c, but not transmitted to the protection unit 84b.
  • the brake circuit is never stopped. In this way, it is possible to select whether or not to protect by adding the second abnormality information exchange terminal as a configuration of the protection function units 81 to 84 and changing the connection method.
  • the addition of the second abnormality information exchange terminal dedicated to alarm input as the configuration of the protection function part of the control circuit arranged on the low side of the IPM requires a connection pad for that purpose, so that a control circuit is formed. There is a problem that the chip becomes large and the cost is high.
  • the present invention has been made in view of these points, and provides a semiconductor device in which the protection function is not activated in the brake circuit even if an alarm is issued to the inverter circuit without incurring high costs.
  • the purpose is to do.
  • the present invention provides a semiconductor device including an inverter circuit that converts a DC voltage into a three-phase AC voltage and a brake circuit that brakes the motor during deceleration.
  • This semiconductor device includes first to third protection function units for protecting first to third power transistors arranged on the low side of the inverter circuit, and a fourth protection for protecting the fourth power transistor of the brake circuit.
  • the first to third protection function units include first to third abnormality detection units that detect abnormality of the corresponding first to third power transistors, and first to third power transistors corresponding to the time of abnormality detection.
  • the first to third protection units for stopping the operation of the first and the first to third protection units for outputting an alarm signal at the time of abnormality detection to the wiring or for inputting to the corresponding first to third protection units. And a third alarm input / output terminal.
  • the fourth protection function unit includes a fourth abnormality detection unit that detects an abnormality of the fourth power transistor, a fourth protection unit that stops the operation of the fourth power transistor when the abnormality is detected, and an abnormality detection A fourth alarm input / output terminal that outputs or inputs an alarm signal to the wiring, and an OR circuit that receives an alarm signal output from the fourth abnormality input / output terminal or input to the fourth alarm input / output terminal And an alarm output terminal for notifying a signal output from the OR circuit to the outside of the semiconductor device.
  • the semiconductor device having the above configuration has an advantage that the brake circuit can be operated in accordance with the operation signal because the brake circuit is not in a protected state even when an alarm is stopped in the inverter circuit.
  • the brake circuit the basic function of protecting the inverter circuit and protecting the inverter circuit is not impaired at all when the power transistor of the brake circuit is abnormal as before.
  • FIG. 2 The overall configuration of the semiconductor device is the same as that shown in FIG. 2, and the partial configuration is the same as that shown in FIG. The description may refer to FIGS. 2 and 3.
  • FIG. 1 is a functional block diagram showing a configuration of a protection function unit of a semiconductor device and cooperative protection between protection function units according to an embodiment of the present invention.
  • FIG. 1 the same components as those shown in FIG. 4 are denoted by the same reference numerals.
  • FIG. 1 shows protection function units 81 to 84 that are respectively provided in the inverter circuit control circuits 34 to 36 and the brake circuit control circuit 37 that are arranged on the low side of the IPM 1 and share the operation reference potential. .
  • the configuration of the protection function unit 84 for the brake circuit is partially changed and the position where the alarm signal is output from the IPM 1 is compared with that shown in FIG. It has changed. That is, the protection function unit 84 for the brake circuit is changed so as to transmit the abnormality information signal received by the abnormality information exchange terminal 84d only to the OR circuit 84c by cutting the wiring from the abnormality information exchange terminal 84d to the protection unit 84b.
  • the protection function unit 84 is dedicated to the brake circuit.
  • the wiring 86 connected to the alarm output of the IPM 1 is connected to the alarm output terminal 84e of the protection function unit 84 for the brake circuit.
  • the protection function unit 81 detects an abnormality in the abnormality detection unit 81a
  • the protection unit 81b of itself is in a protection state.
  • the on / off control circuit 61 stops operating when it does not accept an operation signal.
  • the alarm signal of the abnormality detection unit 81a is transmitted as an abnormality information signal to the abnormality information exchange terminal 81d, and is also transmitted to the alarm output terminal 81e via the OR circuit 81c.
  • the abnormality information signal received by the abnormality information exchange terminal 81d of the protection function unit 81 is sent to the abnormality information exchange terminals 82d, 83d, and 84d of the other protection function units 82 to 84 via the wiring 85.
  • the abnormality information signals received by the abnormality information exchange terminals 82d and 83d are sent to the respective protection units 82b and 83b, and the on / off control circuit 61 sends an operation signal. Stops operation when no longer accepted.
  • the abnormality information signal received by the abnormality information exchange terminal 84d is not transmitted to the protection unit 84b. Therefore, the alarm output terminal is operated while the brake circuit operates normally. 84e is notified as an alarm signal to the upper control device of IPM1.
  • the brake circuit receives an operation signal without protection and maintains normal operation. For this reason, since the regenerative energy generated by the motor 3 when the inverter circuit is stopped is consumed by the brake circuit, the voltage between the positive terminal P and the negative terminal N of the IPM 1 does not increase.
  • the protection function unit 84 for the brake circuit when the abnormality detection unit 84a detects an abnormality, the alarm signal is transmitted to the alarm output terminal 84e via the protection unit 84b and the OR circuit 84c. Thereby, the protection part 84b will be in the protection state which does not receive an operation signal. Further, the protection function units 81 to 83 of the inverter circuit that have received the abnormality information signal from the protection function unit 84 via the wiring 85 are in the protection state. Furthermore, an alarm signal is notified from the protection function unit 84 to the control device at the higher level of the IPM 1 via the wiring 86.
  • the brake circuit The protection function unit 84 may detect an abnormality.
  • the protection function units 81 to 83 for the inverter circuit and the protection function unit 84 for the brake circuit are both in a protection state in which no operation signal is received.
  • the protection function units 81 to 84 for the inverter circuit and the brake circuit are provided only in the protection function unit 84 for the brake circuit for the purpose of sharing as much as possible with the existing protection function unit. Changes have been made.
  • the protection function units 81 to 83 for the inverter circuit also have a configuration dedicated to the inverter circuit by deleting the OR circuits 81c, 82c, and 83c and the alarm output terminals 81e, 82e, and 83e that are not used in the protection function units 81 to 83. You can also

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

高いコストをかけることなしに、インバータ回路にアラームが出ても、ブレーキ回路の保護機能が働かないようにした半導体装置を提供する。 インバータ回路およびブレーキ回路を含む半導体装置において、インバータ回路のローサイドに配置されたインバータ回路用およびブレーキ回路用の制御回路が有する保護機能部(81~84)では、異常検出部(84a)が異常を検出したとき、異常情報交換端子(81d,82d,83d)および配線(85)により保護部(81b,82b,83b,84b)が保護状態になる。一方、異常検出部(81a,82a,83a)の異常検出では、保護部(81b,82b,83b)が保護状態になり、保護部(84b)は保護状態にならない。また、異常検出部(81a,82a,83a,84a)の異常検出では、アラーム出力端子(84e)から外部装置へアラーム信号が通知される。

Description

半導体装置
 本発明は半導体装置に関し、特にパワートランジスタと駆動・保護機能用IC(Integrated Circuit)とを1つのパッケージに集積したIPM(Intelligent Power Module)にブレーキ部が搭載されている半導体装置に関する。
 産業用途のモータを駆動・制御する電力変換装置として、直流電圧を三相交流電圧に変換するインバータ回路と減速時などにモータに制動をかけるブレーキ回路とを備えたものが知られている(たとえば、特許文献1,2参照)。このような電力変換装置には、6組のパワートランジスタおよびダイオードのチップおよび駆動・保護機能用ICを有するインバータ回路と、1組のパワートランジスタのチップおよび駆動・保護機能用ICを有するブレーキ回路とを備えた7in1タイプのIPMがある。
 図2はIPMの構成例を示す回路図、図3はパワートランジスタおよびその制御回路を含む半導体ユニットの構成例を示す回路図、図4は制御回路の保護機能部の間における連携保護を示す機能ブロック図である。
 IPM1は、その入力側に電源2が接続され、出力側にはモータ3が接続されている。電源2の交流電圧は、整流回路4によって整流され、コンデンサ5,6によって平滑および高周波成分がカットされて直流電圧となる。この直流電圧は、IPM1の正極端子Pと負極端子Nとに印加される。IPM1によって電力変換された三相交流電圧を出力するU相、V相およびW相の出力端子は、モータ3に接続されている。
 図2において、IPM1は、ハイサイド(または、Pサイド)に3つのパワートランジスタ、ここでは、IGBT(Insulated Gate Bipolar Transistor)11~13を配置している。IPM1は、また、ローサイド(または、Nサイド)に4つのIGBT14~17を配置している。インバータ回路を構成しているIGBT11~16には、ダイオード21~26がそれぞれ逆並列に接続されている。
 IGBT11およびIGBT14は、直列に接続されてその接続点がU相の出力端子に接続され、IGBT11のコレクタが正極端子Pのラインに接続され、IGBT14のエミッタが負極端子Nのラインに接続されている。IGBT12およびIGBT15は、直列に接続されてその接続点がV相の出力端子に接続され、IGBT12のコレクタが正極端子Pのラインに接続され、IGBT15のエミッタが負極端子Nのラインに接続されている。IGBT13およびIGBT16は、直列に接続されてその接続点がW相の出力端子に接続され、IGBT13のコレクタが正極端子Pのラインに接続され、IGBT16のエミッタが負極端子Nのラインに接続されている。
 IGBT11~13のゲートは、それぞれ制御回路31~33に接続され、制御回路31~33は、それぞれ、PサイドPWM(Pulse Width Modulation)入力端子、直流電源41~43およびアラーム出力端子に接続されている。IGBT14~16のゲートは、それぞれ制御回路34~36に接続され、制御回路34~36は、それぞれ、NサイドPWM入力端子に接続されている。IGBT17のゲートは、制御回路37に接続され、制御回路37は、ブレーキ入力端子に接続されている。これらローサイドに配置された制御回路34~37は、また、共通のアラーム出力端子および直流電源44にそれぞれ接続されている。
 IGBT17は、エミッタが負極端子Nのラインに接続され、コレクタは、ブレーキ端子Bおよびダイオード27のアノード端子に接続され、ダイオード27のカソード端子は、正極端子Pのラインに接続されている。そして、IPM1の正極端子Pおよびブレーキ端子Bには、回生エネルギ吸収用の抵抗7が接続されている。
 このIPM1において、IGBT11~16、ダイオード21~26および制御回路31~36は、インバータ回路を構成し、IGBT17および制御回路37は、ブレーキ回路を構成している。
 IPM1のインバータ回路においては、PサイドPWM入力端子およびNサイドPWM入力端子に入力される上位の制御装置からの制御信号によってIGBT11~16がオン/オフ制御される。このIGBT11~16のオン/オフ制御により三相交流電圧が生成され、U相、V相およびW相の出力端子を介してモータ3に供給され、モータ3は回転駆動される。ブレーキ回路は、モータ3が減速するときにIGBT17をオン制御して正極端子Pおよび負極端子Nに抵抗7を接続し、モータ3によって生起される回生エネルギを抵抗7で消費させ、正極端子Pおよび負極端子Nの端子間電圧の上昇を抑えるようにしている。
 次に、制御回路31~37の具体例について説明する。制御回路31~37およびこれらによって制御されるIGBT11~17の構成は共通であるので、図3では、制御回路31~37およびIGBT11~17の1つを示している。ここでは、制御回路31~37およびIGBT11~17は、これらを代表して制御回路30およびパワートランジスタ10として説明する。
 制御回路30およびパワートランジスタ10は、図3に示したように、1つの半導体ユニット50を構成しており、図2に示すIPM1では、7つの半導体ユニット50が1つのパッケージに収容されていることになる。
 半導体ユニット50は、上位の制御装置から動作信号(PWM信号)を受ける動作信号入力端子51と、異常が発生したときに他の半導体ユニットと異常情報の交換を行うための異常情報交換端子52および上位の制御装置にアラーム信号を出力するアラーム出力端子53とを有している。制御回路30は、オン/オフ制御回路61と、チップ温度検出回路62と、過電流検出回路63と、遮断回路64と、アラーム信号出力回路65と、信号出力検出回路66と、異常情報交換回路67とを備えている。パワートランジスタ10は、IGBTチップ71と、そのチップ上に搭載された温度センサ72および電流センサ73とを備えている。
 制御回路30のオン/オフ制御回路61は、動作信号入力端子に受けた動作信号に基づいてパワートランジスタ10をオン/オフ制御する機能と、パワートランジスタ10に異常が発生したときにパワートランジスタ10を保護する機能とを有している。この保護機能が動作すると、オン/オフ制御回路61は、動作信号としてオン信号が入力されてもIGBTチップ71を動作させることはない。また、オン/オフ制御回路61の保護機能は、アラーム信号出力期間以上が経過し、アラーム要因が解消され、かつ、動作信号がオフのときに、保護動作を解除し、通常動作に復帰する。
 チップ温度検出回路62は、温度センサ72が検出したチップ温度が過熱しているか否かを判断する比較器62aと、過熱か否かを判断するときの基準となる基準電圧62bと、温度センサ72に電圧を供給する電源62cとを備えている。比較器62aは、温度センサ72が出力した温度信号を基準電圧62bと比較する。比較器62aは、IGBTチップ71の温度が正常範囲にあるとき、ローレベルの信号を出力し、IGBTチップ71の温度が上昇して温度信号の値が基準電圧62bの電圧を下回ると、ハイレベルの信号を出力する。
 過電流検出回路63は、電流センサ73が検出した電流が過電流か否かを判断する比較器63aと、過電流か否かを判断するときの基準となる基準電圧63bとを備えている。比較器63aは、電流センサ73が出力した電流信号を基準電圧63bと比較する。比較器63aは、IGBTチップ71を流れた電流が正常範囲にあるとき、ローレベルの信号を出力し、IGBTチップ71を流れた電流が上昇して電流信号の値が基準電圧63bの電圧を上回ると、ハイレベルの信号を出力する。
 遮断回路64は、過電流検出回路63が過電流を検出したとき、オン/オフ制御回路61に遮断信号を送出してサージ電流を抑制しながらオン/オフ制御回路61の動作を停止させる。
 アラーム信号出力回路65は、チップ温度検出回路62がチップの過熱を検出したとき、その検出信号をオン/オフ制御回路61に送出し、オン/オフ制御回路61の動作を停止させ、その停止状態を維持させる。また、過電流検出回路63が過電流を検出したとき、アラーム信号出力回路65は、遮断回路64の遮断信号によるオン/オフ制御回路61の遮断後、異常状態が解除されるまでオンさせない信号をオン/オフ制御回路61に送出する。アラーム信号出力回路65は、また、チップ温度検出回路62が検出した信号または過電流検出回路63が検出した信号をアラーム信号として信号出力検出回路66に出力する。
 信号出力検出回路66は、アラーム信号出力回路65からアラーム信号を受けたとき、そのアラーム信号を出力するかどうかを判断し、出力する場合には、アラーム信号をアラーム出力端子53から上位の制御装置に通知する。
 異常情報交換回路67は、自身の半導体ユニット50において異常が発生したとき、アラーム信号出力回路65からアラーム信号を受け、そのアラーム信号を異常情報信号として異常情報交換端子52から他の半導体ユニットに通知する。異常情報交換回路67は、また、他の半導体ユニットから異常情報交換端子52を介して異常情報信号を受けると、アラーム信号出力回路65に他の半導体ユニットの異常を通知する。アラーム信号出力回路65は、異常情報交換回路67からの通知を受けて、オン/オフ制御回路61に異常状態が解除されるまでオンさせない信号を送出する。
 次に、IPM1において、半導体ユニット50に異常が発生したとき、自身で保護動作をするだけでなく、他の半導体ユニット50と連携し、IPM1内で全体として保護動作を行う必要がある。以下、その半導体ユニット間での連携保護動作、特に、IPM1においてローサイドに配置されて動作基準電位を共通とするインバータ回路用の3つの半導体ユニットとブレーキ回路用の1つの半導体ユニットとの間での連携保護動作について説明する。
 なお、図2では、ローサイドの制御回路34~37のアラーム出力がワイヤードオア接続されて共通のアラーム出力端子に接続されているように簡略化して示しているが、以下では、その詳細を図4を用いて説明する。
 保護機能部81~84は、制御回路34~37のそれぞれが持つ保護機能の部分を抽出して示したもので、保護機能部81~83はインバータ回路用、保護機能部84はブレーキ回路用である。
 保護機能部81は、異常検出部81a、保護部81b、オア回路81c、異常情報交換端子81dおよびアラーム出力端子81eを備えている。異常検出部81aは、図3のチップ温度検出回路62および過電流検出回路63に相当するものであり、保護部81bおよびオア回路81cは、遮断回路64およびアラーム信号出力回路65に相当するものである。異常情報交換端子81dは、IPM1内の相互通信用に設けられた異常情報交換回路67および異常情報交換端子52に相当するものであり、アラーム出力端子81eは、IPM1の上位の制御装置へアラーム信号を通知するための信号出力検出回路66およびアラーム出力端子53に相当するものである。
 保護機能部82は、保護機能部81と同様に、異常検出部82a、保護部82b、オア回路82c、異常情報交換端子82dおよびアラーム出力端子82eを備えている。保護機能部83も、保護機能部81と同様に、異常検出部83a、保護部83b、オア回路83c、異常情報交換端子83dおよびアラーム出力端子83eを備えている。そして、保護機能部84も、保護機能部81と同様に、異常検出部84a、保護部84b、オア回路84c、異常情報交換端子84dおよびアラーム出力端子84eを備えている。
 保護機能部81~84の異常情報交換端子81d,82d,83d,84dは、配線85によって相互に接続されている。また、保護機能部81~84のアラーム出力端子81e,82e,83e,84eについては、保護機能部83のアラーム出力端子83eのみ配線86によってIPM1のアラーム出力端子に接続されている。
 この構成により、たとえば、保護機能部81の異常検出部81aがIGBTチップ71の過熱または過電流の異常を検出したとき、自身の保護部81bがアラーム信号を受けて保護機能を有効にし、オン/オフ制御回路61の動作を停止する。これとともに異常情報交換端子81dに異常情報信号が送出され、アラーム出力端子81eには、オア回路81cを介してアラーム信号が送出される。
 異常情報交換端子81dが受けた異常情報信号は、配線85を介して他の保護機能部82~84の異常情報交換端子82d,83d,84dに送出される。保護機能部82~84では、その異常情報交換端子82d,83d,84dが受けた異常情報信号は、それぞれの保護部82b,83b,84bに送られ、オン/オフ制御回路61の動作を停止する。
 ここで、保護機能部83については、異常情報交換端子83dが受けた異常情報信号は、オア回路83cを介してアラーム出力端子83eに送出され、アラーム信号としてアラーム出力端子83eから配線86を介してIPM1の上位の制御装置へ通知される。
 このIPM1では、ローサイドのインバータ回路用の制御回路34~36およびブレーキ回路用の制御回路37は、保護機能部81~84の異常情報交換端子81d,82d,83d,84dによって相互に接続されている。このため、インバータ回路用の制御回路34~36がアラーム停止したときに、ブレーキ回路用の制御回路37も停止されることになる。制御回路34~36の制御機能が停止されても、モータ3は、停止することなく減速しながら回転を継続することになる。そのときにモータ3が発生する回生エネルギは、IGBT17がオフしていることで消費されなくなり、正極端子Pおよび負極端子Nの端子間の電圧上昇を抑えることができなくなる場合があった。
 この場合、インバータ回路用の保護機能部81~83の異常情報交換端子81d,82d,83dとブレーキ回路用の保護機能部84の異常情報交換端子84dとを切り離し、保護機能部83のアラーム出力端子83eと保護機能部84のアラーム出力端子84eとを接続する構成が考えられる。これにより、インバータ回路用の保護機能部81~83の保護動作で、ブレーキ回路用の保護機能部84が保護動作をすることがなくなる。このような構成では、たとえば、IPM1の立ち上がりのUV相において、インバータ回路用のアラーム出力端子83eとブレーキ回路用のアラーム出力端子84eとが同時にアラームを出す可能性がある。
 そこで、インバータ回路用のアラーム出力端子83eとブレーキ回路用のアラーム出力端子84eとを分けて別々にアラーム出力できるようにすることが考えられる。この場合、新たなアラーム出力用のアラーム出力端子の接続ピンが増えるため、IPM1のパッケージ変更が必要になる。また、このようなIPM1を用いた電力変換装置では、接続ピンが増えることによって、IPM1からアラームを取り出すためのフォトカプラが余分に必要になるなどコストが高くなる。
 また、保護機能部81~84の構成として、オア回路81c,82c,83c,84cを介してアラーム出力端子81e,82e,83e,84eにアラーム信号を送出するためのアラーム入力専用の第2異常情報交換端子を追加する構成も考えられる。この場合、インバータ回路用の保護機能部81~83の異常情報交換端子81d,82d,83dとブレーキ回路用の保護機能部84の第2異常情報交換端子とを接続し、保護機能部84のアラーム出力端子84eから上位の制御装置へアラーム信号を送出するようにする。これにより、インバータ回路用の保護機能部81~83では、異常情報交換端子81d,82d,83dからの異常情報信号で保護部81b,82b,83bが有効になる。一方、ブレーキ回路用の保護機能部84では、第2異常情報交換端子が受けたアラーム信号は、オア回路84cを介してアラーム出力端子84eに伝えられるが、保護部84bには伝えられないため、ブレーキ回路が停止されることはない。このように、保護機能部81~84の構成として第2異常情報交換端子を追加し、接続の仕方を変更することによって、保護するかしないかを選ぶことができる。
特開2000-358384号公報 特開平8-275570号公報
 しかしながら、IPMのローサイドに配置された制御回路の保護機能部の構成として、アラーム入力専用の第2異常情報交換端子を追加することは、そのための接続パッドが必要になるので、制御回路を形成するチップが大型化し、コスト高になるという問題点がある。
 本発明はこのような点に鑑みてなされたものであり、高いコストをかけることなしに、インバータ回路にアラームが出ても、ブレーキ回路では、その保護機能が働かないようにした半導体装置を提供することを目的とする。
 本発明では上記の課題を解決するために、直流電圧を三相交流電圧に変換するインバータ回路と減速時などにモータに制動をかけるブレーキ回路とを備えた半導体装置が提供される。この半導体装置は、インバータ回路のローサイドに配置された第1ないし第3のパワートランジスタを保護する第1ないし第3の保護機能部と、ブレーキ回路の第4のパワートランジスタを保護する第4の保護機能部と、第1ないし第4の保護機能部に接続されて相互通信を行う配線と、を備えている。第1ないし第3の保護機能部は、対応する第1ないし第3のパワートランジスタの異常を検出する第1ないし第3の異常検出部と、異常検出時に対応する第1ないし第3のパワートランジスタの動作を停止させる第1ないし第3の保護部と、異常検出時のアラーム信号を配線に出力したり配線から入力して対応する第1ないし第3の保護部へ伝達したりする第1ないし第3のアラーム入出力端子とを有している。そして、第4の保護機能部は、第4のパワートランジスタの異常を検出する第4の異常検出部と、異常検出時に第4のパワートランジスタの動作を停止させる第4の保護部と、異常検出時のアラーム信号を配線に出力したり配線から入力したりする第4のアラーム入出力端子と、第4の異常検出部が出力または第4のアラーム入出力端子に入力したアラーム信号を受けるオア回路と、オア回路が出力した信号を半導体装置の外部へ通知するアラーム出力端子とを有している。
 上記構成の半導体装置は、インバータ回路でアラーム停止があってもブレーキ回路では保護状態にならないので、動作信号に従ってブレーキ回路を動作させることができるという利点がある。また、ブレーキ回路に関しては、今まで通り、自身のパワートランジスタに異常があった場合、自己保護するとともにインバータ回路を保護するという基本的な機能は何ら損なわれない。
 本発明の上記および他の目的、特徴および利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明の実施の形態に係る半導体装置の保護機能部の構成および保護機能部間の連携保護を示す機能ブロック図である。 IPMの構成例を示す回路図である。 パワートランジスタおよびその制御回路を含む半導体ユニットの構成例を示す回路図である。 制御回路の保護機能部の間における連携保護を示す機能ブロック図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、半導体装置の全体的な構成は、図2に示したものと同じであり、部分的な構成は、図3に示したものと同じであり、したがって、本発明の要部を除く部分の説明には、図2および図3を参照することがある。
 図1は本発明の実施の形態に係る半導体装置の保護機能部の構成および保護機能部間の連携保護を示す機能ブロック図である。この図1において、図4に示したものと同じ構成要素については同じ符号を付してある。
 図1においては、IPM1のローサイドに配置されて動作基準電位を共通とするインバータ回路用の制御回路34~36とブレーキ回路用の制御回路37とがそれぞれ有する保護機能部81~84を示している。
 この保護機能部81~84によれば、図4に示したものと比較して、ブレーキ回路用の保護機能部84の構成を一部変更し、かつ、IPM1からアラーム信号が出力される位置を変更している。すなわち、ブレーキ回路用の保護機能部84は、異常情報交換端子84dから保護部84bへの配線を切断して異常情報交換端子84dが受けた異常情報信号をオア回路84cのみに伝達するように変更し、ブレーキ回路専用の保護機能部84にしている。また、IPM1のアラーム出力に接続される配線86は、ブレーキ回路用の保護機能部84のアラーム出力端子84eに接続している。
 この構成によれば、インバータ回路用の制御回路34~36の1つ、たとえば、保護機能部81がその異常検出部81aにて異常を検出したとすると、自身の保護部81bが保護状態になり、オン/オフ制御回路61は、動作信号を受け付けなくなって動作停止する。これとともに異常検出部81aのアラーム信号は、異常情報交換端子81dに異常情報信号として送出され、また、オア回路81cを介してアラーム出力端子81eに送出される。
 保護機能部81の異常情報交換端子81dが受けた異常情報信号は、配線85を介して他の保護機能部82~84の異常情報交換端子82d,83d,84dに送出される。インバータ回路用の保護機能部82,83では、その異常情報交換端子82d,83dが受けた異常情報信号は、それぞれの保護部82b,83bに送られ、オン/オフ制御回路61は、動作信号を受け付けなくなって動作を停止する。
 次に、ブレーキ回路用の保護機能部84においては、異常情報交換端子84dが受けた異常情報信号は、保護部84bに伝達することはなく、したがって、ブレーキ回路は正常動作をしつつアラーム出力端子84eからIPM1の上位の制御装置へアラーム信号として通知される。
 このようにして、インバータ回路がアラーム停止したとしても、ブレーキ回路は、保護されずに動作信号を受け付け、正常動作を維持することになる。このため、インバータ回路が停止したときにモータ3によって発生される回生エネルギは、ブレーキ回路によって消費されるので、IPM1の正極端子Pおよび負極端子Nの端子間の電圧が上昇することがなくなる。
 また、ブレーキ回路用の保護機能部84において、異常検出部84aが異常を検出したときには、そのアラーム信号は、保護部84bとオア回路84cを介してアラーム出力端子84eとにそれぞれ伝達される。これにより、保護部84bは、動作信号を受け付けない保護状態になる。また、また、配線85を介して保護機能部84からの異常情報信号を受け付けたインバータ回路の保護機能部81~83は、保護状態になる。さらに、保護機能部84からは、配線86を介してアラーム信号がIPM1の上位の制御装置へ通知される。
 次に、インバータ回路用の保護機能部81~83の少なくとも1つが異常を検出してブレーキ回路用の保護機能部84からIPM1の上位の制御装置にアラーム信号が通知されているときに、ブレーキ回路用の保護機能部84が異常を検出することがある。この場合は、インバータ回路用の保護機能部81~83およびブレーキ回路用の保護機能部84は、ともに動作信号を受け付けない保護状態となる。
 なお、以上の実施の形態では、インバータ回路用およびブレーキ回路用の保護機能部81~84は、既存の保護機能部に対しできるだけ共通化することを目的にブレーキ回路用の保護機能部84だけに変更を加えている。しかし、インバータ回路用の保護機能部81~83についても、保護機能部81~83では使用されないオア回路81c,82c,83cおよびアラーム出力端子81e,82e,83eを削除してインバータ回路専用の構成にすることもできる。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 IPM
 2 電源
 3 モータ
 4 整流回路
 5,6 コンデンサ
 7 抵抗
 10 パワートランジスタ
 11~17 IGBT
 21~27 ダイオード
 30~37 制御回路
 41~44 直流電源
 50 半導体ユニット
 51 動作信号入力端子
 52 異常情報交換端子
 53 アラーム出力端子
 61 オン/オフ制御回路
 62 チップ温度検出回路
 62a 比較器
 62b 基準電圧
 62c 電源
 63 過電流検出回路
 63a 比較器
 63b 基準電圧
 64 遮断回路
 65 アラーム信号出力回路
 66 信号出力検出回路
 67 異常情報交換回路
 71 IGBTチップ
 72 温度センサ
 73 電流センサ
 81~84 保護機能部
 81a,82a,83a,84a 異常検出部
 81b,82b,83b,84b 保護部
 81c,82c,83c,84c オア回路
 81d,82d,83d,84d 異常情報交換端子
 81e,82e,83e,84e アラーム出力端子
 85,86 配線
 B ブレーキ端子
 N 負極端子
 P 正極端子

Claims (2)

  1.  直流電圧を三相交流電圧に変換するインバータ回路と減速時などにモータに制動をかけるブレーキ回路とを備えた半導体装置において、
     前記インバータ回路のローサイドに配置された第1ないし第3のパワートランジスタを保護する第1ないし第3の保護機能部と、
     前記ブレーキ回路の第4のパワートランジスタを保護する第4の保護機能部と、
     前記第1ないし第4の保護機能部に接続されて相互通信を行う配線と、
     を備え、
     前記第1ないし第3の保護機能部は、対応する前記第1ないし第3のパワートランジスタの異常を検出する第1ないし第3の異常検出部と、異常検出時に対応する前記第1ないし第3のパワートランジスタの動作を停止させる第1ないし第3の保護部と、異常検出時の異常情報信号を入力または出力する第1ないし第3の異常情報交換端子とを有し、
     前記第4の保護機能部は、前記第4のパワートランジスタの異常を検出する第4の異常検出部と、異常検出時に前記第4のパワートランジスタの動作を停止させる第4の保護部と、異常検出時の異常情報信号を入力または出力する第4の異常情報交換端子と、前記第4の異常検出部が出力または前記第4の異常情報交換端子に入力したアラーム信号を受けるオア回路と、前記オア回路が出力した信号を半導体装置の外部へ通知するアラーム出力端子とを有している半導体装置。
  2.  前記第1ないし第4の保護機能部は、それぞれ、前記第1ないし第4の異常検出部と、前記第1ないし第4の保護部と、前記第1ないし第4の異常情報交換端子と、第1ないし第3のオア回路および前記オア回路と、第1ないし第3のアラーム出力端子および前記アラーム出力端子とを有して共通の構成とし、前記第4の保護機能部は、前記第4の保護部が前記配線を介して前記第4の異常情報交換端子に受けたアラーム信号を受け付けないようにした請求項1記載の半導体装置。
PCT/JP2016/079466 2015-11-19 2016-10-04 半導体装置 WO2017086041A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-226617 2015-11-19
JP2015226617 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017086041A1 true WO2017086041A1 (ja) 2017-05-26

Family

ID=58718704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079466 WO2017086041A1 (ja) 2015-11-19 2016-10-04 半導体装置

Country Status (1)

Country Link
WO (1) WO2017086041A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530771A (ja) * 1991-06-20 1993-02-05 Yaskawa Electric Corp インバータ駆動誘導電動機の直流制動方法
JP2000341960A (ja) * 1999-05-27 2000-12-08 Fuji Electric Co Ltd 半導体装置
JP2003088093A (ja) * 2001-09-11 2003-03-20 Toshiba Corp インテリジェントパワーモジュール、およびその制御回路
US20080129238A1 (en) * 2004-12-27 2008-06-05 Ulsnaes 1 Method For Detecting Earth-Fault Conditions in a Motor Controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530771A (ja) * 1991-06-20 1993-02-05 Yaskawa Electric Corp インバータ駆動誘導電動機の直流制動方法
JP2000341960A (ja) * 1999-05-27 2000-12-08 Fuji Electric Co Ltd 半導体装置
JP2003088093A (ja) * 2001-09-11 2003-03-20 Toshiba Corp インテリジェントパワーモジュール、およびその制御回路
US20080129238A1 (en) * 2004-12-27 2008-06-05 Ulsnaes 1 Method For Detecting Earth-Fault Conditions in a Motor Controller

Similar Documents

Publication Publication Date Title
US9806649B2 (en) Safety circuit arrangement for an electrical drive unit
US10187001B2 (en) Motor drive device including shared converter
JP5574845B2 (ja) 電力変換装置
EP2733807B1 (en) Protective Circuit for Multilevel Inverter
JP5370724B2 (ja) 安全停止回路を備えたモータ制御装置
JP3635988B2 (ja) 半導体装置
US20130231767A1 (en) Systems and methods for control with a multi-chip module with multiple dies
US20120134184A1 (en) Multi-level inverter having dual controller
EP2876809B1 (en) Electric power converter
US11063422B2 (en) Power semiconductor module and power converter
CN109643959B (zh) 电力变换装置以及逻辑电路
JPWO2016103929A1 (ja) 半導体装置および温度警報出力方法
US11444551B2 (en) Power conversion device with inverter circuit
JP2013055739A (ja) 半導体装置
US8698442B2 (en) Motor drive control device for limiting output of motor
ES2936836T3 (es) Accionamiento eléctrico para un robot industrial
EP3220539B1 (en) Motor controller
EP2405568B1 (en) Electronic power apparatus for controlling the movement of alternating current (AC) electric motors stopping such motors in a safe way
JP7469036B2 (ja) 保護機構を有するモータ駆動装置
WO2017086041A1 (ja) 半導体装置
JP2007336665A (ja) ゲート駆動装置およびそれを備えた電力変換装置
WO2007122701A1 (ja) コンバータ装置
JP2013247693A (ja) 電動機駆動用電力変換装置
JP2010239760A (ja) インバータ回路
WO2019187402A1 (ja) 制動回路および電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP