WO2017085410A1 - Moteur a rapport volumetrique variable - Google Patents

Moteur a rapport volumetrique variable Download PDF

Info

Publication number
WO2017085410A1
WO2017085410A1 PCT/FR2016/052985 FR2016052985W WO2017085410A1 WO 2017085410 A1 WO2017085410 A1 WO 2017085410A1 FR 2016052985 W FR2016052985 W FR 2016052985W WO 2017085410 A1 WO2017085410 A1 WO 2017085410A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
engine
combustion
volumetric ratio
hydraulic chamber
Prior art date
Application number
PCT/FR2016/052985
Other languages
English (en)
Inventor
Philippe DURY
Yves MIEHE
Original Assignee
MCE 5 Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MCE 5 Development filed Critical MCE 5 Development
Priority to AU2016355079A priority Critical patent/AU2016355079A1/en
Priority to CN201680067275.4A priority patent/CN108495984B/zh
Priority to JP2018524190A priority patent/JP6858412B2/ja
Priority to KR1020187016009A priority patent/KR20180081760A/ko
Priority to EP16812995.5A priority patent/EP3377743A1/fr
Priority to US15/776,736 priority patent/US10626791B2/en
Priority to CA3005570A priority patent/CA3005570A1/fr
Publication of WO2017085410A1 publication Critical patent/WO2017085410A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/22Cranks; Eccentrics
    • F16C3/28Adjustable cranks or eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/04Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads with elastic intermediate part of fluid cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/06Adjustable connecting-rods

Definitions

  • the invention relates to a motor and the elements of a variable volumetric ratio engine.
  • a connecting rod of an internal combustion engine is associated on the side of its foot with the bearing of a combustion piston and the side of its head with the bearing of a crankshaft. These two levels are generally parallel axes. As shown respectively in Figures 1A and 1B, the rod has the function of transmitting the translational movement of the piston from a "top dead center” to a “bottom dead center” to the rotational movement of the crankshaft. The connecting rod also maintains the angular position of the piston along the axis of translation thereof.
  • volumetric ratio of an internal combustion engine corresponds to the ratio between the volume of the combustion chamber when the piston is at its bottom dead point; and the volume of the combustion chamber when the piston is at its top dead center. All else being equal, the choice of the length of the connecting rod determines the volumetric ratio of the engine.
  • volumetric ratio of an engine greatly improves the energy efficiency of the engine. For example, it is sometimes desired to vary the volumetric ratio between about a value of 12 in the absence of load to a value of about 8 at full load.
  • a complete engine cycle consists of a fresh gas intake cycle, followed by a compression cycle, a combustion-expansion cycle, and finally a exhaust cycle. These cycles are of substantially equal extent, distributed over 720 ° rotation of the crankshaft.
  • the engine load is then defined as the fictitious constant pressure exerted on the piston crown during the combustion-expansion part of a cycle (the pressure exerted on the piston crown during the complementary part of the cycle being considered as zero) leading to obtain a power equivalent to that developed by the engine during a complete cycle.
  • This pressure is at most of the order of 10 bar for an ordinary atmospheric engine, and can commonly rise to values of 20 to 30 bar for a supercharged engine.
  • the displacement corresponds to the volume generated by the sliding of the piston in the engine cylinder between a top dead center and a bottom dead center.
  • a variable displacement is obtained by varying the stroke of the piston in the cylinder.
  • the displacement is not affected by the choice of the length of the connecting rod.
  • the displacement variation must be of great amplitude to have a noticeable effect on the energy efficiency, which is technologically difficult to implement.
  • the document US4111164 aims to vary the displacement of an engine according to the load that applies to it.
  • a rod consisting of a spring associated with a hydraulic chamber so as to rigidly couple a piston to the crankshaft of the engine when it is not subjected to a load; and resiliently coupling the piston to the crankshaft when the engine is under heavy load.
  • the rod acts as a shock absorber, compressing and expanding according to the instantaneous value of the forces that develop during a motor cycle.
  • this document discloses a constant displacement with the load during the intake cycle, while the displacement is increased during the combustion cycle when the load increases.
  • the hydraulic chamber of the solution presented in this document is particularly sensitive to the change in temperature of the hydraulic fluid, which, combined with the sensitivity to the engine speed, makes the behavior of the rod particularly unpredictable.
  • the document R0111863 describes an internal combustion engine consisting of a movable upper block and a lower block fixed vis-à-vis the chassis of a vehicle.
  • the upper block is free to pivot along a lateral axis linking the upper block to the lower block.
  • a cylinder volume is therefore added to the volume of the combustion chamber thus causing a decrease in the compressional compression ratio.
  • the invention aims to remedy at least some of the disadvantages of the prior art presented above.
  • the invention proposes a variable volumetric ratio engine having a fixed engine block in which movable members comprising a combustion piston, a connecting rod and a crankshaft cooperate to allow a translational movement of the combustion piston in a cylinder of combustion of the engine block, defining a stroke of the combustion piston from a top dead center to a bottom dead point, the translational movement being caused by combustion forces of a mixture in the combustion cylinder and by forces of combustion. inertia of the crankshaft
  • the engine comprises an autonomous device for adjusting the top dead center position of the combustion piston, the autonomous device being connected to or integrated with at least one of the mobile members and having:
  • At least one calibrated conduit allowing the flow of a hydraulic fluid between the high and low pressure hydraulic chambers
  • the characteristics of the calibrated conduit and mechanical return means are chosen so that the autonomous device forms a highly damped oscillating system.
  • the characteristics of the mechanical return means and the calibrated conduit are also chosen so that the adjustment of the length of the connecting rod to the average tensile and compressive forces conforms to a predetermined relationship.
  • the high pressure and low pressure hydraulic chambers are defined by the spaces formed on either side of a piston sliding in a cylinder.
  • the high pressure and low pressure hydraulic chambers are defined by the spaces formed on either side of a piston rotating in a cylinder portion.
  • the high pressure hydraulic chamber is defined by a first cylinder and a first piston and the low pressure hydraulic chamber is defined by a second cylinder and a second piston.
  • the low pressure hydraulic chamber and / or the high pressure hydraulic chamber is provided with a hydraulic fluid filling means.
  • the high pressure hydraulic chamber and / or the low pressure hydraulic chamber is provided with a means of discharging an excess of hydraulic fluid, to limit the pressure that develops there.
  • the high pressure hydraulic chamber and the low pressure hydraulic chamber have equivalent sections.
  • the autonomous adjustment device is configured to adjust the length of the connecting rod.
  • the autonomous adjustment device is configured to adjust the length of a control member of the volumetric ratio of the engine.
  • the autonomous adjustment device is configured to adjust the position of a control member of the volumetric ratio of the engine.
  • the autonomous adjustment device is disposed in at least one of the movable members.
  • the volumetric ratio engine comprises a device for determining the volumetric ratio.
  • the autonomous adjustment device includes
  • At least one calibrated duct called "compression" allowing only a flow of the chamber hydraulic high pressure to the low pressure hydraulic chamber.
  • the calibrated compression duct allows a flow only when the pressure in the high pressure hydraulic chamber exceeds the pressure in the low pressure hydraulic chamber by a determined value.
  • the autonomous adjustment device has at least two calibrated compression ducts.
  • the duct is configured to allow turbulent flow.
  • the return means comprise a spring.
  • Figs. 1A and 1B show the top dead center and bottom dead center positions of a piston of a conventional internal combustion engine
  • FIG. 2 represents the forces applied to a connecting rod during an engine cycle for a maximum load and two different engine speeds
  • FIG. 3 represents the maximum amplitude of the compression forces during an engine cycle following its load
  • FIG. 4 represents the evolution of the inertial forces during a motor cycle, for different speeds of this motor
  • FIGS. 5a and 5b show two basic configurations of an autonomous adjustment device according to the invention.
  • FIG. 6 represents the sealing means according to a particular mode of implementation of the invention
  • Figures 7a to 7c show three configurations for which the section equivalence condition is met
  • FIG. 8 represents a behavior law motor load - target volumetric ratio of an engine
  • FIG. 8a shows, for three configurations of the invention applied to different rods, damping laws corresponding to the maximum elongation speed of a connecting rod according to the amplitude of a constant force applied thereto;
  • Figures 9 and 9a show a first embodiment of the invention.
  • Figure 10 shows the behavior of the first embodiment of the invention.
  • FIG. 11 shows a second embodiment of the invention.
  • Figure 12 shows a third embodiment of the invention.
  • Figure 13 shows a fourth embodiment of the invention.
  • FIGS. 14 and 15 show a fifth embodiment of the invention
  • FIG. 2 represents, by way of example, the forces applied to a connecting rod of a conventional combustion engine during one engine cycle for a maximum load and two different engine speeds.
  • the combustion forces translate exclusively into compressive forces on the connecting rod.
  • the maximum amplitude of these forces is substantially proportional to the load of the motor as shown in Figure 3, by way of example.
  • the forces of inertia are translated on the connecting rod in successive efforts of traction and compression during a motor cycle.
  • the maximum amplitude of the inertial forces is essentially proportional to the square of the engine speed (that is to say its speed of rotation). This is illustrated by way of example in FIG.
  • variable volumetric ratio engine comprising an autonomous device for adjusting the position of the top dead center of the combustion piston according to the average combustion forces (or other words, depending on the engine load).
  • This adjustment of the position of the top dead center of the combustion piston makes it possible to adjust autonomously (ie without requiring the implementation of an active steering system) the volumetric ratio of the engine to its load.
  • average efforts is meant the average of the forces that apply during a cycle or a plurality of motor cycles.
  • An autonomous adjustment device 1 comprises a cylinder 2 and a piston 3 movable (in translation or in rotation) in the cylinder 2.
  • the term “cylinder” and “piston” any set of parts to define between they at least one chamber whose volume is adjustable by the displacement of the piston.
  • the cylinder may be a cylindrical recess in which slides a circular section piston; but the invention is in no way limited to this configuration.
  • the cylinder may consist of a single bore disk portion, and the piston formed of a radial part rotatable in this bore , along the axis of the generating disk of the bore.
  • the engine according to the invention comprises a fixed engine block (that is to say that the position of the combustion cylinders and the cylinder head is fixed relative to the crankshaft) and is configured to transmit the compressive forces and / or traction which apply on the piston of combustion to the piston
  • this device in response, is configured to adjust the position of the top dead center of the combustion piston, in order to modify or adapt the volumetric ratio of the engine.
  • the displacement of the piston 2 in the cylinder 3 makes it possible to adjust the top dead center of the combustion piston between a first stop (minimum position of the piston 3 in the cylinder 2) and a second stop (nominal position of the piston 3 in cylinder 2), depending on the magnitude of the average combustion forces.
  • the autonomous adjustment device 1 is configured to increase the volume of the combustion chamber with the increase in the average magnitude of the combustion forces.
  • the piston 3 defines in the cylinder 2 a first hydraulic chamber 4 called “high pressure”, able to transmit the compression forces Fcomp that apply to the device 1 along the longitudinal axis defined by the piston 3 and a second chamber hydraulic 5 called “low pressure” capable of transmitting Ftrac traction forces that apply to the device 1 along its longitudinal axis.
  • These two “high pressure” 4 and “low pressure” chambers 5 are in fluid communication, via at least one calibrated conduit 6.
  • the displacement of the piston 3 is generated by the application of the traction and compression forces transmitted to the device 1 and is allowed (in the limit provided by the stops) by the flow of the fluid from one chamber to another through the calibrated duct 6.
  • the device 1 behaves like a rigid body, the movement of the piston 3 in the cylinder 2 being limited to the compressibility of the hydraulic fluid pressurized by the tensile forces and / or compression.
  • FIG. 5b represents an alternative configuration to the autonomous adjustment device 1.
  • the high pressure hydraulic chamber 4 is defined via a first cylinder 2a and a first piston 3a, to which apply compression efforts.
  • the low pressure hydraulic chamber 5 is defined by means of a second cylinder 2b and a second piston 3b on which the traction forces apply. Pistons 3a and 3b are mechanically and kinematically bonded, as shown in dotted line in Figure 5b.
  • the two high and low pressure chambers 4, 5 are in fluid communication via the calibrated duct 6.
  • the dynamics of the flow between the two chambers 4, 5 conditions the speed of adjustment of the device 1 to the instantaneous forces which apply.
  • the displacement of the piston 3 makes it possible to adjust the position of the top dead center of the combustion piston of the variable volumetric ratio engine.
  • this dynamic is chosen (in particular by the dimensioning of the calibrated conduit or ducts 6) so as not to react, or react with a controlled and limited amplitude, to the instantaneous forces of inertia or combustion.
  • the calibrated conduit (s) 6 is configured to promote a turbulent flow.
  • a turbulent flow is favored by decreasing the ratio of the length of the duct to its diameter and penalizing the entry of the hydraulic fluid into the duct so as to create a violent transition between the chamber and this duct (by For example, converging type cones are not formed between chambers 4, 5 and conduit 6).
  • the rod cylinder 2 and / or the piston 3 are provided with sealing means preventing the flow of hydraulic fluid from a chamber 4, 5 to the other outside the (or) calibrated duct 6 provided (or avoiding the flow of hydraulic fluid out of the chambers 4, 5 in the alternative configuration of the device 1).
  • these sealing means comprise at the level of the sliding face of the piston, and in succession from the high pressure chamber 4 to the low pressure chamber 5: one or more metal segments 61 for containing the pressure front of the fluid present in the high pressure chamber 4;
  • Similar sealing means may also be provided on the pistons 3a, 3b of the alternative configuration of the device 1, shown in FIG. 5b.
  • the calibrated duct 6 between the low pressure chamber 5 and the high pressure chamber 4 is preferably formed in the piston 3 and / or in the cylinder 2.
  • the calibrated conduit 6 or one of the calibrated conduits 6 between the low pressure chamber 5 and the high pressure chamber 4 is formed in the piston 3.
  • this duct 6 or one of these calibrated ducts 6 may be formed in the cylinder body 2.
  • the cylinder 2 and the piston 3 are not provided with sealing means.
  • the clearance between the piston 3 and the cylinder 2 is chosen to allow the flow of fluid between the two chambers, and constitutes in itself a calibrated conduit 6 between the low pressure chamber 5 and the high pressure chamber 4.
  • the device 1 conforms to FIG.
  • the invention comprises mechanical means of reminders 7 configured to return the piston 3 (or at least one of the pistons 3a, 3b) to its nominal position in the absence of external forces, traction or compression.
  • the autonomous device 1 thus formed forms an oscillating system.
  • the calibrated conduit (s) 6 and the mechanical return means 7 are configured and / or chosen to adjust the position of the piston 3 (or pistons 3a, 3b) to the average tensile and compressive forces that apply to the device 1 during one or a plurality of motor cycles.
  • the characteristics of the mechanical means of reminders (stiffness, preload, etc.) and the calibrated conduit (s) (number, diameter, length, nature of the flow, etc.) are chosen for the connecting rod forms or exhibits the behavior of a highly damped oscillating system. It is recalled that a highly damped oscillating system is an oscillating system having a damping factor greater than 1.
  • the piston 3 (or the pistons 3a, 3b) is in the nominal position, the mechanical means of call-backs 7 leading to placing the piston 3 / cylinder 2 assembly in the mechanical stop position.
  • the engine thus has at startup a volumetric ratio defined by the nominal position of the piston 3 (or pistons 3a, 3b).
  • the mechanical return means 7 comprise a spring, for example a compression spring, arranged to exert a force tending to reposition the piston 3 (or the pistons 3a, 3b) in nominal position.
  • the spring can be placed in the high pressure hydraulic chamber 4, or arranged on the device 1 outside of this chamber 4.
  • the spring may have a stiffness which leads to applying an increasing return force with the contraction of the device 1.
  • the return forces are provided only by the spring and outside the effects of stops or transient effects
  • the length or position of the device 1 is essentially stabilized around a length or position of equilibrium, even if oscillations of small amplitudes can occur.
  • the hydraulic fluid tends to be transferred through the calibrated duct 6 of the low pressure chamber 5 to the high pressure chamber 4, and the piston 3 (or the pistons 3a, 3b) tends to return to its position. mechanical stop corresponding to a nominal position.
  • the volumetric ratio of the engine is adjusted accordingly.
  • the stiffness of the spring is chosen to grant the maximum movement of the piston 3 (or pistons 3a, 3b), between its two stops, for a selected range of loads.
  • the spring may be pre-loaded, that is to say that when the device 1 is in the nominal position, at rest, the spring applies a non-zero threshold return force.
  • the position of the piston 3 remains fixed at its nominal position.
  • part of the threshold return force can be provided by the hydraulic part of the device 1. In this case, the part of the threshold return force provided by the spring can be reduced, and the size of the spring can be reduced as well.
  • the spring is pre-loaded to a non-zero threshold return force and its stiffness is chosen relatively low, so that, for example, the variation of the return force of one stop to the other does not exceed 70% of the pre-load effort.
  • the device 1 in a first configuration, the device 1 is disposed in a first nominal position as long as the average applied combustion force remains below the threshold return force;
  • the device 1 is disposed in a second minimum position when the average applied combustion force is greater than the threshold return force.
  • This mode of implementation is particularly suitable for the realization of a device 1 simple and inexpensive for the implementation of a variable volumetric ratio autonomous "bi-rate".
  • the engine has a first volumetric ratio imposed by the nominal position of the device in its first configuration, for a low load; and a second volumetric ratio imposed by its minimum position in its second configuration, for a load exceeding a threshold load.
  • the cylinder 2 and the piston 3 may have a circular section, or a non-circular section, such as an oval section, which prevents the risk of rotation along the axis longitudinal of these two bodies.
  • the cylinder 2 and the piston 3 are dimensioned so as to limit the size of the device 1 and allow its placement in a combustion engine design traditional.
  • the minimum dimensioning of the device 1 is limited by the pressure of the maximum hydraulic fluid that can develop in the hydraulic chambers 4, 5.
  • an oval section of the cylinder 2 and the piston 3 is sometimes more appropriate, allowing accommodate the constraints of space and pressure.
  • the surfaces subjected to the pressure of the hydraulic fluid side of the low pressure chamber 5 and the side of the high pressure chamber 4 are chosen sufficiently large that when the piston 3 (or the pistons 3a, 3b) is subjected to maximum effort, the pressure that develops in one or the other chamber is not excessive, for example vis-à-vis the holding of the sealing means.
  • the cylinder 2 and / or the piston 3 can be provided at the level of the high pressure chamber 4 or the low pressure chamber 5 of filling means 8 of a hydraulic fluid. These filling means make it possible to maintain the chambers filled with this fluid, thus compensating for any leaks.
  • It may be a duct opening, at a first end, into the cylinder 2 (or at least one cylinder 2a, 2b), and opening at its second end, at a source of hydraulic fluid .
  • the first end of the duct opens into the low pressure chamber 5 which makes it possible to take advantage of the pumping effect which takes place during the application of a compressive force on the piston 3 and thus favor the filling flow of the hydraulic fluid in the cylinder 2.
  • the conduit may be provided with a non-return valve preventing the flow out of the cylinder through this conduit, as shown schematically in Figures 5a and 5b.
  • discharge means 9 may be constituted or comprise a simple conduit to the outside of the high pressure chamber 4 forming a constant leak, or a conduit provided with a pressure limiter for example in the form of a valve calibrated at a threshold pressure equal to the desired maximum pressure in this chamber.
  • the low pressure chamber 5 and the high pressure chamber 4 have an equivalent section.
  • equivalent section it is meant that the volume swept by the displacement of the piston 3 (or one of the pistons 3a, 3b) in one of the chambers 4, 5 is identical to the volume swept into the other chamber by the displacement of the piston 3 (or the other of the pistons 3a, 3b).
  • the condition of "equivalent section” is fulfilled, when the high and low pressure chambers 4, 5 are defined by translation of at least one piston 3 in at least one cylinder 2, when the surfaces subjected to the pressure of each face of the piston (Or on each of the faces of the pistons 3a, 3b), projected on a plane perpendicular to the direction of movement of the piston, are essentially equal.
  • the balance of the forces generated on the control member by the pressure on either side of the piston 3 (or on each of the pistons 3a, 3b ) is constant regardless of the temperature of the hydraulic fluid.
  • the internal pressure of the chambers 4, 5 is particularly variable with the expansion of the hydraulic fluid as a function of the temperature (which can range from -20 ° under cold conditions to extreme temperature at 150 ° in operation in an engine).
  • the variability of the internal pressure would cause a variability of the forces that apply to the piston 3 (or the pistons 3a, 3b). Consequently, the device 1 would have a behavior (position of the piston 3 as a function of the engine load) variable with the temperature, which is not generally desired.
  • the device 1 tends to balance during its operation the average pressures in the high and low pressure chambers 4, 5.
  • the average force generated by the pressure and acting on the piston 3 is no longer zero. This is then proportional to the difference in section between the chambers 4, 5, and is proportional to the average pressure prevailing in the chambers 4,5.
  • the hydraulic fluid is strongly subjected to thermal expansion, it follows that the pressure in the chambers 4, 5 may vary during the temperature rise of the engine.
  • the equivalent section conditions have the advantage of helping to maintain a substantially constant behavior (the ratio volumetric-load ratio) of the device 1 despite temperature variations.
  • this condition is obtained by a double-stage piston 3.
  • the cylinder 2 has a circular shoulder 3c so that the low pressure chamber 5 has a diameter greater than that of the high pressure chamber 4. This difference in diameter is compensated by the section of the rod 9 of the piston 3 in the low pressure chamber 5, so that finally the volume generated by the displacement of the piston 3 in one chamber is identical to the volume generated in the other chamber by the same displacement of the piston 3.
  • this condition is obtained by a piston 3 with external emergent rod.
  • the rod 9 of the piston 3 extends on either side of the piston 3 and in the volume of each of the chambers 4, 5. In this way, the condition of equivalent section is also ensured.
  • this condition is obtained by an internal emergent rod piston.
  • the high pressure chamber 4 has a projecting body 10 whose section is identical to that of the rod 9 of the piston 3.
  • This projecting body 10 is fitted to a bore 11 formed in the piston 3, so as to be able to slide. In this way, the condition of equivalent section is also ensured.
  • the device 1 can include:
  • At least one calibrated conduit 6a said "traction” allowing only a flow of hydraulic fluid from the low pressure chamber 5 to the high pressure chamber 4;
  • At least one calibrated duct 6b called "compression" allowing only a flow of hydraulic fluid from the high pressure chamber 4 to the low pressure chamber 5.
  • Each of the ducts 6a, 6b may be provided with a valve to allow flow in a single direction. It is thus possible to adjust each of the ducts (for example in their calibres) independently of one another and to allow a differentiated dynamic of the adjustment of the device 1 according to whether a tensile or compressive force applies.
  • the calibrated compression duct 6b allows a flow only when the pressure of the high pressure chamber 4 exceeds the pressure of the low pressure chamber 5 by a predetermined value. This can be easily achieved by providing the conduit 6b to a check valve ⁇ return valve to a predetermined pressure difference.
  • the device 1 may have two calibrated compression ducts 6b, one being simple and allowing a calibrated flow as soon as a compressive force is applied, the other being provided with a non-return valve calibrated for allow a complementary flow as soon as a sufficient effort (inducing a sufficient pressure differential between the two chambers) compression is applied.
  • the valves generally consist of a movable part (such as a ball) that can move in a direction of mobility, and cooperating with a seat and / or a spring.
  • This well-known mechanism selectively opens or closes a flow passage according to the differential pressure existing between the upstream and downstream of this passage.
  • the valves which are associated with the ducts 6; 6a, 6b and / or the filling means 8 and / or the discharge means 9 of the device 1 are arranged to place the mobility directions of their moving parts parallel to the foot and head of the rod.
  • the moving parts are not subject in their directions of mobility to the acceleration of the device 1 (when that is integrated with a movable member of the engine, such as the rod for example) during its operation in a motor. This avoids to make dependent on the engine speed the opening or closing behavior of these valves.
  • the valves have a mechanical stop of the movable part limiting their maximum opening and make it possible to control the flow rate of the flow, and to avoid the excessive biasing of the valve spring, when such a spring is present .
  • the ducts can also be provided
  • the determination of the configuration and calibration of the flow ducts 6a, 6b between the high pressure chamber 4 and the low pressure chamber 5 is of course related to the configuration of the engine in which the device 1 is called to operate, and to the chosen or expected performance of this engine.
  • the device 1 In general, it is intended to make the operation of the device 1 (the adjustment of the position of the top dead center of the combustion piston to the load of the engine, that is to say the average tensile and compressive forces) according to the desired characteristics of the engine, for example to give the shape of the curve shown in FIG. 8.
  • This may comprise an arbitration between the complexity of the flow restraint configuration (number of ducts, etc.) and its performance.
  • the characteristics of the mechanical return means 7 and the calibrated conduit (s) are chosen so that the adjustment of the top dead center position of the combustion piston to the average tensile and compression forces conforms to a predetermined relationship.
  • the skilled person can be helped by many common means to achieve this phase of design and / or validation. It may be in particular digital simulation and optimization means, or test benches for soliciting the device 1 in traction and compression following selected profiles to qualify its behavior.
  • FIG. 8a This figure represents (in ordinate), the speed of elongation of the rod, according to (in abscissa) the amplitude of a constant effort which is applied to him. This amplitude is normalized by the maximum force applied to the connecting rod, corresponding to the peak of combustion.
  • FIG. 8a three laws are represented by way of illustration, for three configurations of different rods and in accordance with the invention:
  • a speed of the order of 30 mm / s ensures a system with few oscillations of the length of the connecting rod around its equilibrium position during a motor cycle, but has the effect of slowing down the variation.
  • volumetric ratio when the engine load varies.
  • a speed of the order of 200 mm / s allows, conversely, to have a rapid variation of the volumetric ratio when the load varies, but can cause the occurrence of oscillations of the length of rod around its position d 'balanced.
  • the presence of one or a plurality of calibrated check valves makes it possible to establish a constitutive law that achieves a better compromise between the oscillations of the length of connecting rod and the reactivity of change of the volumetric ratio.
  • variable volumetric ratio engine may also optionally include means for determining the effective volumetric ratio during operation. It may be for example a target (for example, a magnetic body) positioned on the combustion rod and for detecting its passage in front of a detector placed opposite in the engine or integrated in the crankcase (for example a Hall effect sensor). It may also be the known solution of DE102009013323. Thus, a system is established for determining the position of the top dead center or the bottom dead center of the combustion piston.
  • a target for example, a magnetic body
  • variable compression ratio engine will advantageously be provided with a device for determining the volumetric ratio, this information being useful for the control of the engine components.
  • the motor or the device in which the invention is made to operate may advantageously be equipped with the necessary sensors, a computer and associated programs for this determination, and its consideration for the control of other organs of the motor. It may be by example of the known solution of the aforementioned document or the target and the detector constituting the system for determining the position of the top dead center or the bottom dead center of the combustion piston.
  • Example 1 Autonomous device integrated in the connecting rod of a conventional engine.
  • the autonomous device is integrated in the connecting rod of a conventional motor, as shown in FIGS. 1A and 1B and having the following characteristics:
  • a connecting rod according to this first example is shown in FIG. 9.
  • the foot of the rod is configured to form the cylinder 2 in which slides the piston 3 secured to the big end, via a rod 9.
  • the opening of the cylinder 2 is closed by a hood 13, which can be screwed on the cylinder 2.
  • the piston 3 thus defines in the cylinder 2 the high pressure chamber 4 and the low pressure chamber 5.
  • the center distance between the rod is 150 mm, when it is in its nominal position, and of the order of 146 mm when in its compressed position, abutting.
  • the rod has a double-stage piston formed by the shoulder 3c.
  • the high-pressure chamber 4 has a diameter of 26.5 mm, which represents a "useful" surface (that is to say the surface projected on the plane perpendicular to the axis of movement of the piston) of the fluid on the piston 3 of 552 mm A 2.
  • the low pressure hydraulic chamber 5 has an internal diameter of 30 mm, and the rod 9 has a circular section whose diameter is 14 mm.
  • the useful surface of the fluid of this chamber on the piston 3 is 553 mm A 2, thus almost identical to that of the high pressure hydraulic chamber 4.
  • the equivalent cross section condition is well respected.
  • an indexing means in the form of a pin 12 is placed through an oblong opening of the cylinder 2 (whose length extends in the longitudinal direction of the connecting rod) in order to avoid the rotation of the piston 3 while allowing it to slide.
  • a spring 7 is placed between the foot and the small end, so as to apply a return force to the rod.
  • the spring has a stiffness of 454 N / mm; and applies a preload force of 1266 N.
  • the connecting rod shown in FIG. 9 is particularly simple, and has a single calibrated duct 6 with an internal diameter of 0.44 mm to ensure the transfer of the hydraulic fluid from one chamber to the other under the effect of the tensile forces and compression exerted on the connecting rod.
  • the duct 6 consists of two end segments 6i and 6i 'whose section has a diameter of the order of 4 mm and of a central segment 6j of length 1 mm and section 0.54 mm. This configuration forms a calibrated duct with precision, and it can be determined that the flow law is of "turbulent" type in the operating conditions of the engine.
  • Constant stroke means that the distance between the top dead center and the bottom dead center of the combustion piston is constant to within 1%, and independent of the operating conditions of the engine (engine speed, load, etc.) when the engine is on a given operating point.
  • Figure 10 shows the behavior of the rod when it is put into operation in the engine whose characteristics have been previously specified. It is observed that at low engine speed, it is possible to follow with good precision the expected behavior law. At a higher engine speed, and although the overall behavior is quite acceptable and functional, it deviates however from the desired target behavior. The formation of a second calibrated duct 6 would adjust the behavior of the rod according to the expected behavior for all ranges of engine speed. In all cases, it is deduced from the curve shown in Figure 10, the length of the connecting rod, and thus the position of the top dead center is well adjusted, constant stroke, according to the average efforts that apply to it.
  • Example 2a autonomous device integrated in the control member of a variable volumetric ratio engine.
  • Figure 11 shows an overall and schematic sectional view of a variable volumetric ratio engine.
  • EP1407125 discloses certain mobile components comprising such an engine:
  • a combustion piston adapted to move in a motor cylinder and secured to a transmission member
  • a roller moving along a wall of the crankcase, and guiding the translational movement of the transmission member.
  • a toothed wheel cooperating with a first rack of the transmission member and ensuring the transmission of movement between the combustion piston and a crankshaft of the engine;
  • a connecting rod cooperating at one end with the toothed wheel and at a second end with the crankshaft;
  • a control member also cooperating with the wheel moves the vertical position of the wheel in the engine, and adjust the top dead center of the stroke of the piston in the cylinder, constant stroke. This produces a motor whose volumetric ratio can be made variable.
  • the motor of FIG. 11 differs from the state of the art in that the control member is not controlled by means of a control unit, actuating its movement to adjust the position of the top dead center. of the combustion piston, but is integral with the autonomous device
  • control member is integral with the piston 3, sliding in a cylinder
  • the rod has an external piston rod outlet ensuring the equivalent section condition, and the independence of the operation of the engine with the temperature of the hydraulic fluid.
  • the crankcase is provided with a means 8 for filling the hydraulic low-pressure chamber 5 with hydraulic fluid, and means 9 for discharging the excessive pressure that may be formed in the high-pressure chamber 4.
  • the crankcase is also provided with a first compression pipe 6b having a valve calibrated at a determined opening pressure. As has been presented previously, the presence of this calibrated valve makes it possible to limit the size and the stiffness of the spring 7.
  • the crankcase also has a second traction duct 6a and another calibrated valve whose opening pressure is also determined.
  • the combustion forces applied to the combustion piston and the drive forces transmitted by the crankshaft are both transmitted via the wheel to the control member and taken up by the low and high pressure chambers. 4, 5.
  • the piston 3 moves autonomously in the cylinder 2 which leads to adjust in translation the position of the control member, and by This leads to the position of the top dead center of the combustion piston.
  • the autonomous displacement of the control member, and the top dead center of the combustion piston is adjusted according to the average combustion forces.
  • the actual volumetric ratio information can be obtained (for example to enable the control of the organs of the motor) from the position information of the control member.
  • the motor of FIG. 11 may be provided with means for determining the position of the control member.
  • Example 2b Autonomous device integrated in the control member of a variable volumetric ratio engine.
  • Figure 12 shows an overall and schematic section of another type of variable volumetric ratio engine.
  • DE102010019756 discloses the elements making up such a motor. It includes, in a crankcase:
  • a combustion piston adapted to move in a motor cylinder and secured to a connecting rod;
  • a control member also cooperating with the transmission member, adjusts the top dead center of the piston stroke in the cylinder. This produces a motor whose volumetric ratio can be made variable.
  • the combustion forces applying to the combustion piston and the drive forces transmitted by the crankshaft are both transmitted via the transmission member to the control member.
  • the motor of FIG. 12 differs from the state of the art in that the control member is not controlled by means of a control means, actuating its movement to adjust the position of the top dead center. of the combustion piston, but comprises the autonomous device 1 of the invention alone ensuring the adjustment of the position of the top dead center of the combustion piston, according to the average combustion forces.
  • a fixed end of the control member is integral with the piston 3, sliding in a cylinder 2 and associated with a second end of this member, cooperating with the transmission member.
  • the high pressure chamber 4 and the low pressure chamber 5 which take up the tensile and compressive forces applied to the control member.
  • the return spring 7 is supported on the one hand on a flange formed on a portion of the integral control member of the piston 3 and on the other hand on another portion of the integral control member of the cylinder 2.
  • the connecting rod has a double-stage piston formed by the shoulder 3c ensuring the equivalent section condition, and the independence of the operation of the engine with the temperature of the hydraulic fluid. .
  • the control member is provided with a filling means 8 for the hydraulic fluid low pressure chamber 5, and discharge means 9 for the excessive pressure that may be formed in the high pressure chamber 4.
  • the cylinder 3 is also provided with a first compression pipe 6b having a valve calibrated at a determined opening pressure. As has been presented previously, the presence of this calibrated valve makes it possible to limit the size and the stiffness of the spring 7.
  • the piston 3 also has a second traction duct
  • the combustion forces applied to the combustion piston and the drive forces transmitted by the crankshaft are both transmitted via the transmission member to the control member and taken up by the lower chambers. and high pressure 5, 4.
  • the piston 3 moves autonomously in the cylinder 2 which leads to adjust in translation the interaxial length of the control member, and consequently the position of the top dead center of the combustion piston.
  • the interaxial length of the control member, and the position of the top dead center of the combustion piston are adjusted according to the average combustion forces.
  • the actual volumetric ratio information can be obtained (e.g. to allow the control of the motor members) from the length information of the controller.
  • the motor of FIG. 12 may be provided with means for determining the length of the control member.
  • Example 3 Integrated autonomous device a variable displacement ratio engine with "eccentric" rod.
  • the autonomous device 1 is integrated in the eccentric connecting rod of a variable volumetric ratio motor.
  • DE102011056298 describes the operation of an engine equipped with an eccentric rod.
  • An eccentric coupling means of the connecting rod to the piston can be actuated in rotation by means of two pistons, thus making it possible to adjust the length of spacing of the connecting rod and the top dead center of the combustion piston, with constant stroke, to form a variable compression ratio engine.
  • the movement of the pistons is controlled by means of a hydraulic control unit.
  • the motor of FIG. 13 differs from the state of the art in that the eccentric of the connecting rod is not controlled by means of a control unit, nor by any external mechanical element, actuating its rotation. to adjust the position of the top dead center of the combustion piston, but includes the autonomous device 1 of the invention ensuring by itself the adjustment of the position of the top dead center, to constant stroke of the combustion piston, according to the average combustion forces.
  • FIG. 13 shows an overall and diagrammatic cross-section of a variable displacement ratio engine with an eccentric connecting rod according to the invention.
  • Two pistons 3b, 3a slide respectively in two cylinders 2a, 2b to define the low and high pressure hydraulic chambers 5, 4.
  • the high pressure chamber also comprises a return spring 7, bearing on the one hand on the main surface of the piston and secondly on the bottom of the chamber, in order to apply a return force.
  • the sections of the high and low pressure chambers 4, 5 are chosen so that the volume generated by the displacement of one of the pistons 3a, 3b in the corresponding cylinder 2a, 2b is identical to the volume generated by the corresponding displacement of the other of the pistons 3a, 3b in its cylinder thanks to the kinematic mechanical connection made by the eccentric. This ensures the equivalent section condition, and independence of the operation of the engine with the temperature of the hydraulic fluid.
  • the connecting rod is provided with a means 8 for filling the hydraulic low-pressure chamber 5 with hydraulic fluid, and for discharging means 9 for the excessive pressure that could be formed in the high-pressure chamber 4.
  • the rod is also provided with a first compression pipe 6b allowing the fluid to flow from the high pressure chamber 4 to the low pressure chamber 5 and having a valve calibrated at a determined opening pressure.
  • a first compression pipe 6b allowing the fluid to flow from the high pressure chamber 4 to the low pressure chamber 5 and having a valve calibrated at a determined opening pressure.
  • the rod also has a second traction duct 6a allowing the fluid to flow from the low pressure chamber 5 to the high pressure chamber 4 and having another calibrated valve whose opening pressure is also determined.
  • the combustion forces applied to the combustion piston and the drive forces transmitted by the crankshaft are both applied to the eccentric rod and taken up by the low and high pressure chambers 5, 4. the effect of these efforts, and as explained above, the pistons 3a, 3b move autonomously in the cylinders 2a, and 2b which leads to adjust in rotation the angular position of the eccentric connection and consequently the length distance from the connecting rod.
  • the center-length of the connecting rod, and the position of the top dead center of the combustion piston are adjusted according to the average combustion forces.
  • Example 4 Autonomous device integrated with a variable displacement ratio engine with phase shift rod. It is known from EP2620614 the operation of an engine provided with a phase shifted rod. In such an engine, the connecting rod head is associated via an eccentric connection to the bearing of the crankshaft. A gear system makes it possible to move the rod in rotation about the eccentric axis, and thus to move the top dead center (and bottom) of the combustion piston. In the known solution of the aforementioned document, this movement is controlled by a controlled electric actuator, actuating in rotation an axis running parallel to the axis of the crankshaft and adapted to implement the gear system. This operation is particularly visible in Figure 14 of the aforementioned document.
  • the motor of FIG. 14 of the present embodiment differs from this state of the art in that the eccentrics of the connecting rods are not controlled by means of a controlled electric actuator, but by the autonomous device 1 of the invention alone ensuring the adjustment of the position of the high dead points, constant strokes, combustion pistons, according to the average combustion forces.
  • the autonomous device 1 is fixed on the engine block.
  • the piston 3 is secured to the shaft 20 rotating the gear systems 21 driving the rods 22 in rotation about their eccentric axes, thus moving the top dead center (and bottom) of the combustion pistons.
  • the forces applying to these combustion pistons are transmitted by this mechanism and taken up by the autonomous device 1.
  • the autonomous device 1 comprises a cylinder 2 constituted by a bore in disk portion in a cylindrical body of low height 24, and integral with the engine block.
  • the piston 3 consists of a radial part that can move in rotation in the disk portion bore along the main axis of the cylindrical body, and integral with the control shaft of the rate variation mechanism.
  • This piston 3 thus defines well, in the disk portion bore forming the cylinder 2, a high pressure hydraulic chamber 4 and a low pressure hydraulic chamber 5, on either side of the piston 3.
  • the high pressure 4 and low pressure hydraulic chambers 5 are defined by the spaces formed on either side of the piston 3 rotating in the cylinder portion 2.
  • a second bore is formed in the cylindrical body of low height 24, opposite the cylinder 2.
  • the return means in the form of a spring 7, are arranged in a bore formed in the axial portion of the piston 3.
  • a calibrated conduit 6, formed in the piston 3, allows the flow of hydraulic fluid from one chamber to another.
  • the combustion forces applying to the combustion piston and the drive forces are both applied to the piston 3 via, inter alia, the axis 20 and taken up by the low and high chambers. pressure 5, 4.
  • the piston 3 moves autonomously in the cylinder 2, which led to adjust in rotation the angular position of the eccentric connection at each connecting rod and consequently modifies the altitude of the top dead center of the combustion piston.
  • the position of the top dead center of the combustion piston is adjusted according to the average combustion forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

L'invention concerne un moteur à rapport volumétrique variable comportant un bloc moteur fixe dans lequel des organes mobiles comprenant un piston de combustion, une bielle et un vilebrequin coopèrent pour permettre un mouvement de translation du piston dans un cylindre de combustion du bloc moteur, définissant une course du piston de combustion allant d'un point mort haut à un point mort bas, le mouvement de translation étant provoqué par des efforts de combustion d'un mélange dans le cylindre et par des efforts d'inertie du vilebrequin. Le moteur est remarquable en ce qu'il comprend un dispositif autonome d'ajustement de la position de point mort haut du piston de combustion, le dispositif autonome étant relié ou intégré à l'un au moins des organes mobiles et présente une chambre hydraulique haute pression pour contrer les efforts de combustion et d'inertie au point mort bas; une chambre hydraulique basse pression pour contrer les efforts d'inertie au point mort haut; au moins un conduit calibré permettant l'écoulement d'un fluide hydraulique entre les chambres hydrauliques haute et basse pression; des moyens de rappel pour ramener le dispositif à une position nominale. Le conduit calibré et les moyens de rappels sont configurés pour que le dispositif autonome forme un système oscillant fortement.

Description

MOTEUR A RAPPORT VOLUMETRIQUE VARIABLE
DOMAINE DE L' INVENTION L'invention concerne un moteur et les éléments d'un moteur à rapport volumétrique variable.
ARRIERE PLAN TECHNOLOGIQUE DE L' INVENTION En avant-propos, on rappelle qu'une bielle d'un moteur à combustion interne est associée du côté de son pied au palier d'un piston de combustion et du côté de sa tête au palier d'un vilebrequin. Ces deux paliers sont généralement d'axes parallèles. Comme cela est respectivement représenté sur les figures 1A et 1B, la bielle a pour fonction de transmettre le mouvement de translation du piston d'un « point mort haut » à un « point mort bas » au mouvement de rotation du vilebrequin. La bielle permet également de maintenir la position angulaire du piston selon l'axe de translation de celui-ci.
On connaît de multiples solutions dans l'état de la technique permettant d'ajuster le rapport volumétrique et/ou la cylindrée d'un moteur à combustion interne. On rappelle que le rapport volumétrique d'un moteur à combustion interne, souvent appelé taux de compression, correspond au rapport entre le volume de la chambre de combustion lorsque le piston est à son point mort bas ; et le volume de la chambre de combustion lorsque le piston est à son point mort haut. Toute chose étant égale par ailleurs, le choix de la longueur de la bielle détermine le rapport volumétrique du moteur .
Il est généralement admis que l'adaptation du rapport volumétrique d'un moteur à sa charge permet d'améliorer grandement le rendement énergétique du moteur. Par exemple il est parfois recherché de faire varier le rapport volumétrique entre environ une valeur de 12 en l'absence de charge à une valeur de l'ordre de 8 à pleine charge. Pour un moteur à quatre temps, On rappelle qu'un cycle moteur complet est constitué d'un cycle d'admission des gaz frais, suivit d'un cycle de compression, d'un cycle de combustion-détente, et enfin d'un cycle d'échappement. Ces cycles sont d'étendues sensiblement égales, répartis sur 720° de rotation du vilebrequin. On définit alors la charge du moteur comme étant la pression constante fictive s' exerçant sur la calotte du piston lors de la partie combustion-détente d'un cycle (la pression s' exerçant sur la calotte du piston lors de la partie complémentaire du cycle étant considérée comme nulle) conduisant à obtenir une puissance équivalente à celle développée par le moteur au cours d'un cycle complet. Cette pression est au maximum de l'ordre de 10 bars pour un moteur atmosphérique courant, et peut monter communément jusqu'à des valeurs de 20 à 30 bars pour un moteur suralimenté.
La cylindrée correspond quant à elle au volume engendré par le coulissement du piston dans le cylindre du moteur entre un point mort haut et un point mort bas. Une cylindrée variable est obtenue en faisant varier la course du piston dans le cylindre. La cylindrée n'est pas affectée par le choix de la longueur de la bielle. La variation de cylindrée doit être de grande amplitude pour avoir un effet notable sur le rendement énergétique, ce qui est technologiquement difficile à mettre en œuvre.
Ainsi, le document US4111164 vise à faire varier la cylindrée d'un moteur selon la charge qui s'y applique. Ce document divulgue une bielle composée d'un ressort associé à une chambre hydraulique de sorte à coupler rigidement un piston au vilebrequin du moteur lorsque celui-ci n'est pas soumis à une charge ; et à coupler élastiquement le piston au vilebrequin lorsque le moteur est soumis à une charge importante. Pour cette seconde situation de charge importante, la bielle agit comme un absorbeur de choc, se compressant et se dilatant suivant la valeur instantanée des efforts qui se développent au cours d'un cycle moteur. Ainsi, ce document divulgue une cylindrée constante avec la charge lors du cycle d'admission, tandis que la cylindrée est augmentée lors du cycle de combustion lorsque la charge augmente. Toutefois, les efforts de combustion en partie absorbés dans la chambre hydraulique de la bielle ne sont pas restitués, ce qui rend la solution particulièrement peu efficace . Cette solution ne permet donc pas d'ajuster le rapport volumétrique suivant la charge s' appliquant au cours d'un ou d'une succession de cycles moteur. Le comportement de cette bielle est particulièrement sensible au régime du moteur. La solution proposée dans ce document conduit par ailleurs à solliciter intensément les éléments mécaniques composant la bielle (ressort, chambre hydraulique) au cours du fonctionnement du moteur, ce qui accélère leurs usures et réduit la fiabilité du système.
Par ailleurs, la chambre hydraulique de la solution présentée dans ce document est particulièrement sensible au changement de température du fluide hydraulique, ce qui, combiné à la sensibilité au régime moteur, rend le comportement de la bielle particulièrement imprévisible.
Le document R0111863 décrit un moteur à combustion interne constitué d'un bloc supérieur mobile et d'un bloc inférieur fixe vis-à-vis du châssis d'un véhicule. Le bloc supérieur est libre de pivoter selon un axe latéral liant ce bloc supérieur au bloc inférieur. Quand la charge du moteur croit, la pression effective moyenne dans le cylindre augmente et entraîne le basculement du bloc supérieur autour de l'axe latéral. Un volume de cylindre est en conséquence ajouté au volume de la chambre de combustion provoquant ainsi une diminution du rapport volumétrique de compression.
La solution proposée dans ce document requiert la conception et la fabrication d'un bloc-moteur articulé qui ne correspond pas à une architecture standard de moteur à combustion, constitué d'un bloc moteur fixe, ce qui requiert une reconception complète de la plupart des éléments d' interface entre le moteur et le châssis du véhicule. Ainsi, les éléments se raccordant à la partie supérieure du moteur (ligne d'admission d'air, d'essence, ligne d'échappement, distribution,...) doivent être adaptés pour tolérer la mobilité de la partie supérieure du moteur.
D'autres documents, tel que WO2013092364, décrivent des bielles à longueur contrôlée, permettant de fixer le rapport volumétrique d'un moteur à combustion interne (et sans affecter la cylindrée) . Ces solutions requièrent la présence d'un système de pilotage actif de la longueur de la bielle via un système de commande externe (piston hydraulique, moteur électrique) qui est généralement complexe, source de pertes énergétiques et peu fiable. De plus, le contrôle du rapport volumétrique ne se fait pas de manière continue et la plage de valeur accessible est souvent très limitée. C'est le cas notamment de la solution proposée dans le document précité qui ne prévoit que deux longueurs de bielle.
OBJET DE L' INVENTION
L' invention vise à remédier au moins à certains inconvénients de l'art antérieur présentés ci-dessus.
BREVE DESCRIPTION DE L' INVENTION
A cet effet, l'invention propose un moteur à rapport volumétrique variable comportant un bloc moteur fixe dans lequel des organes mobiles comprenant un piston de combustion, une bielle et un vilebrequin coopèrent pour permettre un mouvement de translation du piston de combustion dans un cylindre de combustion du bloc moteur, définissant une course du piston de combustion allant d'un point mort haut à un point mort bas, le mouvement de translation étant provoqué par des efforts de combustion d'un mélange dans le cylindre de combustion et par des efforts d' inertie du vilebrequin
Selon l'invention, le moteur comprend un dispositif autonome d'ajustement de la position de point mort haut du piston de combustion, le dispositif autonome étant relié ou intégré à l'un au moins des organes mobiles et présentant :
- une chambre hydraulique haute pression pour contrer les efforts de combustion et d' inertie au point mort bas ; - une chambre hydraulique basse pression pour contrer les efforts d'inertie au point mort haut,
- au moins un conduit calibré permettant l'écoulement d'un fluide hydraulique entre les chambres hydrauliques haute et basse pression ;
- des moyens mécaniques de rappel pour ramener le dispositif à une position nominale ;
Les caractéristiques du conduit calibré et des moyens mécaniques de rappel sont choisies pour que le dispositif autonome forme un système oscillant fortement amorti.
Selon d'autres caractéristiques avantageuses et non limitatives de l'invention, prises seules ou en combinaison, et selon toute combinaison techniquement réalisable :
- les caractéristiques des moyens mécaniques de rappel et du conduit calibré sont également choisies pour que l'ajustement de la longueur de la bielle aux efforts moyens de traction et de compression se conforme à une relation prédéterminée .
- les chambres hydrauliques haute pression et basse pression sont définies par les espaces formés de part et d' autre d'un piston coulissant dans un cylindre.
- les chambres hydrauliques haute pression et basse pression sont définies par les espaces formés de part et d' autre d'un piston en rotation dans une portion de cylindre.
- la chambre hydrauliques haute pression est définie par un premier cylindre et un premier piston et la chambre hydraulique basse pression est définie par un second cylindre et un second piston. - la chambre hydraulique basse pression et/ou la chambre hydraulique haute pression est munie d'un moyen de remplissage en fluide hydraulique. - la chambre hydraulique haute pression et/ou la chambre hydraulique basse pression est munie d'un moyen de décharge d'un excès de fluide hydraulique, afin de limiter la pression qui s'y développe. - la chambre hydraulique haute pression et la chambre hydraulique basse pression présentent des sections équivalentes .
- le dispositif autonome d'ajustement est configuré pour ajuster la longueur de la bielle.
- le dispositif autonome d'ajustement est configuré pour ajuster la longueur d'un organe de commande du rapport volumétrique du moteur.
- le dispositif autonome d'ajustement est configuré pour ajuster la position d'un organe de commande du rapport volumétrique du moteur. - le dispositif autonome d'ajustement est disposé dans l'un au moins des organes mobiles.
- Le moteur à rapport volumétrique comprend un dispositif de détermination du rapport volumétrique. - le dispositif autonome d'ajustement comprend
a. Au moins un conduit calibré dit « de traction » autorisant uniquement un écoulement de la chambre hydraulique basse pression vers la chambre hydraulique haute pression;
b. Au moins un conduit calibré dit « de compression » autorisant uniquement un écoulement de la chambre hydraulique haute pression vers la chambre hydraulique basse pression.
- le conduit calibré de compression autorise un écoulement uniquement lorsque la pression dans la chambre hydraulique haute pression excède la pression dans la chambre hydraulique basse pression d'une valeur déterminée.
- le dispositif autonome d'ajustement présente au moins deux conduits calibrés de compression.
- le conduit est configuré pour permettre un écoulement du type turbulent. - les moyens de rappel comprennent un ressort.
BREVE DESCRIPTION DES DESSINS L'invention sera mieux comprise à la lumière de la description qui suit des modes et des exemples de réalisation particuliers et non limitatifs de l'invention en référence aux figures ci-jointes parmi lesquelles :
les figures 1A et 1B représentent les positions de point mort haut et de point mort bas d'un piston d'un moteur à combustion interne conventionnel ;
la figure 2 représente les efforts s' appliquant sur une bielle au cours d'un cycle moteur pour une charge maximale et deux régimes moteur différents ;
- La figure 3 représente l'amplitude maximale des efforts de compression au cours d'un cycle moteur suivant sa charge ; la figure 4 représente l'évolution des efforts d'inertie au cours d'un cycle moteur, pour différent régime de ce moteur ;
- les figures 5a et 5b représentent deux configurations de principe d'un dispositif autonome d'ajustement conforme à 1 ' invention ;
la figure 6 représente les moyens d'étanchéité selon un mode de mise en œuvre particulier de l'invention ; les figures 7a à 7c représentent trois configurations pour lesquelles la condition d'équivalence de section est respectée ;
La figure 8 représente une loi de comportement charge moteur - rapport volumétrique cible d'un moteur ;
La figure 8a représente, pour trois configurations de l'invention appliquée a des bielles différentes, des lois d'amortissement correspondant à la vitesse maximale d'élongation d'une bielle selon l'amplitude d'un effort constant qui lui est appliqué ;
Les figures 9 et 9a représentent un premier exemple de réalisation de l'invention.
La figure 10 représente le comportement du premier exemple de réalisation de l'invention.
- La figure 11 représente un deuxième exemple de réalisation de l'invention.
La figure 12 représente un troisième exemple de réalisation de l'invention.
La figure 13 représente un quatrième exemple de réalisation de l'invention.
Les figures 14 et 15 représentent un cinquième exemple de réalisation de l'invention
DESCRIPTION DETAILLEE DE L' INVENTION
Les bielles et les autres organes mobiles d'un moteur à combustion sont soumis à des efforts de traction et de compression au cours des cycles de fonctionnement du moteur. Ces efforts ont deux origines : les efforts dus à la combustion du mélange dans le cylindre de combustion et les efforts d'inertie engendrés par le vilebrequin, dus au régime moteur. La figure 2 représente à titre d'exemple les efforts s' appliquant sur une bielle d'un moteur à combustion conventionnel au cours d'un cycle moteur pour une charge maximale et deux régimes moteurs différents.
Les efforts de combustion se traduisent exclusivement en efforts de compression sur la bielle. L'amplitude maximale de ces efforts est sensiblement proportionnelle à la charge du moteur comme cela est représenté sur la figure 3, à titre d' exemple .
Les efforts d' inertie se traduisent sur la bielle en efforts successifs de traction et de compression au cours d'un cycle moteur. L'amplitude maximale des efforts d'inertie est essentiellement proportionnelle au carré du régime moteur (c'est-à-dire sa vitesse de rotation). Ceci est illustré à titre d'exemple sur la figure 4.
Au cours d'un cycle moteur ou d'une pluralité de cycles moteur, et si l'on néglige les frottements, le travail développé par les efforts d'inertie s' appliquant sur la bielle est nul, les efforts de compression et les efforts de traction, bien que d'amplitudes maximales et d'allures différentes, se compensant les uns les autres.
En conséquence, sur un cycle ou une pluralité de cycles moteurs le travail des efforts combinés s' appliquant sur la bielle correspond sensiblement au travail des efforts de combustion, qui sont représentatifs de la charge moteur comme on l'a précisé précédemment en relation avec la description de la figure 3. L'invention s'appuie sur ces observations pour proposer un moteur à rapport volumétrique variable comprenant un dispositif autonome d'ajustement de la position du point mort haut du piston de combustion suivant les efforts moyens de combustion (ou en d'autres termes, suivant la charge du moteur) . Cet ajustement de la position du point mort haut du piston de combustion permet d'ajuster de manière autonome (c'est à dire sans nécessiter la mise en œuvre d'un système de pilotage actif) le rapport volumétrique du moteur à sa charge. Par « efforts moyens » on signifie la moyenne des efforts qui s'appliquent pendant un cycle ou une pluralité de cycles- moteur .
Un dispositif autonome d'ajustement 1 conforme à l'invention et comme cela est représenté schématiquement sur la figure 5a, comprend un cylindre 2 et un piston 3 mobile (en translation ou en rotation) dans le cylindre 2. Dans le cadre de la présente demande, on désignera par « cylindre » et « piston » tout ensemble de pièces permettant de définir entre elles au moins une chambre dont le volume est ajustable par le déplacement du piston. Ainsi, il peut s'agir d'un évidement cylindrique dans lequel coulisse un piston de section circulaire ; mais l'invention n'est aucunement limitée à cette configuration. Comme cela sera présenté par la suite dans un exemple particulier de mise en œuvre de l'invention, le cylindre peut être constitué d'un simple alésage en portion de disque, et le piston formé d'une pièce radiale mobile en rotation dans cet alésage, suivant l'axe du disque générateur de l'alésage.
Quelque soient la configuration choisie pour le cylindre
2 et le piston 3, ceux-ci peuvent être intégrés ou reliés à l'un des organes mobiles et/ou au bloc moteur, comme cela sera décrit lors de l'exposé des différents modes de mise en œuvre de l'invention, afin de permettre le contrôle de la position du point mort haut du piston.
Le moteur conforme à l'invention comprend un bloc moteur fixe (c'est à dire que la position des cylindres de combustion et de la culasse est fixe par rapport au vilebrequin) et est configuré pour transmettre les efforts de compression et/ou de traction qui s'appliquent sur le piston de combustion au piston
3 du dispositif 1 autonome d'ajustement. Et ce dispositif, en réaction, est configuré pour ajuster la position du point mort haut du piston de combustion, afin de modifier ou d'adapter le rapport volumétrique du moteur. En d'autres termes, le déplacement du piston 2 dans le cylindre 3 permet d'ajuster le point mort haut du piston de combustion entre une première butée (position minimale du piston 3 dans le cylindre 2) et une seconde butée (position nominale du piston 3 dans le cylindre 2), suivant la grandeur des efforts moyens de combustion.
Le dispositif autonome d'ajustement 1 est configuré pour accroître le volume de la chambre de combustion avec l'augmentation de la grandeur moyenne des efforts de combustion. Le piston 3 définit dans le cylindre 2 une première chambre hydraulique 4 dite de « haute pression », apte à transmettre les efforts de compression Fcomp qui s'appliquent sur le dispositif 1 suivant l'axe longitudinal défini par le piston 3 et une seconde chambre hydraulique 5 dite de « basse pression » apte à transmettre les efforts de traction Ftrac qui s'appliquent sur le dispositif 1 suivant son axe longitudinal. Ces deux chambres « haute pression » 4 et « basse pression » 5 sont en communication fluidique, par l'intermédiaire d'au moins un conduit calibré 6.
Le déplacement du piston 3 est engendré par l'application des efforts de traction et de compression transmis au dispositif 1 et est permis (dans la limite prévue par les butées) par l'écoulement du fluide d'une chambre à l'autre à travers le conduit calibré 6. En l'absence d'écoulement, le dispositif 1 se comporte comme un corps rigide, le mouvement du piston 3 dans le cylindre 2 étant limité à la compressibilité du fluide hydraulique mis sous pression par les efforts de traction et/ou de compression.
La figure 5b représente une configuration alternative au dispositif autonome d'ajustement 1. Dans cette configuration, la chambre hydraulique 4 haute pression est définie par l'intermédiaire d'un premier cylindre 2a et d'un premier piston 3a, sur lequel s'appliquent les efforts de compression. La chambre hydraulique 5 basse pression est définie par l'intermédiaire d'un second cylindre 2b et d'un second piston 3b sur lequel s'appliquent les efforts de traction. Les pistons 3a et 3b sont liés mécaniquement et cinématiquement , comme cela est représenté en trait pointillé sur la figure 5b.
Comme dans la configuration principale de la figure 5a, les deux chambres 4, 5 de haute et basse pression sont en communication fluidique par l'intermédiaire du conduit calibré 6.
Quelle que soit la configuration choisie, la dynamique de l'écoulement entre les deux chambres 4, 5 conditionne la vitesse d'ajustement du dispositif 1 aux efforts instantanés qui s'appliquent. Le déplacement du piston 3 (ou des pistons 3a, 3b) permet d'ajuster la position du point mort haut du piston de combustion du moteur à rapport volumétrique variable. Selon l'invention, cette dynamique est choisie (notamment par le dimensionnement du ou des conduits calibrés 6) pour ne pas réagir, ou réagir avec une amplitude contrôlée et limitée, aux efforts instantanés d'inertie ou de combustion. De manière particulièrement avantageuse, le ou les conduits calibrés 6 est configuré pour favoriser un écoulement turbulent. En effet, dans des conditions d'écoulement turbulent, par opposition à un écoulement laminaire, la relation liant le débit à la pression est bien moins sensible à la température du fluide. On contribue de la sorte à établir un comportement sensiblement constant du dispositif 1 malgré les variations de température du fluide hydraulique (qui peut s'étendre de -20 °C à froid dans des conditions de température extrême à 150 °C en fonctionnement dans un moteur) .
Comme cela est bien connu en soi, un écoulement turbulent est favorisé en diminuant le rapport longueur du conduit sur son diamètre et en pénalisant l'entrée du fluide hydraulique dans le conduit de manière à créer une transition violente entre la chambre et ce conduit (par exemple, on ne forme pas de cônes d'entrée du type convergent entre les chambre 4, 5 et le conduit 6) .
Selon une première configuration, le cylindre 2 de bielle et/ou le piston 3 (ou les cylindres 2a, 2b et les pistons 3a, 3b) sont munis de moyens d'étanchéité évitant l'écoulement du fluide hydraulique d'une chambre 4, 5 à l'autre en dehors du (ou des) conduit calibré 6 prévu (ou évitant l'écoulement du fluide hydraulique hors des chambres 4, 5 dans la configuration alternative du dispositif 1) .
Dans un exemple de mise en œuvre particulier de la configuration principale du dispositif 1, représenté sur la figure 6, ces moyens d'étanchéité comprennent au niveau de la face de glissement du piston, et en succession de la chambre haute pression 4 vers la chambre basse pression 5 : un ou plusieurs segments métalliques 61 permettant de contenir le front de pression du fluide présent dans la chambre haute pression 4 ;
un réservoir 62 intermédiaire de fluide hydraulique ; et un joint 63 (par exemple composite ou torique) assurant l'étanchéité de l'ensemble.
Des moyens d'étanchéité similaires peuvent être également pourvus sur les pistons 3a, 3b de la configuration alternative du dispositif 1, présentée sur la figure 5b. Le conduit calibré 6 entre la chambre basse pression 5 et la chambre haute pression 4 est préférentiellement formé dans le piston 3 et/ou dans le cylindre 2. De manière avantageuse, et par simplicité de fabrication, le conduit calibré 6 ou l'un des conduits calibrés 6 entre la chambre basse pression 5 et la chambre haute pression 4 est formé dans le piston 3. Alternativement, ce conduit 6 ou l'un de ces conduits calibrés 6 peut être formé dans le corps du cylindre 2.
Selon un second exemple de mise en œuvre de la configuration principale du dispositif 1, le cylindre 2 et le piston 3 ne sont pas munis de moyens d'étanchéité. Dans ce cas, le jeu entre le piston 3 et le cylindre 2 est choisi pour permettre l'écoulement du fluide entre les deux chambres, et constitue en soi un conduit calibré 6 entre la chambre basse pression 5 et la chambre haute pression 4. Dans cette configuration, on peut également prévoir au moins un conduit calibré 6 additionnel formé dans le piston 3 et/ou dans le corps du cylindre 2. De plus, et toujours en relation avec la description des figures 5a et 5b, le dispositif 1 conforme à l'invention comprend des moyens mécaniques de rappels 7 configurés pour ramener le piston 3 (ou au moins un des pistons 3a, 3b) à sa position nominale en l'absence d'efforts extérieurs, de traction ou de compression. Le dispositif autonome 1 ainsi constituée forme un système oscillant. Le ou les conduits calibrés 6 et les moyens mécaniques de rappel 7 sont configurés et/ou choisis pour ajuster la position du piston 3 (ou des pistons 3a, 3b) aux efforts moyens de traction et de compression qui s'appliquent sur le dispositif 1 au cours d'un ou une pluralité de cycle moteur. En d'autres termes, les caractéristiques des moyens mécaniques de rappels (raideur, précharge, etc) et du ou des conduit (s) calibré (s) (nombre, diamètre, longueur, nature de l'écoulement, etc) sont choisie pour que la bielle forme ou présente le comportement d'un système oscillant fortement amorti. On rappelle qu'un système oscillant fortement amorti est un système oscillant présentant un facteur d'amortissement supérieur à 1.
On expose ci-dessous le fonctionnement du dispositif 1 conforme à l'invention, lorsque celui-ci est en opération dans un moteur.
Au démarrage du moteur, le piston 3 (ou les pistons 3a, 3b) est en position nominale, les moyens mécaniques de rappels 7 conduisant à placer l'ensemble piston 3/cylindre 2 en position de butée mécanique. Le moteur présente donc au démarrage un rapport volumétrique défini par la position nominale du piston 3 (ou des pistons 3a, 3b) .
Les efforts dynamiques de traction et de compression qui s'appliquent sur le dispositif 1 à faible charge et qui correspondent donc essentiellement à des efforts d'inertie, se développent avec une dynamique plus rapide que la dynamique de l'écoulement dans le conduit calibré 6 entre la chambre hydraulique haute pression 4 et la chambre hydraulique basse pression 5. Aussi, la position du piston 3 dans le cylindre 2 (ou la position des pistons 3a, 3b dans les cylindres 2a, 2b) n'est essentiellement pas affectée par ces efforts, même si des oscillations de faibles amplitudes peuvent apparaître. Lorsque la charge du moteur augmente, les efforts de compression moyens deviennent suffisants pour permettre au fluide hydraulique d'être transféré de manière significative de la chambre haute pression 4 à la chambre hydraulique basse pression 5. Cet écoulement conduit au déplacement du piston 3 dans le cylindre 2 (ou des pistons 3a, 3b dans les cylindres 2a, 2b) et au déplacement du point mort haut du piston de combustion. Le rapport volumétrique du moteur est alors ajusté, de manière entièrement autonome, selon cette position.
Avantageusement, les moyens mécaniques de rappel 7 comprennent un ressort, par exemple un ressort de compression, agencé pour exercer un effort tendant à repositionner le piston 3 (ou les pistons 3a, 3b) en position nominale. Le ressort peut être placé dans la chambre hydraulique haute pression 4, ou agencé sur le dispositif 1 à l'extérieure de cette chambre 4.
Le ressort peut présenter une raideur qui conduit à appliquer un effort de rappel croissant avec la contraction du dispositif 1. D'une manière générale, lorsque les efforts de rappel ne sont fournis que par le ressort et en dehors des effets de butées ou d'effets transitoires, lorsque les efforts moyens de combustion correspondant à la charge moteur s'équilibrent avec les efforts appliqués par les moyens de rappel 7, la longueur ou la position du dispositif 1 est essentiellement stabilisée autour d'une longueur ou position d'équilibre, même si des oscillations de faibles amplitudes peuvent se manifester. Inversement lorsque la charge moteur diminue, le fluide hydraulique tend à être transféré à travers le conduit calibré 6 de la chambre basse pression 5 vers la chambre haute pression 4, et le piston 3 (ou les pistons 3a, 3b) tend à revenir sur sa butée mécanique correspondant à une position nominale. Le rapport volumétrique du moteur est ajusté en conséquence.
La raideur du ressort est choisie pour accorder le débattement maximum du piston 3 (ou des pistons 3a, 3b) , entre ses deux butées, pour une gamme choisie de charges. Le ressort peut être pré-chargé, c'est-à-dire que lorsque le dispositif 1 est en position nominale, au repos, le ressort applique un effort de rappel seuil non nul. Ainsi tant que l'effort moyen de combustion (effort de compression) reste inférieur à cet effort de rappel seuil, la position du piston 3 reste fixe, à sa position nominale. Comme on le verra par la suite, une partie de l'effort de rappel seuil peut être apporté par la partie hydraulique du dispositif 1. Dans ce cas, la partie de l'effort de rappel seuil apportée par le ressort peut être réduite, et la dimension du ressort peut être réduite également .
Selon un mode de mise en œuvre particulier de l'invention, le ressort est pré-chargé à un effort de rappel seuil non nul et sa raideur est choisie relativement faible, de sorte que, par exemple, la variation d'effort de rappel d'une butée à l'autre n'excède pas 70% de l'effort de pré-charge. On applique de la sorte au piston 3 (ou à l'un des pistons 3a, 3b) un effort de rappel essentiellement constant, indépendant de sa position. Et on constitue ainsi un dispositif 1 pouvant prendre deux configurations stables, sur ses butées :
dans une première configuration, le dispositif 1 est disposé dans une première position nominale tant que l'effort moyen de combustion appliqué reste inférieur à l'effort de rappel seuil ;
Dans une seconde configuration, le dispositif 1 est disposé dans une seconde position minimale lorsque l'effort moyen de combustion appliqué est supérieur à l'effort de rappel seuil.
Ce mode de mise en œuvre est particulièrement adapté à la réalisation d'un dispositif 1 simple et peu coûteux pour la mise en œuvre d'un moteur à rapport volumétrique variable autonome « bi-taux ». Le moteur présente un premier rapport volumétrique imposé par la position nominale du dispositif dans sa première configuration, pour une charge faible ; et un second rapport volumétrique imposé par sa position minimale dans sa seconde configuration, pour une charge excédent une charge seuil. Le cylindre 2 et le piston 3 (ou les cylindres 2a, 2b et les pistons 3a, 3b) peuvent présenter une section circulaire, ou une section non circulaire, telle qu'une section ovale, qui prévient le risque de rotation suivant l'axe longitudinal de ces deux corps .
D'une manière générale, le cylindre 2 et le piston 3 (ou les cylindres 2a, 2b et les pistons 3a, 3b) sont dimensionnés de manière à limiter l'encombrement du dispositif 1 et permettre son placement dans un moteur à combustion de conception traditionnelle. Toutefois, le dimensionnement minimum du dispositif 1 est limité par la pression du fluide hydraulique maximale qui peut se développer dans les chambres hydrauliques 4, 5. A ce titre, une section ovale du cylindre 2 et du piston 3 est parfois plus appropriée, permettant d'accommoder les contraintes d'encombrement et de pression. En tout état de cause, les surfaces soumises à la pression du fluide hydraulique du côté de la chambre basse pression 5 et du côté de la chambre haute pression 4 sont choisies suffisamment importantes pour que lorsque le piston 3 (ou les pistons 3a, 3b) est soumis à un effort maximum, la pression qui se développe dans l'une ou l'autre chambre ne soit pas excessive, vis-à-vis par exemple de la tenue des moyens d' étanchéité . Le cylindre 2 et/ou le piston 3 peuvent être munis au niveau de la chambre haute pression 4 ou de la chambre basse pression 5 de moyens de remplissage 8 d'un fluide hydraulique. Ces moyens de remplissage permettent de maintenir les chambres emplies de ce fluide, compensant de la sorte les éventuelles fuites. Il peut s'agir d'un conduit débouchant, en une première extrémité, dans le cylindre 2 (ou l'un au moins des cylindre 2a, 2b), et débouchant en sa seconde extrémité, au niveau d'une source de fluide hydraulique. De préférence, la première extrémité du conduit débouche dans la chambre basse pression 5 ce qui permet de tirer profit de l'effet de pompage qui s'opère lors de l'application d'un effort de compression sur le piston 3 et favoriser ainsi l'écoulement de remplissage du fluide hydraulique dans le cylindre 2. Le conduit peut être muni d'un clapet anti-retour empêchant l'écoulement hors du cylindre par ce conduit, comme cela est représenté schématiquement sur les figures 5a et 5b.
Afin de limiter la pression qui se développe dans le cylindre 2, celui-ci peut être muni de moyens de décharge 9. Ces moyens peuvent être constitués ou comprendre un simple conduit vers l'extérieur de la chambre haute pression 4 formant une fuite constante, ou un conduit muni d'un limiteur de pression par exemple sous la forme d'un clapet taré à une pression seuil égale à la pression maximale souhaitée dans cette chambre.
De manière particulièrement avantageuse, la chambre basse pression 5 et la chambre haute pression 4 présentent une section équivalente. Par « section équivalente », on signifie que le volume balayé par le déplacement du piston 3 (ou d'un des pistons 3a, 3b) dans l'une des chambres 4, 5 est identique au volume balayé dans l'autre chambre par le déplacement du piston 3 (ou de l'autre des pistons 3a, 3b) . La condition de « section équivalente » est remplie, lorsque les chambres haute et basse pression 4, 5 sont définis par translation d'au moins un piston 3 dans au moins un cylindre 2, quand les surfaces soumises à la pression de chaque face du piston (ou sur chacune des faces des pistons 3a, 3b), projetée sur un plan perpendiculaire à la direction de déplacement du piston, sont essentiellement égales.
Pour un point de fonctionnement moteur donné, et lorsque le piston 3 (ou chacun des pistons 3a, 3b) a atteint sa position d'équilibre, la différence de pression entre les deux chambres 4, 5 reste constante quelle que soit la température du fluide hydraulique .
D'une manière générale, dans la mesure où la condition de section équivalente est respectée, le bilan des efforts générés sur l'organe de commande par la pression de part et d'autre du piston 3 (ou sur chacun des pistons 3a, 3b) est constant quelle que soit la température du fluide hydraulique. La pression interne des chambres 4, 5 est particulièrement variable avec la dilatation du fluide hydraulique en fonction de la température (qui peut s'étendre de -20° à froid dans des conditions de température extrême à 150° en fonctionnement dans un moteur) . A défaut d'une équivalence des sections, la variabilité de la pression interne engendrerait une variabilité des forces qui s'appliquent sur le piston 3 (ou les pistons 3a, 3b) . En conséquence, le dispositif 1 aurait un comportement (position du piston 3 en fonction de la charge moteur) variable avec la température, ce qui n'est généralement pas désiré.
En d'autres termes, et en l'absence de clapet anti-retour taré sur le conduit 6, le dispositif 1 tend à équilibrer lors de son fonctionnement les pressions moyennes dans les chambres haute et basse pression 4, 5. Lorsque les sections ne sont pas équivalentes, l'effort moyen généré par la pression et s'exerçant sur le piston 3 (ou les pistons 3a, 3b) n'est plus nul. Celui-ci est alors proportionnel à la différence de section entre les chambres 4, 5, et est proportionnel à la pression moyenne régnant dans les chambres 4,5. Or, le fluide hydraulique est soumis fortement à la dilatation thermique, il en résulte que la pression régnant dans les chambres 4, 5 peut varier lors de la montée en température du moteur. En conséquence, l'équilibre entre les efforts exercés par les moyens de rappel 7, les efforts de combustion, et les efforts hydrauliques exercés sur le piston 3 (ou les pistons 3a, 3b) est alors perturbé par la température, ce qui n'est pas souhaitable. Les conditions de sections équivalentes présentent l'avantage de contribuer à préserver un comportement (la loi rapport volumétrique-charge) sensiblement constant du dispositif 1 malgré les variations de température.
De nombreuses configurations des chambres hydrauliques 4, 5 permettent de réaliser la condition de section équivalente, et de se prémunir de ces effets de température, comme cela est représenté sur les figures 7a à 7c à titre d'illustration.
Selon un premier exemple, représenté sur la figure 7a, cette condition est obtenue par un piston 3 à double étage. Sur cette figure, le cylindre 2 présente un épaulement circulaire 3c de sorte que la chambre basse pression 5 présente un diamètre plus grand que celui de la chambre haute pression 4. Cette différence de diamètre est compensée par la section de la tige 9 du piston 3 dans la chambre basse pression 5, si bien qu'au final le volume engendré par le déplacement du piston 3 dans une chambre est identique au volume engendré dans l'autre chambre par le même déplacement du piston 3. Selon un deuxième exemple, représenté sur la figure 7b, cette condition est obtenue par un piston 3 à tige débouchante externe. La tige 9 du piston 3 s'étend de part et d'autre du piston 3 et dans le volume de chacune des chambres 4, 5. De la sorte on assure également la condition de section équivalente.
Selon un troisième exemple, représenté sur la figure 7c, cette condition est obtenue par un piston à tige débouchante interne. Sur cette figure, la chambre haute pression 4 présente un corps saillant 10 dont la section est identique à celle de la tige 9 du piston 3. Ce corps saillant 10 est ajusté à un alésage 11 formé dans le piston 3, de manière à pouvoir y coulisser. De la sorte on assure également la condition de section équivalente . Afin de pouvoir ajuster avec plus de flexibilité la dynamique de l'écoulement, le dispositif 1 peut comprendre :
- Au moins un conduit calibré 6a dit « de traction » autorisant uniquement un écoulement du fluide hydraulique de la chambre basse pression 5 vers la chambre haute pression 4;
- Au moins un conduit calibré 6b dit « de compression » autorisant uniquement un écoulement du fluide hydraulique de la chambre haute pression 4 vers la chambre basse pression 5.
Chacun des conduits 6a, 6b peut être muni d'un clapet pour autoriser l'écoulement dans une unique direction. On peut ainsi ajuster chacun des conduits (par exemple dans leurs calibres) indépendamment l'un de l'autre et permettre une dynamique différenciée de l'ajustement du dispositif 1 suivant qu'un effort de traction ou de compression s'applique.
Dans une variante préférée, le conduit calibré de compression 6b autorise un écoulement uniquement lorsque la pression de la chambre haute pression 4 excède la pression de la chambre basse pression 5 d'une valeur déterminée. Ceci peut être facilement réalisé en munissant le conduit 6b d'un clapet anti¬ retour taré à une différence de pression prédéterminée.
En bloquant ainsi l'écoulement en dessous d'un différentiel de pression déterminé, on empêche tout mouvement de compression du piston 3 dans le cylindre 2 de la bielle tant que cette pression n'est pas dépassée. On obtient ainsi un effet similaire à celui de la précharge des moyens de rappels 7, ces moyens pouvant présenter alors une dimension moindre pour un effet identique.
Dans une variante, le dispositif 1 peut présenter deux conduits calibrés de compression 6b, l'un étant simple et permettant un écoulement calibré dès qu'un effort de compression est appliqué, l'autre étant muni d'un clapet anti-retour taré pour permettre un écoulement complémentaire dès qu'un effort suffisant (induisant un différentiel de pression suffisant entre les deux chambres) de compression est appliqué.
On dispose ainsi de moyens additionnels pour ajuster la dynamique de l'écoulement et donc la vitesse d'ajustement aux efforts instantanés qui s'y appliquent ; et plus généralement pour contrôler la relation liant le rapport volumétrique à la charge du moteur. Les clapets sont généralement constitués d'une partie mobile (telle qu'une bille) pouvant se déplacer selon une direction de mobilité, et coopérant avec un siège et/ou un ressort. Ce mécanisme bien connu permet de sélectivement ouvrir ou fermer un passage d'écoulement suivant le différentiel de pression existant entre l'amont et l'aval de ce passage. Avantageusement, les clapets qui sont associés aux conduits 6 ; 6a, 6b et/ou aux moyens de remplissage 8 et/ou aux moyens de décharge 9 du dispositif 1 sont agencés de manière à placer les directions de mobilité de leurs parties mobiles parallèles aux axes de pied et de tête de la bielle. Dans cette configuration, les parties mobiles ne sont pas soumises dans leurs directions de mobilité à l'accélération du dispositif 1 (lorsque celui est intégré à un organe mobile du moteur, telle que la bielle par exemple) lors de son fonctionnement dans un moteur. On évite de la sorte à rendre dépendant du régime moteur le comportement en ouverture ou en fermeture de ces clapets.
Selon un autre aspect avantageux, les clapets disposent d'un arrêt mécanique de la partie mobile limitant leur ouverture maximum et permettent de contrôler le débit de l'écoulement, et éviter la sollicitation excessive du ressort de clapet, lorsqu'un tel ressort est présent. Dans certains cas, on peut également munir les conduits
6 ; 6a, 6b de clapets « fuyards », pour lesquels un conduit de contournement est placé en parallèle du clapet lui-même. Comme cela est bien connu en soi, les clapets « fuyards » permettent de dissocier les flux montant et descendant, et d'ajuster les écoulements.
La détermination de la configuration et de la calibration des conduits d'écoulement 6a, 6b entre la chambre haute pression 4 et la chambre basse pression 5 est bien entendu liée à la configuration du moteur dans laquelle le dispositif 1 est appelé à fonctionner, et à la performance choisie ou attendue de ce moteur .
D'une manière générale, on vise à rendre le fonctionnement du dispositif 1 (l'ajustement de la position du point mort haut du piston de combustion à la charge du moteur, c'est à dire aux efforts moyens de traction et de compression) conforme à une relation prédéterminée suivant les caractéristiques recherchées du moteur, par exemple à donner l'allure de la courbe représentée sur la figure 8. Ceci peut comporter un arbitrage entre la complexité de la configuration retenue d'écoulement (nombre de conduits, etc) et sa performance. D'une manière générale, les caractéristiques des moyens mécaniques de rappel 7 et du (ou des) conduit calibré sont choisies pour que l'ajustement de la position de point mort haut du piston de combustion aux efforts moyens de traction et de compression se conforme à une relation prédéterminée.
L'homme du métier pourra se faire aider de nombreux moyens usuels pour réaliser cette phase de conception et/ou de validation. Il peut s'agir en particulier de moyens de simulation et d'optimisation numériques, ou de bancs de test permettant de solliciter le dispositif 1 en traction et en compression suivant des profils choisis afin de qualifier son comportement.
A titre d'exemple, lorsque le dispositif autonome 1 selon l'invention est intégré à une bielle de longueur variable pour ajuster la position du point mort haut du piston de combustion dans le cylindre de combustion suivant la grandeur des efforts moyens de combustion, la personne du métier pourra chercher à reproduire un amortissement dont la loi est donnée en figure 8a. Cette figure représente (en ordonné), la vitesse d'élongation de la bielle, selon (en abscisse) l'amplitude d'un effort constant qui lui est appliqué. Cette amplitude est normalisée par l'effort maximum appliqué sur la bielle, correspondant au pic de combustion. Sur la figure 8a, trois lois sont représentées à titre d' illustration, pour trois configurations de bielles différentes et conformes à l'invention :
(a) bielle présentant un unique conduit calibré;
(b) bielle présentant deux conduits calibrés, respectivement de traction et de compression, le conduit de compression étant muni d'un clapet anti-retour taré;
(c) bielle présentant trois conduits calibrés, un conduit de traction et deux conduits de compression, chacun des conduits de compression étant muni d'un clapet anti-retour taré . Ces lois d'amortissement sont caractérisées, entre autres, par une vitesse de déplacement comprise entre 30 et 200mm/s lorsque l'effort appliqué vaut 50% de l'effort maximal visible sur la bielle.
Une vitesse de l'ordre de 30mm/s permet d'assurer un système avec peu d'oscillations de la longueur de la bielle autour de sa position d'équilibre au cours d'un cycle moteur, mais a pour conséquence de ralentir la variation du rapport volumétrique lorsque la charge du moteur varie. Une vitesse de l'ordre de 200mm/s permet, à l'inverse, d'avoir une variation rapide du rapport volumétrique lorsque la charge varie, mais peut entraîner l'apparition d'oscillations de la longueur de bielle autour de sa position d'équilibre. La présence d'un ou d'une pluralité de clapets anti-retour taré permet d'établir une loi de comportement réalisant un meilleur compromis entre les oscillations de la longueur de bielle, et la réactivité de changement du rapport volumétrique. Le moteur à rapport volumétrique variable peut également comporter, de manière optionnelle, de moyens pour déterminer le rapport volumétrique effectif au cours de son fonctionnement. Il peut s'agir par exemple d'une cible (par exemple, un corps magnétique) positionnée sur la bielle de combustion et permettant de détecter son passage devant un détecteur placé en vis à vis dans le moteur ou intégré au carter moteur (par exemple un capteur à effet Hall) . Il peut s'agir également de la solution connue du document DE102009013323. On constitue ainsi un système de détermination de la position du point mort haut ou du point mort bas du piston de combustion.
D'une manière générale, le moteur à rapport volumétrique variable sera avantageusement muni d'un dispositif de détermination du rapport volumétrique, cette information pouvant être utile pour la commande des organes du moteur. A cet effet, le moteur ou le dispositif dans lequel la l'invention est amenée à fonctionner pourra avantageusement être équipé des capteurs nécessaires, d'un calculateur et des programmes associés permettant cette détermination, et sa prise en compte pour la commande des autres organes du moteur. Il pourra s'agir par exemple de la solution connue du document précité ou de la cible et du détecteur constituant le système de détermination de la position du point mort haut ou du point mort bas du piston de combustion .
DESCRIPTION DETAILLEE D ' EXEMPLES NON LIMITATIFS DE REALISATION
Exemple 1 : Dispositif autonome intégré dans la bielle d'un moteur conventionnel.
Selon un premier exemple de réalisation, le dispositif autonome est intégré dans la bielle d'un moteur conventionnel, tel que représenté sur les figures 1A et 1B et présentant les caractéristiques suivantes :
- Diamètre du piston de combustion : 75 mm ;
- Course 84 mm ;
- Tricylindre formant 1113 cmA3 de cylindrée ;
- Charge maximale : 25 bar de PME (Pression moyenne
effective) pour une pression de combustion maximale de
130b;
Une bielle conforme à ce premier exemple est représentée sur la figure 9.
Dans cet exemple, le pied de la bielle est configuré pour former le cylindre 2 dans lequel coulisse le piston 3 solidaire de la tête de bielle, par l'intermédiaire d'une tige 9. L'ouverture du cylindre 2 est refermée par un capot 13, qui peut être vissé sur le cylindre 2. Le piston 3 définit ainsi dans le cylindre 2 la chambre haute pression 4 et la chambre basse pression 5. L'entraxe de la bielle est de 150 mm, lorsque celle- ci est dans sa position nominale, et de l'ordre de 146 mm lorsqu'elle est dans sa position compressée, en buté.
Similairement à ce qui avait été décrit en relation avec la figure 7a, la bielle présente un piston à double étage, formé par l'épaulement 3c. La chambre haute pression 4 présente un diamètre de 26,5 mm, ce qui représente une surface « utile » (c'est à dire la surface projetée sur le plan perpendiculaire à l'axe de déplacement du piston) du fluide sur le piston 3 de 552 mmA2. La chambre hydraulique basse pression 5 présente un diamètre interne de 30 mm, et la tige 9 présente une section circulaire dont le diamètre est de 14 mm. En conséquence, la surface utile du fluide de cette chambre sur le piston 3 est de 553 mmA2, donc quasi identique à celle de la chambre hydraulique de haute pression 4. La condition de section équivalente est bien respectée. Dans le piston 3, un moyen d'indexation sous la forme d'une goupille 12 est placé au travers d'une ouverture oblongue du cylindre 2 (dont la longueur s'étend dans la direction longitudinale de la bielle) afin d'éviter la rotation du piston 3 tout en permettant son coulissement .
Un ressort 7 est placé entre le pied et la tête de bielle, de manière à appliquer un effort de rappel à la bielle. Dans cet exemple particulier, le ressort présente une raideur de 454 N/mm ; et applique un effort de pré charge de 1266 N.
La bielle représentée sur la figure 9 est particulièrement simple, et présente un unique conduit 6 calibré de diamètre interne de 0,44 mm pour assurer le transfert du fluide hydraulique d'une chambre à l'autre sous l'effet des efforts de traction et de compression exercés sur la bielle. Dans l'exemple reproduit sur cette figure, et comme cela est reproduit plus en détail sur la figure 9a, le conduit 6 est constitué de deux segments extrêmes 6i et 6i' dont la section présente un diamètre de l'ordre de 4 mm et d'un segment central 6j de longueur 1 mm et de section 0,54 mm. Cette configuration forme un conduit calibré avec précision, et dont on peut déterminer que la loi d'écoulement est de type « turbulent » dans les conditions de fonctionnement du moteur. Lors du fonctionnement du moteur, les efforts de combustion s' appliquant sur le piston de combustion et les efforts d' inertie transmis par le vilebrequin sont directement transmis aux extrémités de la bielle et repris par les chambres haute et basse pression 4, 5. Sous l'effet de ces efforts, et comme cela a été expliqué précédemment, le piston 3 se déplace de manière autonome dans le cylindre 2 ce qui conduit à ajuster la longueur d'entraxe de la bielle. Les dimensions respectives du cylindre 2 et du piston 3, permettent un débattement de 4 mm de la bielle entre ses butées mécaniques formées par le fond du cylindre 2 et le capot 13. Cette configuration de bielle, conduisant à ajuster la position de point mort haut, à course constante, du piston de combustion dans le cylindre de combustion, permet d'atteindre respectivement un rapport volumétrique minimum de 10,3 et maximum de 17,6 lorsqu'elle est placée dans le moteur décrit précédemment.
Par « course constante » on signifie que la distance séparant le point mort haut du point mort bas du piston de combustion est constante à 1% près, et indépendante des conditions de fonctionnement du moteur (régime, charge, ...) lorsque le moteur est sur un point de fonctionnement donné.
La figure 10 représente le comportement de la bielle lorsque celle-ci est mise en opération dans le moteur dont les caractéristiques ont été précisées précédemment. On observe qu'à faible régime moteur, il est possible de suivre avec une bonne précision la loi de comportement attendu. A régime moteur plus élevé, et bien que le comportement général soit tout à fait acceptable et fonctionnel, celui-ci s'écarte toutefois du comportement cible souhaité. La formation d'un second conduit calibré 6 permettrait d'ajuster le comportement de la bielle selon le comportement attendu pour toutes les gammes de régime moteur. Dans tous les cas, on déduit de la courbe représentée sur la figure 10, que la longueur de la bielle, et donc la position du point mort haut est bien ajustée, à course constante, suivant les efforts moyens qui s'y appliquent. Par ailleurs, les chambres hydrauliques 4, 5 et le piston 3 de cet exemple étant configurés pour présenter des sections équivalentes, et la configuration du conduit 6 permettant un écoulement de type « turbulent » du fluide hydraulique dans les conditions de fonctionnement du moteur, le comportement est essentiellement indépendant de la température du fluide hydraulique . Exemple 2a : Dispositif autonome intégré dans l'organe de commande d'un moteur à rapport volumétrique variable.
La figure 11 présente une coupe d'ensemble et schématique d'un moteur à rapport volumétrique variable. On connaît de EP1407125 certains organes mobiles composant un tel moteur :
- un piston de combustion, apte à se déplacer dans un cylindre du moteur et solidaire d'un organe de transmission ;
- un rouleau se déplaçant le long d'une paroi du carter- moteur, et guidant le mouvement de translation de l'organe de transmission.
une roue dentée coopérant avec une première crémaillère de l'organe de transmission et assurant la transmission du mouvement entre le piston de combustion et un vilebrequin du moteur ;
- une bielle coopérant en une première extrémité avec la roue dentée et en une seconde extrémité avec le vilebrequin ; Un organe de commande, coopérant également avec la roue permet de déplacer la position verticale de la roue dans le moteur, et d'ajuster le point mort haut de la course du piston dans le cylindre, à course constante. On réalise ainsi un moteur dont le rapport volumétrique peut être rendue variable.
Le moteur de la figure 11 se distingue de l'état de la technique en ce que l'organe de commande n'est pas contrôlé par l'intermédiaire d'une centrale de pilotage, actionnant son déplacement pour ajuster la position du point mort haut du piston de combustion, mais est solidaire du dispositif autonome
1 de l'invention assurant à lui seul l'ajustement de la position du point mort haut, à course constante, du piston de combustion, suivant les efforts moyens de combustion. Ainsi, dans l'exemple de la figure 11, l'organe de commande est solidaire du piston 3, coulissant dans un cylindre
2 formé dans le carter moteur. On retrouve bien dans cette exemple la chambre haute pression 4 et la chambre basse pression 5 qui reprennent les efforts de traction et de compression s' appliquant sur l'organe de commande. Le ressort de rappel 7 prend appui d'une part sur une collerette formée sur l'organe de commande et d' autre part sur une surface opposée du carter moteur . Similairement à ce qui avait été décrit en relation avec la figure 7b, la bielle présente un piston à tige débouchante externe assurant la condition de section équivalente, et l'indépendance du fonctionnement du moteur avec la température du fluide hydraulique.
Le carter-moteur est muni d'un moyen de remplissage 8 de la chambre hydraulique basse pression 5 en fluide hydraulique, et de moyens de décharge 9 de la pression excessive qui pourrait se former dans la chambre haute pression 4.
Le carter-moteur est également muni d'un premier conduit de compression 6b présentant un clapet taré à une pression d'ouverture déterminé. Comme cela a été présenté précédemment, la présence de ce clapet taré permet de limiter la taille et la raideur du ressort 7.
Le carter-moteur présente également un second conduit de traction 6a et d'un autre clapet taré dont la pression d'ouverture est également déterminée.
En fonctionnement, les efforts de combustion s' appliquant au piston de combustion et les efforts d' entraînement transmis par le vilebrequin sont tous deux transmis par l'intermédiaire de la roue à l'organe de commande et repris par les chambres basse et haute pression 4, 5. Sous l'effet de ces efforts, et comme cela a été expliqué précédemment, le piston 3 se déplace de manière autonome dans le cylindre 2 ce qui conduit à ajuster en translation la position de l'organe de commande, et par voie de conséquence la position du point mort haut du piston de combustion. Le déplacement autonome de l'organe de commande, et du point mort haut du piston de combustion, est ajusté suivant les efforts moyens de combustion.
L' information de rapport volumétrique effectif peut être obtenu (par exemple pour permettre la commande des organes du moteur) à partir de l'information de position de l'organe de commande. A cet effet, le moteur de la figure 11 peut être muni de moyens de détermination de la position de l'organe de commande .
Exemple 2b : Dispositif autonome intégré dans l'organe de commande d'un moteur à rapport volumétrique variable. La figure 12 présente une coupe d'ensemble et schématique d'un autre type de moteur à rapport volumétrique variable. On connaît de DE102010019756 les éléments composant un tel moteur. Il comprend, dans un carter-moteur :
- un piston de combustion, apte à se déplacer dans un cylindre du moteur et solidaire d'une bielle ;
- un organe de transmission solidaire de la bielle et assurant la transmission du mouvement entre le piston de combustion et un vilebrequin du moteur ;
- Un organe de commande, coopérant également avec l'organe de transmission, permet d'ajuster le point mort haut de la course du piston dans le cylindre. On réalise ainsi un moteur dont le rapport volumétrique peut être rendue variable . Dans ce type de moteur, les efforts de combustion s' appliquant au piston de combustion et les efforts d'entraînement transmis par le vilebrequin sont tous deux transmis par l'intermédiaire de l'organe de transmission à l'organe de commande.
Le moteur de la figure 12 se distingue de l'état de la technique en ce que l'organe de commande n'est pas contrôlé par l'intermédiaire d'un moyen de pilotage, actionnant son déplacement pour ajuster la position du point mort haut du piston de combustion, mais comprend le dispositif autonome 1 de l'invention assurant à lui seul l'ajustement de la position du point mort haut du piston de combustion, suivant les efforts moyens de combustion. Ainsi, dans l'exemple de la figure 12, une extrémité fixe de l'organe de commande est solidaire du piston 3, coulissant dans un cylindre 2 et associé à une seconde extrémité de cet organe, coopérant avec l'organe de transmission. On retrouve bien dans cette exemple la chambre haute pression 4 et la chambre basse pression 5 qui reprennent les efforts de traction et de compression s' appliquant sur l'organe de commande. Le ressort de rappel 7 prend appui d'une part sur une collerette formée sur une partie de l'organe de commande solidaire du piston 3 et d'autre part sur une autre partie de l'organe de commande solidaire du cylindre 2.
Similairement à ce qui avait été décrit en relation avec la figure 7a, la bielle présente un piston à double étage, formé par l'épaulement 3c assurant la condition de section équivalente, et l'indépendance du fonctionnement du moteur avec la température du fluide hydraulique.
L'organe de commande est muni d'un moyen de remplissage 8 de la chambre hydraulique basse pression 5 en fluide hydraulique, et de moyens de décharge 9 de la pression excessive qui pourrait se former dans la chambre haute pression 4.
Le cylindre 3 est également muni d'un premier conduit de compression 6b présentant un clapet taré à une pression d'ouverture déterminé. Comme cela a été présenté précédemment, la présence de ce clapet taré permet de limiter la taille et la raideur du ressort 7. Le piston 3 présente également un second conduit de traction
6a et un autre clapet taré dont la pression d'ouverture est également déterminée.
En fonctionnement, les efforts de combustion s' appliquant au piston de combustion et les efforts d' entraînement transmis par le vilebrequin sont tous deux transmis par l'intermédiaire de l'organe de transmission à l'organe de commande et repris par les chambres basse et haute pression 5, 4. Sous l'effet de ces efforts, et comme cela a été expliqué précédemment, le piston 3 se déplace de manière autonome dans le cylindre 2 ce qui conduit à ajuster en translation la longueur d'entraxe de l'organe de commande, et par voie de conséquence la position du point mort haut du piston de combustion. La longueur d'entraxe de l'organe de commande, et la position du point mort haut du piston de combustion, sont ajustées suivant les efforts moyens de combustion .
L' information de rapport volumétrique effectif peut être obtenu (par exemple pour permettre la commande des organes du moteur) à partir de l'information de longueur de l'organe de commande. A cet effet, le moteur de la figure 12 peut être muni de moyens de détermination de la longueur de l'organe de commande .
Exemple 3 : Dispositif autonome intégré un moteur à rapport volumétrique variable à bielle à « excentrique ».
Selon cet exemple de réalisation, le dispositif autonome 1 est intégré dans la bielle à excentrique d'un moteur à rapport volumétrique variable.
On connaît de DE102011056298 le fonctionnement d'un moteur muni d'une bielle à excentrique. Un moyen de couplage excentrique de la bielle au piston peut être actionné en rotation à l'aide de deux pistons, permettant ainsi d'ajuster la longueur d'entraxe de la bielle et le point mort haut du piston de combustion, à course constante, pour former un moteur à rapport volumétrique variable. Dans la solution connue du document précité, le mouvement des pistons est contrôlé par l'intermédiaire d'une centrale de commande hydraulique.
Le moteur de la figure 13 se distingue de l'état de la technique en ce que l'excentrique de la bielle n'est pas contrôlé par l'intermédiaire d'une centrale de pilotage, ni par aucun élément mécanique externe, actionnant sa rotation pour ajuster la position du point mort haut du piston de combustion, mais comprend le dispositif autonome 1 de l'invention assurant à lui seul l'ajustement de la position du point mort haut, à course constante, du piston de combustion, suivant les efforts moyens de combustion.
La figure 13 présente une coupe d'ensemble et schématique d'un moteur à rapport volumétrique variable à bielle à excentrique selon l'invention. Deux pistons 3b, 3a coulissent respectivement dans deux cylindres 2a, 2b pour définir les chambres hydrauliques basse et haute pression 5, 4. La chambre haute pression comprend également un ressort de rappel 7, prenant appui d'une part sur la surface principale du piston et d'autre part sur le fond de la chambre, afin d'appliquer un effort de rappel.
Les sections des chambres haute et basse pression 4, 5 sont choisies pour que le volume engendré par le déplacement d'un des pistons 3a, 3b dans le cylindre correspondant 2a, 2b soit identique au volume engendré par le déplacement correspondant de l'autre des pistons 3a, 3b dans son cylindre grâce à la liaison mécanique cinématique réalisée par l'excentrique. On assure ainsi la condition de section équivalente, et l'indépendance du fonctionnement du moteur avec la température du fluide hydraulique.
La bielle est munie d'un moyen de remplissage 8 de la chambre hydraulique basse pression 5 en fluide hydraulique, et de moyens de décharge 9 de la pression excessive qui pourrait se former dans la chambre haute pression 4.
La bielle est également munie d'un premier conduit de compression 6b permettant au fluide de s'écouler de la chambre haute pression 4 vers la chambre basse pression 5 et présentant un clapet taré à une pression d'ouverture déterminé. Comme cela a été présenté précédemment, la présence de ce clapet taré permet de limiter la taille et la raideur du ressort 7.
La bielle présente également un second conduit de traction 6a permettant au fluide de s'écouler de la chambre basse pression 5 vers la chambre haute pression 4 et présentant un autre clapet taré dont la pression d'ouverture est également déterminée. Similairement aux exemples précédent, les efforts de combustion s' appliquant au piston de combustion et les efforts d'entraînement transmis par le vilebrequin sont tous deux appliqués à la bielle à excentrique et repris par les chambres basse et haute pression 5, 4. Sous l'effet de ces efforts, et comme cela a été expliqué précédemment, les pistons 3a, 3b se déplacent de manière autonome dans les cylindres 2a, et 2b ce qui conduit à ajuster en rotation la position angulaire de la liaison excentrique et en conséquence la longueur d'entraxe de la bielle. Dans cet exemple également, la longueur d'entraxe de la bielle, et la position du point mort haut du piston de combustion, sont ajustées suivant les efforts moyens de combustion .
Exemple 4 : Dispositif autonome intégré à un moteur à rapport volumétrique variable à bielle déphasée. On connaît de EP2620614 le fonctionnement d'un moteur muni d'une bielle déphasée. Dans un tel moteur, la tête de bielle est associée par l'intermédiaire d'une liaison excentrique au palier du vilebrequin. Un système d'engrenages permet de déplacer la bielle en rotation autour de l'axe excentré, et donc de déplacer le point mort haut (et bas) du piston de combustion. Dans la solution connue du document précité, ce mouvement est commandé par un actionneur électrique piloté, actionnant en rotation un axe courant parallèlement à l'axe du vilebrequin et apte à mettre en œuvre le système d'engrenages. Ce fonctionnement est particulièrement bien visible sur la figure 14 du document précité.
Le moteur de la figure 14 du présent exemple de réalisation, se distingue de cet état de la technique en ce que les excentriques des bielles ne sont pas contrôlées par l'intermédiaire d'un actionneur électrique piloté, mais par le dispositif autonome 1 de l'invention assurant à lui seul l'ajustement de la position des points morts hauts, à courses constantes, des pistons de combustion, suivant les efforts moyens de combustion. Ainsi, le dispositif autonome 1 est fixé sur le bloc moteur. Le piston 3 est solidaire de l'axe 20 entraînant en rotation les systèmes d'engrenages 21 entraînant les bielles 22 en rotation autour de leurs axes excentrés, permettant ainsi de déplacer le point mort haut (et bas) des pistons de combustion. Les efforts s' appliquant sur ces pistons de combustion sont transmis par ce mécanisme et repris par le dispositif autonome 1.
Comme cela est représenté plus en détail sur la figure 15, le dispositif autonome 1 comprend un cylindre 2 constitué d'un alésage en portion de disque dans un corps cylindrique de faible hauteur 24, et solidaire du bloc moteur. Le piston 3 est constitué d'une pièce radiale pouvant se déplacer en rotation dans l'alésage en portion de disque selon l'axe principal du corps cylindrique, et solidaire de l'arbre de commande du mécanisme de variation de taux. Ce piston 3 définit donc bien, dans l'alésage en portion de disque formant le cylindre 2, une chambre hydraulique 4 haute pression et une chambre hydraulique 5 basse pression, de part et d'autre du piston 3. En d'autres termes, les chambres hydrauliques haute pression 4 et basse pression 5 sont définies par les espaces formés de part et d'autre du piston 3 en rotation dans la portion de cylindre 2.
Un second alésage est formé dans le corps cylindrique de faible hauteur 24, à l'opposé du cylindre 2. Comme cela est représenté sur la figure 15, les moyens de rappels, sous la forme d'un ressort 7, sont disposé dans un alésage formé dans la partie axiale du piston 3. Dans l'exemple de la figure 15, un conduit calibré 6, formé dans le piston 3, permet l'écoulement du fluide hydraulique d'une chambre à l'autre.
Similairement aux exemples précédent, les efforts de combustion s' appliquant au piston de combustion et les efforts d'entraînement sont tous deux appliqués au piston 3 par l'intermédiaire, entre autre, de l'axe 20 et repris par les chambres basse et haute pression 5, 4. Sous l'effet de ces efforts, et comme cela a été expliqué précédemment, le piston 3 se déplace de manière autonome dans les cylindre 2, ce qui conduit à ajuster en rotation la position angulaire de la liaison excentrique au niveau de chaque bielle et en conséquence modifie l'altitude du point mort haut du piston de combustion. Dans cet exemple également la position du point mort haut du piston de combustion, est ajustée suivant les efforts moyens de combustion .

Claims

REVENDICATIONS
1. Moteur à rapport volumétrique variable comportant un bloc moteur fixe dans lequel des organes mobiles comprenant un piston de combustion, une bielle et un vilebrequin coopèrent pour permettre un mouvement de translation du piston dans un cylindre de combustion du bloc moteur, définissant une course du piston de combustion allant d'un point mort haut à un point mort bas, le mouvement de translation étant provoqué par des efforts de combustion d'un mélange dans le cylindre et par des efforts d' inertie du vilebrequin, le moteur comprenant un dispositif autonome d'ajustement (1) de la position de point mort haut du piston de combustion, le dispositif autonome étant relié ou intégré à l'un au moins des organes mobiles et présentant :
une chambre hydraulique haute pression (4) pour contrer les efforts de combustion et d' inertie au point mort bas ;
une chambre hydraulique basse pression (5) pour contrer les efforts d'inertie au point mort haut,
au moins un conduit calibré (6) permettant l'écoulement d'un fluide hydraulique entre les chambres hydrauliques haute et basse pression (4,5) ;
des moyens mécaniques de rappel (7) pour ramener le dispositif (1) à une position nominale ; le dispositif autonome (1) étant caractérisé en ce que les caractéristiques des moyens mécaniques de rappel (7) et du conduit calibré (6) sont choisies pour que le dispositif autonome (1) forme un système oscillant fortement amorti.
2. Moteur à rapport volumétrique variable selon la revendication précédente dans laquelle les caractéristiques des moyens mécaniques de rappel (7) et du conduit calibré (6 ; 6a, 6b) sont également choisies pour que l'ajustement de la position de point mort haut du piston de combustion aux efforts moyens de traction et de compression se conforme à une relation prédéterminée.
3. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel les chambres hydrauliques haute pression (4) et basse pression (5) sont définies par les espaces formés de part et d'autre d'un piston (3) coulissant dans un cylindre (2) .
4. Moteur à rapport volumétrique variable selon la revendication 1 ou 2 dans lequel les chambres hydrauliques haute pression (4) et basse pression (5) sont définies par les espaces formés de part et d'autre d'un piston (3) en rotation dans une portion de cylindre (2) .
5. Moteur à rapport volumétrique variable selon la revendication 1 ou 2 dans lequel la chambre hydrauliques haute pression (4) est définie par un premier cylindre (2a) et un premier piston (3a) et la chambre hydraulique basse pression (5) est définie par un second cylindre (2b) et un second piston (3b) .
6. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel la chambre hydraulique basse pression (5) et/ou la chambre hydraulique haute pression (4) est munie d'un moyen de remplissage (8) en fluide hydraulique.
7. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel la chambre hydraulique haute pression (4) et/ou la chambre hydraulique basse pression (5) est munie d'un moyen de décharge (9) d'un excès de fluide hydraulique, afin de limiter la pression qui s'y développe.
8. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel la chambre hydraulique haute pression (4) et la chambre hydraulique basse pression (5) présentent des sections équivalentes.
9. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel le dispositif autonome d'ajustement (1) est configuré pour ajuster la longueur de la bielle.
10. Moteur à rapport volumétrique variable selon l'une des revendications 1 à 7 dans lequel le dispositif autonome d'ajustement (1) est configuré pour ajuster la longueur d'un organe de commande du rapport volumétrique du moteur.
11. Moteur à rapport volumétrique variable selon l'une des revendications 1 à 7 dans lequel le dispositif autonome d'ajustement (1) est configuré pour ajuster la position d'un organe de commande du rapport volumétrique du moteur.
12. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel le dispositif autonome (1) d'ajustement est disposé dans l'un au moins des organes mobiles.
13. Moteur à rapport volumétrique variable selon l'une des revendications précédentes, comprenant un dispositif de détermination du rapport volumétrique.
14. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel le dispositif autonome (1) d'ajustement comprend :
Au moins un conduit calibré (6a) dit « de traction » autorisant uniquement un écoulement de la chambre hydraulique basse pression (5) vers la chambre hydraulique haute pression (4);
Au moins un conduit calibré (6b) dit « de compression » autorisant uniquement un écoulement de la chambre hydraulique haute pression (4) vers la chambre hydraulique basse pression (5) .
15. Moteur à rapport volumétrique variable selon la revendication précédente dans lequel le conduit calibré de compression (6b) autorise un écoulement uniquement lorsque la pression dans la chambre hydraulique haute pression (4) excède la pression dans la chambre hydraulique basse pression (5) d'une valeur déterminée.
16. Moteur à rapport volumétrique variable selon l'une des deux revendications précédentes présentant au moins deux conduits calibrés de compression (6b) .
17. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans lequel le ou les conduits (6, 6a, 6b) est ou sont configurés pour permettre un écoulement du type turbulent.
18. Moteur à rapport volumétrique variable selon l'une des revendications précédentes dans laquelle les moyens mécaniques de rappel (7) comprennent un ressort.
PCT/FR2016/052985 2015-11-17 2016-11-17 Moteur a rapport volumetrique variable WO2017085410A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2016355079A AU2016355079A1 (en) 2015-11-17 2016-11-17 Variable compression ratio engine
CN201680067275.4A CN108495984B (zh) 2015-11-17 2016-11-17 可变压缩比发动机
JP2018524190A JP6858412B2 (ja) 2015-11-17 2016-11-17 可変圧縮比エンジン
KR1020187016009A KR20180081760A (ko) 2015-11-17 2016-11-17 가변 압축비 엔진
EP16812995.5A EP3377743A1 (fr) 2015-11-17 2016-11-17 Moteur a rapport volumetrique variable
US15/776,736 US10626791B2 (en) 2015-11-17 2016-11-17 Variable compression ratio engine
CA3005570A CA3005570A1 (fr) 2015-11-17 2016-11-17 Moteur a rapport volumetrique variable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1561059A FR3043720B1 (fr) 2015-11-17 2015-11-17 Moteur a rapport volumetrique variable
FR1561059 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017085410A1 true WO2017085410A1 (fr) 2017-05-26

Family

ID=55411511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052985 WO2017085410A1 (fr) 2015-11-17 2016-11-17 Moteur a rapport volumetrique variable

Country Status (9)

Country Link
US (1) US10626791B2 (fr)
EP (1) EP3377743A1 (fr)
JP (1) JP6858412B2 (fr)
KR (1) KR20180081760A (fr)
CN (1) CN108495984B (fr)
AU (1) AU2016355079A1 (fr)
CA (1) CA3005570A1 (fr)
FR (1) FR3043720B1 (fr)
WO (1) WO2017085410A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240874B1 (ko) * 2017-08-25 2021-04-15 가부시키가이샤 아이에이치아이 가변 압축 장치 및 엔진 시스템
JP7309110B2 (ja) * 2017-12-07 2023-07-18 株式会社三井E&S Du エンジンシステム
DE102018115727B3 (de) * 2018-06-29 2019-11-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Abstützanordnung für ein Exzenterorgan einer Verstellanordnung sowie Verstellanordnung
TWI705184B (zh) * 2019-01-24 2020-09-21 徐宗庸 內燃機之倍力矩系統
US10760481B1 (en) * 2019-07-17 2020-09-01 Hyundai Motor Company Magnetically-actuated variable-length connecting rod devices and methods for controlling the same
FR3102814B1 (fr) * 2019-11-04 2021-11-26 MCE 5 Development Bielle à longueur variable pour moteur à rapport volumétrique piloté
FR3104209B1 (fr) * 2019-12-05 2022-06-03 MCE 5 Development système hydraulique de commande pour un moteur à taux de compression variable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025814A1 (en) * 2002-08-09 2004-02-12 Government Of United States Of America Piston-in-piston variable compression ratio engine
WO2007085739A2 (fr) * 2006-01-26 2007-08-02 Vianney Rabhi Dispositif presseur pour moteur a rapport volumetrique variable
EP2063084A1 (fr) * 2006-09-15 2009-05-27 HONDA MOTOR CO., Ltd. Moteur à caractéristiques de course variables
US20110226220A1 (en) * 2010-03-17 2011-09-22 Wilkins Larry C Internal combustion engine with hydraulically-affected stroke
WO2014099374A1 (fr) * 2012-12-21 2014-06-26 Borgwarner Inc. Système de piston à taux de compression variable
DE102015001066B3 (de) * 2015-01-29 2015-10-22 Armin Brunner Hydraulisch längenverstellbare Pleuelstange

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1637245A (en) 1926-04-12 1927-07-26 Charles O Middleton Sr Impulse equalizer for internal-combustion engines
US2372472A (en) 1943-11-01 1945-03-27 Ivan D Campbell Internal-combustion engine
US4124002A (en) 1976-07-23 1978-11-07 Crise George W Pressure-responsive variable length connecting rod
SU647468A1 (ru) 1977-09-05 1979-02-15 Машиностроительный Завод Им. Ф.Э. Дзержинского Шатун переменной длины
US4111164A (en) 1977-09-27 1978-09-05 Wuerfel Robert P Variable displacement arrangement in four cycle, reciprocating internal combustion engine
DE2753563A1 (de) 1977-12-01 1979-06-07 Daimler Benz Ag Hubkolben-brennkraftmaschine
GB2161580B (en) 1984-07-07 1987-08-12 Peter Robert Davis Variable length connecting rod
DE4444555A1 (de) 1994-12-01 1996-06-05 Wronna Werner Dipl Ing Verbrennungsmotor
DE19530191A1 (de) 1995-08-17 1997-02-20 Daimler Benz Ag Pleuelstange
RO111863B1 (ro) 1996-07-08 1997-02-28 Vasile Hara Motor termic adaptiv
DE19835146A1 (de) 1998-08-04 1999-06-10 Daimler Chrysler Ag Pleuelstange
AU2001277146A1 (en) 2000-08-02 2002-02-13 Jerry I. Yadegar Hydraulically adjustable connecting rod for internal combustion engine efficiency
JP3879385B2 (ja) * 2000-10-31 2007-02-14 日産自動車株式会社 内燃機関の可変圧縮比機構
FR2827634B1 (fr) 2001-07-18 2003-10-03 Vianney Rabhi Perfectionnements apportes aux dispositifs de transmission mecanique pour moteur a cylindree variable
JP4806332B2 (ja) * 2006-11-08 2011-11-02 本田技研工業株式会社 ストローク特性可変エンジン
CN101109321A (zh) * 2007-08-08 2008-01-23 陈晨 自适应可变压缩比发动机
JP2009108708A (ja) * 2007-10-26 2009-05-21 Nissan Motor Co Ltd マルチリンクエンジンのリンクジオメトリ
FR2933140B1 (fr) * 2008-06-26 2011-11-11 Vianney Rabhi Dispositif de reglage du taux de compression a levee de bille pour moteur a taux de compression variable.
DE102009013323A1 (de) 2009-03-18 2010-09-23 Fev Motorentechnik Gmbh Verfahren zur automatischen Ermittlung eines momentanen Verdichtungsverhältnisses einer Hubkolbenmaschine
WO2011108120A1 (fr) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Dispositif de commande de pression de combustion
DE102010019756A1 (de) 2010-05-07 2011-11-10 Daimler Ag Verfahren zum Betreiben einer Hubkolbenmaschine
GB2494718A (en) 2011-09-16 2013-03-20 Luciano Danilo Lissiak Segmented connecting rod with an energy storing element
DE102011056298A1 (de) 2011-12-12 2013-06-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pleuelstangenanordnung sowie Verfahren zum Schalten eines Umschaltventils einer derartigen Pleuelstangenanordnung
AT511803B1 (de) 2011-12-23 2013-03-15 Avl List Gmbh Pleuelstange für eine hubkolbenmaschine
EP2620614B1 (fr) 2012-01-24 2016-11-09 Gomecsys B.V. Mécanisme réciproque de piston
JP6004013B2 (ja) * 2013-01-17 2016-10-05 日産自動車株式会社 可変圧縮比内燃機関
GEP20156290B (en) 2013-05-22 2015-05-25 Internal combustion engine connecting rod
DE102013107127A1 (de) * 2013-07-05 2015-01-08 Hilite Germany Gmbh Pleuel für eine zweistufige variable Verdichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025814A1 (en) * 2002-08-09 2004-02-12 Government Of United States Of America Piston-in-piston variable compression ratio engine
WO2007085739A2 (fr) * 2006-01-26 2007-08-02 Vianney Rabhi Dispositif presseur pour moteur a rapport volumetrique variable
EP2063084A1 (fr) * 2006-09-15 2009-05-27 HONDA MOTOR CO., Ltd. Moteur à caractéristiques de course variables
US20110226220A1 (en) * 2010-03-17 2011-09-22 Wilkins Larry C Internal combustion engine with hydraulically-affected stroke
WO2014099374A1 (fr) * 2012-12-21 2014-06-26 Borgwarner Inc. Système de piston à taux de compression variable
DE102015001066B3 (de) * 2015-01-29 2015-10-22 Armin Brunner Hydraulisch längenverstellbare Pleuelstange

Also Published As

Publication number Publication date
US20180328274A1 (en) 2018-11-15
AU2016355079A1 (en) 2018-06-07
JP6858412B2 (ja) 2021-04-14
CN108495984B (zh) 2020-10-20
KR20180081760A (ko) 2018-07-17
US10626791B2 (en) 2020-04-21
FR3043720A1 (fr) 2017-05-19
EP3377743A1 (fr) 2018-09-26
FR3043720B1 (fr) 2019-11-08
JP2019501322A (ja) 2019-01-17
CA3005570A1 (fr) 2017-05-26
CN108495984A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
EP3377742B1 (fr) Bielle pour moteur a rapport volumetrique variable
WO2017085410A1 (fr) Moteur a rapport volumetrique variable
CA2289568C (fr) Dispositif permettant de faire varier la cylindree et/ou le rapport volumetrique effectifs d'un moteur a pistons pendant son fonctionnement
EP1859135B1 (fr) Dispositif tres compacte pour ajuster le taux de compression d un moteur a combustion interne
EP1740810A1 (fr) Dispositif de reglage pour moteur a rapport volumetrique variable
FR2487911A1 (fr)
FR2957648A1 (fr) Soupape d'inversion et moteur a combustion interne comprenant une telle soupape d'inversion
FR2591695A1 (fr) Amortisseur de vibrations a deux tubes
WO2017085408A1 (fr) Bielle pour moteur a rapport volumetrique variable
EP3207234B1 (fr) Dispositif de compensation des jeux de fonctionnement d'un moteur
EP1756405B1 (fr) Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif
FR3006730A1 (fr) Amortisseur avec amortissement hydraulique en fin de course
FR2914716A1 (fr) Butee de compression hydraulique, notamment pour amortisseur hydraulique de suspension de vehicule automobile
WO2019202231A1 (fr) Amortisseur hydraulique avec amortissement inertiel à fluide pour la suspension d'un véhicule automobile
EP3803080B1 (fr) Vilebrequin pour un moteur à rapport volumétrique variable piloté
EP3080478A1 (fr) Dispositif de regulation de la rotation d'un arbre, notamment dans le domaine automobile
EP1978277B1 (fr) Module de compensation pour un amortisseur hydraulique de véhicule, et amortisseur equipé d'un tel module de compensation
EP4055256A1 (fr) Bielle a longueur variable pour moteur a rapport volumetrique pilote
FR3085431A1 (fr) Moteur a rapport volumetrique pilote
FR3120017A1 (fr) Véhicule de type à selle à hauteur ajustable et son procédé de commande
EP1978276A1 (fr) Valve hydraulique, amortisseur hydraulique équipé d'une telle valve et ensemble formé de deux amortisseurs couplés entre eux
FR3034153A1 (fr) Moyeu a roue libre avec dispositif de reduction de bruit
EP1992835A1 (fr) Valve hydraulique et amortisseur à compensation adaptable équipé d'une telle valve hydraulique formant module de compensation
FR3062188A1 (fr) Organe d’equilibrage et systeme d’equilibrage pour equilibrer un moteur a combustion interne
FR3053421A1 (fr) Dispositif d'accouplement en rotation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16812995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018524190

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3005570

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15776736

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016009

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016009

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2016355079

Country of ref document: AU

Date of ref document: 20161117

Kind code of ref document: A