WO2017084014A1 - 可挠性导电连接件及模块化电子电路 - Google Patents

可挠性导电连接件及模块化电子电路 Download PDF

Info

Publication number
WO2017084014A1
WO2017084014A1 PCT/CN2015/094716 CN2015094716W WO2017084014A1 WO 2017084014 A1 WO2017084014 A1 WO 2017084014A1 CN 2015094716 W CN2015094716 W CN 2015094716W WO 2017084014 A1 WO2017084014 A1 WO 2017084014A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
module substrate
electronic circuit
substrate
hollow
Prior art date
Application number
PCT/CN2015/094716
Other languages
English (en)
French (fr)
Inventor
章海峰
孙红金
白飞飞
张永和
孔超
Original Assignee
深圳市洛书和科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市洛书和科技发展有限公司 filed Critical 深圳市洛书和科技发展有限公司
Priority to PCT/CN2015/094716 priority Critical patent/WO2017084014A1/zh
Publication of WO2017084014A1 publication Critical patent/WO2017084014A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to the field of flexible circuit design technology, and in particular to a flexible conductive connector and a modular electronic circuit using the same.
  • a flexible (also known as flexible) circuit board FPC is generally used to fabricate electronic circuits, but flexible circuit boards are generally inferior in strength and poor in air permeability, and it is difficult to provide extensibility during exercise. Meet the requirements of fit and strength.
  • a flexible conductive connector which is made of a flexible conductive material for carrying one or more conductive lines separated from each other, and includes a plurality of connecting units, each The connecting unit is a hollow structure, the hollow structure is shaped such that it has at least one deformation direction, the deformation direction means that the dimension of the hollow structure in the direction can be changed by an external force, and at least a part of the connecting unit is along the first direction Sequentially connected, and at least one of the deformation directions of the connecting units substantially coincides with the first direction.
  • a modular electronic circuit comprising at least one component module and at least one electrically conductive connector, wherein the component module comprises an element module substrate and at least one electronic component fixed thereto, electrically conductive
  • the connector is electrically connected to the at least one component module in accordance with the structure proposed by the present invention.
  • the electrically conductive connector according to the invention is capable of achieving good extensibility based on the geometric deformation of the hollow portion on the one hand, because of the structure in which the plurality of hollow connecting units are connected to each other.
  • the hollow structure is based on the hollow structure.
  • the deformation can be very strong, ensuring a reliable connection in the extended state.
  • Applying the conductive connector according to the present invention to an electronic circuit of modular design enables discretization of the electronic component while maintaining a reliable connection between the modules, which enables mounting on the component module substrate on the one hand
  • the electronic components on the top can be reliably supported.
  • the discrete modules make the whole circuit no longer a constant whole, thus having gas permeability and conformability, and the designer can simply satisfy the degree of dispersion by control. Different softness or extensibility requirements.
  • FIG. 1 is a schematic structural view of a modular electronic circuit in accordance with the present invention.
  • FIG. 2 is a plan view showing the planar structure of the conductive connecting member of Embodiment 1;
  • FIG. 3 is a schematic view showing the deformation of the connecting member of FIG. 2;
  • FIG. 4 is a plan view showing the planar structure of the conductive connecting member of Embodiment 2;
  • Figure 5 is a schematic view showing the deformation of the connecting member of Figure 4.
  • FIG. 6 is a plan view showing the planar structure of the conductive connecting member of Embodiment 3.
  • Figure 7 is a schematic view showing the deformation of the connector of Figure 6;
  • FIG. 8 is a schematic perspective view of a hollow three-dimensional structure of the conductive connecting member of Embodiment 4.
  • FIG. 9 is a schematic perspective view showing a filling structure of the conductive connecting member of Embodiment 5.
  • FIG. 10 is a partially enlarged schematic view showing the three-dimensional structure of FIG. 9.
  • FIG. 1 A modular electronic circuit in accordance with the present invention can be referenced to FIG. 1, which includes at least one component module 110 and at least one electrically conductive connector 120.
  • Each of the component modules 110 includes an element module substrate and at least one electronic component fixed thereto.
  • the component module can be considered as a discretization unit that carries components in an electronic circuit.
  • the type and number of electronic components carried on each component module can be determined according to the circuit design required by the actual device and the need for discretization.
  • the degree of discretization of the circuit can be determined according to the application needs of the device. Generally, the higher the requirements for flexibility and applicability, the higher the degree of discretization, so as to form the component module as small as possible. Make it easy to fit on the surface you wear.
  • the type of component module substrate can be selected according to the needs of the circuit design and application scenarios.
  • a rigid substrate such as a conventional hard printed circuit board
  • the component can be supported by a substrate made of a flexible material such as a flexible printed wiring board or a polymer. Breathable materials, etc., to enhance the softness of the circuit.
  • the modular design adopted by the invention makes it possible to use different types of component module substrates in the same circuit, which can satisfy the stability requirements of some electronic components and make the whole circuit have good flexibility.
  • the component modules can be electrically connected to each other and between the component modules and the external circuit through the conductive connector 120 of the present invention.
  • FIG. 1 is only an illustration of the connection relationship, which will be exemplified in the following embodiments.
  • a wire module substrate may be further provided for securing the conductive connector thereto.
  • the wiring module substrate is usually made of a flexible material such as an ultra-thin polymer material, a flexible material with permeable micropores, a high-strength flexible mesh cloth, and the like.
  • the wiring module substrate and the component module substrate may be independent of each other, for example, made of different materials; or may be integrally connected or formed of the same material and formed integrally. For example, different regions may be formed by hollowing out a single piece of substrate material to secure the electronic component or conductive connector.
  • the component module substrate may be a composite substrate having at least two layers.
  • the top layer uses a hard or flexible printed circuit board to mount electronic components or wiring
  • the bottom layer uses a flexible substrate, such as an ultra-thin polymer material, a flexible material with permeable micropores, and a high-strength flexible mesh. Cloth and so on.
  • the bottom layer of such a composite substrate can be formed integrally with the wiring module substrate.
  • the substrate formed as one body may be composed of a plurality of cells having the same shape in the same manner, for example, reference may be made to FIG.
  • some of the substrates may be free or used only for routing.
  • the advantage of this structure is that on the one hand, the gas permeability and the applicability are good, and it can provide good strength and the windings are not easily entangled; on the other hand, the regular repeating arrangement makes it easy to mass-scale. Processing.
  • a substrate having a shape as shown in Fig. 1 can be formed by cutting a regularly arranged octagonal hole on a complete substrate material.
  • the element module substrate and/or the wiring module substrate may be provided with holes 111 at a predetermined density.
  • the boring on the substrate helps to increase the gas permeability of the substrate on the one hand, and also increases the degree of softness and conformity on the other hand.
  • the density of the pores can be determined according to the required degree of softness and gas permeability, and the higher the density, the softer the shell.
  • the conductive connector according to the present invention can have good extensibility and strength, and can provide sufficient deformation while maintaining a reliable connection between modules in the circuit.
  • the specific structure will be exemplified below.
  • a flexible conductive connector in accordance with the present invention can be seen with reference to Figures 2 and 3, including a plurality of connecting units connected to each other.
  • the connecting unit has a hollow rectangular shape, and a plurality of connecting units are sequentially connected in the width direction thereof, and the connecting position is located in the middle of the longitudinal direction of the connecting unit.
  • the connecting unit and the hollow portion thereof are elongated and rectangular, and therefore, when the cymbal is pulled in the width direction from the middle of the long side thereof, the connecting unit can generate a large deformation as shown in FIG.
  • the connecting members are sequentially connected along the deformation direction (first direction) to obtain a conductive connecting member having good elongation in the first direction. Since the deformation of the hollow portion is always carried by the edges of the solid sides enclosing the hollow portion, the tensile force causing the deformation will be at least decomposed into two paths, thereby also enhancing the strength of the connection.
  • the connecting unit may also adopt different shapes, such as a square, a hexagon, or an arc, etc., as long as it is a hollow structure, and the shape of the hollow structure is such that it has at least one deformation direction.
  • the so-called deformation direction means that the size of the hollow structure in this direction can be changed under the action of an external force.
  • the shape of the connecting unit is a single-hole two-dimensional plane pattern
  • the corresponding connecting member is a porous two-dimensional plane pattern, as shown in FIG. 2 .
  • the advantage of this construction is that the required connection structure can be obtained by simple planar machining.
  • the desired conductive connectors can be obtained by trimming directly on a single piece of planar material in accordance with the pattern shown in FIG.
  • a single-hole planar pattern of various shapes may be designed as a connecting unit as needed, and the desired porous planar pattern is obtained by combining these patterns as a conductive connecting member.
  • connection of the connecting unit in the deformation direction means that the shapes are connected to each other, and the separated connecting units can be connected to each other by an actual connecting operation (for example, welding, bonding, etc.), or can be set according to a shape. Directly form (eg, cut, sputter, deposit, 3D print, weave, etc.) the entire connector.
  • the connector of the structure of the present embodiment is suitable for use as a straight connecting line between component modules because of its excellent elongation in the longitudinal direction and superior bending properties (apparently, it can be bent almost at any angle).
  • the material for making the connector of the present invention may be any flexible conductive material such as metal, graphene, especially three-dimensional graphene having a four-coordinated stable structure similar to diamond, and the like.
  • a connector can be used to carry one or more conductive lines. When only one line is carried, the strength of the line is enhanced. When carrying multiple lines, the lines need to be separated from each other. For example, the physical edges of the two sides of the connecting unit can each carry a line, and the connection is separated by an insulating material.
  • FIG. 4 Another embodiment of a flexible conductive connector in accordance with the present invention can be seen in Figures 4 and 5.
  • the similarity is that the connecting unit also adopts a hollow rectangle, and the connecting member is also a planar two-dimensional structure.
  • the difference is that two sets of parallel connecting units are arranged in the same direction.
  • the connecting member of the present embodiment can be equivalently regarded as being formed by parallel joining of the connecting members in the two embodiments, the tail portion of the connecting unit in the upper row connecting member and the head portion of the connecting unit in the connecting member of the next row. Connect to each other
  • the structure of this embodiment can be used to enhance the strength of the connector, or can be used to expand the number of wires carried by the connector.
  • FIG. 6 Another embodiment of a flexible conductive connector in accordance with the present invention can be seen in Figures 6 and 7.
  • the similarity is that the connecting unit also adopts a hollow rectangular shape, and the connecting member is also a planar two-dimensional structure and includes two sets of connecting units.
  • the size of the connecting unit is not unique, and the connecting directions of the two connecting units are perpendicular to each other.
  • each of the four matching unit connected to each other is formed end to end to form a layer of a box, and a plurality of different sizes of the boxes are nested with each other, and adjacent two layers of the box are on each side thereof. Connected in the middle.
  • the connecting member of the present embodiment can be equivalently regarded as being vertically spliced by the connecting members of the two embodiments 1 in size, and thus has two connecting directions and is perpendicular to each other.
  • two different connection directions may also be designed as angles for other angles depending on the needs of the application scenario.
  • the connecting member of the embodiment has two different extending directions, it has a strong anti-torsion capability. It is particularly suitable for connecting element modules with two torsional angles at opposite positions, or for connecting two element modules that may produce relative torsion during motion.
  • the connecting members can be used in pairs, and the outer edges of the squares of the two connecting members are respectively fixed on the two component modules to be connected, and the vertices of the two connecting members are connected together. A connection line with excellent torsional performance between the two component modules is available.
  • the connecting member in Embodiment 1 or 2 may be connected between the vertices of the two connecting members of the present embodiment.
  • the connector of the embodiment can be electrically connected to the component module to serve as an interface for external connection of the component module, and then connect other types of conductive connectors through the apex portion.
  • This allows the entire modular circuit to have both excellent torsion and excellent extensibility. More broadly, it is possible to connect directly to the component modules by means of connectors having two connection directions, and to connect the other electrically conductive connectors by these two-directional connectors.
  • FIG. 1 Another embodiment of a flexible conductive connector in accordance with the present invention can be seen in FIG. Compared with the embodiments 1 to 3, the similarity is that the connecting unit also adopts a two-dimensional planar figure. The difference is that the connector is a hollow tubular three-dimensional structure surrounded by the connection units.
  • the connecting unit is a hollow hexagon, and the plurality of connecting units are connected to each other in the longitudinal and transverse connecting directions and are enclosed in a hollow tubular shape.
  • the connecting member of the present embodiment can be manufactured by first forming a planar structure and then enclosing the hollow tube, or by directly forming a three-dimensional tubular structure.
  • FIG. 9 Another embodiment of a flexible conductive connector in accordance with the present invention can be seen in Figures 9 and 10. Compared with the first to fourth embodiments, the difference is that the connecting unit adopts a three-dimensional structure.
  • the connecting unit has a hollow three-dimensional structure as shown in FIG. 10, which can provide deformation capability by virtue of the deformation of the three-dimensional structure and/or the elasticity of the material.
  • the connecting member is an internally filled three-dimensional structure formed by connecting the connecting units to each other.

Abstract

可挠性导电连接件及模块化电子电路,导电连接件(120)包括复数个连接单元,每个连接单元为中空结构,该中空结构的形状使得其具有至少一个形变方向,至少部分连接单元沿第一方向顺次连接,且这些连接单元的至少一个形变方向与第一方向基本一致;模块化电子电路包括至少一个元件模块(110)和至少一个如上所述的导电连接件,元件模块(110)包括其衬底以及至少一个电子元件,导电连接件(120)与至少一个元件模块(110)电连接。由于采用由多个中空的连接单元彼此连接的结构,基于中空部分的几何形变能够获得良好的可延伸性,且具有很好的强度,确保在延伸状态下的可靠连接。

Description

说明书 发明名称:可挠性导电连接件及模块化电子电路 技术领域
[0001] 本发明涉及可挠性电路设计技术领域, 具体涉及一种可挠性导电连接件及使用 该种连接件的模块化电子电路。
[0002] 背景技术
[0003] 随着可穿戴设备的日益普及, 对所使用的电子电路也有了更高的要求, 例如希 望电子电路能够更贴服以及有更好的透气性, 以提高佩戴的舒适度等。
[0004] 为满足上述需求, 目前一般采用可挠性 (又称柔性) 线路板 FPC来制作电子电 路, 但是柔性线路板通常强度欠佳且透气性不好, 在运动时也难以提供延伸性 以满足贴服和强度的要求。
[0005] 发明内容
[0006] 依据本发明的一方面提供一种可挠性导电连接件, 由可挠性导电材料制成, 用 于承载一路或两路以上彼此分隔的导电线路, 其包括复数个连接单元, 每个连 接单元为中空结构, 该中空结构的形状使得其具有至少一个形变方向, 所述形 变方向指该中空结构在该方向上的尺寸能够在外力作用下发生变化, 至少部分 连接单元沿第一方向顺次连接, 且这些连接单元的至少一个形变方向与第一方 向基本一致。
[0007] 依据本发明的另一方面提供一种模块化电子电路, 包括至少一个元件模块和至 少一个导电连接件, 其中元件模块包括元件模块衬底以及固定于其上的至少一 个电子元件, 导电连接件, 釆用依据本发明所提出的结构, 其与该至少一个元 件模块电性连接。
[0008] 依据本发明的导电连接件由于釆用由多个中空的连接单元彼此连接的结构, 一 方面基于中空部分的几何形变能够获得良好的可延伸性, 另一方面, 这种基于 中空结构的形变能够具有很好的强度, 确保在延伸状态下的可靠连接。 将依据 本发明的导电连接件应用于模块化设计的电子电路中, 能够在保持模块之间的 可靠连接的同时实现电子元件的离散化, 这使得, 一方面安装在元件模块衬底 上的电子元件能够得到可靠地支撑, 另一方面, 离散的模块使得整个电路不再 是一个不变的整体, 从而具有透气性和贴服性, 设计者能够简单地通过控制离 散的程度来满足不同柔软性或延伸性的需求。
[0009] 以下结合附图, 对依据本发明的具体示例进行详细说明。
[0010] 附图说明
[0011] 图 1是依据本发明的模块化电子电路的一种结构示意图;
[0012] 图 2是实施例 1的导电连接件的平面结构示意图;
[0013] 图 3是图 2中连接件的形变示意图;
[0014] 图 4是实施例 2的导电连接件的平面结构示意图;
[0015] 图 5是图 4中连接件的形变示意图;
[0016] 图 6是实施例 3的导电连接件的平面结构示意图;
[0017] 图 7是图 6中连接件的形变示意图;
[0018] 图 8是实施例 4的导电连接件的中空式立体结构示意图;
[0019] 图 9是实施例 5的导电连接件的填充式立体结构示意图;
[0020] 图 10是图 9中立体结构的局部放大示意图。
[0021] 具体实施方式
[0022] 依据本发明的模块化电子电路可参考图 1, 其包括至少一个元件模块 110和至少 一个导电连接件 120。
[0023] 每个元件模块 110包括元件模块衬底以及固定于其上的至少一个电子元件。 元 件模块可视为承载电子电路中的元器件的离散化单元, 每个元件模块上所承载 的电子元件的类型和数目可根据实际设备所需要的电路设计以及对离散化程度 的需求来确定。 例如, 电路的离散化程度可根据设备的应用需要来确定, 一般 而言, 对柔软性和贴服性的要求越高, 则离散化的程度越高, 以便于形成尽可 能小的元件模块, 使之容易贴合到所穿戴的表面。
[0024] 元件模块衬底的类型可以根据电路设计和应用场景的需要来选择。 在一些实施 方式中, 对于需要高稳定性支撑的电子元件, 例如无线射频模块、 吋钟晶振等 , 可以选择硬质的衬底, 例如传统的硬质印刷线路板; 而对于其他的大部分电 子元件则可采用可挠性材料制成的衬底来支撑, 例如柔性印刷线路板、 高分子 透气材料等, 以增强电路的柔软性。 本发明所釆用的模块化设计, 使得在同一 个电路中, 使用不同类型的元件模块衬底成为可能, 既能够满足部分电子元件 对稳定性的要求, 又能够使得整个电路具有良好的柔软性。 元件模块彼此之间 以及元件模块与外部电路之间可通过本发明的导电连接件 120进行电性连接, 图 1中仅为连接关系的示意, 将在后续的实施例中对其进行举例说明。
[0025] 在一些实施方式中, 为提高导电连接件 (或称连线部分) 的强度, 也可进一步 设置连线模块衬底, 用于将导电连接件固定于其上。 连线模块衬底通常釆用柔 性材料制作, 例如超薄的高分子材料、 带有透气微孔的可挠性材料、 高强度柔 性网布等。 连线模块衬底与元件模块衬底可以彼此独立, 例如采用不同的材料 制成; 也可以或连接为一体, 或者釆用相同的材料制成并形成为一体。 例如, 可以在一张完整的衬底材料上通过镂空裁剪形成不同的区域以固定电子元件或 导电连接件。
[0026] 作为一种优选的实施方式, 元件模块衬底可釆用具有至少两层的复合衬底。 例 如, 顶层采用硬质或柔性印刷线路板以安装电子元件或布线, 而在底层釆用柔 性衬底, 例如超薄的高分子材料、 带有透气微孔的可挠性材料、 高强度柔性网 布等。 这种复合衬底的底层可以与连线模块衬底形成为一体。 这种结构的优势 在于, 一方面增强了元件模块与连线模块之间的连接的可靠性, 尤其是硬质元 件模块与柔性连线模块之间的连接, 避免了材质硬度不同导致容易发生折断的 问题; 另一方面也使得整体电路的制作工艺更加容易实现。
[0027] 进一步优选地, 形成为一体的衬底可由若干具有相同形状的单元按照相同的方 式排列组成, 例如可参考图 1。 这种情况下, 根据元件的布置需要, 某些衬底可 以是空闲的或者仅用于走线。 这种结构的优势在于, 一方面透气性和贴服性都 很好, 也能够提供很好的强度且线路之间不容易发生缠绕; 另一方面, 规则的 重复排列使得易于进行批量化规模化的加工。 例如, 可以通过在一幅完整的衬 底材料上, 裁切出规则排列的八边形孔洞来形成形状如图 1所示的衬底。
[0028] 作为一种优选的实施方式, 元件模块衬底和 /或连线模块衬底上可按照预定的 密度设置有孔 111。 如图 1中位于下方的一排元件模块所示, 在衬底上幵孔一方 面有助于提高衬底的透气性, 另一方面也可以增加其柔软和贴服的程度。 具体 而言, 孔的密度可根据所需要的柔软程度和透气性来确定, 密度越高, 贝 lj越柔 软。
[0029] 依据本发明的导电连接件能够同吋具有良好的延伸性和强度, 能够在提供足够 的形变的同时保持电路中各模块之间的可靠连接, 以下将对其具体结构进行举 例说明。
[0030] 实施例 1
[0031] 依据本发明的可挠性导电连接件的一种实施方式可参考图 2和图 3 , 包括复数个 彼此连接的连接单元。 连接单元的形状为中空的长方形, 复数个连接单元沿其 宽度方向顺次连接, 连接的位置位于连接单元的长度方向的中部。
[0032] 本实施例中, 连接单元及其中空部分是细长的长方形, 因此, 当从其长边的中 部沿宽度方向拉动吋, 连接单元能够产生较大的形变, 如图 3所示。 沿着该形变 方向 (第一方向) 将连接单元顺次连接, 即可得到在第一方向上具有良好延伸 性的导电连接件。 由于中空部分的形变始终由围成该中空部分的两侧实体边缘 予以承担, 使得导致形变的拉力将至少分解为两路, 因此也增强了连接的强度
[0033] 在其他实施方式中, 连接单元也可釆用不同的形状, 例如方形、 六边形或弧形 等, 只要其为中空结构, 且中空结构的形状使得其具有至少一个形变方向即可 。 所称形变方向指中空结构在该方向上的尺寸能够在外力作用下发生变化。
[0034] 作为一种优选的实施方式, 本实施例中, 连接单元的形状为一种单孔二维平面 图形, 相应的连接件为一种多孔二维平面图形, 如图 2所示。 这种结构的优点在 于, 能够通过简单地平面加工获得所需要的连接结构。 例如, 可以直接在一整 片平面材料上, 按照图 2所示的图样, 通过裁剪获得所需要的导电连接件。
[0035] 在其他实施方式中, 可以根据需要设计出各种不同形状的单孔平面图形作为连 接单元, 并通过对这些图形进行组合来得到所需要的多孔平面图形, 以作为导 电连接件。 应当理解, 连接单元沿形变方向的"连接"是指形状上的彼此衔接, 既 可以通过实际的连接操作 (例如焊接、 粘接等) 使分离的连接单元彼此相连, 也可以按照设定的形状直接形成 (例如裁剪、 溅射、 沉积、 3D打印、 编织等) 整个连接件。 [0036] 本实施例结构的连接件由于具有长度方向上良好的延伸性, 以及优越的弯曲性 能 (显然, 几乎可以任意角度地弯曲) , 适于用作元件模块之间的直线连接线 路,
[0037] 制作本发明连接件的材料可以是任意的可挠性导电材料, 例如金属、 石墨烯, 尤其是具有类似于金刚石的四配位稳固结构的三维石墨烯等。 一个连接件可用 于承载一路或两路以上的导电线路。 当仅承载一路线路吋, 该线路的强度得到 了增强。 当承载多路线路时, 线路之间需要彼此分隔, 例如, 可以令连接单元 的两侧实体边缘各自承载一条线路, 在连接处以绝缘材料进行分隔。
[0038] 实施例 2
[0039] 依据本发明的可挠性导电连接件的另一种实施方式可参考图 4和图 5。 与实施例 1相比, 相似之处在于, 连接单元同样采用中空的长方形, 连接件也为平面二维 结构。 区别之处在于, 沿相同的方向布置了两组平行的连接单元。
[0040] 本实施例连接件可以等效地看作由两个实施例 1中的连接件平行拼接而成, 上 一行连接件中的连接单元的尾部与下一行连接件中的连接单元的首部彼此连接
[0041] 釆用本实施例结构, 或者可用于增强连接件的强度, 或者可用于扩展连接件同 吋承载的线路数量。
[0042] 实施例 3
[0043] 依据本发明的可挠性导电连接件的另一种实施方式可参考图 6和图 7。 与实施例 2相比, 相似之处在于, 连接单元同样采用中空的长方形, 连接件也为平面二维 结构且包含两组连接单元。 区别之处在于, 连接单元的尺寸并不唯一, 且两组 连接单元的连接方向彼此垂直。
[0044] 本实施例中, 每四个尺寸相匹配的连接单元彼此首尾相连形成为一层方框, 不 同尺寸的复数个方框彼此嵌套, 相邻的两层方框在其每一边的中部处连接。
[0045] 本实施例连接件可以等效地看作由两个实施例 1中的连接件在尺寸上变化后垂 直拼接而成, 因此具有两个连接方向, 且彼此垂直。 在其他实施例中, 根据应 用场景的需要两个不同的连接方向也可以被设计为其他角度的夹角。
[0046] 由于本实施例连接件具有两个不同的延伸方向, 因此具有很强的抗扭转能力, 特别适于连接两个相对位置具有扭转角度的元件模块, 或者用于连接两个可能 在运动中产生相对扭转的元件模块。 在一种实施方式中, 这种连接件可以成对 使用, 两个连接件的方框的外沿分别固定在两个需要连接的元件模块上, 两个 连接件的顶点连接在一起, 由此可获得两个元件模块之间具有优秀扭转性能的 连接线路。
[0047] 优选地, 为增强连接线路的可延伸性, 可以在两个本实施例连接件的顶点之间 连接实施例 1或 2中的连接件。 换言之, 可以先将本实施例连接件与元件模块电 性连接, 以充当元件模块对外连接的接口, 然后再通过顶点部位连接其他形式 的导电连接件。 这使得整个模块化的电路既有优秀的扭转性, 又有优秀的延伸 性。 更为广义地, 可以采用具有两个连接方向的连接件直接与元件模块连接, 再通过这些两方向连接件连接其他的导电连接件。
[0048] 实施例 4
[0049] 依据本发明的可挠性导电连接件的另一种实施方式可参考图 8。 与实施例 1至 3 相比, 相似之处在于, 连接单元同样采用二维平面图形。 区别之处在于, 连接 件为由连接单元彼此连接围成的中空管状的三维立体结构。
[0050] 本实施例中, 连接单元为中空的六边形, 复数个连接单元沿纵、 横两个连接方 向彼此连接并围成中空管状。
[0051] 制作本实施例连接件可以釆用先制作出平面结构, 再围合成中空管的方式, 也 可以采用直接制作成三维管状结构的方式。
[0052] 釆用本实施例结构, 能够在具有延伸性的同时具有优秀的强度, 适于充当可能 需要承受较大拉力的线路。
[0053] 实施例 5
[0054] 依据本发明的可挠性导电连接件的另一种实施方式可参考图 9和图 10。 与实施 例 1至 4相比, 区别之处在于, 连接单元采用三维立体结构。
[0055] 本实施例中, 连接单元具有如图 10所示的中空三维结构, 可依靠三维结构的变 形和 /或材料的弹性提供形变能力。 连接件为由连接单元彼此连接形成的内部充 填的三维立体结构。
[0056] 采用本实施例结构, 能够在具有延伸性的同吋具有十分优秀的强度, 非常适于 充当需要承受较大拉力的线路。
[0057]
[0058] 以上应用具体示例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种可挠性导电连接件, 由可挠性导电材料制成, 用于承载一路或两 路以上彼此分隔的导电线路, 其特征在于,
包括复数个连接单元, 每个连接单元为中空结构, 该中空结构的形状 使得其具有至少一个形变方向, 所述形变方向指该中空结构在该方向 上的尺寸能够在外力作用下发生变化,
至少部分连接单元沿第一方向顺次连接, 且这些连接单元的至少一个 形变方向与第一方向基本一致。
[权利要求 2] 如权利要求 1所述的连接件, 其特征在于,
至少部分连接单元沿第二方向顺次连接, 且这些连接单元的至少一个 形变方向与第二方向基本一致, 第二方向与第一方向具有夹角。
[权利要求 3] 如权利要求 1或 2所述的连接件, 其特征在于,
所述连接单元的形状为单孔二维平面图形, 所述连接件为多孔二维平 面图形。
[权利要求 4] 如权利要求 3所述的连接件, 其特征在于,
所述连接单元的形状为中空的长方形, 复数个连接单元沿其宽度方向 顺次连接, 连接的位置位于所述连接单元的长度方向的中部, 或者, 所述连接单元的形状为中空的长方形, 每四个尺寸相匹配的连接单元 彼此首尾相连形成为一层方框, 不同尺寸的复数个方框彼此嵌套, 相 邻的两层方框在其每一边的中部处连接。
[权利要求 5] 如权利要求 1或 2所述的连接件, 其特征在于,
所述连接单元为二维平面图形或三维立体结构, 所述连接件为由所述连接单元彼此连接围成的中空管状的三维立体结 构, 或者, 所述连接件为由所述连接单元彼此连接形成的内部充填的 三维立体结构。
[权利要求 6] —种模块化电子电路, 其特征在于, 包括,
至少一个元件模块, 其包括元件模块衬底以及固定于其上的至少一个 电子元件, 至少一个导电连接件, 采用如权利要求 1〜5任意一项所述的结构, 其 与所述至少一个元件模块电性连接。
[权利要求 7] 如权利要求 6所述的模块化电子电路, 其特征在于, 还包括连线模块 衬底, 用于将所述导电连接件固定于其上,
所述连线模块衬底与所述元件模块衬底彼此独立或连接为一体或形成 为一体, 或者,
所述元件模块衬底为具有至少两层的复合衬底, 所述复合衬底的底层 与所述连线模块衬底形成为一体。
[权利要求 8] 如权利要求 7所述的模块化电子电路, 其特征在于,
所述元件模块衬底和 /或连线模块衬底采用可挠性材料制成, 和 /或, 形成为一体的衬底由若干具有相同形状的单元按照相同的方式排列组 成。
[权利要求 9] 如权利要求 8所述的模块化电子电路, 其特征在于,
所述元件模块衬底和 /或连线模块衬底上按照预定的密度设置有孔。
[权利要求 10] 如权利要求 6所述的模块化电子电路, 其特征在于,
至少一个元件模块先与如权利要求 2所述的连接件电性连接, 再通过 该连接件连接其他导电连接件。
PCT/CN2015/094716 2015-11-16 2015-11-16 可挠性导电连接件及模块化电子电路 WO2017084014A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094716 WO2017084014A1 (zh) 2015-11-16 2015-11-16 可挠性导电连接件及模块化电子电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094716 WO2017084014A1 (zh) 2015-11-16 2015-11-16 可挠性导电连接件及模块化电子电路

Publications (1)

Publication Number Publication Date
WO2017084014A1 true WO2017084014A1 (zh) 2017-05-26

Family

ID=58717205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094716 WO2017084014A1 (zh) 2015-11-16 2015-11-16 可挠性导电连接件及模块化电子电路

Country Status (1)

Country Link
WO (1) WO2017084014A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330338A1 (en) * 2009-06-29 2010-12-30 Boyce Mary C Structured material substrates for flexible, stretchable electronics
US20110230747A1 (en) * 2010-03-17 2011-09-22 Rogers John A Implantable biomedical devices on bioresorbable substrates
US20120157804A1 (en) * 2009-12-16 2012-06-21 Rogers John A High-Speed, High-Resolution Electrophysiology In-Vivo Using Conformal Electronics
CN102635831A (zh) * 2012-03-23 2012-08-15 鹤山市银雨照明有限公司 一种开槽式led柔性霓虹灯
CN102870504A (zh) * 2010-04-19 2013-01-09 日本梅克特隆株式会社 柔性电路基板及其制造方法
WO2014123222A1 (ja) * 2013-02-08 2014-08-14 株式会社フジクラ 静電容量センサ及びステアリング

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330338A1 (en) * 2009-06-29 2010-12-30 Boyce Mary C Structured material substrates for flexible, stretchable electronics
US20120157804A1 (en) * 2009-12-16 2012-06-21 Rogers John A High-Speed, High-Resolution Electrophysiology In-Vivo Using Conformal Electronics
US20110230747A1 (en) * 2010-03-17 2011-09-22 Rogers John A Implantable biomedical devices on bioresorbable substrates
CN102870504A (zh) * 2010-04-19 2013-01-09 日本梅克特隆株式会社 柔性电路基板及其制造方法
CN102635831A (zh) * 2012-03-23 2012-08-15 鹤山市银雨照明有限公司 一种开槽式led柔性霓虹灯
WO2014123222A1 (ja) * 2013-02-08 2014-08-14 株式会社フジクラ 静電容量センサ及びステアリング

Similar Documents

Publication Publication Date Title
US9837738B2 (en) Resilient miniature mechanical support that can also serve as an electrical connector
JP4213559B2 (ja) コンタクトシート及びその製造方法並びにソケット
CN102742369B (zh) 具有载体的瓦片组件和制造组件的方法
JP3678158B2 (ja) モジュール基板の実装構造
KR102286169B1 (ko) 플렉시블 커넥터
CN104145536B (zh) 立体层叠布线基板
TW201115849A (en) Electrical connector
JP2006303360A5 (zh)
JP2011175628A5 (zh)
JP2007536741A5 (zh)
JP5393681B2 (ja) Mid回路支持体およびこれに接続される結合インタフェースを備えた電気回路装置
CN107275039B (zh) 电子部件以及电子部件的制造方法
JP5968514B1 (ja) プリント配線板
US6392162B1 (en) Double-sided flexible jumper assembly and method of manufacture
US10811799B2 (en) Interconnectable circuit boards adapted for lateral in-plane bending
CN208940272U (zh) 树脂多层基板以及电子设备
US20130314291A1 (en) Millimeter scale three-dimensional antenna structures and methods for fabricating same
CN110730561A (zh) 一种电路板结构及电子设备
WO2017084014A1 (zh) 可挠性导电连接件及模块化电子电路
JP2019145765A (ja) プリント回路基板
KR20150126778A (ko) 기판 통합형 인터커넥트
JP5377588B2 (ja) 開口部のある導電回路基板
CN205303742U (zh) 可挠性导电连接件及模块化电子电路
JP6672526B2 (ja) 角度付き回路基板コネクタ
JP4925321B2 (ja) 両面接続用配線板、両面接続用配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908511

Country of ref document: EP

Kind code of ref document: A1