WO2017082420A1 - 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置 - Google Patents

多孔性成形体、並びに多孔性成形体の製造方法及び製造装置 Download PDF

Info

Publication number
WO2017082420A1
WO2017082420A1 PCT/JP2016/083601 JP2016083601W WO2017082420A1 WO 2017082420 A1 WO2017082420 A1 WO 2017082420A1 JP 2016083601 W JP2016083601 W JP 2016083601W WO 2017082420 A1 WO2017082420 A1 WO 2017082420A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous molded
molded body
organic polymer
polymer resin
porous
Prior art date
Application number
PCT/JP2016/083601
Other languages
English (en)
French (fr)
Inventor
昭浩 大森
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US15/775,048 priority Critical patent/US11224854B2/en
Priority to CN201680063957.8A priority patent/CN108348893B/zh
Priority to EP16864381.5A priority patent/EP3375518A4/en
Priority to JP2017550429A priority patent/JP6573678B2/ja
Publication of WO2017082420A1 publication Critical patent/WO2017082420A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/212Scandium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/52Sorbents specially adapted for preparative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents

Definitions

  • the present invention relates to a porous molded body, and a method and apparatus for manufacturing a porous molded body.
  • Phosphorus is one of the causative substances of eutrophication, and regulations are getting stronger, especially in closed water areas. In addition, since it is an element that is feared to be depleted, there is a need for technology to recover it from wastewater and reuse it. Boron is an essential element for plant growth. However, boron is known to have an adverse effect on plant growth when present in excess. Furthermore, it has been pointed out that when it is contained in drinking water, it may cause health problems such as a decrease in reproductive function when it is contained in drinking water.
  • Arsenic is contained in wastewater from non-ferrous metal refining industry, thermal wastewater from geothermal power plants, and groundwater in specific areas.
  • the toxicity of arsenic has been known for a long time, has an accumulation property in the living body, and is said to develop chronic poisoning, weight loss, sensory injury, liver damage, skin deposition, skin cancer and the like.
  • a large amount of fluorine is contained in waste water from the metal refining industry, the glass industry, the electronic materials industry, and the like. There is concern about the effects of fluorine on the human body, and it is known that excessive intake of fluorine causes chronic fluorine poisoning such as patchy teeth, osteosclerosis and thyroid disorders.
  • a technique for removing various harmful substances as described above for example, a technique using an adsorbent in which an inorganic ion adsorbent powder such as zirconium hydroferrite or hydrous cerium hydroxide is supported on a polymer material is known. Yes. Further, it is known that a porous molded body containing an organic polymer resin and an inorganic ion adsorbent adsorbs phosphorus, boron and the like.
  • Patent Document 1 discloses a polymer in which an organic polymer resin is dissolved in an appropriate good solvent, and a water-soluble polymer that is soluble in the good solvent and has an affinity for the organic polymer resin is dissolved and mixed.
  • Patent Document 2 discloses that a porous molded body with few secondary aggregates of inorganic ion adsorbents in the porous molded body has excellent adsorption performance and high strength.
  • Patent Document 3 discloses that a porous molded body containing an organic polymer resin having a hydroxyl group and an inorganic ion adsorbent powder has high durability against a cleaning agent such as an oxidizing agent, and can be used repeatedly. It is disclosed that the porous molded body is suitable for the above.
  • the adsorbent composed of the porous molded body disclosed in Patent Documents 1 to 3 does not have a thin film called a skin layer on the surface of the porous molded body, and the inside of the adsorbent is also excellent in porosity. It has a feature that the diffusion rate of the adsorption object such as the inside of the adsorbent is fast.
  • Patent Documents 1 to 3 disclose that the adsorption process is performed at a liquid passing speed (SV) 30.
  • the problem to be solved by the present invention is to provide a porous molded body that can remove ions in the water to be treated, especially phosphorus ions, at a high speed and has a large adsorption capacity.
  • the present inventors have obtained a porous molded body containing an organic polymer resin and an inorganic ion adsorbent and having a mode pore diameter measured by a mercury porosimeter of 0.08 to 0.70 ⁇ m. As a result, the inventors have found that the above problems can be solved, and completed the present invention.
  • the present invention is as follows.
  • a porous molded body comprising an organic polymer resin and an inorganic ion adsorbent, and having a mode pore diameter measured by a mercury porosimeter of 0.08 to 0.70 ⁇ m.
  • the organic polymer resin is at least one selected from the group consisting of ethylene vinyl alcohol copolymer (EVOH), polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), and polyvinylidene fluoride (PVDF).
  • EVOH ethylene vinyl alcohol copolymer
  • PAN polyacrylonitrile
  • PS polysulfone
  • PES polyethersulfone
  • PVDF polyvinylidene fluoride
  • the good solvent for the organic polymer resin is at least one selected from the group consisting of dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAC), and dimethylformamide (DMF). 10] or the method for producing a porous molded article according to [11].
  • DMSO dimethyl sulfoxide
  • NMP N-methyl-2-pyrrolidone
  • DMAC dimethylacetamide
  • DMF dimethylformamide
  • An apparatus for producing a porous molded body comprising a cover for covering a space portion between the rotating container and the coagulation tank, and comprising a control means for controlling the temperature and humidity of the space portion.
  • Production device for porous molded body comprising a cover for covering a space portion between the rotating container and the coagulation tank, and comprising a control means for controlling the temperature and humidity of the space portion.
  • the electron micrograph (magnification 10,000 times) which shows the outer surface of the porous molded object obtained in Example 1 is shown.
  • the pore distribution diagram which plotted the logarithm differential pore volume with respect to the pore diameter measured with the mercury porosimeter of the porous molded object obtained in Example 1, and the integration pore volume is shown.
  • the pore distribution map which plotted the logarithm differential pore volume with respect to the pore diameter measured with the mercury porosimeter of the porous molded object obtained in Example 1 and Comparative Examples 1, 2, and 3 is shown.
  • the schematic of the manufacturing apparatus of the porous molded object of this embodiment is shown.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described.
  • the present invention is not limited to the following embodiment, and various modifications may be made within the scope of the gist. Can be implemented.
  • the porous molded body of this embodiment includes an organic polymer resin and an inorganic ion adsorbent, and the mode pore diameter measured by a mercury porosimeter is 0.08 to 0.70 ⁇ m.
  • the porous molded body of the present embodiment has communication holes and a porous structure.
  • the porous molded body of the present embodiment has a mode pore diameter measured by a mercury porosimeter of 0.08 to 0.70 ⁇ m, preferably 0.10 to 0.60 ⁇ m, preferably 0.20 to 0.50 ⁇ m. It is more preferable that In the present embodiment, the mode pore diameter is the logarithmic differential pore volume (dV / d (logD)) with respect to the pore diameter measured with a mercury porosimeter, where V is the mercury intrusion volume, and D is In the graph in which the pore diameters are plotted), the pore diameter at which the value of the logarithmic differential pore volume is maximum is meant and is based on volume. Specifically, the mode pore diameter can be measured by the method described in the examples.
  • Mercury porosimeter is a device that evaluates the pore size of porous materials by mercury porosimetry, and has a relatively large pore distribution (mesopore (several nm) to macropore) that cannot be measured by the gas adsorption method (BET method). (Several hundred ⁇ m)) Suitable for measurement.
  • BET method gas adsorption method
  • the characteristics of the porous structure (skeleton structure) made of an organic polymer resin in the porous molded body can be measured in detail.
  • the median diameter and specific surface area with a mercury porosimeter the characteristics of the porous structure (skeleton structure) made of an organic polymer resin in the porous molded body can be measured in more detail.
  • the adsorbed object such as phosphorus and boron is sufficient as the diameter of the communication hole for diffusing into the porous molded body, and the diffusion rate is increased. If the most frequent pore diameter is 0.70 ⁇ m or less, the voids of the porous molded body become small, and the abundance of inorganic ion adsorbents in the unit volume becomes dense. Suitable for adsorbing.
  • the opening ratio of the outer surface of the porous molded body is preferably 5% or more and less than 30%, more preferably 7% or more and 28% or less, and further preferably 10% or more and 25% or less.
  • the outer surface opening ratio means the ratio of the sum of the opening areas of all the holes in the area of the visual field obtained by observing the outer surface of the porous molded body with a scanning electron microscope.
  • the outer surface opening ratio is 5% or more, the diffusion rate of the adsorption object such as phosphorus and boron into the porous molded body is increased.
  • the opening ratio of the outer surface is less than 30%, the abundance of inorganic ion adsorbents on the outer surface of the porous molded body is large, so that ions in water can be adsorbed reliably even when the liquid is passed through at high speed.
  • the outer surface opening ratio is measured by observing the outer surface of the porous molded body at 10,000 times. Specifically, the outer surface aperture ratio can be measured by the method described in the examples.
  • the ratio of the most frequent pore diameter to the median diameter (moderation pore diameter / median diameter) measured with a mercury porosimeter is preferably 0.80 to 1.30, 0.85 Is more preferably ⁇ 1.25, and further preferably 0.90 ⁇ 1.20.
  • the median diameter means the pore diameter with respect to the median of the range of the maximum value and the minimum value of the integrated pore volume in the integrated pore volume distribution, and is based on the volume. Specifically, the median diameter can be measured by the method described in the examples. When the ratio of the most frequent pore diameter / median diameter is close to 1.0, the pore diameter distribution of the porous molded body is uniform, which is suitable for high-speed water flow treatment.
  • a ratio of the most frequent pore diameter / median diameter of 0.80 to 1.30 means that no skin layer is present in the porous molded body.
  • the porous molded article of the present embodiment is preferably a specific surface area measured by a mercury porosimeter is 10 ⁇ 100m 2 / cm 3, more preferably from 11 ⁇ 90m 2 / cm 3, 12 ⁇ 50m 2 / More preferably, it is cm 3 .
  • the specific surface area is 10 m 2 / cm 3 or more, since the supported amount of the inorganic ion adsorbent is large and the pore surface area is large, sufficient adsorption performance during high-speed water passage can be obtained.
  • the specific surface area is 100 m 2 / cm 3 or less, since the inorganic ion adsorbent is firmly supported, the strength of the porous molded body is high.
  • the specific surface area is defined by the following equation.
  • Specific surface area (m 2 / cm 3 ) S (Hg) (m 2 / g) ⁇ bulk specific gravity (g / cm 3 )
  • S (Hg) means the pore surface area (m 2 / g) per unit weight of the porous molded body.
  • the pore surface area is measured using a mercury porosimeter after the porous molded body is vacuum-dried at room temperature. Specifically, the pore surface area can be measured by the method described in Examples.
  • the measuring method of bulk specific gravity is as follows.
  • the porous molded body is in the form of particles, cylinders, hollow cylinders, etc., and those having a short shape are those in which the porous molded body in a wet state is 1 mL 3 by using a graduated cylinder or the like as an apparent volume. Measure. Then, the weight is obtained by vacuum drying at room temperature, and the bulk specific gravity is calculated as weight / volume.
  • the porous molded body is in the form of a thread, a hollow fiber, a sheet or the like, and the one having a long shape measures the cross-sectional area and the length when wet, and calculates the volume from the product of both. Then, the weight is obtained by vacuum drying at room temperature, and the bulk specific gravity is calculated as weight / volume.
  • the porous molded body of the present embodiment has an average particle diameter of 100 to 2500 ⁇ m and is preferably substantially spherical, and the average particle diameter is more preferably 150 to 2000 ⁇ m, and more preferably 200 to 1500 ⁇ m. Further preferred.
  • the porous molded body of the present embodiment is preferably spherical particles, and the spherical particles may be elliptical as well as true spherical. If the average particle diameter is 100 ⁇ m or more, the pressure loss is small when the porous molded body is filled into a column, tank or the like, which is suitable for high-speed water passing treatment.
  • the average particle diameter means a median diameter of a sphere equivalent diameter obtained from an angular distribution of scattered light intensity of diffraction by laser light, assuming that the porous molded body is spherical. Specifically, the average particle diameter can be measured by the method described in the examples.
  • Organic polymer resin constituting the porous molded body of the present embodiment is not particularly limited, but is preferably a resin that can be made porous by wet phase separation.
  • organic polymer resins include polysulfone polymers, polyvinylidene fluoride polymers, polyvinylidene chloride polymers, acrylonitrile polymers, polymethyl methacrylate polymers, polyamide polymers, polyimide polymers, cellulose polymers, and ethylene vinyl.
  • Examples include alcohol copolymer polymers and many types.
  • ethylene vinyl alcohol copolymer EVOH
  • polyacrylonitrile PAN
  • polysulfone PS
  • polyethersulfone PES
  • polyfluoride is preferred because of their non-swelling property and biodegradability in water and ease of production.
  • Vinylidene chloride PVDF
  • the organic polymer resin is preferably polyethersulfone having a hydroxyl group at the terminal. By having a hydroxyl group as a terminal group, the porous molded body of this embodiment can exhibit excellent carrying performance of an inorganic ion adsorbent.
  • the organic polymer resin having high hydrophobicity has a hydroxyl group at the terminal, hydrophilicity is improved, and fouling occurs even when the porous molded body of this embodiment is used for water treatment. Hateful.
  • the inorganic ion adsorbent constituting the porous molded body of the present embodiment means an inorganic substance that exhibits an ion adsorption phenomenon or an ion exchange phenomenon.
  • the natural-based inorganic ion adsorbent include various mineral substances such as zeolite and montmorillonite.
  • specific examples of various minerals include aluminosilicate kaolin minerals with a single layer lattice, bilayered muscovite, sea green stone, Kanuma soil, pyrophyllite, talc, feldspar with a three-dimensional framework structure , Zeolite and montmorillonite.
  • Examples of the synthetic inorganic ion adsorbent include metal oxides, polyvalent metal salts, insoluble hydrated oxides, and the like.
  • Examples of the metal oxide include a composite metal oxide, a composite metal hydroxide, and a metal hydrated oxide.
  • the inorganic ion adsorbent preferably contains at least one metal oxide represented by the following formula (I) from the viewpoint of the adsorption performance of the object to be adsorbed.
  • MN x O n ⁇ mH 2 O ⁇ (I) In the above formula (I), x is 0 to 3, n is 1 to 4, m is 0 to 6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, A metal selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta It is an element and is different from each other.
  • the metal oxide may be an unhydrated (unhydrated) metal oxide in which m in the above formula (I) is 0, or a metal hydrated oxide (water) in which m is a value other than 0. Japanese metal oxide).
  • x in the above formula (I) is a numerical value other than 0, each metal element contained is regularly distributed throughout the oxide with regularity and contained in the metal oxide.
  • It is a composite metal oxide represented by a chemical formula in which the composition ratio of each metal element is fixed. Specifically, a perovskite structure, a spinel structure, etc. are formed, nickel ferrite (NiFe 2 O 4 ), zirconium hydrous ferrite (Zr ⁇ Fe 2 O 4 ⁇ mH 2 O, where m is 0. 5-6)) and the like.
  • the inorganic ion adsorbent may contain a plurality of types of metal oxides represented by the above formula (I).
  • the inorganic ion adsorbent may contain at least one selected from the following groups (a) to (c) from the viewpoint of excellent adsorption performance of phosphorus, boron, fluorine and / or arsenic. preferable.
  • activated alumina (a) to any one of groups (a) to (c) May be selected materials, may be used in combination with materials selected from any of groups (a) to (c), and may be combined with materials in each of groups (a) to (c) May be used.
  • the inorganic ion adsorbent may contain aluminum sulfate-added activated alumina from the viewpoint of low cost and high adsorptivity.
  • the inorganic ion adsorbent in addition to the metal oxide represented by the above formula (I), those in which metal elements other than M and N are further solid-solved are from the viewpoint of the adsorptivity of inorganic ions and the production cost. More preferred.
  • a hydrated zirconium oxide represented by ZrO 2 ⁇ mH 2 O (m is a numerical value other than 0) in which iron is dissolved is mentioned.
  • Examples of the polyvalent metal salt include a hydrotalcite compound represented by the following formula (II).
  • M 2+ is at least one divalent metal ion selected from the group consisting of Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca 2+ and Cu 2+ .
  • M 3+ is at least one trivalent metal ion selected from the group consisting of Al 3+ and Fe 3+ .
  • a n ⁇ is an n-valent anion.
  • the hydrotalcite compound represented by the above formula (II) is preferable because the raw material is inexpensive as an inorganic ion adsorbent and the adsorptivity is high.
  • insoluble hydrated oxides include insoluble heteropolyacid salts and insoluble hexacyanoferrates.
  • the inorganic ion adsorbent constituting the porous molded body of the present embodiment contains an impurity element mixed due to its production method and the like within a range not impairing the function of the porous molded body of the present embodiment. Also good.
  • impurity elements that may be mixed include nitrogen (nitrate, nitrite, ammonium), sodium, magnesium, sulfur, chlorine, potassium, calcium, copper, zinc, bromine, barium, and hafnium. It is done.
  • the porous molded body of the present embodiment When the porous molded body of the present embodiment is used as an adsorbent for water treatment, it is used by filling a column or an adsorption tower. By filling the column or adsorption tower and allowing the water to be treated to flow through and contact, it is possible to sufficiently bring out the high contact efficiency of the porous molded body.
  • the porous molded body of the present embodiment has a sufficient amount of adsorption performance without leakage (breakthrough) of an adsorption target from the beginning of water flow because the abundance of inorganic ion adsorbent on the adsorbent surface is high. Can perform ultra-high-speed processing.
  • the column means a cylindrical container provided with a solid-liquid separation means such as a mesh plate or mesh so that a porous molded body does not flow out at least one of the lower part and the upper part.
  • the column material is not particularly limited, and examples thereof include stainless steel, FRP (glass fiber reinforced plastic), glass, and various plastics.
  • the inner surface of the column may be lined with rubber or fluororesin.
  • the manufacturing method of the porous molded body of this embodiment was obtained in (1) a step of pulverizing and mixing a good solvent of an organic polymer resin and an inorganic ion adsorbent to obtain a slurry, and (2) a step (1).
  • Step (1) the good solvent of the organic polymer resin and the inorganic ion adsorbent are pulverized and mixed to obtain a slurry.
  • the inorganic ion adsorbent can be made into fine particles.
  • the inorganic ion adsorbent supported on the molded porous molded body has few secondary aggregates.
  • the good solvent for the organic polymer resin in the step (1) is not particularly limited as long as the organic polymer resin is stably dissolved in excess of 1% by mass under the production conditions of the porous molded body.
  • a conventionally well-known thing can be used.
  • the good solvent include dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), N, N-dimethylformamide (DMF), and the like. Only 1 type may be used for a good solvent, and 2 or more types may be mixed and used for it.
  • the pulverizing and mixing means used for obtaining the slurry is not particularly limited as long as it can be pulverized and mixed together with the inorganic ion adsorbent and the good solvent of the organic polymer resin.
  • the pulverization and mixing means for example, means used for physical crushing methods such as pressure-type fracture, mechanical grinding, ultrasonic treatment and the like can be used.
  • Specific examples of pulverizing and mixing means include generator shaft type homogenizers, blenders such as Waring blenders, medium agitation type mills such as sand mills, ball mills, attritors and bead mills, jet mills, mortars and pestles, rabies, and ultrasonic treatment equipment, etc.
  • a medium stirring mill is preferable because it has high grinding efficiency and can grind even a high viscosity.
  • the diameter of the ball used in the medium stirring mill is not particularly limited, but is preferably 0.1 to 10 mm. If the ball diameter is 0.1 mm or more, the ball mass is sufficient, so that the pulverization force is high and the pulverization efficiency is high. If the ball diameter is 10 mm or less, the ability to finely pulverize is excellent.
  • the material of the balls used in the medium agitating mill is not particularly limited, but various kinds of metals such as iron and stainless steel, oxides such as alumina and zirconia, and non-oxides such as silicon nitride and silicon carbide. A ceramic etc. are mentioned. Among them, zirconia is excellent in that it has excellent wear resistance and has less contamination to the product (mixed wear).
  • step (1) a known dispersant such as a surfactant in a good solvent of an organic polymer resin mixed with an inorganic ion adsorbent when pulverized and mixed within a range that does not affect the structure of the porous molded body May be added.
  • a known dispersant such as a surfactant in a good solvent of an organic polymer resin mixed with an inorganic ion adsorbent when pulverized and mixed within a range that does not affect the structure of the porous molded body May be added.
  • step (2) an organic polymer resin and a water-soluble polymer are dissolved in the slurry obtained in step (1) to obtain a molding slurry.
  • the addition amount of the organic polymer resin is preferably such that the ratio of organic polymer resin / (organic polymer resin + water-soluble polymer + organic polymer resin good solvent) is 3 to 40% by mass. It is more preferably 4 to 30% by mass. If the content of the organic polymer resin is 3% by mass or more, a porous molded body having high strength can be obtained, and if it is 40% by mass or less, a porous molded body having high porosity can be obtained.
  • the water-soluble polymer in the step (2) is not particularly limited as long as it is compatible with the good solvent of the organic polymer resin and the organic polymer resin.
  • any of natural polymers, semi-synthetic polymers and synthetic polymers can be used.
  • natural polymers include guar gum, locust bean gum, carrageenan, gum arabic, tragacanth, pectin, starch, dextrin, gelatin, casein and collagen.
  • Examples of the semisynthetic polymer include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl starch, and methyl starch.
  • Examples of the synthetic polymer include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, carboxyvinyl polymer, sodium polyacrylate, and polyethylene glycols such as tetraethylene glycol and triethylene glycol.
  • a synthetic polymer is preferable from the viewpoint of improving the supportability of the inorganic ion adsorbent, and polyvinylpyrrolidone and polyethylene glycols are more preferable from the viewpoint of improving the porosity.
  • the mass average molecular weight of polyvinyl pyrrolidone and polyethylene glycol is preferably 400 to 35,000,000, more preferably 1,000 to 1,000,000, and 2,000 to 100,000. More preferably.
  • the mass average molecular weight of the water-soluble polymer can be measured by dissolving the water-soluble polymer in a predetermined solvent and performing gel permeation chromatography (GPC) analysis.
  • the amount of water-soluble polymer added should be such that the ratio of water-soluble polymer / (water-soluble polymer + organic polymer resin + organic polymer resin good solvent) is 0.1 to 40% by mass. Is preferably 0.5 to 30% by mass, more preferably 1 to 10% by mass. If the amount of the water-soluble polymer added is 0.1% by mass or more, the porous molded body includes a fibrous structure that forms a three-dimensional continuous network structure on the outer surface and inside of the porous molded body. Is obtained uniformly. If the amount of water-soluble polymer added is 40% by mass or less, the outer surface opening ratio is appropriate, and the amount of inorganic ion adsorbent on the outer surface of the porous molded body is large. Even in this case, a porous molded body that can reliably adsorb ions can be obtained.
  • step (3) the slurry (molding slurry) obtained in step (2) is formed.
  • the molding slurry is a mixed slurry of an organic polymer resin, a good solvent for the organic polymer resin, an inorganic ion adsorbent, and a water-soluble polymer.
  • the form of the porous molded body of the present embodiment can take any form such as a particulate form, a thread form, a sheet form, a hollow fiber form, a cylindrical form, and a hollow cylindrical form, depending on the method for forming the forming slurry.
  • the method of forming into a particulate form is not particularly limited.
  • the nozzle method etc. are mentioned.
  • the diameter of the nozzle is preferably 0.1 to 10 mm, more preferably 0.1 to 5 mm. If the nozzle diameter is 0.1 mm or more, droplets are likely to scatter, and if the nozzle diameter is 10 mm or less, the particle size distribution can be made uniform.
  • the centrifugal force is expressed by centrifugal acceleration, and is preferably 5 to 1500 G, more preferably 10 to 1000 G, and still more preferably 10 to 800 G. If the centrifugal acceleration is 5 G or more, the formation and scattering of droplets are easy, and if it is 1500 G or less, it is possible to suppress the molding slurry from being discharged without becoming a thread and widening the particle size distribution. Since the particle size distribution is narrow, the flow path of water becomes uniform when the column is filled with a porous compact, so that ions (adsorption target) leak out from the beginning of water flow even when used for ultra-high-speed water flow treatment ( It has the advantage that it does not break through.
  • Examples of the method of forming into a thread-like or sheet-like form include a method of extruding a forming slurry from a spinneret or die having a corresponding shape and solidifying the slurry in a poor solvent.
  • a method for forming a hollow fiber-shaped porous molded body it can be molded in the same manner as a method for forming a thread-shaped or sheet-shaped porous molded body by using a spinning nozzle composed of an annular orifice.
  • As a method of forming a cylindrical or hollow cylindrical porous molded body when extruding a slurry for molding from a spinning nozzle, it may be solidified in a poor solvent while cutting, or it is solidified into a filament and then cut later. It doesn't matter.
  • Step (4) Solidification promotion process
  • the temperature and humidity of the space part in contact with the molded product are controlled to promote solidification.
  • the mode pore diameter and the outer surface opening ratio measured with a mercury porosimeter can be adjusted, and a molded body having a high abundance of inorganic ion adsorbents can be obtained.
  • the temperature and humidity of the space are controlled by covering the space between the coagulation tank and the rotating container in which the poor solvent is stored with a cover and adjusting the temperature of the poor solvent.
  • the temperature of the space is preferably 20 to 90 ° C, more preferably 25 to 85 ° C, and further preferably 30 to 80 ° C. If the temperature of the space is 20 ° C. or higher, the outer surface opening ratio of the porous molded body is increased, and if it is 90 ° C. or lower, the nozzle opened in the rotating container is not easily clogged with slurry, and is stable for a long time. Can be produced.
  • the relative humidity with respect to the temperature is preferably 65 to 100%, more preferably 70 to 100%, and even more preferably 75 to 100%.
  • the relative humidity is 65% or more, the outer surface opening ratio of the porous molded body is high, and if it is 100% or less, the nozzle opened in the rotating container is not easily clogged with slurry, and the molded body can be stably formed for a long time. Can be manufactured.
  • a solvent having an organic polymer resin solubility of 1% by mass or less can be used under the conditions of the step (5).
  • water for example, water, alcohols such as methanol and ethanol, ethers And aliphatic hydrocarbons such as n-hexane and n-heptane. Among these, water is preferable as the poor solvent.
  • a good solvent is brought in from the preceding step, and the concentration of the good solvent changes at the start and end of the coagulation step. Therefore, it may be a poor solvent in which a good solvent is added in advance, and it is preferable to perform the coagulation step by controlling the concentration while separately adding water or the like so as to maintain the initial concentration.
  • the concentration of the good solvent By adjusting the concentration of the good solvent, the structure (outer surface opening ratio and particle shape) of the porous molded body can be controlled.
  • the poor solvent is water or a mixture of a good solvent of organic polymer resin and water
  • the content of the good solvent of the organic polymer resin with respect to water is preferably 0 to 80% by mass in the coagulation step. More preferably, it is 60 mass%.
  • the temperature of the poor solvent is preferably 40 to 100 ° C., more preferably 50 to 100 ° C., and more preferably 60 to 100 ° C. from the viewpoint of controlling the temperature and humidity of the space portion in the step (4). More preferably.
  • the porous molded body manufacturing apparatus of the present embodiment includes a rotating container that scatters droplets by centrifugal force, and a coagulating tank that stores coagulating liquid, and covers a space portion between the rotating container and the coagulating tank. And a control means for controlling the temperature and humidity of the space.
  • a rotating container that scatters droplets by centrifugal force is not limited to a specific structure as long as it has a function of making a molding slurry into spherical droplets and scatters by centrifugal force.
  • a nozzle etc. are mentioned.
  • the forming slurry is supplied to the center of the rotating disk, the forming slurry spreads out in a film shape with a uniform thickness along the surface of the rotating disk, and is divided into droplets by centrifugal force from the periphery of the disk. Thus, fine droplets are scattered.
  • the rotating nozzle has a large number of through holes formed in the peripheral wall of the hollow disk-shaped rotating container, or is attached to the nozzle by penetrating through the peripheral wall.
  • the forming slurry is supplied into the rotating container and the rotating container is rotated. At this time, the forming slurry is discharged from the through hole or nozzle by centrifugal force to form droplets.
  • the coagulation tank for storing the coagulation liquid is not limited to one having a specific structure as long as it has a function of storing the coagulation liquid.
  • the coagulation tank having an upper surface is a device that spontaneously drops liquid droplets scattered horizontally from the rotating container and captures the liquid droplets on the surface of the coagulation liquid stored in the coagulation tank having an upper surface opened.
  • a coagulation tank with a structure in which the coagulating liquid naturally flows down by gravity along the inner surface of the cylinder arranged so as to surround the rotating container allows the coagulating liquid to flow out at a substantially uniform flow rate in the circumferential direction along the inner surface of the cylinder.
  • the apparatus captures and solidifies droplets in a coagulating liquid flow that naturally flows along the inner surface.
  • the temperature and humidity control means for the space is a means for controlling the temperature and humidity of the space by including a cover that covers the space between the rotating container and the coagulation tank.
  • the cover that covers the space is not limited to a specific structure as long as it has a function of isolating the space from the outside environment and making it easier to realistically control the temperature and humidity of the space. Shape, cylindrical shape and umbrella shape. Examples of the material of the cover include metal stainless steel and plastic. It can be covered with a known heat insulating agent in that it is isolated from the external environment. The cover may be partially opened to adjust the temperature and humidity.
  • the temperature and humidity control means of the space section only needs to have a function of controlling the temperature and humidity of the space section, and are not limited to specific means.
  • a heater such as an electric heater and a steam heater, and ultrasonic humidification And humidifiers such as a heating humidifier and the like.
  • a means for heating the coagulation liquid stored in the coagulation tank and using the steam generated from the coagulation liquid to control the temperature and humidity of the space is preferable.
  • the porous molded body of the present embodiment can be used in the field of processing at an ultra high speed such as a liquid flow rate (SV) of 120.
  • SV liquid flow rate
  • it can be suitably used as an adsorbent for ions of phosphorus, boron, arsenic, fluorine, etc., for use in manufacturing process water such as metal plating and pharmaceutical production.
  • it is more preferable to use it as an adsorbent for phosphorus ions.
  • the communication holes are densely developed in a three-dimensional network shape inside the porous molded body, the contact efficiency is high, and the adsorption capacity until breakthrough is large.
  • the porous molded body of the present embodiment can be used for various adsorbents, deodorizers, antibacterial agents, hygroscopic agents, food freshness-preserving agents, enzyme-immobilized carriers, chromatographic carriers, and blood treatments. It can be used in medical applications.
  • zeolite when used for the inorganic ion adsorbent, it can be used as a deodorant.
  • the inorganic ion adsorbent is zeolite and silver is supported on the zeolite, it can be used as an antibacterial agent.
  • palladium or platinum When palladium or platinum is supported on the zeolite, it can be used as a freshness retaining agent because it adsorbs ethylene.
  • silver or copper When silver or copper is supported on the zeolite, it can be used as a deodorizing agent because it can adsorb and decompose malodorous gases such as hydrogen sulfide, ammonia and methyl mercaptan.
  • S (Hg) (m 2 / g) ⁇ bulk specific gravity (g / cm 3 )
  • Bulk specific gravity (g / cm 3 ) W / V
  • S (Hg) is the surface area (m 2 / g) per unit mass of the porous molded body
  • W is the dry mass (g) of the porous molded body
  • V is the apparent volume (cm 3). ).
  • Average particle diameter of porous molded body and average particle diameter of inorganic ion adsorbent The average particle diameter of the porous molded body and the average particle diameter of the inorganic ion adsorbent were measured with a laser diffraction / scattering particle size distribution analyzer (LA-950 (trade name) manufactured by HORIBA). Water was used as the dispersion medium. When measuring a sample using hydrated cerium oxide as an inorganic ion adsorbent, the refractive index was measured using the value of cerium oxide. Similarly, when a sample using hydrated zirconium oxide as an inorganic ion adsorbent was measured, the value of zirconium oxide was used as the refractive index.
  • Trisodium phosphate Na 3 PO 4 ⁇ 12H 2 O
  • a solution adjusted to pH 7 with sulfuric acid was used as an adsorption stock solution.
  • a porous molded body (8 mL) weighed by repeated tapping using a graduated cylinder was packed in a column (inner diameter: 10 mm), and the adsorption stock solution was passed at a rate of 960 mL / hr (SV120) and 240 mL / hr (SV30). .
  • the effluent (treatment solution) from the column is sampled every 30 minutes, the phosphorus concentration in the treated water is measured, and the phosphorus adsorption amount (adsorption amount g) until 0.5 mg-P / L (ppm) is exceeded.
  • -P / L-porous molded body The phosphate ion concentration was measured using a phosphoric acid measuring device Phosfax Compact (trade name) manufactured by HACH. If the amount of phosphorus adsorption when the liquid flow rate is SV120 is 2.0 (gP / L-porous molded body) or more, the adsorption capacity of the porous molded body is large and it is good as a phosphorus adsorbent. It was judged.
  • Example 1 Filled with 220 g of N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical Corporation) and 200 g of hydrated cerium oxide powder (Iwatani Sangyo Co., Ltd.) with an average particle size of 30 ⁇ m and 1.5 kg of stainless steel balls with a diameter of 5 mm ⁇ This was put into a 1 L stainless steel ball mill pot, and pulverized and mixed at 150 rpm for 150 minutes to obtain a yellow slurry.
  • NMP N-methyl-2-pyrrolidone
  • hydrated cerium oxide powder Iwatani Sangyo Co., Ltd.
  • the obtained molding slurry solution was heated to 60 ° C., and supplied to the inside of a cylindrical rotating container having a nozzle with a diameter of 4 mm on the side surface.
  • the container was rotated, and droplets were discharged from the nozzle by centrifugal force (15 G). Formed.
  • the space between the rotating container and the coagulation tank is covered with a polypropylene cover, the temperature of the space is controlled to 50 ° C., the relative humidity is controlled to 100%, the droplets fly, and the NMP content to water is 50% by mass.
  • the coagulating liquid was heated to 80 ° C. and stored in a coagulation tank having an opening on the upper surface, so that the molding slurry was coagulated. Furthermore, washing
  • An electron micrograph (magnification 10,000 times) showing the surface of the obtained porous molded body is shown in FIG.
  • Example 2 A spherical porous molded body was obtained in the same manner as in Example 1 except that the temperature of the coagulation liquid was 60 ° C., the temperature of the space was 37 ° C., and the relative humidity was 100%.
  • Example 3 A spherical porous molded body was obtained in the same manner as described in Example 1 except that the amount of hydrated cerium oxide powder charged was increased from 200 g to 300 g.
  • Example 4 A spherical porous molded body was obtained in the same manner as in Example 1 except that the amount of hydrated cerium oxide powder charged was reduced from 200 g to 150 g.
  • Example 5 Spherical porous molding in the same manner as in Example 3 except that the porous molded body is molded using a nozzle having a nozzle diameter reduced from 4 mm to 3 mm provided on the side surface of the cylindrical rotating container. Got the body.
  • Example 6 Spherical porous molding similar to the method described in Example 3 except that the porous molded body is molded using a nozzle having a nozzle diameter increased from 4 mm to 5 mm on the side surface of the cylindrical rotating container. Got the body.
  • Example 7 160 g of dimethyl sulfoxide (DMSO, Kanto Chemical Co., Ltd.) is used as a good solvent for the organic polymer resin, and ethylene vinyl alcohol copolymer (EVOH, Nippon Synthetic Chemical Industry Co., Ltd., Soarnol E3803 (trade name)) is used as the organic polymer resin.
  • DMSO dimethyl sulfoxide
  • EVOH ethylene vinyl alcohol copolymer
  • spherical porous molded body was obtained in the same manner as in Example 1 except that 20 g, the charged amount of hydrated cerium oxide powder was 250 g, the coagulating liquid was water, and the nozzle diameter was 5 mm. .
  • Example 8 Polyethersulfone (Sumitomo Chemical Co., Ltd., Sumika Excel 5003PS (trade name), OH terminal grade) 30 g of organic polymer resin, Polyethylene glycol (PEG 35,000, Merck Ltd.) 4 g of water-soluble polymer, hydrated A spherical porous molded body was obtained in the same manner as in Example 1 except that the charged amount of cerium oxide powder was 100 g, the coagulating liquid was water, and the nozzle diameter was 5 mm.
  • Example 9 Example 1 except that a hydrated zirconium oxide powder (Daiichi Rare Element Co., Ltd., R zirconium hydroxide (trade name)) dried in a constant amount in a dryer at 70 ° C. was used as the inorganic ion adsorbent. A spherical porous molded body was obtained in the same manner as described in 1. above.
  • a hydrated zirconium oxide powder (Daiichi Rare Element Co., Ltd., R zirconium hydroxide (trade name)) dried in a constant amount in a dryer at 70 ° C.
  • a spherical porous molded body was obtained in the same manner as described in 1. above.
  • Example 10 As an inorganic ion adsorbent, a hydrated zirconium oxide powder (Daiichi Rare Element Co., Ltd., R zirconium hydroxide (trade name)) dried at a constant weight in a dryer at 70 ° C. is used, and the nozzle diameter is 4 mm. A spherical porous molded body was obtained in the same manner as in the method described in Example 7 except for the above.
  • Example 11 As an inorganic ion adsorbent, a hydrated zirconium oxide powder (Daiichi Rare Element Co., Ltd., R zirconium hydroxide (trade name)) dried at a constant weight in a dryer at 70 ° C. is used, and the nozzle diameter is 4 mm. A spherical porous molded body was obtained in the same manner as described in Example 8 except for the above.
  • a hydrated zirconium oxide powder (Daiichi Rare Element Co., Ltd., R zirconium hydroxide (trade name)) dried at a constant weight in a dryer at 70 ° C.
  • the nozzle diameter is 4 mm.
  • a spherical porous molded body was obtained in the same manner as described in Example 8 except for the above.
  • Example 12 A spherical porous molded body was obtained in the same manner as in Example 1 except that the temperature of the coagulation liquid was 50 ° C., the temperature of the space was 31 ° C., and the relative humidity was 80%.
  • Example 13 Filled with 154 g of N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical Corporation) and 300 g of hydrated cerium oxide powder (Iwatani Sangyo Co., Ltd.) with an average particle size of 30 ⁇ m, 1.5 kg of stainless steel balls with a diameter of 5 mm ⁇ This was put into a 1 L stainless steel ball mill pot, and pulverized and mixed at 150 rpm for 150 minutes to obtain a yellow slurry. 15 g of polyethersulfone (Sumitomo Chemical Co., Ltd., Sumika Excel 5003PS (trade name), OH terminal grade) is added to the resulting slurry, heated to 60 ° C. in a dissolution tank, and a stirring blade is used.
  • the mixture was stirred and dissolved to obtain a uniform molding slurry solution.
  • the obtained molding slurry solution was heated to 60 ° C., and supplied to the inside of a cylindrical rotating container having a nozzle with a diameter of 4 mm on the side surface.
  • the container was rotated, and droplets were discharged from the nozzle by centrifugal force (15 G). Formed.
  • the space between the rotating vessel and the coagulation tank is covered with a polypropylene cover, the temperature of the space is controlled to 30 ° C., the relative humidity is controlled to 70%, the droplets fly, and the content of NMP with respect to water is 10% by mass.
  • the coagulating liquid was heated to 40 ° C. and stored in a coagulation tank having an opening on the upper surface, so that the droplets were landed to coagulate the molding slurry. Furthermore, washing
  • Example 14 160 g of N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical Corp.), 30 g of an organic polymer resin such as polyethersulfone (Sumitomo Chemical Co., Ltd., Sumika Excel 5003PS (trade name), OH terminal grade), high water solubility
  • NMP N-methyl-2-pyrrolidone
  • an organic polymer resin such as polyethersulfone (Sumitomo Chemical Co., Ltd., Sumika Excel 5003PS (trade name), OH terminal grade)
  • a spherical porous molded body was prepared in the same manner as in Example 1 except that the molecular weight was 4 g of polyethylene glycol (PEG 35,000, Merck Ltd.) and the amount of hydrated cerium oxide powder was 100 g. Obtained.
  • Example 15 A spherical porous molded body was obtained in the same manner as in Example 14 except that the temperature of the coagulation liquid was 60 ° C., the temperature of the space was 37 ° C., and the relative humidity was 90%.
  • Example 1 A spherical porous molded body was obtained in the same manner as described in Example 2 except that the space between the rotating container and the coagulation tank was not covered with a polypropylene cover. At this time, the temperature of the space was 26 ° C. and the relative humidity was 63%.
  • Example 2 A porous molded body was obtained with reference to Example 1 of Patent Document 3 (International Publication No. 2011/062277).
  • the spherical porous molded body is the same as the method described in Example 8, except that the space between the rotating container and the coagulation tank is not covered with a polypropylene cover, and the temperature of the coagulation liquid is 60 ° C. Got. At this time, the temperature of the space was 26 ° C. and the relative humidity was 63%.
  • Example 3 A porous molded body was obtained with reference to Example 2 of Patent Document 1 (International Publication No. 2005/056175).
  • the spherical porous molded body is the same as the method described in Example 7 except that the space between the rotating container and the coagulation tank is not covered with a polypropylene cover, and the temperature of the coagulation liquid is 60 ° C. Got. At this time, the temperature of the space was 26 ° C. and the relative humidity was 63%.
  • Tables 1 and 2 show the physical properties of the porous molded bodies obtained in Examples 1 to 15 and Comparative Examples 1 to 3. From the results of Examples 1 to 15, when a granulation apparatus having a cover in the space portion is used and the temperature and relative humidity of the space portion are controlled to be high, the outer surface opening ratio is appropriate and the inorganic in the vicinity of the outer surface. It was found that a porous molded body having a high phosphorus adsorption amount during high-speed water passage (SV120) can be obtained due to a large amount of the ion adsorbent.
  • SV120 high-speed water passage
  • porous molded body of the present invention can be used in water for manufacturing processes such as metal plating and pharmaceutical manufacturing, which are required to be processed at an ultra-high speed such as a liquid flow rate (SV) of 120. Have potential.
  • SV liquid flow rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本発明は、有機高分子樹脂及び無機イオン吸着体を含み、水銀ポロシメーターで測定した最頻細孔径が0.08~0.70μmである多孔性成形体に関する。 また、本発明は、多孔性成形体の製造方法及び多孔性成形体の製造装置に関する。

Description

多孔性成形体、並びに多孔性成形体の製造方法及び製造装置
 本発明は、多孔性成形体、並びに多孔性成形体の製造方法及び製造装置に関する。
 近年、環境汚染による富栄養化の問題から、飲料水、工業用水、工業排水、下水道処理水及び各種環境水中のリン、ホウ素、ヒ素及びフッ素等の有害物質に対する環境基準が強化されており、これらの有害物質を除去する技術への要望が高まっている。
 リンは、富栄養化の原因物質の一つであり、特に閉鎖水域で規制が強まっている。また、枯渇が危惧されている元素でもあるため、排水中から回収し、再利用する技術が求められている。
 ホウ素は、植物の育成にとって必須の元素であるが、過剰に存在すると植物の成長に悪影響を及ぼすことが知られている。さらに、人体に対しても、飲料水中に含まれると健康への影響、特に生殖機能の低下等の健康障害を起こす可能性が指摘されている。
 ヒ素は、非鉄金属精錬工業の排水、地熱発電所の熱排水及び特定地域の地下水等に含まれている。ヒ素の毒性については昔より知られており、生体への蓄積性があり、慢性中毒、体重減少、知覚傷害、肝臓障害、皮膚沈着及び皮膚がん等を発症すると言われている。
 フッ素は、金属精錬工業、ガラス工業及び電子材料工業等からの排水に多く含まれる。フッ素の人体へ影響が懸念されており、フッ素を過剰に摂取すると、斑状歯、骨硬化症及び甲状腺障害等の慢性フッ素中毒症を引き起こすことが知られている。
 これらの有害物質の排出量は年々増加しており、これらの有害物質を効率的に除去する技術が求められている。また、従来の排水処理分野に加えて、金属メッキや医薬品製造等に使用する水から、リンやホウ素等の特定イオンを選択的に除去する要求が高まっている。
 上述したような各種有害物質を除去する技術としては、例えば、ジルコニウム含水亜鉄酸塩や含水酸化セリウム等の無機イオン吸着体粉末を高分子材料に担持させた吸着剤を用いる技術が知られている。
 また、有機高分子樹脂と無機イオン吸着体を含む多孔性成形体が、リンやホウ素等を吸着することが知られている。
 例えば、特許文献1には、有機高分子樹脂を適当な良溶媒に溶解させ、さらに、該良溶媒に可溶で該有機高分子樹脂に親和性のある水溶性高分子を溶解混合させたポリマー溶液に、吸着基質である無機イオン吸着体粉末を縣濁させ、貧溶媒を凝固浴として成形する方法を採ることにより、表面にスキン層がなく、表面開口性に優れる成形体が得られることが開示されている。
 また、特許文献2には、多孔性成形体中に無機イオン吸着体の二次凝集物が少ない多孔性成形体は、吸着性能に優れ、強度も強いことが開示されている。
 さらに、特許文献3には、水酸基を有する有機高分子樹脂と、無機イオン吸着体粉末とを含む多孔性成形体は、酸化剤等の洗浄薬剤に対する耐久性が高く、繰り返し使用可能な、吸着剤に適した多孔性成形体であることが開示されている。
 特許文献1~3に開示される多孔性成形体からなる吸着剤は、多孔性成形体の表面にスキン層と呼ばれる薄い膜が無く、吸着剤内部も多孔性に優れているため、リンやホウ素等の吸着対象物の吸着剤内部への拡散速度が速いという特徴を有している。そして、特許文献1~3においては、吸着処理時は通液速度(SV)30で処理することが開示されている。
国際公開第2005/056175号 特開2009-297707号 国際公開第2011/062277号
 しかしながら、近年特に金属メッキや医薬品製造等に使用する水用途では従来の通液速度であるSV30より遥かに速いSV120といった超高速で処理することが求められている。
 特許文献1~3に開示されるような従来の多孔性成形体の更なる改良が望まれている。
 本発明が解決しようとする課題は、被処理水中のイオン、中でも、リンイオンを超高速除去でき、かつ吸着容量が大きい多孔性成形体を提供することである。
 本発明者らは、鋭意研究を重ねた結果、有機高分子樹脂及び無機イオン吸着体を含み、水銀ポロシメーターで測定した最頻細孔径が0.08~0.70μmである多孔性成形体とすることにより、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は以下の通りである。
[1]
 有機高分子樹脂及び無機イオン吸着体を含み、水銀ポロシメーターで測定した最頻細孔径が0.08~0.70μmである多孔性成形体。
[2]
 外表面開口率が5%以上30%未満である、[1]に記載の多孔性成形体。
[3]
 水銀ポロシメーターで測定した比表面積が10~100m/cmである、[1]又は[2]に記載の多孔性成形体。
[4]
 水銀ポロシメーターで測定した最頻細孔径とメディアン径の比(最頻細孔径/メディアン径)が0.80~1.30である、[1]~[3]のいずれかに記載の多孔性成形体。
[5]
 平均粒径が100~2500μmの球状粒子である、[1]~[4]のいずれかに記載の多孔性成形体。
[6]
 前記無機イオン吸着体が、下記式(I)で表される少なくとも一種の金属酸化物を含有する、[1]~[5]のいずれかに記載の多孔性成形体。
    MN・mHO・・・・・・(I)
(式(I)中、xは0~3、nは1~4、mは0~6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる金属元素であり、互いに異なる。)
[7]
 前記金属酸化物が、下記(a)~(c)のいずれかの群から選ばれる少なくとも一種を含有する、[6]に記載の多孔性成形体。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物
(c)活性アルミナ
[8]
 前記有機高分子樹脂が、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリエーテルスルホン(PES)及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる少なくとも一種を含有する、[1]~[7]のいずれかに記載の多孔性成形体。
[9]
 [1]~[8]のいずれかに記載の多孔性成形体を充填したカラム。
[10]
 (1)有機高分子樹脂の良溶媒と無機イオン吸着体を粉砕、混合してスラリーを得る工程、
(2)工程(1)で得られたスラリーに有機高分子樹脂及び水溶性高分子を溶解する工程、
(3)工程(2)で得られたスラリーを成形する工程、
(4)工程(3)で得られた成形品を貧溶媒中で凝固させるまでの間、成形品が接触する空間部の温度と湿度を制御して凝固を促進する工程、及び
(5)工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させる工程を含む、有機高分子樹脂及び無機イオン吸着体を含む多孔性成形体の製造方法。
[11]
 前記工程(4)における成形品が接触する空間部の相対湿度が、65~100%である、[10]に記載の多孔性成形体の製造方法。
[12]
 前記有機高分子樹脂の良溶媒が、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン(NMP)、ジメチルアセトアミド(DMAC)及びジメチルホルムアミド(DMF)からなる群から選ばれる少なくとも一種である、[10]又は[11]に記載の多孔性成形体の製造方法。
[13]
 前記貧溶媒が、水、又は、前記有機高分子樹脂の良溶媒と水の混合物である、[10]~[12]のいずれかに記載の多孔性成形体の製造方法。
[14]
 前記工程(5)における貧溶媒の温度が、40~100℃である、[10]~[13]のいずれかに記載の多孔性成形体の製造方法。
[15]
 前記工程(3)が、回転する容器の側面に設けたノズルから、前記工程(2)で得られたスラリーを飛散させて液滴を形成する工程を含む、[10]~[14]のいずれかに記載の多孔性成形体の製造方法。
[16]
 液滴を遠心力で飛散させる回転容器と、凝固液を貯留する凝固槽と、を備え、
 前記回転容器と前記凝固槽の間の空間部を覆うカバーを設け、前記空間部の温度と湿度を制御する制御手段を備える、多孔性成形体の製造装置。
[17]
 前記制御手段が、前記凝固槽に貯留した凝固液を加温して、前記凝固液から発生する蒸気を利用して前記空間部の温度と湿度を制御する手段である、[16]に記載の多孔性成形体の製造装置。
 本発明によれば、処理水中のイオン、中でも、リンイオンを超高速除去でき、かつ吸着容量が大きい多孔性成形体が得られる。
実施例1で得られた多孔性成形体の外表面を示す電子顕微鏡写真(倍率10,000倍)を示す。 実施例1で得られた多孔性成形体の水銀ポロシメーターで測定した細孔直径に対する対数微分細孔容積と積算細孔容積をプロットした細孔分布図を示す。 実施例1並びに比較例1、2及び3で得られた多孔性成形体の水銀ポロシメーターで測定した細孔直径に対する対数微分細孔容積をプロットした細孔分布図を示す。 本実施形態の多孔性成形体の製造装置の概略図を示す。
 以下、本発明を実施するための形態(以下、本実施形態と言う。)について、説明するが、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
〔多孔性成形体〕
 本実施形態の多孔性成形体は、有機高分子樹脂及び無機イオン吸着体を含み、水銀ポロシメーターで測定した最頻細孔径が0.08~0.70μmである。本実施形態の多孔性成形体は、連通孔を有し多孔質な構造を有する。
 本実施形態の多孔性成形体は、水銀ポロシメーターで測定した最頻細孔径が0.08~0.70μmであり、0.10~0.60μmであることが好ましく、0.20~0.50μmであることがより好ましい。
 本実施形態において、最頻細孔径(モード径)とは、水銀ポロシメーターで測定した細孔直径に対して対数微分細孔容積(dV/d(logD)、ここでVは水銀圧入容積、Dは細孔直径を示す。)をプロットした図上において、対数微分細孔容積の値が最大となる細孔直径を意味し、体積基準である。具体的には、実施例に記載の方法により、最頻細孔径を測定することができる。
 水銀ポロシメーターは、水銀圧入法によって多孔性材料の細孔の大きさを評価する装置で、ガス吸着法(BET法)では測定ができないような比較的大きな細孔分布(メソポア(数nm)~マクロポア(数百μm))測定に適している。
 本実施形態おいては、水銀ポロシメーターで最頻細孔径を測定することにより、多孔性成形体における有機高分子樹脂からなる多孔構造(骨格構造)の特徴を詳細に測定することができる。また、水銀ポロシメーターでメディアン径及び比表面積を測定することにより、多孔性成形体における有機高分子樹脂からなる多孔構造(骨格構造)の特徴をより詳細に測定することができる。
 最頻細孔径が0.08μm以上であれば、リンやホウ素等の吸着対象物が多孔性成形体内部へ拡散するための連通孔の孔径として十分であり、拡散速度が速くなる。最頻細孔径が0.70μm以下であれば、多孔性成形体の空隙が小さくなり、単位体積中に占める無機イオン吸着体の存在量が密になるため、高速通水処理時に多くのイオンを吸着するのに適している。
 多孔性成形体の外表面開口率は、5%以上30%未満であることが好ましく、7%以上28%以下であることがより好ましく、10%以上25%以下であることがさらに好ましい。
 本実施形態において、外表面開口率とは、走査型電子顕微鏡で多孔性成形体の外表面を観察した視野の面積中に占める全ての孔の開口面積の和の割合を意味する。
 外表面開口率が5%以上であれば、リンやホウ素等の吸着対象物の多孔性成形体内部への拡散速度が速くなる。外表面開口率が30%未満であれば、多孔性成形体外表面の無機イオン吸着体の存在量が多いため、高速で通液処理しても水中のイオンを確実に吸着できる。
 本実施形態においては、10,000倍で多孔性成形体の外表面を観察して外表面開口率を実測する。具体的には、実施例に記載の方法により、外表面開口率を測定することができる。
 本実施形態の多孔性成形体は、水銀ポロシメーターで測定した最頻細孔径とメディアン径の比(最頻細孔径/メディアン径)が0.80~1.30であることが好ましく、0.85~1.25であることがより好ましく、0.90~1.20であることがさらに好ましい。
 本実施形態において、メディアン径とは、積算細孔容積分布における積算細孔容積の最大値と最小値の範囲の中央値に対する細孔直径を意味し、体積基準である。具体的には、実施例に記載の方法により、メディアン径を測定することができる。
 最頻細孔径/メディアン径の比が1.0に近いと多孔性成形体の細孔径分布が均一であり、高速通水処理に適している。
 多孔性成形体の外表面付近に孔径が小さいち密層(スキン層)が存在する場合、スキン層の内側(成形体の内部方向)には大きな空隙(最大孔径層)が形成しやすい。最頻細孔径/メディアン径の比が0.80~1.30であることは、多孔性成形体にスキン層が存在していないことを意味する。
 本実施形態の多孔性成形体は、水銀ポロシメーターで測定した比表面積が10~100m/cmであることが好ましく、11~90m/cmであることがより好ましく、12~50m/cmであることがさらに好ましい。
 比表面積が10m/cm以上であれば、無機イオン吸着体の担持量が多くかつ細孔表面積が大きいため、高速通水時の十分な吸着性能が得られる。比表面積が100m/cm以下であれば、無機イオン吸着体が強固に担持されるため多孔性成形体の強度が高い。
 本実施形態において、比表面積は、次式で定義される。
 比表面積(m/cm)=S(Hg)(m/g)×かさ比重(g/cm
 S(Hg)は、多孔性成形体の単位重量あたりの細孔表面積(m/g)を意味する。細孔表面積の測定方法は、多孔性成形体を室温で真空乾燥した後、水銀ポロシメーターを用いて測定する。具体的には、実施例に記載の方法により、細孔表面積を測定することができる。
 かさ比重の測定方法は、以下のとおりである。
 多孔性成形体が、粒子状、円柱状、中空円柱状等であり、その形状が短いものは、湿潤状態の多孔性成形体を、メスシリンダー等を用いて、1mLを1cmとしてみかけの体積を測定する。その後、室温で真空乾燥して重量を求め、重量/体積として、かさ比重を算出する。
 多孔性成形体が、糸状、中空糸状、シート状等であり、その形状が長いものは、湿潤時の断面積と長さを測定して、両者の積から体積を算出する。その後、室温で真空乾燥して重量を求め、重量/体積として、かさ比重を算出する。
 本実施形態の多孔性成形体は、平均粒径が100~2500μmで、実質的に球状であることが好ましく、平均粒径は150~2000μmであることがより好ましく、200~1500μmであることがさらに好ましい。
 本実施形態の多孔性成形体は、球状粒子であることが好ましく、球状粒子として、真球状のみならず、楕円球状であってもよい。
 平均粒径が100μm以上であれば、多孔性成形体をカラムやタンク等へ充填した際に圧カ損失が小さいため高速通水処理に適する。平均粒径が2500μm以下であれば、カラムやタンクに充填したときの多孔性成形体の表面積を大きくすることができ、高速で通液処理してもイオンを確実に吸着することができる。
 本実施形態において、平均粒径は、多孔性成形体を球状とみなして、レーザー光による回折の散乱光強度の角度分布から求めた球相当径のメディアン径を意味する。具体的には、実施例に記載の方法により、平均粒径を測定することができる。
(有機高分子樹脂)
 本実施形態の多孔性成形体を構成する有機高分子樹脂は、特に限定されないが、湿式相分離による多孔化手法が可能な樹脂であることが好ましい。
 有機高分子樹脂としては、例えば、ポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリ塩化ビニリデン系ポリマー、アクリロニトリル系ポリマー、ポリメタクリル酸メチル系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、セルロース系ポリマー、エチレンビニルアルコール共重合体系ポリマー及び多種類等が挙げられる。
 中でも、水中での非膨潤性と耐生分解性、さらに製造の容易さから、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリエーテルスルホン(PES)及びポリフッ化ビニリデン(PVDF)が好ましい。
 有機高分子樹脂は、末端に水酸基を有しているポリエーテルスルホンが好ましい。末端基として水酸基を有していることによって、本実施形態の多孔性成形体において、優れた無機イオン吸着体の担持性能が発揮できる。加えて、疎水性が高い有機高分子樹脂が、末端に水酸基を有しているため親水性が向上し、本実施形態の多孔性成形体を水処理用途に使用してもファウリングが発生しにくい。
(無機イオン吸着体)
 本実施形態の多孔性成形体を構成する無機イオン吸着体とは、イオン吸着現象又はイオン交換現象を示す無機物質を意味する。
 天然物系の無機イオン吸着体としては、例えば、ゼオライト及びモンモリロナイト等の各種の鉱物性物質等が挙げられる。
 各種の鉱物性物質の具体例としては、アルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライト及びモンモリロナイト等が挙げられる。
 合成物系の無機イオン吸着体としては、例えば、金属酸化物、多価金属の塩及び不溶性の含水酸化物等が挙げられる。金属酸化物としては、複合金属酸化物、複合金属水酸化物及び金属の含水酸化物等を含む。
 無機イオン吸着体は、吸着対象物の吸着性能の観点で、下記式(I)で表される少なくとも1種の金属酸化物を含有することが好ましい。
 MN・mHO・・・・・・(I)
 上記式(I)中、xは0~3、nは1~4、mは0~6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる金属元素であり、互いに異なる。
 金属酸化物は、上記式(I)中のmが0である未含水(未水和)の金属酸化物であってもよいし、mが0以外の数値である金属の含水酸化物(水和金属酸化物)であってもよい。
 上記式(I)中のxが0以外の数値である場合の金属酸化物は、含有される各金属元素が規則性を持って酸化物全体に均一に分布し、金属酸化物に含有される各金属元素の組成比が一定に定まった化学式で表される複合金属酸化物である。
 具体的には、ペロブスカイト構造、スピネル構造等を形成し、ニッケルフェライト(NiFe)、ジルコニウムの含水亜鉄酸塩(Zr・Fe・mHO、ここで、mは0.5~6である。)等が挙げられる。
 無機イオン吸着体は、上記式(I)で表される金属酸化物を複数種含有していてもよい。
 無機イオン吸着体としては、リン、ホウ素、フッ素及び/又はヒ素の吸着性能に優れているという観点から、下記(a)~(c)のいずれかの群から選ばれる少なくとも一種を含有することが好ましい。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物
(c)活性アルミナ
 (a)~(c)群のいずれかの群から選択される材料であってもよく、(a)~(c)群のいずれかの群から選択される材料を組み合わせて用いてもよく、(a)~(c)群のそれぞれにおける材料を組み合わせて用いてもよい。組み合わせて用いる場合には、(a)~(c)群のいずれかの群から選ばれる2種以上の材料の混合物であってもよく、(a)~(c)群の2つ以上の群から選ばれる2種以上の材料の混合物であってもよい。
 無機イオン吸着体は、安価で吸着性が高いという観点から、硫酸アルミニウム添着活性アルミナを含有してもよい。
 無機イオン吸着体としては、上記式(I)で表される金属酸化物に加え、上記M及びN以外の金属元素がさらに固溶したものは、無機イオンの吸着性や製造コストの観点から、より好ましい。
 例えば、ZrO・mHO(mが0以外の数値である。)で表される水和酸化ジルコニウムに、鉄が固溶したものが挙げられる。
 多価金属の塩としては、例えば、下記式(II)で表されるハイドロタルサイト系化合物が挙げられる。
 M2+ (1-p)3+ (OH(2+p-q)(An-q/r・・・・・・(II)
 上記式(II)中、M2+は、Mg2+、Ni2+、Zn2+、Fe2+、Ca2+及びCu2+からなる群から選ばれる少なくとも一種の二価の金属イオンである。
 M3+は、Al3+及びFe3+からなる群から選ばれる少なくとも一種の三価の金属イオンである。
 An-は、n価のアニオンである。
 0.1≦p≦0.5であり、0.1≦q≦0.5であり、rは1又は2である。
 上記式(II)で表されるハイドロタルサイト系化合物は、無機イオン吸着体として原料が安価であり、吸着性が高いことから好ましい。
 不溶性の含水酸化物としては、例えば、不溶性のヘテロポリ酸塩及び不溶性ヘキサシアノ鉄酸塩等が挙げられる。
 本実施形態の多孔性成形体を構成する無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を、本実施形態の多孔性成形体の機能を阻害しない範囲で含有していてもよい。混入する可能性がある不純物元素としては、例えば、窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム及びハフニウム等が挙げられる。
〔カラム〕
 本実施形態の多孔性成形体を吸着剤として水処理用途に用いる場合、カラムや吸着塔に充填して使用する。カラムや吸着塔に充填して、被処理水を通液して接触させることにより、多孔性成形体の有する接触効率の高さを十分に引き出すことができる。また、本実施形態の多孔性成形体は、吸着剤表面の無機イオン吸着体の存在量が高いため、通水初期からの吸着対象物が漏れ出す(破過する)ことなく、十分な吸着性能で超高速処理を行うことができる。
 カラムとは、下部及び上部の少なくとも一方に、多孔性成形体が流出しないように目皿やメッシュのような固液分離手段を備える筒状の容器を意味する。
 カラムの材質は、特に限定されるものではないが、例えば、ステンレス、FRP(ガラス繊維入り強化プラスチック)、ガラス及び各種プラスチック等が挙げられる。
 耐酸性を考慮して、カラムの内面をゴムやフッ素樹脂ライニングしてもよい。
〔多孔性成形体の製造方法〕
 本実施形態の多孔性成形体の製造方法は、(1)有機高分子樹脂の良溶媒と無機イオン吸着体を粉砕、混合してスラリーを得る工程、(2)工程(1)で得られたスラリーに有機高分子樹脂及び水溶性高分子を溶解する工程、(3)工程(2)で得られたスラリーを成形する工程、(4)工程(3)で得られた成形品を貧溶媒中で凝固させるまでの間、成形品が接触する空間部の温度と湿度を制御して凝固を促進する工程、及び(5)工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させる工程を含む。
(工程(1):粉砕・混合工程)
 工程(1)において、有機高分子樹脂の良溶媒と無機イオン吸着体を、粉砕、混合してスラリーを得る。
 無機イオン吸着体を有機高分子樹脂の良溶媒中で湿式粉砕することにより、無機イオン吸着体を微粒子化できる。その結果、成形後の多孔性成形体に担持された無機イオン吸着体は、二次凝集物が少ないものとなる。
<有機高分子樹脂の良溶媒>
 工程(1)における有機高分子樹脂の良溶媒としては、多孔性成形体の製造条件において有機高分子樹脂を安定に1質量%を超えて溶解するものであれば、特に限定されるものではなく、従来公知のものを使用できる。
 良溶媒としては、例えば、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)及びN,N-ジメチルホルムアミド(DMF)等が挙げられる。
 良溶媒は1種のみを用いてもよく、2種以上を混合して用いてもよい。
<粉砕混合手段>
 工程(1)において、スラリーを得るために用いられる粉砕混合手段は、無機イオン吸着体及び有機高分子樹脂の良溶媒を合わせて粉砕、混合できるものであれば、特に限定されるものではない。
 粉砕混合手段として、例えば、加圧型破壊、機械的磨砕、超音波処理等の物理的破砕方法に用いられる手段を用いることができる。
 粉砕混合手段の具体例としては、ジェネレーターシャフト型ホモジナイザー、ワーリングブレンダー等のブレンダー、サンドミル、ボールミル、アトライタ及びビーズミル等の媒体撹拌型ミル、ジェットミル、乳鉢と乳棒、らいかい器並びに超音波処理器等が挙げられる。
 中でも、粉砕効率が高く、粘度の高いものまで粉砕できることから、媒体撹拌型ミルが好ましい。
 媒体撹拌型ミルに使用するボール径は、特に限定されるものではないが、0.1~10mmであることが好ましい。ボール径が0.1mm以上であれば、ボール質量が充分あるので粉砕力があり粉砕効率が高く、ボール径が10mm以下であれば、微粉砕する能力に優れる。
 媒体攪拌型ミルに使用するボールの材質は、特に限定されるものではないが、鉄やステンレス等の金属、アルミナやジルコニア等の酸化物類、窒化ケイ素や炭化ケイ素等の非酸化物類の各種セラミック等が挙げられる。中でも、耐摩耗性に優れ、製品へのコンタミネーション(摩耗物の混入)が少ない点で、ジルコニアが優れている。
<分散剤>
 工程(1)においては、多孔性成形体の構造に影響しない範囲で、粉砕、混合する際、無機イオン吸着体を混合した有機高分子樹脂の良溶媒中に界面活性剤等の公知の分散剤を添加してもよい。
(工程(2):溶解工程)
 工程(2)においては、工程(1)により得られたスラリーに、有機高分子樹脂及び水溶性高分子を溶解させて、成形用スラリーを得る。
 有機高分子樹脂の添加量は、有機高分子樹脂/(有機高分子樹脂+水溶性高分子+有機高分子樹脂の良溶媒)の割合が、3~40質量%となるようにすることが好ましく、4~30質量%であることがより好ましい。有機高分子樹脂の含有率が3質量%以上であれば、強度の高い多孔性成形体が得られ、40質量%以下であれば、空孔率の高い多孔性成形体が得られる。
<水溶性高分子>
 工程(2)における水溶性高分子は、有機高分子樹脂の良溶媒と有機高分子樹脂とに対して相溶性のあるものであれば、特に限定されるものではない。
 水溶性高分子としては、天然高分子、半合成高分子及び合成高分子のいずれも使用できる。
 天然高分子としては、例えば、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン及びコラーゲン等が挙げられる。
 半合成高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン及びメチルデンプン等が挙げられる。
 合成高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸ナトリウム並びにテトラエチレングリコール及びトリエチレングリコール等のポリエチレングリコール類等が挙げられる。
 中でも、無機イオン吸着体の担持性を高める点から、合成高分子が好ましく、多孔性が向上する点から、ポリビニルピロリドン及びポリエチレングリコール類がより好ましい。
 ポリビニルピロリドンとポリエチレングリコール類の質量平均分子量は、400~35,000,000であることが好ましく、1,000~1,000,000であることがより好ましく、2,000~100,000であることがさらに好ましい。
 質量平均分子量が2,000以上であれば、表面開口性の高い多孔性成形体が得られ、1,000,000以下であれば、成形する時のスラリーの粘度が低いので成形が容易になる傾向がある。
 水溶性高分子の質量平均分子量は、水溶性高分子を所定の溶媒に溶解し、ゲル浸透クロマトグラフィー(GPC)分析により測定できる。
 水溶性高分子の添加量は、水溶性高分子/(水溶性高分子+有機高分子樹脂+有機高分子樹脂の良溶媒)の割合が、0.1~40質量%となるようにすることが好ましく、0.5~30質量%であることがより好ましく、1~10質量%であることがさらに好ましい。
 水溶性高分子の添加量が0.1質量%以上であれば、多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を含む多孔性成形体が均一に得られる。水溶性高分子の添加量が40質量%以下であれば、外表面開口率が適当であり、多孔性成形体の外表面の無機イオン吸着体の存在量が多いため、高速で通液処理してもイオンを確実に吸着できる多孔性成形体が得られる。
(工程(3):成形工程)
 工程(3)においては、工程(2)により得られたスラリー(成形用スラリー)を成形する。成形用スラリーは、有機高分子樹脂と、有機高分子樹脂の良溶媒と、無機イオン吸着体と、水溶性高分子の混合スラリーである。
 本実施形態の多孔性成形体の形態は、成形用スラリーを成形する方法によって、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態を採ることができる。
 粒子状の形態に成形する方法としては、特に限定されないが、例えば、回転する容器の側面に設けたノズルから、容器中に収納されている成形用スラリーを飛散させて、液滴を形成させる回転ノズル法等が挙げられる。回転ノズル法により、粒度分布が揃った粒子状の形態に成形することができる。
 ノズルの径は、0.1~10mmであることが好ましく、0.1~5mmであることがより好ましい。ノズルの径が0.1mm以上であれば、液滴が飛散しやすく、10mm以下であれば、粒度分布を均一にすることができる。
 遠心力は、遠心加速度で表され、5~1500Gであることが好ましく、10~1000Gであることがより好ましく、10~800Gであることがさらに好ましい。
 遠心加速度が5G以上であれば、液滴の形成と飛散が容易であり、1500G以下であえば、成形用スラリーが糸状にならずに吐出し、粒度分布が広くなるのを抑えることができる。粒度分布が狭いことにより、カラムに多孔性成形体を充填した時に水の流路が均一になるため、超高速通水処理に用いても通水初期からイオン(吸着対象物)が漏れ出す(破過する)ことが無いという利点を有している。
 糸状又はシート状の形態に成形する方法としては、該当する形状の紡口、ダイスから成形用スラリーを押し出し、貧溶媒中で凝固させる方法が挙げられる。
 中空糸状の多孔性成形体を成形する方法としては、環状オリフィスからなる紡口を用いることで、糸状やシート状の多孔性成形体を成形する方法と同様にして成形できる。
 円柱状又は中空円柱状の多孔性成形体を成形する方法としては、紡口から成形用スラリーを押し出す際、切断しながら貧溶媒中で凝固させてもよいし、糸状に凝固させてから後に切断しても構わない。
(工程(4):凝固促進工程)
 工程(4)においては、工程(3)により得られた成形品を貧溶媒中で凝固させるまでの間、成形品が接触する空間部の温度と湿度を制御して凝固を促進させる。
 工程(4)により、水銀ポロシメーターで測定した最頻細孔径や外表面開口率を調整することができ、無機イオン吸着体の存在量が高い成形体が得られるため、被処理水中のイオン、中でも、リンイオンを超高速除去でき、かつ吸着容量が大きい多孔性成形体を提供することができる。
 空間部の温度と湿度は、貧溶媒が貯留される凝固槽と回転容器との空間をカバーで覆い、貧溶媒の温度を調整して制御する。
 空間部の温度は20~90℃であることが好ましく、25~85℃であることがより好ましく、30~80℃であることがさらに好ましい。
 空間部の温度が20℃以上であれば、多孔性成形体の外表面開口率が高くなり、90℃以下であれば、回転容器に開けたノズルがスラリーで詰まり難く、長時間安定して多孔性成形体を製造することができる。
 空間部の湿度は、温度に対する相対湿度で65~100%であることが好ましく、70~100%であることがより好ましく、75~100%であることがさらに好ましい。
 相対湿度が65%以上であれば、多孔性成形体の外表面開口率が高くなり、100%以下であれば、回転容器に開けたノズルがスラリーで詰まり難く、長時間安定して成形体を製造することができる。
(工程(5):凝固工程)
 工程(5)においては、工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させて、多孔性成形体を得る。
<貧溶媒>
 工程(5)における貧溶媒としては、工程(5)の条件において有機高分子樹脂の溶解度が1質量%以下の溶媒を使用することができ、例えば、水、メタノール及びエタノール等のアルコール類、エーテル類並びにn-ヘキサン及びn-ヘプタン等の脂肪族炭化水素類等が挙げられる。中でも、貧溶媒としては、水が好ましい。
 工程(5)では、先行する工程から良溶媒が持ち込まれ、良溶媒の濃度が、凝固工程開始時と終点で、変化してしまう。そのため、あらかじめ良溶媒を加えた貧溶媒としてもよく、初期の濃度を維持するように水等を別途加えながら濃度を管理して凝固工程を行うことが好ましい。
 良溶媒の濃度を調整することで、多孔性成形体の構造(外表面開口率及び粒子形状)を制御できる。
 貧溶媒が水又は有機高分子樹脂の良溶媒と水の混合物の場合、凝固工程において、水に対する有機高分子樹脂の良溶媒の含有量は、0~80質量%であることが好ましく、0~60質量%であることがより好ましい。
 有機高分子樹脂の良溶媒の含有量が80質量%以下であれば、多孔性成形体の形状が良好になる効果が得られる。
 貧溶媒の温度は、工程(4)の空間部の温度と湿度を制御する観点から、40~100℃であることが好ましく、50~100℃であることがより好ましく、60~100℃であることがさらに好ましい。
(多孔性成形体の製造装置)
 本実施形態の多孔性成形体の製造装置は、液滴を遠心力で飛散させる回転容器と、凝固液を貯留する凝固槽と、を備え、回転容器と凝固槽の間の空間部分を覆うカバーを具備し、空間部の温度と湿度を制御する制御手段を備える。
 液滴を遠心力で飛散させる回転容器は、成形用スラリーを球状の液滴にして遠心力で飛散する機能があれば、特定の構造からなるものに限定されず、例えば周知の回転ディスク及び回転ノズル等が挙げられる。
 回転ディスクは、成形用スラリーが回転するディスクの中心に供給され、回転するディスクの表面に沿って成形用スラリーが均一な厚みでフィルム状に展開し、ディスクの周縁から遠心力で滴状に分裂して微小液滴を飛散させるものである。
 回転ノズルは、中空円盤型の回転容器の周壁に多数の貫通孔を形成するか、または周壁に貫通させてノズルを取付け、回転容器内に成形用スラリーを供給すると共に回転容器を回転させ、その際に貫通孔又はノズルから遠心力により成形用スラリーを吐出させて液滴を形成するものである。
 凝固液を貯留する凝固槽は、凝固液を貯留できる機能があれば、特定の構造からなるものに限定されず、例えば周知の上面開口の凝固槽や、回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽等が挙げられる。
 上面開口の凝固槽は、回転容器から水平方向に飛散した液滴を自然落下させ、上面が開口した凝固槽に貯留した凝固液の水面で液滴を捕捉する装置である。
 回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽は、凝固液を筒体の内面に沿わせて周方向にほぼ均等な流量で流出させ、内面に沿って自然流下する凝固液流中に液滴を捕捉して凝固させる装置である。
 空間部の温度と湿度の制御手段は、回転容器と凝固槽の間の空間部を覆うカバーを具備し、空間部の温度と湿度を制御する手段である。
 空間部を覆うカバーは、空間部を外部の環境から隔離して、空間部の温度及び湿度を現実的に制御し易くする機能があれば、特定の構造からなるものに限定されず、例えば箱状、筒状及び傘状の形状とすることができる。
 カバーの材質は、例えば、金属のステンレス鋼やプラスチック等が挙げられる。外部環境と隔離する点で、公知の断熱剤で覆うこともできる。カバーには、一部開口部を設けて、温度及び湿度を調整してもよい。
 空間部の温度及び湿度の制御手段は、空間部の温度と湿度を制御する機能があればよく、特定の手段に限定されず、例えば、電気ヒーター及びスチームヒーター等の加熱機並びに超音波式加湿器及び加熱式加湿器等の加湿器が挙げられる。
 構造が簡便であるという点で、凝固槽に貯留した凝固液を加温して、凝固液から発生する蒸気を利用して空間部の温度と湿度を制御する手段が好ましい。
〔多孔性成形体の用途〕
 本実施形態の多孔性成形体は、通液速度(SV)120といった超高速で処理する分野で使用することができる。特に、リン、ホウ素、ヒ素、フッ素等のイオンの吸着剤として金属メッキや医薬品製造等の製造プロセス水用途において好適に利用できる。その中でも、リンイオンの吸着剤として使用することがより好適である。
 本実施形態の多孔性成形体は、多孔性成形体の内部に連通孔が三次元網目状にち密に発達しており、接触効率が高く、さらに破過するまでの吸着容量が多い。
 接触効率が高いことを活かし、水処理用途、特に、金属メッキや医薬品製造等に使用する水用途において利用できる。
 本実施形態の多孔性成形体は、その他にも、各種吸着剤、脱臭剤、抗菌剤、吸湿剤、食品の鮮度保持剤、酵素固定担体、クロマトグラフィーの担体等の用途や、血液処理等の医療用途において用いることができる。
 本実施形態において、例えば、無機イオン吸着体にゼオライトを用いた場合は、脱臭剤として利用できる。
 無機イオン吸着体がゼオライトであり、さらに、該ゼオライトに銀を担持した場合には抗菌剤として利用できる。該ゼオライトにパラジウムや白金を担持させた場合には、エチレンを吸着することから鮮度保持剤として使用できる。該ゼオライトに銀又は銅を担持させた場合は、硫化水素やアンモニア、メチルメルカプタンといった悪臭ガスを吸着、分解できることから脱臭剤として利用できる。
 以下、本実施形態を実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。多孔性成形体の物性は、以下の方法により測定した。
〔走査型電子顕微鏡による多孔性成形体の観察〕
 走査型電子顕微鏡(SEM)による多孔性成形体の観察は、目立製作所製のSU-70型走査型電子顕微鏡で行った。
 多孔性成形体試料をカーボン粘着テープ/アルミナ試料台に保持し、導電処理としてオスミウム(Os)コーティングして外表面SEM観察試料とした。
〔水銀ポロシメーターで測定した最頻細孔径及びメディアン径〕
 多孔性成形体を室温で真空乾燥した後、水銀ポロシメーター((株)島津製作所製、島津オートポアIV9500型)で測定した。
〔外表面開口率〕
 走査型電子顕微鏡(SEM)を用いて撮影した多孔性成形体の外表面の画像を、画像解析ソフト(旭化成エンジニアリング(株)製、A像くん(商品名))を用いて解析して求めた。さらに詳しく説明すると、得られたSEM像を濃淡画像として認識し、色が濃い部分を開口部、色が薄い部分を多孔構造(骨格構造)となるように、しきい値を手動で調整し、開口部分と骨格部分に分割して、その面積比を求めた。しきい値決定の誤差を少なくするため、10枚の画像で同じ測定を行い、平均値を算出した。
〔水銀ポロシメーターで測定した比表面積〕
 多孔性成形体を室温で真空乾燥した後、水銀ポロシメーター((株)島津製作所製、島津オートポアIV9500型)を用い、多孔性成形体の単位質量あたりの細孔表面積S(Hg)(m/g)を求めた。
 次に、水で湿潤状態の多孔性成形体を、メスシリンダーを用いて、タッピングを行って、みかけの体積V(cm)を測定した。その後、室温で真空乾燥して、多孔性成形体の乾燥質量W(g)を求めた。
 多孔性成形体の比表面積は、次式から求めた。
 比表面積(m/cm)=S(Hg)(m/g)×かさ比重(g/cm
 かさ比重(g/cm)=W/V
 前記式中、S(Hg)は多孔性成形体の単位質量あたりの表面積(m/g)であり、Wは多孔性成形体の乾燥質量(g)、Vはそのみかけの体積(cm)である。
〔多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径〕
 多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径は、レーザー回折/散乱式粒度分布測定装置(HORIBA社製のLA-950(商品名))で測定した。分散媒体は水を用いた。無機イオン吸着体に水和酸化セリウムを使用したサンプルの測定時は、屈折率に酸化セリウムの値を使用して測定した。同様に、無機イオン吸着体に水和酸化ジルコニウムを使用したサンプルを測定する時は、屈折率に酸化ジルコニウムの値を使用して測定した。
〔リン吸着量〕
 リン酸三ナトリウム(NaPO・12HO)を蒸留水に溶解し、リン濃度9mg-P/Lの液を作製し、硫酸でpH7に調製した液を吸着原液とした。
 メスシリンダーを用いてタッピングを繰り返して秤量した多孔性成形体8mLを、カラム(内径10mm)に充填して、吸着原液を960mL/hr(SV120)と240mL/hr(SV30)の速度で通液した。
 カラムからの流出液(処理液)を30分毎にサンプリングして、該処理水中のリン濃度を測定して、0.5mg-P/L(ppm)超過時までのリン吸着量(吸着量 g-P/L-多孔性成形体)を求めた。
 リン酸イオン濃度は、HACH社製リン酸測定装置フォスファックス・コンパクト(商品名)を用いて測定した。
 通液速度がSV120の時のリン吸着量が、2.0(g-P/L-多孔性成形体)以上であれば、多孔性成形体の吸着容量が大きく、リン吸着剤として良好であると判断した。
〔実施例1〕
 N-メチル-2-ピロリドン(NMP、三菱化学(株))220gと、平均粒径30μmの水和酸化セリウム粉末(岩谷産業(株))200gを、直径5mmφのステンレス製ボール1.5kgを充填した容積1Lのステンレス製ボールミルポットに投入し、75rpmの回転数で150分間粉砕・混合処理を行い黄色のスラリーを得た。得られたスラリーに、ポリビニルピロリドン(PVP、BASFジャパン(株)、Luvitec K30 Powder(商品名))4gと、アクリロニトリル91.5質量%、アクリル酸メチル8.0質量%、メタリルスルホン酸ソーダ0.5質量%からなる極限粘度[η]=1.2の共重合体(有機高分子樹脂、PAN)10gを加えて、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一な成形用スラリー溶液を得た。
 得られた成形用スラリー溶液を60℃に加温し、側面に直径4mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成させた。回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆い空間部の温度を50℃、相対湿度を100%に制御し、液滴を飛行させ、水に対するNMPの含有量が50質量%の凝固液を80℃に加温して貯留した、上面開口の凝固槽中に液滴を着水させ、成形用スラリーを凝固させた。
 さらに、洗浄、分級を行い、球状の多孔性成形体を得た。
 得られた多孔性成形体の表面を示す電子顕微鏡写真(倍率10,000倍)を図1に示した。
〔実施例2〕
 凝固液の温度を60℃とし、空間部の温度を37℃、相対湿度を100%に制御したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例3〕
 水和酸化セリウム粉末の仕込み量を200gから300gへ増量したこと以外は実施例1に記載との方法と同様にして、球状の多孔性成形体を得た。
〔実施例4〕
水和酸化セリウム粉末の仕込み量を200gから150gへ減量したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例5〕
 円筒状回転容器の側面に備えたノズルの直径を4mmから3mmに細くしたノズルを用いて多孔性成形体を成形すること以外は実施例3に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例6〕
 円筒状回転容器の側面に備えたノズルの直径を4mmから5mmに太くしたノズルを用いて多孔性成形体を成形すること以外は実施例3に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例7〕
 有機高分子樹脂の良溶媒をジメチルスルホキシド(DMSO、関東化学(株))160g、有機高分子樹脂をエチレンビニルアルコール共重合体(EVOH、日本合成化学工業(株)、ソアノールE3803(商品名))20g、水和酸化セリウム粉末の仕込み量を250gとし、さらに凝固液を水、ノズル直径を5mmとしたこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例8〕
 有機高分子樹脂をポリエーテルスルホン(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード)30g、水溶性高分子をポリエチレングリコール(PEG35,000、メルク(株))4g、水和酸化セリウム粉末の仕込み量を100gとし、さらに凝固液を水、ノズル直径を5mmとしたこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例9〕
 無機イオン吸着体として、水和酸化ジルコニウム粉末(第一稀元素(株)、R水酸化ジルコニウム(商品名))を70℃の乾燥機中で恒量乾燥したものを使用したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例10〕
 無機イオン吸着体として、水和酸化ジルコニウム粉末(第一稀元素(株)、R水酸化ジルコニウム(商品名))を70℃の乾燥機中で恒量乾燥したものを使用し、さらにノズル直径を4mmにしたこと以外は実施例7に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例11〕
 無機イオン吸着体として、水和酸化ジルコニウム粉末(第一稀元素(株)、R水酸化ジルコニウム(商品名))を70℃の乾燥機中で恒量乾燥したものを使用し、さらにノズル直径を4mmにしたこと以外は実施例8に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例12〕
 凝固液の温度を50℃とし、空間部の温度を31℃、相対湿度を80%に制御したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例13〕
 N-メチル-2-ピロリドン(NMP、三菱化学(株))154gと、平均粒径30μmの水和酸化セリウム粉末(岩谷産業(株))300gを、直径5mmφのステンレス製ボール1.5kgを充填した容積1Lのステンレス製ボールミルポットに投入し、75rpmの回転数で150分間粉砕・混合処理を行い黄色のスラリーを得た。得られたスラリーに、ポリエーテルスルホン(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード)15gを加えて、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一な成形用スラリー溶液を得た。
 得られた成形用スラリー溶液を60℃に加温し、側面に直径4mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成させた。回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆い空間部の温度を30℃、相対湿度を70%に制御し、液滴を飛行させ、水に対するNMPの含有量が10質量%の凝固液を40℃に加温して貯留した、上面開口の凝固槽中に液滴を着水させ、成形用スラリーを凝固させた。
 さらに、洗浄、分級を行い、球状の多孔性成形体を得た。
〔実施例14〕
 N-メチル-2-ピロリドン(NMP、三菱化学(株))160g、有機高分子樹脂をポリエーテルスルホン(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード)30g、水溶性高分子をポリエチレングリコール(PEG35,000、メルク(株))4g、水和酸化セリウム粉末の仕込み量を100gとしたこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
〔実施例15〕
 凝固液の温度を60℃とし、空間部の温度を37℃、相対湿度を90%に制御したこと以外は実施例14に記載の方法と同様にして、球状の多孔性成形体を得た。
〔比較例1〕
 回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆ないこと以外は実施例2に記載の方法と同様にして、球状の多孔性成形体を得た。この時の空間部の温度は26℃、相対湿度は63%だった。
〔比較例2〕
 特許文献3(国際公開第2011/062277号)の実施例1を参考にして多孔性成形体を得た。
 回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆わず、さらに凝固液の温度を60℃にしたこと以外は実施例8に記載の方法と同様にして、球状の多孔性成形体を得た。この時の空間部の温度は26℃、相対湿度は63%だった。
〔比較例3〕
 特許文献1(国際公開第2005/056175号)の実施例2を参考にして多孔性成形体を得た。
 回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆わず、さらに凝固液の温度を60℃にしたこと以外は実施例7に記載の方法と同様にして、球状の多孔性成形体を得た。この時の空間部の温度は26℃、相対湿度は63%だった。
 実施例1~15及び比較例1~3で得られた多孔性成形体の物性を表1及び表2に示した。
 実施例1~15の結果より、空間部にカバーを設置した造粒装置を用いて、空間部の温度と相対湿度を高く制御して製造すると、外表面開口率が適当で外表面付近の無機イオン吸着体の存在量が多いため、高速通水(SV120)時のリン吸着量が高い多孔性成形体が得られることがわかった。
 また、比較例1~3の結果から、空間部にカバーが無い従来技術の造粒装置を用いて製造した多孔性成形体は、高速通水(SV120)時のリン吸着量が低いことがわかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本出願は、2015年11月11日出願の日本特許出願(特願2015-221666号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の多孔性成形体は、通液速度(SV)120といった超高速で処理することが求められる、金属メッキや医薬品製造等の製造プロセス水用途に使用することができるという、産業上の利用可能性を有する。
1 タンク
2 ポンプ
3 空間部カバー
4 凝固槽
5 回転容器
6 回転軸
7 ホース
8 ヒーター
a 成形用スラリー
b 開口部
c 空間部
d 凝固液

Claims (17)

  1.  有機高分子樹脂及び無機イオン吸着体を含み、水銀ポロシメーターで測定した最頻細孔径が0.08~0.70μmである多孔性成形体。
  2.  外表面開口率が5%以上30%未満である、請求項1に記載の多孔性成形体。
  3.  水銀ポロシメーターで測定した比表面積が10~100m/cmである、請求項1又は2に記載の多孔性成形体。
  4.  水銀ポロシメーターで測定した最頻細孔径とメディアン径の比(最頻細孔径/メディアン径)が0.80~1.30である、請求項1~3のいずれか1項に記載の多孔性成形体。
  5.  平均粒径が100~2500μmの球状粒子である、請求項1~4のいずれか1項に記載の多孔性成形体。
  6.  前記無機イオン吸着体が、下記式(I)で表される少なくとも一種の金属酸化物を含有する、請求項1~5のいずれか1項に記載の多孔性成形体。
        MN・mHO・・・・・・(I)
    (式(I)中、xは0~3、nは1~4、mは0~6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる金属元素であり、互いに異なる。)
  7.  前記金属酸化物が、下記(a)~(c)のいずれかの群から選ばれる少なくとも一種を含有する、請求項6に記載の多孔性成形体。
    (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
    (b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物
    (c)活性アルミナ
  8.  前記有機高分子樹脂が、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリエーテルスルホン(PES)及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる少なくとも一種を含有する、請求項1~7のいずれか一項に記載の多孔性成形体。
  9.  請求項1~8のいずれか一項に記載の多孔性成形体を充填したカラム。
  10.  (1)有機高分子樹脂の良溶媒と無機イオン吸着体を粉砕、混合してスラリーを得る工程、
    (2)工程(1)で得られたスラリーに有機高分子樹脂及び水溶性高分子を溶解する工程、
    (3)工程(2)で得られたスラリーを成形する工程、
    (4)工程(3)で得られた成形品を貧溶媒中で凝固させるまでの間、成形品が接触する空間部の温度と湿度を制御して凝固を促進する工程、及び
    (5)工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させる工程を含む、有機高分子樹脂及び無機イオン吸着体を含む多孔性成形体の製造方法。
  11.  前記工程(4)における成形品が接触する空間部の相対湿度が、65~100%である、請求項10に記載の多孔性成形体の製造方法。
  12.  前記有機高分子樹脂の良溶媒が、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン(NMP)、ジメチルアセトアミド(DMAC)及びジメチルホルムアミド(DMF)からなる群から選ばれる少なくとも一種である、請求項10又は11に記載の多孔性成形体の製造方法。
  13.  前記貧溶媒が、水、又は、前記有機高分子樹脂の良溶媒と水の混合物である、請求項10~12のいずれか一項に記載の多孔性成形体の製造方法。
  14.  前記工程(5)における貧溶媒の温度が、40~100℃である、請求項10~13のいずれか一項に記載の多孔性成形体の製造方法。
  15.  前記工程(3)が、回転する容器の側面に設けたノズルから、前記工程(2)で得られたスラリーを飛散させて液滴を形成する工程を含む、請求項10~14のいずれか一項に記載の多孔性成形体の製造方法。
  16.  液滴を遠心力で飛散させる回転容器と、凝固液を貯留する凝固槽と、を備え、
     前記回転容器と前記凝固槽の間の空間部を覆うカバーを設け、前記空間部の温度と湿度を制御する制御手段を備える、多孔性成形体の製造装置。
  17.  前記制御手段が、前記凝固槽に貯留した凝固液を加温して、前記凝固液から発生する蒸気を利用して前記空間部の温度と湿度を制御する手段である、請求項16に記載の多孔性成形体の製造装置。
PCT/JP2016/083601 2015-11-11 2016-11-11 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置 WO2017082420A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/775,048 US11224854B2 (en) 2015-11-11 2016-11-11 Porous formed article, method for producing porous formed article, and production apparatus for porous formed article
CN201680063957.8A CN108348893B (zh) 2015-11-11 2016-11-11 多孔性成型体、以及多孔性成型体的制造方法和制造装置
EP16864381.5A EP3375518A4 (en) 2015-11-11 2016-11-11 POROUS FORM BODY AND METHOD OF PRODUCTION AND MANUFACTURING DEVICE FOR POROUS FORM BODY
JP2017550429A JP6573678B2 (ja) 2015-11-11 2016-11-11 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-221666 2015-11-11
JP2015221666 2015-11-11

Publications (1)

Publication Number Publication Date
WO2017082420A1 true WO2017082420A1 (ja) 2017-05-18

Family

ID=58696161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083601 WO2017082420A1 (ja) 2015-11-11 2016-11-11 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置

Country Status (5)

Country Link
US (1) US11224854B2 (ja)
EP (1) EP3375518A4 (ja)
JP (1) JP6573678B2 (ja)
CN (1) CN108348893B (ja)
WO (1) WO2017082420A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012092A (ja) * 2016-07-22 2018-01-25 旭化成株式会社 ヨウ素酸及び/又はアンチモン吸着材
CN108392853A (zh) * 2018-04-12 2018-08-14 淮海工学院 一种固相萃取柱及其制备方法与应用
WO2019135371A1 (ja) 2018-01-04 2019-07-11 旭化成株式会社 多孔性成形体
JP2019118881A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118880A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118876A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118877A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118878A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118879A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2020099866A (ja) * 2018-12-21 2020-07-02 旭化成株式会社 多孔性成形体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348673B (zh) * 2015-11-11 2022-02-18 旭化成医疗株式会社 血液处理用磷吸附剂、血液处理系统及血液处理方法
KR102399758B1 (ko) 2017-05-17 2022-05-20 아사히 가세이 메디컬 가부시키가이샤 혈액 처리용 인 흡착제, 혈액 처리 시스템 및 혈액 처리 방법
JP7240482B2 (ja) * 2019-03-28 2023-03-15 第一稀元素化学工業株式会社 ジルコニア系多孔質体
CN114311390B (zh) * 2022-03-17 2022-10-11 山东海科创新研究院有限公司 一种高粘度液相造粒设备
US11904297B1 (en) 2023-01-11 2024-02-20 Iliad Ip Company, Llc Process for manufacturing lithium selective adsorption/separation media

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000818A (ja) * 2004-06-21 2006-01-05 Asahi Kasei Corp 吸着体
JP2009195843A (ja) * 2008-02-22 2009-09-03 Teijin Engineering Ltd 硝酸イオン選択吸着剤の微粒子を含有する成形体およびその製造方法
JP2009297707A (ja) * 2008-05-12 2009-12-24 Asahi Kasei Chemicals Corp 高吸着性能多孔性成形体及びその製造方法
JP2010106071A (ja) * 2008-10-28 2010-05-13 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜及び蓄電デバイス用セパレータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894029B (zh) * 2003-12-15 2011-05-11 旭化成化学株式会社 多孔成形物及其生产方法
CN101232940B (zh) * 2005-08-10 2012-01-04 三菱化学株式会社 气体吸附剂
EP2332638B1 (en) 2008-09-26 2016-12-14 Asahi Kasei Kabushiki Kaisha Porous hollow fibre membrane for depth filtration
JP5622745B2 (ja) 2009-11-20 2014-11-12 旭化成ケミカルズ株式会社 多孔性成形体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000818A (ja) * 2004-06-21 2006-01-05 Asahi Kasei Corp 吸着体
JP2009195843A (ja) * 2008-02-22 2009-09-03 Teijin Engineering Ltd 硝酸イオン選択吸着剤の微粒子を含有する成形体およびその製造方法
JP2009297707A (ja) * 2008-05-12 2009-12-24 Asahi Kasei Chemicals Corp 高吸着性能多孔性成形体及びその製造方法
JP2010106071A (ja) * 2008-10-28 2010-05-13 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜及び蓄電デバイス用セパレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3375518A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012092A (ja) * 2016-07-22 2018-01-25 旭化成株式会社 ヨウ素酸及び/又はアンチモン吸着材
WO2019135371A1 (ja) 2018-01-04 2019-07-11 旭化成株式会社 多孔性成形体
JP2019118881A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118880A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118876A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118877A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118878A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118879A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
US11865509B2 (en) 2018-01-04 2024-01-09 Asahi Kasei Kabushiki Kaisha Porous molding
CN108392853A (zh) * 2018-04-12 2018-08-14 淮海工学院 一种固相萃取柱及其制备方法与应用
CN108392853B (zh) * 2018-04-12 2021-01-19 淮海工学院 一种固相萃取柱及其制备方法与应用
JP2020099866A (ja) * 2018-12-21 2020-07-02 旭化成株式会社 多孔性成形体

Also Published As

Publication number Publication date
EP3375518A4 (en) 2019-02-27
EP3375518A1 (en) 2018-09-19
JPWO2017082420A1 (ja) 2018-08-09
CN108348893B (zh) 2021-12-24
US20180369781A1 (en) 2018-12-27
CN108348893A (zh) 2018-07-31
US11224854B2 (en) 2022-01-18
JP6573678B2 (ja) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6573678B2 (ja) 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置
JP5813150B2 (ja) 高吸着性能多孔性成形体及びその製造方法
JP5622745B2 (ja) 多孔性成形体及びその製造方法
JP4646301B2 (ja) 多孔性成形体およびその製造方法
JP4671419B2 (ja) 多孔性成形体及びその製造方法
JP2006297382A (ja) 高吸着性能多孔性成形体及び製造方法
JP6093223B2 (ja) 無機イオン吸着体、及び、多孔性成形体
US11865509B2 (en) Porous molding
JP5062972B2 (ja) イオン除去装置およびイオン除去方法
JP2018012090A (ja) 吸着材
JP6716382B2 (ja) ヨウ素酸及び/又はアンチモン吸着材
JP2020099866A (ja) 多孔性成形体
JP2019118877A (ja) 多孔性成形体
JP2019118880A (ja) 多孔性成形体
JP6694346B2 (ja) ヨウ素酸及び/又はアンチモン吸着材
JP2019118881A (ja) 多孔性成形体
JP2019118878A (ja) 多孔性成形体
JP2021041378A (ja) 多孔性成形体
JP2019118876A (ja) 多孔性成形体
JP2019118879A (ja) 多孔性成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016864381

Country of ref document: EP