WO2017082346A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2017082346A1
WO2017082346A1 PCT/JP2016/083368 JP2016083368W WO2017082346A1 WO 2017082346 A1 WO2017082346 A1 WO 2017082346A1 JP 2016083368 W JP2016083368 W JP 2016083368W WO 2017082346 A1 WO2017082346 A1 WO 2017082346A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor unit
unit
indoor
heat exchanger
Prior art date
Application number
PCT/JP2016/083368
Other languages
French (fr)
Japanese (ja)
Inventor
健太朗 松原
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to EP16864307.0A priority Critical patent/EP3376126B1/en
Publication of WO2017082346A1 publication Critical patent/WO2017082346A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively

Definitions

  • Embodiments described herein relate generally to an air conditioning system. This application claims priority based on Japanese Patent Application No. 2015-221940 filed in Japan on November 12, 2015, the contents of which are incorporated herein by reference.
  • an air conditioning system in which a plurality of indoor units are connected to one outdoor unit by a refrigerant pipe and a communication line.
  • This type of air conditioning system uses a sensor that detects the refrigerant temperature via a heat exchanger to determine whether the connection between the pipe and the communication line is correct based on changes in the refrigerant temperature before and after supplying the refrigerant to the pipe. It may be judged.
  • the problem to be solved by the present invention is to provide an air conditioning system capable of determining whether a pipe or a communication line is correctly connected with higher accuracy.
  • the air conditioning system of the embodiment includes an outdoor unit, a first indoor unit, a second indoor unit, a first temperature detection unit, a second temperature detection unit, and a third temperature detection unit, It has a 4th temperature detection part and a control part.
  • the outdoor unit has at least a compressor and can be connected to a refrigerant piping system.
  • the first indoor unit has a first heat exchanger and can be connected to the refrigerant piping system.
  • the second indoor unit has a second heat exchanger and can be connected to the refrigerant piping system.
  • the first temperature detection unit detects the temperature of the first heat exchanger.
  • the second temperature detection unit detects the temperature of the second heat exchanger.
  • the third temperature detection unit is provided for the first indoor unit and detects the temperature of the air-conditioning target space corresponding to the first indoor unit.
  • the fourth temperature detection unit is provided for the second indoor unit and detects the temperature of the air-conditioning target space corresponding to the second indoor unit.
  • the control unit has a first temperature difference, which is a difference between the temperature detected by the first temperature detection unit and the temperature detected by the third temperature detection unit, equal to or greater than a first threshold, and When the second temperature difference, which is the difference between the temperature detected by the second temperature detector and the temperature detected by the fourth temperature detector, is less than the second threshold, the first indoor unit Whether at least one of the first refrigerant pipe connected to the first indoor unit and the first communication line connected to the first indoor unit is correctly connected in the refrigerant pipe system connected to Determine whether or not.
  • FIG. 1 is a diagram showing the configuration of the air conditioning system 1.
  • the air conditioning system 1 may include an outdoor unit 10 and indoor units 30-1, 30-2,... 30-n.
  • indoor unit 30 when an indoor unit is not distinguished from other indoor units, it is simply referred to as an indoor unit 30.
  • the indoor units 30 are installed in different rooms, for example.
  • the outdoor unit 10 and each indoor unit 30-1 are connected to communication pipes 2-1-1, 2-1-2, ... 2-n-2.
  • the outdoor unit 10 includes a compressor 12, an accumulator 13, a four-way valve 14, an outdoor heat exchanger 16, and expansion valves 18-1 to 18-n.
  • the compressor 12 compresses the refrigerant and discharges it to the refrigerant pipe 20 through the four-way valve 14.
  • the compressor 12 circulates the refrigerant in the direction of the arrow in the figure.
  • the refrigerant is, for example, R410A or R32.
  • the refrigerant may be a refrigerant containing 50% or more of R32.
  • the white arrow indicates the refrigerant flow during cooling
  • the black arrow indicates the refrigerant flow during heating.
  • the accumulator 13 is provided adjacent to the compressor 12. The accumulator 13 separates the refrigerant returning to the compressor 12 into a gas phase refrigerant and a liquid phase refrigerant.
  • the four-way valve 14 switches the direction in which the refrigerant discharged from the compressor 12 is circulated.
  • the four-way valve 14 switches between a state in which the compressor 12 and the outdoor heat exchanger 16 are conducted and a state in which the compressor 12 and the indoor heat exchanger 32 are conducted.
  • the four-way valve 14 circulates the refrigerant discharged from the compressor 12 to the outdoor heat exchanger 16.
  • the four-way valve 14 circulates the refrigerant discharged from the compressor 12 to the connection pipes 2-1-1 and 2-n-1.
  • the four-way valve 14, the outdoor heat exchanger 16, and the expansion valves 18-1 to 18-n are connected through refrigerant pipes 20 and 21.
  • the expansion valves 18-1 to 18-n are simply referred to as the expansion valve 18.
  • the outdoor heat exchanger 16 liquefies the refrigerant discharged from the compressor 12 and releases heat contained in the refrigerant.
  • the expansion valve 18 is connected to the indoor unit 30 via the communication pipe 2.
  • the expansion valve 18 reduces the temperature of the liquid refrigerant to a low pressure by performing pressure reduction and flow control of the refrigerant that has become the liquid discharged from the outdoor heat exchanger 16.
  • the indoor unit 30 includes an indoor side heat exchanger 32, a fan 34, an indoor side heat exchanger temperature sensor 36, and an indoor side temperature sensor 38.
  • the indoor heat exchanger 32 evaporates the refrigerant discharged from the expansion valve 18 by exchanging heat with air.
  • the fan 34 blows the air heat-exchanged by the indoor heat exchanger 32 to the space to be air-conditioned.
  • the indoor heat exchanger temperature sensor 36 detects the temperature of the indoor heat exchanger 32.
  • the indoor side temperature sensor 38 detects the temperature of the room in which the indoor unit 30 is installed.
  • FIG. 2 is a diagram for explaining the configuration of the control unit of the air conditioning system 1.
  • the air conditioning system 1 further includes an outdoor operation unit 26, an outdoor control unit 28, an indoor operation unit 40, and an indoor control unit 42.
  • the outdoor side control unit 28 and the indoor side control unit 42 are connected to each other by a communication line and an electric line.
  • the outdoor side control unit 28 or the indoor side control unit 42 is, for example, a processor such as a CPU (Central Processing Unit).
  • the outdoor side control unit 28 or the indoor side control unit 42 may be hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Specific Integrated Circuit).
  • the outdoor operation unit 26 includes a mode switching button, a display unit, and the like.
  • the outdoor side operation part 26 supplies the signal according to a user's operation to the outdoor side control part 28.
  • FIG. When the check operation is instructed, the outdoor operation unit 26 supplies a signal indicating that the check operation is instructed to the outdoor control unit 28.
  • the check operation is an operation for determining whether or not the piping and the communication line between the outdoor unit 10 and the indoor unit 30 are normally (correctly) connected (details will be described later).
  • the display part of the outdoor side operation part 26 displays the information which shows the result of a check operation
  • the indoor side operation unit 40 is provided corresponding to each of the plurality of indoor units 30.
  • the indoor side operation unit 40 includes a set temperature change button for the air conditioning target space of the indoor unit 30, an operation mode switching button, an indoor side display unit, and the like.
  • the indoor side operation unit 40 supplies a signal corresponding to a user operation to the indoor side control unit 42.
  • the display unit of the indoor side operation unit 40 displays the operating state of the indoor unit 30, the state of the air-conditioning target space, the set operation mode, and the like.
  • the outdoor control unit 28 controls the driving of the compressor 12.
  • the outdoor side control unit 28 controls the opening degree of the expansion valve 18.
  • the outdoor side control unit 28 generates an instruction signal based on a signal supplied from the indoor side operation unit 40 and information acquired from the indoor side control unit 42.
  • the outdoor control unit 28 supplies an instruction signal to the compressor 12, the expansion valve 18, the outdoor operation unit 26, and the indoor control unit 42. Details of the processing of the outdoor control unit 28 will be described later.
  • the indoor side control unit 42 is provided corresponding to each of the plurality of indoor units 30.
  • the indoor side control unit 42 controls each unit included in the indoor unit 30 based on the instruction signal supplied from the outdoor side control unit 28.
  • the indoor side control unit 42 supplies information or signals acquired from the indoor side heat exchanger temperature sensor 36, the indoor side temperature sensor 38, and the indoor side operation unit 40 to the outdoor side control unit 28.
  • FIG. 3 is a flowchart showing a flow of processing of a check operation (determination of whether the connection of the piping or the communication line is normal) executed by the outdoor side control unit 28.
  • the outdoor side control part 28 selects the indoor unit 30 in which the determination of a connection state is not complete
  • the outdoor side controller 28 controls the fan 34 of the indoor unit 30 selected in step S100 to be in an on state (step S102), and controls the expansion valves 18 of all the indoor units 30 to be in an open state (step S104).
  • the outdoor side control part 28 controls the air conditioning system 1 to a standby state for predetermined time (step S106).
  • the outdoor side control part 28 performs the determination process of a connection state (step S108). Details of the determination process will be described later.
  • the outdoor side control part 28 determines whether the connection state of all the indoor units 30 was determined (step S110). When the connection state of all the indoor units 30 has not been determined, the process returns to step S100. When the connection states of all the indoor units 30 are determined, the process of this flowchart ends.
  • FIG. 4 is a diagram for explaining an outline of the check operation executed by the outdoor side control unit 28.
  • the indoor unit 30-1 having the room A as the air-conditioned space
  • the indoor unit 30-2 having the room B as the air-conditioned space
  • the indoor unit 30-3 having the room C as the air-conditioned space are checked. It will be explained as the target of Further, it is assumed that the determination process is executed one by one in the order from room A to room C.
  • the temperature change (from TC-A to TC-C in the figure) of the indoor side heat exchanger 32 of the A room and the C room from the start to the end of the check operation is shown.
  • the open / close state of the expansion valve 18 that circulates the refrigerant in the A chamber and the C chamber every hour (PMV A to PMV C in the figure) and the operating state of the compressor 12 every hour are shown.
  • the outdoor side control unit 28 controls the compressor 12 to be in an ON state, and controls the expansion valve 18 that circulates the refrigerant in the indoor unit 30-1 to a predetermined opening state.
  • the outdoor control unit 28 executes the determination process for the A room, and when the determination process for the A room is completed, the compressor 12 is turned off and at least the fan 34 of the indoor unit 30-2 is controlled to be turned on.
  • the fans 34 of all the indoor units 30-1 and 30-3 may be controlled to be turned on.
  • the outdoor control unit 28 controls the expansion valves 18 of the indoor units 30-1 and 30-3 to be in an open state. These states are maintained for a predetermined time.
  • the time for maintaining the compressor 12 in the off state, at least the fan 34 of the indoor unit 30 to be subjected to the determination process of the next connected state, and maintaining all the expansion valves 18 in the open state for a predetermined time is an interval time. That's it.
  • the interval time is, for example, the determination process of the indoor unit 30-1 in which the temperature of the indoor heat exchanger 32 of the indoor unit 30-2 to be subjected to the next determination process of the connection state is the object of the immediately previous determination process. It is a time set for recovering the lowered temperature assuming that the temperature has dropped during the period.
  • the interval time may be a preset time.
  • the interval time may be a time determined by the outdoor side controller 28 based on the detection result of the indoor heat exchanger temperature sensor 36 or the indoor temperature sensor 38.
  • the fan 34 By controlling the fan 34 to be in the on state at the interval time, the temperature of the indoor side heat exchanger 32 of the indoor unit 30 or the air conditioning target space can be easily recovered to the state before the start of the connection state determination process. . Further, by controlling the expansion valves 18 of the indoor units 30-1 to 30-3 to be in an open state, the indoor units connected to other than the residual refrigerant in the pipe and the pipe in which the refrigerant is circulated by the pressure change in the pipe The temperature change etc. which arise in 30 can be suppressed.
  • the process for determining the connection state of room B is executed, and after the interval time has elapsed, the process for determining the connection state of room C is executed. Thereby, it is determined whether the piping and communication line of the indoor unit 30 connected to the outdoor unit 10 are normally connected.
  • the air conditioning system 1 of the embodiment may further include an indoor expansion valve between the communication pipe 2 of the indoor unit 30 and the indoor heat exchanger 32.
  • the indoor expansion valve different from the indoor expansion valve included in the indoor unit 30 to be determined may be controlled to be closed. Thereby, the influence of the residual refrigerant
  • FIG. 5 is a flowchart showing a flow of determination processing executed by the outdoor side control unit 28.
  • the outdoor side control unit 28 controls the compressor 12 to be in an ON state and the expansion valve 18-1 of the indoor unit 30-1 to be determined as being connected to a predetermined opening state (step S150).
  • the indoor unit 30-1 that is the determination target of the connection state corresponds to the “first indoor unit” in the claims
  • the indoor units 30-2 and 30-3 that are not the determination target of the connection state are patents.
  • This corresponds to “an indoor unit other than the first indoor unit” in the claims.
  • the indoor-side heat exchanger 32-1 corresponds to the “first heat exchanger” in the claims
  • the indoor-side heat exchanger temperature sensor 36-1 is the “first temperature detector” in the claims.
  • the indoor side temperature sensor 38-1 corresponds to the “third temperature detection unit” in the claims.
  • the indoor side heat exchangers 32-2 and 32-3 correspond to the “second heat exchanger” in the claims, and the indoor side heat exchanger temperature sensors 36-2 and 36-3 are in the claims.
  • the interior side temperature sensors 38-2 and 38-3 correspond to the “second temperature detection unit” and the “fourth temperature detection unit” in the claims.
  • the rotation speed of the compressor 12 is, for example, 25% or less with respect to the maximum rotation speed of the compressor 12.
  • the opening degree of the expansion valve 18-1 is 25% or less with respect to the maximum flow opening degree of the expansion valve 18, for example.
  • the outdoor side controller 28 determines whether or not the temperature difference ⁇ T is equal to or higher than the temperature T1 (step S152).
  • the temperature difference ⁇ T is detected by the temperature TA detected by the indoor temperature sensor 38-1 of the indoor unit 30-1 to be determined and the indoor heat exchanger temperature sensor 36-1 of the indoor unit 30-1 to be determined. It is a difference from the measured temperature TC.
  • the outdoor control unit 28 determines whether or not a predetermined time has elapsed (step S154). If the predetermined time has not elapsed, the process of step S152 is repeated. When the predetermined time has elapsed, the outdoor side control unit 28 determines that there is a possibility that an abnormality exists in the connection state of the piping and the communication line of the indoor unit 30-1 to be determined (step S166). This is because the temperature detected by the indoor-side heat exchanger temperature sensor 36-1 has not decreased more than a predetermined value even though the refrigerant is circulated through the indoor unit 30-1 to be determined.
  • the outdoor side control unit 28 and the communication line between the indoor side control unit 42 are misconnected, and the controlled indoor side control unit 42 and the actually controlled indoor side control unit 42 are connected to each other. There may be a difference. Further, the piping between the indoor unit 30-1 and the outdoor unit 10 is erroneously connected, and there is a difference between the indoor unit 30-1 to be circulated through the refrigerant and the indoor unit 30 in which the refrigerant is actually circulated. It may have occurred.
  • the outdoor side control unit 28 determines whether or not the temperature difference ⁇ Tn is equal to or higher than the temperature T2 for all other indoor units 30 (step S156).
  • the temperature difference ⁇ Tn is the difference between the temperature TAn detected by the indoor temperature sensor 38 of the indoor unit 30 that is not the connection state determination target and the temperature TCn detected by the indoor heat exchanger temperature sensor 36 of the indoor unit 30. It is a difference.
  • the outdoor side control unit 28 detects the temperature TAn detected by the indoor temperature sensor 38 provided in each of the indoor units 30 that are not the determination targets, and the indoor units 30.
  • the temperature TCn and the temperature difference ⁇ Tn detected by the indoor side heat exchanger temperature sensor 36 provided in each are calculated.
  • the outdoor side controller 28 determines whether or not all the calculated temperature differences ⁇ Tn are equal to or higher than the temperature T2. If any one of the calculated temperature differences ⁇ Tn is equal to or higher than the temperature T2, the process proceeds to step S160. If all the calculated temperature differences ⁇ Tn are not equal to or higher than the temperature T2, the process proceeds to step S158.
  • the outdoor side control unit 28 determines that the indoor unit 30-1 to be determined is normally connected to the outdoor unit 10 (step S158). In this case, the outdoor side control part 28 controls the compressor 12 to an OFF state (step S168). This is because the temperature detected by the indoor heat exchanger temperature sensor 36 that is not the determination target has not decreased by the temperature T2 or more, and therefore it is estimated that the refrigerant is not circulating in the indoor unit 30 that is not the determination target. For example, the temperature T2 is a smaller value than the temperature T1.
  • the outdoor side control unit 28 waits until a predetermined time elapses (step S160). When the predetermined time has elapsed, the outdoor side control unit 28 determines whether or not the temperature TC is equal to or lower than the temperature TCn (step S162). When there are a plurality of indoor units 30 that are not to be determined, the outdoor control unit 28 determines the temperature TC detected by the indoor heat exchanger temperature sensor 36 of the indoor unit 30-1 to be determined and the indoors that are not to be determined. It compares with temperature TCn detected by the indoor side heat exchanger temperature sensor 36 provided in each of the units 30. If the temperature TC is equal to or lower than all the other temperatures TCn, the process proceeds to step S164. If the temperature TC is not equal to or lower than any one of the temperatures TCn, the process proceeds to step S166.
  • step S166 the outdoor side control unit 28 determines that there is a possibility that there is an abnormality in the connection state of the piping and the communication line of the indoor unit 30-1 to be determined (step S166), and step The process proceeds to S168.
  • the outdoor side control unit 28 determines that the indoor unit 30-1 to be determined is normally connected to the outdoor unit 10 (step S164), and turns off the compressor 12 (Step S168).
  • the determination process for one indoor unit 30-1 is completed, for example, the determination process for the next indoor unit 30-2 is executed.
  • the indoor unit 30-1 determined to have a normal connection with the outdoor unit 10 is excluded from the comparison target in the determination process. For example, in the process for determining whether or not the temperature difference ⁇ Tn in step S156 is equal to or higher than the temperature T2, and the process for determining whether or not the temperature TC in step S162 is equal to or lower than the temperature TCn, the connection with the outdoor unit 10 is normal.
  • the indoor unit 30-1 determined to be is excluded from the comparison target.
  • the indoor unit 30-1 has the temperature difference ⁇ Tn in step S156.
  • the process for determining whether or not the temperature is equal to or higher than the temperature T2 and the process for determining whether or not the temperature TC in step S162 is equal to or lower than the temperature TCn are included in the comparison targets.
  • the outdoor side control unit 28 displays the result of the check operation on the display unit of the outdoor side operation unit 26. For example, information indicating the presence / absence of the indoor unit 30 that may not be normally connected to the outdoor unit 10 is displayed on the display unit of the outdoor operation unit 26. Further, identification information of the indoor unit 30 that is not normally connected to the outdoor unit 10 is displayed on the display unit of the outdoor operation unit 26.
  • the connection between the piping of the indoor unit and the outdoor unit and the signal line may be determined whether or not the connection between the piping of the indoor unit and the outdoor unit and the signal line is normal based on the temperature change of the indoor heat exchanger.
  • the temperature of the indoor heat exchanger that does not flow the refrigerant may also change due to the influence of the refrigerant remaining in the indoor heat exchanger, and communication between the pipes of the outdoor unit 10 and the indoor unit 30 with high accuracy is possible.
  • the air conditioning system 1 of the present embodiment even when the residual refrigerant is present by the determination process described above and there is a temperature change in the indoor unit 30 and the air-conditioning target space that are different from the target of the determination process. Thus, it is possible to determine whether or not the connection between the piping of the outdoor unit 10 and the indoor unit 30 and the communication line is normal. Furthermore, in the air conditioning system 1 according to the present embodiment, the determination process is performed in a state where the temperature of the indoor heat exchanger 32 of the indoor unit 30 is maintained at a predetermined level or higher, so the outdoor unit 10 and the indoor unit are more accurately detected. It can be determined whether the connection of the piping and the communication line with 30 is normal.
  • the outdoor control unit 28 has the temperature difference ⁇ T of the indoor unit 30 that is the determination target of the connection state is equal to or higher than the temperature T1, and the indoor unit 30 that is not the determination target.
  • temperature difference (DELTA) Tn is not more than temperature T2
  • the outdoor side control part 28 is the case where temperature TC is below temperature TCn after predetermined time passes, even if the temperature difference (DELTA) Tn of the indoor unit 30 which is not a connection state judgment object is more than temperature T2.
  • the air conditioning system 1 can determine whether the connection of the piping or the communication line between the outdoor unit 10 and the indoor unit 30 is normal with higher accuracy.
  • FIG. 6 is a flowchart showing a flow of processing executed by the outdoor side control unit 28 of the second embodiment.
  • the outdoor side control part 28 selects the indoor unit 30 in which the determination of a connection state is not complete
  • the outdoor side control unit 28 controls the expansion valve 18 of the indoor unit 30 selected in step S200 to be in an open state (step S202).
  • the outdoor side control part 28 controls the air conditioning system 1 to a standby state for predetermined time (step S204).
  • the outdoor side control part 28 performs the determination process of a connection state (step S206). Since the determination process is the same as that in steps S150 to S168 described in the first embodiment, the description thereof is omitted.
  • the outdoor side control part 28 determines whether the connection state of all the indoor units 30 was determined (step S208). When the connection state of all the indoor units 30 has not been determined, the process returns to step S200. When the connection states of all the indoor units 30 are determined, the process of this flowchart ends. Thereby, the process performed by this flowchart is complete
  • FIG. 7 is a diagram for explaining the outline of the check operation executed by the outdoor side control unit 28 of the second embodiment.
  • the indoor unit 30-1 having the room A as the air-conditioned space
  • the indoor unit 30-2 having the room B as the air-conditioned space
  • the indoor unit 30-3 having the room C as the air-conditioned space are checked. It will be explained as the target of Further, it is assumed that the determination process is executed one by one in the order from room A to room C.
  • the outdoor control unit 28 controls the compressor 12 to be in an ON state, and controls the expansion valve 18-1 for circulating the refrigerant in the indoor unit 30-1 to a predetermined opening state.
  • the outdoor control unit 28 turns off the compressor 12 and sets the expansion valve 18 of the indoor unit 30-2 to be determined next to the predetermined opening state and the other expansion valves 18. Control to the closed state.
  • the room B determination process is executed, and after the interval time elapses, the room C determination process is executed.
  • the fan 34 is controlled to be turned off during the interval time.
  • the outdoor control unit 28 indicates that the check operation is being performed to the person existing in the air-conditioning target space in order to maintain the fan 34 in the off state during the interval time.
  • the check operation can be executed without making it feel.
  • the outdoor side control part 28 controls the expansion valve 18 which circulates a refrigerant
  • the following determination process can be executed in a state where the influence of the refrigerant remaining inside is reduced.
  • the outdoor side control unit 28 determines in step S152 (determination of whether or not the temperature difference ⁇ T is equal to or higher than the temperature T1), step S156. (Determining whether or not the temperature difference ⁇ Tn is equal to or higher than the temperature T2 for all other indoor units 30) and the determination in step S162 (determining whether or not the temperature TC is equal to or lower than the temperature TCn).
  • step S152 determination of whether or not the temperature difference ⁇ T is equal to or higher than the temperature T1
  • step S156 Determining whether or not the temperature difference ⁇ Tn is equal to or higher than the temperature T2 for all other indoor units 30
  • the determination in step S162 determining whether or not the temperature TC is equal to or lower than the temperature TCn.
  • the outdoor side control part 28 acquires one or more determination results from each apparatus mentioned above from another apparatus, Based on the acquired determination result, at least one of piping and a communication line is connected correctly It may be determined whether or not it is done.
  • the other apparatus acquires the detection result of the indoor side heat exchanger temperature sensor 36 included in the indoor unit 30 and the detection result of the indoor side temperature sensor 38, and each step described above based on the acquired detection result.
  • One or more determinations are made, and the determination result is transmitted to the outdoor control unit 28 via a network such as a LAN (Local Area Network).
  • a network such as a LAN (Local Area Network).
  • the first unit has at least a compressor and has an outdoor unit connectable to the refrigerant piping system, a first heat exchanger, and can be connected to the refrigerant piping system.
  • Temperature detector, a fourth temperature detector provided for the second indoor unit and detecting the temperature of the air-conditioning target space corresponding to the second indoor unit, and the first temperature detector The detected temperature and the third The first temperature difference that is the difference between the temperature detected by the degree detection unit is equal to or greater than the first threshold value, and the temperature detected by the second temperature detection unit and the fourth temperature detection unit are detected.
  • a control unit that determines whether at least one of the refrigerant pipe and the first communication line connected to the first indoor unit is correctly connected. Whether or not it is connected can be determined.

Abstract

According to an embodiment of the present invention, an air conditioning system has an outdoor unit, first indoor unit, second indoor unit, first temperature detection unit, second temperature detection unit, third temperature detection unit, fourth temperature detection unit, and control unit. In the cases where a first temperature difference, i.e., the difference between the temperature detected by the first temperature detection unit and the temperature detected by the third temperature detection unit, is equal to or more than a first threshold value, and a second temperature difference, i.e., the difference between the temperature detected by the second temperature detection unit and the temperature detected by the fourth temperature detection unit, is less than a second threshold value, the control unit determines whether a refrigerant piping system connected to the first indoor unit and/or a first communication line connected to the first indoor unit is correctly connected or not.

Description

空気調和システムAir conditioning system
 本発明の実施形態は、空気調和システムに関する。
 本願は、2015年11月12日に、日本に出願された特願2015-221940号に基づき優先権を主張し、その内容をここに援用する。
Embodiments described herein relate generally to an air conditioning system.
This application claims priority based on Japanese Patent Application No. 2015-221940 filed in Japan on November 12, 2015, the contents of which are incorporated herein by reference.
 従来、1台の室外ユニットに対し、複数台の室内ユニットを冷媒配管および通信線で接続した空気調和システムが知られている。この種の空気調和システムは、熱交換器を介して冷媒温度を検出するセンサから、冷媒を配管に供給する前後の冷媒温度の変化に基づいて配管と通信線との接続が正しいか否かを判定する場合がある。 Conventionally, an air conditioning system is known in which a plurality of indoor units are connected to one outdoor unit by a refrigerant pipe and a communication line. This type of air conditioning system uses a sensor that detects the refrigerant temperature via a heat exchanger to determine whether the connection between the pipe and the communication line is correct based on changes in the refrigerant temperature before and after supplying the refrigerant to the pipe. It may be judged.
特開平5-33982号公報Japanese Patent Laid-Open No. 5-33982
 しかしながら、従来の空気調和システムにおいては、精度よく配管または通信線が正しく接続されているか否かを判定することができない場合があった。
 本発明が解決しようとする課題は、より精度よく配管または通信線が正しく接続されているか否かを判定することができる空気調和システムを提供することである。
However, in the conventional air conditioning system, it may not be possible to accurately determine whether the pipe or the communication line is correctly connected.
The problem to be solved by the present invention is to provide an air conditioning system capable of determining whether a pipe or a communication line is correctly connected with higher accuracy.
 実施形態の空気調和システムは、室外ユニットと、第1の室内ユニットと、第2の室内ユニットと、第1の温度検出部と、第2の温度検出部と、第3の温度検出部と、第4の温度検出部と、制御部とを持つ。室外ユニットは、少なくとも圧縮機を有し、冷媒配管システムに接続可能である。第1の室内ユニットは、第1の熱交換器を有し、前記冷媒配管システムに接続可能である。第2の室内ユニットは、第2の熱交換器を有し、前記冷媒配管システムに接続可能である。第1の温度検出部は、前記第1の熱交換器の温度を検出する。第2の温度検出部は、前記第2の熱交換器の温度を検出する。第3の温度検出部は、前記第1の室内ユニットに対し設けられ、前記第1の室内ユニットに対応する空調対象空間の温度を検出する。第4の温度検出部は、前記第2の室内ユニットに対し設けられ、前記第2の室内ユニットに対応する空調対象空間の温度を検出する。制御部は、前記第1の温度検出部により検出された温度と前記第3の温度検出部により検出された温度との差分である第1温度差が第1の閾値以上であり、且つ、前記第2の温度検出部により検出された温度と前記第4の温度検出部により検出された温度との差分である第2温度差が第2の閾値未満である場合に、前記第1の室内ユニットに接続された冷媒配管システムのうち前記第1の室内ユニットに接続された第1の冷媒配管および前記第1の室内ユニットに接続された第1の通信線のうち少なくとも一方が正しく接続されているか否かを判定する。 The air conditioning system of the embodiment includes an outdoor unit, a first indoor unit, a second indoor unit, a first temperature detection unit, a second temperature detection unit, and a third temperature detection unit, It has a 4th temperature detection part and a control part. The outdoor unit has at least a compressor and can be connected to a refrigerant piping system. The first indoor unit has a first heat exchanger and can be connected to the refrigerant piping system. The second indoor unit has a second heat exchanger and can be connected to the refrigerant piping system. The first temperature detection unit detects the temperature of the first heat exchanger. The second temperature detection unit detects the temperature of the second heat exchanger. The third temperature detection unit is provided for the first indoor unit and detects the temperature of the air-conditioning target space corresponding to the first indoor unit. The fourth temperature detection unit is provided for the second indoor unit and detects the temperature of the air-conditioning target space corresponding to the second indoor unit. The control unit has a first temperature difference, which is a difference between the temperature detected by the first temperature detection unit and the temperature detected by the third temperature detection unit, equal to or greater than a first threshold, and When the second temperature difference, which is the difference between the temperature detected by the second temperature detector and the temperature detected by the fourth temperature detector, is less than the second threshold, the first indoor unit Whether at least one of the first refrigerant pipe connected to the first indoor unit and the first communication line connected to the first indoor unit is correctly connected in the refrigerant pipe system connected to Determine whether or not.
空気調和システム1の構成を示す図。The figure which shows the structure of the air conditioning system. 空気調和システム1の制御部の構成を説明するための図。The figure for demonstrating the structure of the control part of the air conditioning system. 室外側制御部28により実行されるチェック動作の処理の流れを示すフローチャート。The flowchart which shows the flow of a process of the check operation | movement performed by the outdoor side control part 28. FIG. 室外側制御部28により実行されるチェック動作の概要を説明するための図。The figure for demonstrating the outline | summary of the check operation | movement performed by the outdoor side control part 28. FIG. 室外側制御部28により実行される判定処理の流れを示すフローチャート。The flowchart which shows the flow of the determination process performed by the outdoor side control part 28. FIG. 第2の実施形態の室外側制御部28により実行される処理の流れを示すフローチャート。The flowchart which shows the flow of the process performed by the outdoor side control part 28 of 2nd Embodiment. 第2の実施形態の室外側制御部28により実行されるチェック動作の概要を説明するための図。The figure for demonstrating the outline | summary of the check operation | movement performed by the outdoor side control part 28 of 2nd Embodiment.
 以下、実施形態の空気調和システムを、図面を参照して説明する。 Hereinafter, an air conditioning system of an embodiment will be described with reference to the drawings.
 (第1の実施形態)
 図1は、空気調和システム1の構成を示す図である。空気調和システム1は、室外ユニット10と、室内ユニット30-1、30-2、…30-nとを含んでよい。以下、室内ユニットを他の室内ユニットと区別しない場合は、単に室内ユニット30と称する。室内ユニット30は、例えば、それぞれ異なる部屋に設置される。室外ユニット10と、各室内ユニット30-1とは、連絡配管2-1-1、2-1-2、…2-n-2に連結されている。
(First embodiment)
FIG. 1 is a diagram showing the configuration of the air conditioning system 1. The air conditioning system 1 may include an outdoor unit 10 and indoor units 30-1, 30-2,... 30-n. Hereinafter, when an indoor unit is not distinguished from other indoor units, it is simply referred to as an indoor unit 30. The indoor units 30 are installed in different rooms, for example. The outdoor unit 10 and each indoor unit 30-1 are connected to communication pipes 2-1-1, 2-1-2, ... 2-n-2.
 室外ユニット10は、圧縮機12と、アキュムレータ13と、四方弁14と、室外側熱交換器16と、膨張弁18-1から18-nとを含む。 The outdoor unit 10 includes a compressor 12, an accumulator 13, a four-way valve 14, an outdoor heat exchanger 16, and expansion valves 18-1 to 18-n.
 圧縮機12は、冷媒を圧縮して、四方弁14を介して冷媒配管20へ吐出する。圧縮機12は、冷媒を図中の矢印方向へ循環させる。冷媒は、例えばR410A、またはR32である。また、冷媒は、R32を50%以上含む冷媒であってもよい。図中、白抜きの矢印は冷房時の冷媒の流れを示し、黒塗の矢印は暖房時の冷媒の流れを示している。本実施形態では、一例として空気調和システム1の冷房時の動作を中心に説明する。アキュムレータ13は、圧縮機12に隣接して設けられる。アキュムレータ13は、圧縮機12に戻る冷媒を気相冷媒と液相冷媒とに分離する。 The compressor 12 compresses the refrigerant and discharges it to the refrigerant pipe 20 through the four-way valve 14. The compressor 12 circulates the refrigerant in the direction of the arrow in the figure. The refrigerant is, for example, R410A or R32. The refrigerant may be a refrigerant containing 50% or more of R32. In the figure, the white arrow indicates the refrigerant flow during cooling, and the black arrow indicates the refrigerant flow during heating. In the present embodiment, as an example, the operation of the air conditioning system 1 during cooling will be mainly described. The accumulator 13 is provided adjacent to the compressor 12. The accumulator 13 separates the refrigerant returning to the compressor 12 into a gas phase refrigerant and a liquid phase refrigerant.
 四方弁14は、圧縮機12から吐出された冷媒を循環させる方向を切り替える。四方弁14は、圧縮機12と室外側熱交換器16とを導通させる状態と、圧縮機12と室内側熱交換器32とを導通させる状態とを切り替える。例えば、四方弁14は、圧縮機12から吐出された冷媒を室外側熱交換器16へ循環させる。また、四方弁14は、圧縮機12から吐出された冷媒を連絡配管2-1-1および2-n-1へ循環させる。 The four-way valve 14 switches the direction in which the refrigerant discharged from the compressor 12 is circulated. The four-way valve 14 switches between a state in which the compressor 12 and the outdoor heat exchanger 16 are conducted and a state in which the compressor 12 and the indoor heat exchanger 32 are conducted. For example, the four-way valve 14 circulates the refrigerant discharged from the compressor 12 to the outdoor heat exchanger 16. The four-way valve 14 circulates the refrigerant discharged from the compressor 12 to the connection pipes 2-1-1 and 2-n-1.
 四方弁14と、室外側熱交換器16と、膨張弁18-1から18-nとは、冷媒配管20および21を介して接続されている。膨張弁18-1から18-nを、区別しない場合は、単に膨張弁18という。室外側熱交換器16は、圧縮機12から吐出された冷媒を液化させ、冷媒に含まれる熱を放出させる。膨張弁18は、連絡配管2を介して、室内ユニット30に接続されている。膨張弁18は、室外側熱交換器16から吐出された液体となった冷媒の減圧と流量制御を行うことで、液状の冷媒を低温、且つ低圧にする。 The four-way valve 14, the outdoor heat exchanger 16, and the expansion valves 18-1 to 18-n are connected through refrigerant pipes 20 and 21. When the expansion valves 18-1 to 18-n are not distinguished, they are simply referred to as the expansion valve 18. The outdoor heat exchanger 16 liquefies the refrigerant discharged from the compressor 12 and releases heat contained in the refrigerant. The expansion valve 18 is connected to the indoor unit 30 via the communication pipe 2. The expansion valve 18 reduces the temperature of the liquid refrigerant to a low pressure by performing pressure reduction and flow control of the refrigerant that has become the liquid discharged from the outdoor heat exchanger 16.
 室内ユニット30は、室内側熱交換器32と、ファン34と、室内側熱交換器温度センサ36と、室内側温度センサ38とを含む。室内側熱交換器32は、膨張弁18から吐出された冷媒を空気と熱交換させて蒸発させる。ファン34は、室内側熱交換器32によって熱交換された空気を空調対象の空間に送風する。室内側熱交換器温度センサ36は、室内側熱交換器32の温度を検出する。室内側温度センサ38は、室内ユニット30が設置された部屋の温度を検出する。 The indoor unit 30 includes an indoor side heat exchanger 32, a fan 34, an indoor side heat exchanger temperature sensor 36, and an indoor side temperature sensor 38. The indoor heat exchanger 32 evaporates the refrigerant discharged from the expansion valve 18 by exchanging heat with air. The fan 34 blows the air heat-exchanged by the indoor heat exchanger 32 to the space to be air-conditioned. The indoor heat exchanger temperature sensor 36 detects the temperature of the indoor heat exchanger 32. The indoor side temperature sensor 38 detects the temperature of the room in which the indoor unit 30 is installed.
 図2は、空気調和システム1の制御部の構成を説明するための図である。空気調和システム1は、図1で説明した構成に加え、更に室外側操作部26と、室外側制御部28と、室内側操作部40と、室内側制御部42とを含む。室外側制御部28と、室内側制御部42とは、互いに通信線および電気線とで接続されている。 FIG. 2 is a diagram for explaining the configuration of the control unit of the air conditioning system 1. In addition to the configuration described in FIG. 1, the air conditioning system 1 further includes an outdoor operation unit 26, an outdoor control unit 28, an indoor operation unit 40, and an indoor control unit 42. The outdoor side control unit 28 and the indoor side control unit 42 are connected to each other by a communication line and an electric line.
 室外側制御部28または室内側制御部42は、例えば、CPU(Central Processing Unit)等のプロセッサである。また、室外側制御部28または室内側制御部42は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアであってもよい。 The outdoor side control unit 28 or the indoor side control unit 42 is, for example, a processor such as a CPU (Central Processing Unit). The outdoor side control unit 28 or the indoor side control unit 42 may be hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Specific Integrated Circuit).
 室外側操作部26は、モード切替えボタンや表示部等を備える。室外側操作部26は、利用者の操作に応じた信号を室外側制御部28に供給する。室外側操作部26は、チェック動作が指示された場合、チェック動作の指示がなされたことを示す信号を室外側制御部28に供給する。チェック動作とは、室外ユニット10と室内ユニット30との配管および通信線が正常に(正しく)接続されているか否かを判定する動作である(詳細は後述)。また、室外側操作部26の表示部は、チェック動作の結果や、空気調和システム1の異常を示す情報を表示する。 The outdoor operation unit 26 includes a mode switching button, a display unit, and the like. The outdoor side operation part 26 supplies the signal according to a user's operation to the outdoor side control part 28. FIG. When the check operation is instructed, the outdoor operation unit 26 supplies a signal indicating that the check operation is instructed to the outdoor control unit 28. The check operation is an operation for determining whether or not the piping and the communication line between the outdoor unit 10 and the indoor unit 30 are normally (correctly) connected (details will be described later). Moreover, the display part of the outdoor side operation part 26 displays the information which shows the result of a check operation | movement, and abnormality of the air conditioning system 1. FIG.
 室内側操作部40は、複数の室内ユニット30のそれぞれに対応して設けられる。室内側操作部40は、室内ユニット30の空調対象空間の設定温度変更ボタンや、運転モード切替ボタン、室内側表示部などを備える。室内側操作部40は、利用者の操作に応じた信号を室内側制御部42に供給する。室内側操作部40の表示部は、室内ユニット30の稼働状態や、空調対象空間の状態、設定された運転モード等を表示する。 The indoor side operation unit 40 is provided corresponding to each of the plurality of indoor units 30. The indoor side operation unit 40 includes a set temperature change button for the air conditioning target space of the indoor unit 30, an operation mode switching button, an indoor side display unit, and the like. The indoor side operation unit 40 supplies a signal corresponding to a user operation to the indoor side control unit 42. The display unit of the indoor side operation unit 40 displays the operating state of the indoor unit 30, the state of the air-conditioning target space, the set operation mode, and the like.
 室外側制御部28は、圧縮機12の駆動を制御する。室外側制御部28は、膨張弁18の弁の開度を制御する。室外側制御部28は、室内側操作部40から供給された信号や、室内側制御部42から取得した情報に基づいて、指示信号を生成する。室外側制御部28は、圧縮機12や、膨張弁18、室外側操作部26、室内側制御部42に指示信号を供給する。室外側制御部28の処理の詳細については後述する。 The outdoor control unit 28 controls the driving of the compressor 12. The outdoor side control unit 28 controls the opening degree of the expansion valve 18. The outdoor side control unit 28 generates an instruction signal based on a signal supplied from the indoor side operation unit 40 and information acquired from the indoor side control unit 42. The outdoor control unit 28 supplies an instruction signal to the compressor 12, the expansion valve 18, the outdoor operation unit 26, and the indoor control unit 42. Details of the processing of the outdoor control unit 28 will be described later.
 室内側制御部42は、複数の室内ユニット30のそれぞれに対応して設けられる。室内側制御部42は、室外側制御部28から供給された指示信号に基づいて、室内ユニット30に含まれる各部を制御する。室内側制御部42は、室内側熱交換器温度センサ36、室内側温度センサ38、および室内側操作部40から取得した情報または信号を室外側制御部28に供給する。 The indoor side control unit 42 is provided corresponding to each of the plurality of indoor units 30. The indoor side control unit 42 controls each unit included in the indoor unit 30 based on the instruction signal supplied from the outdoor side control unit 28. The indoor side control unit 42 supplies information or signals acquired from the indoor side heat exchanger temperature sensor 36, the indoor side temperature sensor 38, and the indoor side operation unit 40 to the outdoor side control unit 28.
 図3は、室外側制御部28により実行されるチェック動作(配管または通信線の接続が正常であるか否かの判定)の処理の流れを示すフローチャートである。まず、室外側制御部28が、複数の室内ユニット30のうち、接続状態の判定が終了していない室内ユニット30を選択する(ステップS100)。 FIG. 3 is a flowchart showing a flow of processing of a check operation (determination of whether the connection of the piping or the communication line is normal) executed by the outdoor side control unit 28. First, the outdoor side control part 28 selects the indoor unit 30 in which the determination of a connection state is not complete | finished among several indoor units 30 (step S100).
 室外側制御部28は、ステップS100において選択された室内ユニット30のファン34をオン状態に制御し(ステップS102)、全ての室内ユニット30の膨張弁18を開状態に制御する(ステップS104)。室外側制御部28は、所定時間の間、空気調和システム1を待機状態に制御する(ステップS106)。次に、室外側制御部28は、接続状態の判定処理を実行する(ステップS108)。判定処理の詳細については後述する。 The outdoor side controller 28 controls the fan 34 of the indoor unit 30 selected in step S100 to be in an on state (step S102), and controls the expansion valves 18 of all the indoor units 30 to be in an open state (step S104). The outdoor side control part 28 controls the air conditioning system 1 to a standby state for predetermined time (step S106). Next, the outdoor side control part 28 performs the determination process of a connection state (step S108). Details of the determination process will be described later.
 次に、室外側制御部28は、全ての室内ユニット30の接続状態を判定したか否かを判定する(ステップS110)。全ての室内ユニット30の接続状態を判定していない場合、ステップS100の処理に戻る。全ての室内ユニット30の接続状態を判定した場合、本フローチャートの処理は終了する。 Next, the outdoor side control part 28 determines whether the connection state of all the indoor units 30 was determined (step S110). When the connection state of all the indoor units 30 has not been determined, the process returns to step S100. When the connection states of all the indoor units 30 are determined, the process of this flowchart ends.
 図4は、室外側制御部28により実行されるチェック動作の概要を説明するための図である。例えば、A室を空調対象の空間とする室内ユニット30-1、B室を空調対象の空間とする室内ユニット30-2、およびC室を空調対象の空間とする室内ユニット30-3をチェック動作の対象とするものとして説明する。また、A室からC室の順で1台ずつ判定処理を実行するものとする。図示する例では、チェック動作開始から終了までにおけるA室およびC室の室内側熱交換器32の温度変化(図中、TC-AからTC-C)を示している。また、時間ごとのA室およびC室に冷媒を循環させる膨張弁18の開閉状態(図中、PMV AからPMV C)、および時間ごとの圧縮機12の作動状態を示している。 FIG. 4 is a diagram for explaining an outline of the check operation executed by the outdoor side control unit 28. For example, the indoor unit 30-1 having the room A as the air-conditioned space, the indoor unit 30-2 having the room B as the air-conditioned space, and the indoor unit 30-3 having the room C as the air-conditioned space are checked. It will be explained as the target of Further, it is assumed that the determination process is executed one by one in the order from room A to room C. In the illustrated example, the temperature change (from TC-A to TC-C in the figure) of the indoor side heat exchanger 32 of the A room and the C room from the start to the end of the check operation is shown. Moreover, the open / close state of the expansion valve 18 that circulates the refrigerant in the A chamber and the C chamber every hour (PMV A to PMV C in the figure) and the operating state of the compressor 12 every hour are shown.
 まず、室外側制御部28は、圧縮機12をオン状態に制御し、室内ユニット30-1に冷媒を循環させる膨張弁18を所定開度状態に制御する。室外側制御部28は、A室の判定処理を実行し、A室の判定処理が終了すると、圧縮機12をオフ状態にし、少なくとも室内ユニット30-2のファン34をオン状態に制御する。ここで全ての室内ユニット30-1および30-3のファン34をオン状態に制御してもよい。また、室外側制御部28は、室内ユニット30-1および30-3の膨張弁18を開状態に制御する。これらの状態が、所定時間維持される。以下、圧縮機12をオフ状態、少なくとも次に接続状態の判定処理の対象となる室内ユニット30のファン34をオン状態、および全ての膨張弁18を開状態に所定時間維持する時間を、インターバル時間という。 First, the outdoor side control unit 28 controls the compressor 12 to be in an ON state, and controls the expansion valve 18 that circulates the refrigerant in the indoor unit 30-1 to a predetermined opening state. The outdoor control unit 28 executes the determination process for the A room, and when the determination process for the A room is completed, the compressor 12 is turned off and at least the fan 34 of the indoor unit 30-2 is controlled to be turned on. Here, the fans 34 of all the indoor units 30-1 and 30-3 may be controlled to be turned on. The outdoor control unit 28 controls the expansion valves 18 of the indoor units 30-1 and 30-3 to be in an open state. These states are maintained for a predetermined time. Hereinafter, the time for maintaining the compressor 12 in the off state, at least the fan 34 of the indoor unit 30 to be subjected to the determination process of the next connected state, and maintaining all the expansion valves 18 in the open state for a predetermined time is an interval time. That's it.
 インターバル時間は、例えば、次に接続状態の判定処理の対象となる室内ユニット30-2の室内側熱交換器32の温度が、直前の判定処理の対象であった室内ユニット30-1の判定処理の間に低下した場合を想定して、低下した温度を回復させるために設定される時間である。インターバル時間は、予め設定された時間であってもよい。また、インターバル時間は、室外側制御部28が、室内側熱交換器温度センサ36または室内側温度センサ38の検出結果に基づいて定める時間であってもよい。 The interval time is, for example, the determination process of the indoor unit 30-1 in which the temperature of the indoor heat exchanger 32 of the indoor unit 30-2 to be subjected to the next determination process of the connection state is the object of the immediately previous determination process. It is a time set for recovering the lowered temperature assuming that the temperature has dropped during the period. The interval time may be a preset time. The interval time may be a time determined by the outdoor side controller 28 based on the detection result of the indoor heat exchanger temperature sensor 36 or the indoor temperature sensor 38.
 インターバル時間において、ファン34がオン状態に制御されることで、室内ユニット30の室内側熱交換器32、または空調対象の空間の温度が接続状態の判定処理の開始前の状態に回復しやすくなる。また、室内ユニット30-1から30-3の膨張弁18を開状態に制御することで、配管内の残留冷媒や、配管内の圧力変化により冷媒を循環させた配管以外に接続された室内ユニット30に生じる温度変化等を抑制させることができる。 By controlling the fan 34 to be in the on state at the interval time, the temperature of the indoor side heat exchanger 32 of the indoor unit 30 or the air conditioning target space can be easily recovered to the state before the start of the connection state determination process. . Further, by controlling the expansion valves 18 of the indoor units 30-1 to 30-3 to be in an open state, the indoor units connected to other than the residual refrigerant in the pipe and the pipe in which the refrigerant is circulated by the pressure change in the pipe The temperature change etc. which arise in 30 can be suppressed.
 インターバル時間経過後、B室の接続状態の判定処理を実行し、インターバル時間経過後、C室の接続状態の判定処理を実行する。これにより、室外ユニット10と接続された室内ユニット30の配管および通信線が正常に接続されているか否かを判定する。 After the interval time has elapsed, the process for determining the connection state of room B is executed, and after the interval time has elapsed, the process for determining the connection state of room C is executed. Thereby, it is determined whether the piping and communication line of the indoor unit 30 connected to the outdoor unit 10 are normally connected.
 なお、実施形態の空気調和システム1は、膨張弁18に加え、更に室内ユニット30の連絡配管2と、室内側熱交換器32との間に室内側膨張弁を設けてもよい。この場合、接続状態の判定処理が実行されているとき、判定処理対象の室内ユニット30に含まれる室内側膨張弁とは異なる室内側膨張弁を閉状態に制御してもよい。これにより、接続状態の判定処理により判定対象以外の室内ユニット30に生じる残留冷媒や圧力変化の影響を低減させることができる。 In addition, in addition to the expansion valve 18, the air conditioning system 1 of the embodiment may further include an indoor expansion valve between the communication pipe 2 of the indoor unit 30 and the indoor heat exchanger 32. In this case, when the connection state determination process is being executed, the indoor expansion valve different from the indoor expansion valve included in the indoor unit 30 to be determined may be controlled to be closed. Thereby, the influence of the residual refrigerant | coolant and pressure change which arise in the indoor units 30 other than the determination object by the determination process of a connection state can be reduced.
 図5は、室外側制御部28により実行される判定処理の流れを示すフローチャートである。まず、室外側制御部28が、圧縮機12をオン状態、および接続状態の判定対象の室内ユニット30-1の膨張弁18-1を所定開度状態に制御する(ステップS150)。ここで、接続状態の判定対象となる室内ユニット30-1が特許請求の範囲における「第1の室内ユニット」に相当し、接続状態の判定対象ではない室内ユニット30-2、30-3が特許請求の範囲の「第1の室内ユニット以外の室内ユニット」に相当する。室内側熱交換器32-1が特許請求の範囲における「第1の熱交換器」に相当し、室内側熱交換器温度センサ36-1が特許請求の範囲における「第1の温度検出部」に相当し、室内側温度センサ38-1が特許請求の範囲における「第3の温度検出部」に相当する。室内側熱交換器32-2、32-3が特許請求の範囲における「第2の熱交換器」に相当し、室内側熱交換器温度センサ36-2、36-3が特許請求の範囲における「第2の温度検出部」に相当し、室内側温度センサ38-2、38-3が特許請求の範囲における「第4の温度検出部」に相当する。 FIG. 5 is a flowchart showing a flow of determination processing executed by the outdoor side control unit 28. First, the outdoor side control unit 28 controls the compressor 12 to be in an ON state and the expansion valve 18-1 of the indoor unit 30-1 to be determined as being connected to a predetermined opening state (step S150). Here, the indoor unit 30-1 that is the determination target of the connection state corresponds to the “first indoor unit” in the claims, and the indoor units 30-2 and 30-3 that are not the determination target of the connection state are patents. This corresponds to “an indoor unit other than the first indoor unit” in the claims. The indoor-side heat exchanger 32-1 corresponds to the “first heat exchanger” in the claims, and the indoor-side heat exchanger temperature sensor 36-1 is the “first temperature detector” in the claims. And the indoor side temperature sensor 38-1 corresponds to the “third temperature detection unit” in the claims. The indoor side heat exchangers 32-2 and 32-3 correspond to the “second heat exchanger” in the claims, and the indoor side heat exchanger temperature sensors 36-2 and 36-3 are in the claims. The interior side temperature sensors 38-2 and 38-3 correspond to the “second temperature detection unit” and the “fourth temperature detection unit” in the claims.
 圧縮機12の回転数は、例えば圧縮機12の最大回転数に対して25%以下である。圧縮機12の回転数を抑えることにより、チェック動作中にアキュムレータ13に冷媒液が戻る量を抑制することができ、圧縮機12に与える負荷を低減させることができる。膨張弁18-1の開度は、例えば膨張弁18の最大流量開度に対して25%以下である。膨張弁18-1の開度を25%以下にすることで、判定対象である室内ユニット30-1の室内側熱交換器32の温度の低下が緩やかになり処理時間が延びることを抑制することができる。 The rotation speed of the compressor 12 is, for example, 25% or less with respect to the maximum rotation speed of the compressor 12. By suppressing the rotational speed of the compressor 12, the amount of the refrigerant liquid returning to the accumulator 13 during the check operation can be suppressed, and the load applied to the compressor 12 can be reduced. The opening degree of the expansion valve 18-1 is 25% or less with respect to the maximum flow opening degree of the expansion valve 18, for example. By setting the opening degree of the expansion valve 18-1 to 25% or less, it is possible to suppress a decrease in the temperature of the indoor heat exchanger 32 of the indoor unit 30-1 that is the determination target and a prolonged processing time. Can do.
 次に、室外側制御部28は、温度差ΔTが温度T1以上であるか否かを判定する(ステップS152)。温度差ΔTは、判定対象の室内ユニット30-1の室内側温度センサ38-1により検出された温度TAと、判定対象の室内ユニット30-1の室内側熱交換器温度センサ36-1により検出された温度TCとの差分である。 Next, the outdoor side controller 28 determines whether or not the temperature difference ΔT is equal to or higher than the temperature T1 (step S152). The temperature difference ΔT is detected by the temperature TA detected by the indoor temperature sensor 38-1 of the indoor unit 30-1 to be determined and the indoor heat exchanger temperature sensor 36-1 of the indoor unit 30-1 to be determined. It is a difference from the measured temperature TC.
 温度差ΔTが温度T1以上でない場合、室外側制御部28は、所定時間経過したか否かを判定する(ステップS154)。所定時間経過していない場合、ステップS152の処理を繰り返す。所定時間経過した場合、室外側制御部28は、判定対象の室内ユニット30-1の配管および通信線の接続状態に異常が存在する可能性があると判定する(ステップS166)。判定対象の室内ユニット30-1に冷媒を循環させたにも関わらず、室内側熱交換器温度センサ36-1により検出された温度は、所定以上低下していないためである。この場合、室外側制御部28と、室内側制御部42との通信線とが誤接続されており、制御対象の室内側制御部42と、実際に制御している室内側制御部42とに相違が生じている可能性がある。また、室内ユニット30-1と、室外ユニット10との配管が誤接続されており、冷媒を循環させる対象の室内ユニット30-1と、実際に冷媒を循環させている室内ユニット30とに相違が生じている可能性がある。 When the temperature difference ΔT is not equal to or higher than the temperature T1, the outdoor control unit 28 determines whether or not a predetermined time has elapsed (step S154). If the predetermined time has not elapsed, the process of step S152 is repeated. When the predetermined time has elapsed, the outdoor side control unit 28 determines that there is a possibility that an abnormality exists in the connection state of the piping and the communication line of the indoor unit 30-1 to be determined (step S166). This is because the temperature detected by the indoor-side heat exchanger temperature sensor 36-1 has not decreased more than a predetermined value even though the refrigerant is circulated through the indoor unit 30-1 to be determined. In this case, the outdoor side control unit 28 and the communication line between the indoor side control unit 42 are misconnected, and the controlled indoor side control unit 42 and the actually controlled indoor side control unit 42 are connected to each other. There may be a difference. Further, the piping between the indoor unit 30-1 and the outdoor unit 10 is erroneously connected, and there is a difference between the indoor unit 30-1 to be circulated through the refrigerant and the indoor unit 30 in which the refrigerant is actually circulated. It may have occurred.
 温度差ΔTが温度T1以上である場合、室外側制御部28は、他の全ての室内ユニット30について温度差ΔTnが、温度T2以上であるか否かを判定する(ステップS156)。温度差ΔTnは、接続状態の判定対象ではない室内ユニット30の室内側温度センサ38により検出された温度TAnと、同室内ユニット30の室内側熱交換器温度センサ36により検出された温度TCnとの差分である。判定対象ではない室内ユニット30が複数存在する場合、室外側制御部28は、判定対象ではない室内ユニット30のそれぞれに設けられた室内側温度センサ38により検出された温度TAnと、同室内ユニット30のそれぞれに設けられた室内側熱交換器温度センサ36により検出された温度TCnと温度差ΔTnを算出する。室外側制御部28は、算出した全ての温度差ΔTnが、温度T2以上であるか否かを判定する。算出した全ての温度差ΔTnのうちいずれかの温度差ΔTnが、温度T2以上である場合、ステップS160に進み、算出した全ての温度差ΔTnが、温度T2以上でない場合、ステップS158に進む。 When the temperature difference ΔT is equal to or higher than the temperature T1, the outdoor side control unit 28 determines whether or not the temperature difference ΔTn is equal to or higher than the temperature T2 for all other indoor units 30 (step S156). The temperature difference ΔTn is the difference between the temperature TAn detected by the indoor temperature sensor 38 of the indoor unit 30 that is not the connection state determination target and the temperature TCn detected by the indoor heat exchanger temperature sensor 36 of the indoor unit 30. It is a difference. When there are a plurality of indoor units 30 that are not the determination targets, the outdoor side control unit 28 detects the temperature TAn detected by the indoor temperature sensor 38 provided in each of the indoor units 30 that are not the determination targets, and the indoor units 30. The temperature TCn and the temperature difference ΔTn detected by the indoor side heat exchanger temperature sensor 36 provided in each are calculated. The outdoor side controller 28 determines whether or not all the calculated temperature differences ΔTn are equal to or higher than the temperature T2. If any one of the calculated temperature differences ΔTn is equal to or higher than the temperature T2, the process proceeds to step S160. If all the calculated temperature differences ΔTn are not equal to or higher than the temperature T2, the process proceeds to step S158.
 全ての温度差ΔTnが温度T2以上でない場合、室外側制御部28は、判定対象の室内ユニット30-1が正常に室外ユニット10と接続されていると判定する(ステップS158)。この場合、室外側制御部28は、圧縮機12をオフ状態に制御する(ステップS168)。判定対象ではない室内側熱交換器温度センサ36により検出された温度は温度T2以上低下していないため、判定対象ではない室内ユニット30には冷媒が循環していないと推定されるためである。なお、例えば温度T2は、温度T1に比して小さい値である。 If all the temperature differences ΔTn are not equal to or higher than the temperature T2, the outdoor side control unit 28 determines that the indoor unit 30-1 to be determined is normally connected to the outdoor unit 10 (step S158). In this case, the outdoor side control part 28 controls the compressor 12 to an OFF state (step S168). This is because the temperature detected by the indoor heat exchanger temperature sensor 36 that is not the determination target has not decreased by the temperature T2 or more, and therefore it is estimated that the refrigerant is not circulating in the indoor unit 30 that is not the determination target. For example, the temperature T2 is a smaller value than the temperature T1.
 算出した温度差ΔTnのうちいずれかの温度差ΔTnが温度T2以上である場合、室外側制御部28は、所定時間が経過するまで待機する(ステップS160)。所定時間が経過した場合、室外側制御部28は、温度TCが温度TCn以下であるか否かを判定する(ステップS162)。判定対象ではない室内ユニット30が複数存在する場合、室外側制御部28は、判定対象の室内ユニット30-1の室内側熱交換器温度センサ36により検出された温度TCと、判定対象ではない室内ユニット30のそれぞれに設けられた室内側熱交換器温度センサ36により検出された温度TCnと比較する。温度TCが、他の全ての温度TCn以下である場合、ステップS164の処理に進み、温度TCが、全ての温度TCnのうち、いずれかの温度TCn以下でない場合、ステップS166の処理に進む。 When any temperature difference ΔTn among the calculated temperature differences ΔTn is equal to or higher than the temperature T2, the outdoor side control unit 28 waits until a predetermined time elapses (step S160). When the predetermined time has elapsed, the outdoor side control unit 28 determines whether or not the temperature TC is equal to or lower than the temperature TCn (step S162). When there are a plurality of indoor units 30 that are not to be determined, the outdoor control unit 28 determines the temperature TC detected by the indoor heat exchanger temperature sensor 36 of the indoor unit 30-1 to be determined and the indoors that are not to be determined. It compares with temperature TCn detected by the indoor side heat exchanger temperature sensor 36 provided in each of the units 30. If the temperature TC is equal to or lower than all the other temperatures TCn, the process proceeds to step S164. If the temperature TC is not equal to or lower than any one of the temperatures TCn, the process proceeds to step S166.
 温度TCが温度TCn以下でない場合、室外側制御部28は、判定対象の室内ユニット30-1の配管および通信線の接続状態に異常が存在する可能性があると判定し(ステップS166)、ステップS168の処理に進む。温度TCが温度TCn以下である場合、室外側制御部28は、判定対象の室内ユニット30-1が正常に室外ユニット10と接続されていると判定し(ステップS164)、圧縮機12をオフ状態に制御する(ステップS168)。この場合、判定対象ではない室内ユニット30の室内側温度センサ38の温度と、判定対象ではない室内ユニット30の室内側熱交換器温度センサ36の温度とに所定温度以上の差が生じているが、判定対象の室内ユニット30-1の室内側温度センサ38-1の温度が、他の室内ユニット30の室内側温度センサ38の温度より低いため、冷媒は判定対象の室内ユニット30-1に循環していると推定される。これにより本フローチャートの処理は終了する。 When the temperature TC is not equal to or lower than the temperature TCn, the outdoor side control unit 28 determines that there is a possibility that there is an abnormality in the connection state of the piping and the communication line of the indoor unit 30-1 to be determined (step S166), and step The process proceeds to S168. When the temperature TC is equal to or lower than the temperature TCn, the outdoor side control unit 28 determines that the indoor unit 30-1 to be determined is normally connected to the outdoor unit 10 (step S164), and turns off the compressor 12 (Step S168). In this case, there is a difference of a predetermined temperature or more between the temperature of the indoor side temperature sensor 38 of the indoor unit 30 that is not the determination target and the temperature of the indoor side heat exchanger temperature sensor 36 of the indoor unit 30 that is not the determination target. Since the temperature of the indoor side temperature sensor 38-1 of the indoor unit 30-1 to be determined is lower than the temperature of the indoor temperature sensor 38 of the other indoor unit 30, the refrigerant circulates to the indoor unit 30-1 to be determined. It is estimated that Thereby, the process of this flowchart is complete | finished.
 上述したように1つの室内ユニット30-1の判定処理が終了すると、例えば次の室内ユニット30-2の判定処理を実行する。次の室内ユニット30-2の判定処理では、室外ユニット10との接続が正常であると判定された室内ユニット30-1は、判定処理における比較対象から除外される。例えばステップS156における温度差ΔTnが温度T2以上であるか否かを判定する処理、およびステップS162における温度TCが温度TCn以下であるか否かを判定する処理では、室外ユニット10との接続が正常であると判定された室内ユニット30-1は比較対象から除外される。一方、室外ユニット10と室内ユニット30-1との配管および通信線の接続状態に異常が存在する可能性があると判定された場合は、室内ユニット30-1は、ステップS156における温度差ΔTnが温度T2以上であるか否かを判定する処理、およびステップS162における温度TCが温度TCn以下であるか否かを判定する処理において、比較対象に含まれる。 As described above, when the determination process for one indoor unit 30-1 is completed, for example, the determination process for the next indoor unit 30-2 is executed. In the determination process of the next indoor unit 30-2, the indoor unit 30-1 determined to have a normal connection with the outdoor unit 10 is excluded from the comparison target in the determination process. For example, in the process for determining whether or not the temperature difference ΔTn in step S156 is equal to or higher than the temperature T2, and the process for determining whether or not the temperature TC in step S162 is equal to or lower than the temperature TCn, the connection with the outdoor unit 10 is normal. The indoor unit 30-1 determined to be is excluded from the comparison target. On the other hand, when it is determined that there may be an abnormality in the connection state of the piping and communication line between the outdoor unit 10 and the indoor unit 30-1, the indoor unit 30-1 has the temperature difference ΔTn in step S156. The process for determining whether or not the temperature is equal to or higher than the temperature T2 and the process for determining whether or not the temperature TC in step S162 is equal to or lower than the temperature TCn are included in the comparison targets.
 また、全ての室内ユニット30について接続状態の判定処理が実行され、チェック動作が終了すると、室外側制御部28は、室外側操作部26の表示部にチェック動作の結果を表示させる。例えば、室外側操作部26の表示部には、正常に室外ユニット10と接続がされていない可能性がある室内ユニット30の存在の有無を示す情報が表示される。また、室外側操作部26の表示部には、室外ユニット10に正常に接続されていない室内ユニット30の識別情報が表示される。 Further, when the connection state determination process is executed for all the indoor units 30 and the check operation is completed, the outdoor side control unit 28 displays the result of the check operation on the display unit of the outdoor side operation unit 26. For example, information indicating the presence / absence of the indoor unit 30 that may not be normally connected to the outdoor unit 10 is displayed on the display unit of the outdoor operation unit 26. Further, identification information of the indoor unit 30 that is not normally connected to the outdoor unit 10 is displayed on the display unit of the outdoor operation unit 26.
 ところで、室内側熱交換器の温度変化に基づいて、室内ユニットと室外ユニットとの配管と信号線との接続が正常であるか否かを判定する場合がある。この場合、室内側熱交換器内に残存する冷媒の影響により、冷媒を流していない室内側熱交換器の温度も変化する場合があり、精度よく室外ユニット10と室内ユニット30との配管と通信線との接続が正常であるか否かを判定することができない場合があった。 Incidentally, it may be determined whether or not the connection between the piping of the indoor unit and the outdoor unit and the signal line is normal based on the temperature change of the indoor heat exchanger. In this case, the temperature of the indoor heat exchanger that does not flow the refrigerant may also change due to the influence of the refrigerant remaining in the indoor heat exchanger, and communication between the pipes of the outdoor unit 10 and the indoor unit 30 with high accuracy is possible. In some cases, it is impossible to determine whether or not the connection with the line is normal.
 これに対して、本実施形態の空気調和システム1では、上述した判定処理により残冷媒が存在し、判定処理の対象とは異なる室内ユニット30および空調対象空間に温度変化がある場合であっても、より精度よく室外ユニット10と室内ユニット30との配管と通信線との接続が正常であるか否かを判定することができる。更に、本実施形態の空気調和システム1では、室内ユニット30の室内側熱交換器32の温度を所定以上に維持させた状態で判定処理を行っているため、より精度よく室外ユニット10と室内ユニット30との配管および通信線の接続が正常であるか否かを判定することができる。 On the other hand, in the air conditioning system 1 of the present embodiment, even when the residual refrigerant is present by the determination process described above and there is a temperature change in the indoor unit 30 and the air-conditioning target space that are different from the target of the determination process. Thus, it is possible to determine whether or not the connection between the piping of the outdoor unit 10 and the indoor unit 30 and the communication line is normal. Furthermore, in the air conditioning system 1 according to the present embodiment, the determination process is performed in a state where the temperature of the indoor heat exchanger 32 of the indoor unit 30 is maintained at a predetermined level or higher, so the outdoor unit 10 and the indoor unit are more accurately detected. It can be determined whether the connection of the piping and the communication line with 30 is normal.
 以上説明した第1の実施形態によれば、室外側制御部28は、接続状態の判定対象である室内ユニット30の温度差ΔTが温度T1以上であり、且つ、判定対象ではない室内ユニット30の温度差ΔTnが温度T2以上でない場合、判定対象の室内ユニット30に接続された冷媒配管または通信線の接続状態が正常であると判定する。また、室外側制御部28は、接続状態の判定対象ではない室内ユニット30の温度差ΔTnが温度T2以上である場合であっても、所定時間が経過後、温度TCが温度TCn以下である場合、判定対象の室内ユニット30に接続された冷媒配管または通信線の接続状態が正常であると判定する。この結果、空気調和システム1は、より精度よく室外ユニット10と室内ユニット30との配管または通信線の接続が正常であるか否かを判定することができる。 According to the first embodiment described above, the outdoor control unit 28 has the temperature difference ΔT of the indoor unit 30 that is the determination target of the connection state is equal to or higher than the temperature T1, and the indoor unit 30 that is not the determination target. When temperature difference (DELTA) Tn is not more than temperature T2, it determines with the connection state of the refrigerant | coolant piping or communication line connected to the indoor unit 30 of determination object being normal. Moreover, the outdoor side control part 28 is the case where temperature TC is below temperature TCn after predetermined time passes, even if the temperature difference (DELTA) Tn of the indoor unit 30 which is not a connection state judgment object is more than temperature T2. Then, it is determined that the connection state of the refrigerant pipe or the communication line connected to the indoor unit 30 to be determined is normal. As a result, the air conditioning system 1 can determine whether the connection of the piping or the communication line between the outdoor unit 10 and the indoor unit 30 is normal with higher accuracy.
 (第2の実施形態)
 以下、第2の実施形態について説明する。ここでは、第1の実施形態との相違点を中心に説明し、第1の実施形態との共通する機能等についての説明は省略する。第1の実施形態では、インターバル時間において、ファン34をオン状態に維持し、全ての膨張弁18を開状態に制御するものとしていた。これに対して第2の実施形態では、インターバル時間において、ファン34をオフ状態に維持し、判定処理の対象となった室内ユニット30に冷媒を循環させる膨張弁18を開状態に制御し、他の膨張弁18は閉状態に制御する。以下、第1の実施形態との相違点を中心に説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described. Here, the difference from the first embodiment will be mainly described, and the description of the functions and the like common to the first embodiment will be omitted. In the first embodiment, during the interval time, the fan 34 is maintained in the on state, and all the expansion valves 18 are controlled to be in the open state. In contrast, in the second embodiment, during the interval time, the fan 34 is maintained in the OFF state, the expansion valve 18 that circulates the refrigerant to the indoor unit 30 that is the object of the determination process is controlled to be in the open state, The expansion valve 18 is controlled to be closed. Hereinafter, a description will be given focusing on differences from the first embodiment.
 図6は、第2の実施形態の室外側制御部28により実行される処理の流れを示すフローチャートである。まず、室外側制御部28が、複数の室内ユニット30のうち、接続状態の判定が終了していない室内ユニット30を選択する(ステップS200)。 FIG. 6 is a flowchart showing a flow of processing executed by the outdoor side control unit 28 of the second embodiment. First, the outdoor side control part 28 selects the indoor unit 30 in which the determination of a connection state is not complete | finished among several indoor units 30 (step S200).
 室外側制御部28は、ステップS200で選択した室内ユニット30の膨張弁18を開状態に制御する(ステップS202)。室外側制御部28は、所定時間の間、空気調和システム1を待機状態に制御する(ステップS204)。次に、室外側制御部28は、接続状態の判定処理を実行する(ステップS206)。判定処理は、第1の実施形態で説明したステップS150からS168と同様の処理のため説明を省略する。 The outdoor side control unit 28 controls the expansion valve 18 of the indoor unit 30 selected in step S200 to be in an open state (step S202). The outdoor side control part 28 controls the air conditioning system 1 to a standby state for predetermined time (step S204). Next, the outdoor side control part 28 performs the determination process of a connection state (step S206). Since the determination process is the same as that in steps S150 to S168 described in the first embodiment, the description thereof is omitted.
 次に、室外側制御部28は、全ての室内ユニット30の接続状態を判定したか否かを判定する(ステップS208)。全ての室内ユニット30の接続状態を判定していない場合、ステップS200の処理に戻る。全ての室内ユニット30の接続状態を判定した場合、本フローチャートの処理は終了する。これにより、本フローチャートにより実行される処理は終了する。 Next, the outdoor side control part 28 determines whether the connection state of all the indoor units 30 was determined (step S208). When the connection state of all the indoor units 30 has not been determined, the process returns to step S200. When the connection states of all the indoor units 30 are determined, the process of this flowchart ends. Thereby, the process performed by this flowchart is complete | finished.
 図7は、第2の実施形態の室外側制御部28により実行されるチェック動作の概要を説明するための図である。例えば、A室を空調対象の空間とする室内ユニット30-1、B室を空調対象の空間とする室内ユニット30-2、およびC室を空調対象の空間とする室内ユニット30-3をチェック動作の対象とするものとして説明する。また、A室からC室の順で1台ずつ判定処理を実行するものとする。 FIG. 7 is a diagram for explaining the outline of the check operation executed by the outdoor side control unit 28 of the second embodiment. For example, the indoor unit 30-1 having the room A as the air-conditioned space, the indoor unit 30-2 having the room B as the air-conditioned space, and the indoor unit 30-3 having the room C as the air-conditioned space are checked. It will be explained as the target of Further, it is assumed that the determination process is executed one by one in the order from room A to room C.
 まず、室外側制御部28は、圧縮機12をオン状態に制御し、室内ユニット30-1に冷媒を循環させる膨張弁18-1を所定開度状態に制御する。A室の判定処理が終了すると、室外側制御部28は、圧縮機12をオフ状態にし、次の判定対象の室内ユニット30-2の膨張弁18を所定開度状態および他の膨張弁18を閉状態に制御する。インターバル時間経過後、B室の判定処理を実行し、インターバル時間経過後、C室の判定処理を実行する。第2の実施形態では、インターバル時間中、ファン34がオフ状態に制御される。これにより、判定処理の対象である部屋内に存在する利用者に、チェック動作が行われていることを感じさせずにチェック動作を実行することができる。 First, the outdoor control unit 28 controls the compressor 12 to be in an ON state, and controls the expansion valve 18-1 for circulating the refrigerant in the indoor unit 30-1 to a predetermined opening state. When the determination process for the room A is completed, the outdoor control unit 28 turns off the compressor 12 and sets the expansion valve 18 of the indoor unit 30-2 to be determined next to the predetermined opening state and the other expansion valves 18. Control to the closed state. After the interval time elapses, the room B determination process is executed, and after the interval time elapses, the room C determination process is executed. In the second embodiment, the fan 34 is controlled to be turned off during the interval time. As a result, the check operation can be executed without making the user present in the room that is the object of the determination process feel that the check operation is being performed.
 以上説明した第2の実施形態によれば、室外側制御部28は、インターバル時間において、ファン34をオフ状態に維持するため、チェック動作が行われていることを空調対象空間に存在する人物に感じさせずにチェック動作を実行させることができる。また、室外側制御部28は、判定処理の対象となった室内ユニット30に冷媒を循環させる膨張弁18を開状態に制御し、他の膨張弁18は閉状態に制御することで、冷媒配管内に残留する冷媒の影響を低減させた状態で、次の判定処理を実行することができる。 According to the second embodiment described above, the outdoor control unit 28 indicates that the check operation is being performed to the person existing in the air-conditioning target space in order to maintain the fan 34 in the off state during the interval time. The check operation can be executed without making it feel. Moreover, the outdoor side control part 28 controls the expansion valve 18 which circulates a refrigerant | coolant to the indoor unit 30 used as the object of the determination process in an open state, and controls the other expansion valve 18 in a closed state, so that the refrigerant pipe The following determination process can be executed in a state where the influence of the refrigerant remaining inside is reduced.
 なお、第1の実施形態および第2の実施形態の空気調和システム1では、冷房運転時における判定処理について説明したが、暖房運転時においても第1の実施形態および第2の実施形態を適用してもよい。この場合、室外側制御部28は、判定処理のステップS152において温度差ΔTが温度T1以下(ΔT≦T1)であるか否かを判定する。また、室外側制御部28は、判定処理のステップS156において温度差ΔTnが温度T2以下(ΔTn≦T2)であるか否かを判定する。また、室外側制御部28は、判定処理のステップS162において温度TCが温度TCn以上(TC≧TCn)であるか否かを判定する。 In the air conditioning system 1 of the first embodiment and the second embodiment, the determination process during the cooling operation has been described. However, the first embodiment and the second embodiment are also applied during the heating operation. May be. In this case, the outdoor side controller 28 determines whether or not the temperature difference ΔT is equal to or lower than the temperature T1 (ΔT ≦ T1) in Step S152 of the determination process. Moreover, the outdoor side control part 28 determines whether temperature difference (DELTA) Tn is below temperature T2 ((DELTA) Tn <= T2) in step S156 of determination processing. Moreover, the outdoor side control part 28 determines whether temperature TC is more than temperature TCn (TC> = TCn) in step S162 of determination processing.
 また、第1の実施形態および第2の実施形態の空気調和システム1では、室外側制御部28が、ステップS152の判定(温度差ΔTが温度T1以上であるか否かの判定)、ステップS156の判定(他の全ての室内ユニット30について温度差ΔTnが、温度T2以上であるか否かの判定)、およびステップS162の判定(温度TCが温度TCn以下であるか否かの判定)を行うものとして説明したが、室外側制御部28は、上述した各ステップのうち1以上の判定結果を他の装置から取得し、取得した判定結果に基づいて、配管および通信線の少なくとも一方が正しく接続されているか否かを判定してもよい。この場合、他の装置は、室内ユニット30に含まれる室内側熱交換器温度センサ36の検出結果、および室内側温度センサ38の検出結果を取得し、取得した検出結果に基づいて、上記各ステップのうち1以上の判定を行って、LAN(Local Area Network)等のネットワークを介して、判定結果を室外側制御部28に送信する。 Further, in the air conditioning system 1 of the first embodiment and the second embodiment, the outdoor side control unit 28 determines in step S152 (determination of whether or not the temperature difference ΔT is equal to or higher than the temperature T1), step S156. (Determining whether or not the temperature difference ΔTn is equal to or higher than the temperature T2 for all other indoor units 30) and the determination in step S162 (determining whether or not the temperature TC is equal to or lower than the temperature TCn). Although described as a thing, the outdoor side control part 28 acquires one or more determination results from each apparatus mentioned above from another apparatus, Based on the acquired determination result, at least one of piping and a communication line is connected correctly It may be determined whether or not it is done. In this case, the other apparatus acquires the detection result of the indoor side heat exchanger temperature sensor 36 included in the indoor unit 30 and the detection result of the indoor side temperature sensor 38, and each step described above based on the acquired detection result. One or more determinations are made, and the determination result is transmitted to the outdoor control unit 28 via a network such as a LAN (Local Area Network).
 以上説明した少なくともひとつの実施形態によれば、少なくとも圧縮機を有し、冷媒配管システムに接続可能な室外ユニットと、第1の熱交換器を有し、前記冷媒配管システムに接続可能な第1の室内ユニットと、第2の熱交換器を有し、前記冷媒配管システムに接続可能な第2の室内ユニットと、前記第1の熱交換器の温度を検出する第1の温度検出部と、前記第2の熱交換器の温度を検出する第2の温度検出部と、前記第1の室内ユニットに対し設けられ、前記第1の室内ユニットに対応する空調対象空間の温度を検出する第3の温度検出部と、前記第2の室内ユニットに対し設けられ、前記第2の室内ユニットに対応する空調対象空間の温度を検出する第4の温度検出部と、前記第1の温度検出部により検出された温度と前記第3の温度検出部により検出された温度との差分である第1温度差が第1の閾値以上であり、且つ、前記第2の温度検出部により検出された温度と前記第4の温度検出部により検出された温度との差分である第2温度差が第2の閾値未満である場合に、前記第1の室内ユニットに接続された冷媒配管システムのうち前記第1の室内ユニットに接続された第1の冷媒配管および前記第1の室内ユニットに接続された第1の通信線のうち少なくとも一方が正しく接続されているか否かを判定する制御部とを持つことにより、精度よく配管または通信線が正しく接続されているか否かを判定することができる。 According to at least one embodiment described above, the first unit has at least a compressor and has an outdoor unit connectable to the refrigerant piping system, a first heat exchanger, and can be connected to the refrigerant piping system. An indoor unit, a second heat exchanger, a second indoor unit connectable to the refrigerant piping system, a first temperature detector for detecting a temperature of the first heat exchanger, A second temperature detector for detecting the temperature of the second heat exchanger; and a third temperature detector provided for the first indoor unit and detecting the temperature of the air-conditioning target space corresponding to the first indoor unit. Temperature detector, a fourth temperature detector provided for the second indoor unit and detecting the temperature of the air-conditioning target space corresponding to the second indoor unit, and the first temperature detector The detected temperature and the third The first temperature difference that is the difference between the temperature detected by the degree detection unit is equal to or greater than the first threshold value, and the temperature detected by the second temperature detection unit and the fourth temperature detection unit are detected. The first temperature unit connected to the first indoor unit among the refrigerant piping systems connected to the first indoor unit when the second temperature difference, which is the difference from the measured temperature, is less than the second threshold value. And a control unit that determines whether at least one of the refrigerant pipe and the first communication line connected to the first indoor unit is correctly connected. Whether or not it is connected can be determined.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (10)

  1.  少なくとも圧縮機を有し、冷媒配管システムに接続可能な室外ユニットと、
     第1の熱交換器を有し、前記冷媒配管システムに接続可能な第1の室内ユニットと、
     第2の熱交換器を有し、前記冷媒配管システムに接続可能な第2の室内ユニットと、
     前記第1の熱交換器の温度を検出する第1の温度検出部と、
     前記第2の熱交換器の温度を検出する第2の温度検出部と、
     前記第1の室内ユニットに対し設けられ、前記第1の室内ユニットに対応する空調対象空間の温度を検出する第3の温度検出部と、
     前記第2の室内ユニットに対し設けられ、前記第2の室内ユニットに対応する空調対象空間の温度を検出する第4の温度検出部と、
     前記第1の温度検出部により検出された温度と前記第3の温度検出部により検出された温度との差分である第1温度差が第1の閾値以上であり、且つ、前記第2の温度検出部により検出された温度と前記第4の温度検出部により検出された温度との差分である第2温度差が第2の閾値未満である場合に、前記第1の室内ユニットに接続された冷媒配管システムのうち前記第1の室内ユニットに接続された第1の冷媒配管および前記第1の室内ユニットに接続された第1の通信線のうち少なくとも一方が正しく接続されているか否かを判定する制御部と、
     を備える空気調和システム。
    An outdoor unit having at least a compressor and connectable to a refrigerant piping system;
    A first indoor unit having a first heat exchanger and connectable to the refrigerant piping system;
    A second indoor unit having a second heat exchanger and connectable to the refrigerant piping system;
    A first temperature detector for detecting the temperature of the first heat exchanger;
    A second temperature detector for detecting the temperature of the second heat exchanger;
    A third temperature detector provided for the first indoor unit and detecting the temperature of the air-conditioning target space corresponding to the first indoor unit;
    A fourth temperature detection unit provided for the second indoor unit and detecting the temperature of the air-conditioning target space corresponding to the second indoor unit;
    The first temperature difference, which is the difference between the temperature detected by the first temperature detection unit and the temperature detected by the third temperature detection unit, is greater than or equal to a first threshold, and the second temperature. When the second temperature difference, which is the difference between the temperature detected by the detection unit and the temperature detected by the fourth temperature detection unit, is less than the second threshold, it is connected to the first indoor unit. It is determined whether at least one of the first refrigerant pipe connected to the first indoor unit and the first communication line connected to the first indoor unit is correctly connected in the refrigerant pipe system. A control unit,
    Air conditioning system with
  2.  前記制御部は、前記第1の温度検出部により検出された温度と前記第3の温度検出部により検出された温度との差分である第1温度差が第1の閾値以上であるか否かを判定し、且つ、前記第2の温度検出部により検出された温度と前記第4の温度検出部により検出された温度との差分である第2温度差が第2の閾値未満である否かを判定する、
     請求項1記載の空気調和システム。
    The control unit determines whether or not a first temperature difference that is a difference between the temperature detected by the first temperature detection unit and the temperature detected by the third temperature detection unit is equal to or greater than a first threshold value. And whether or not a second temperature difference that is a difference between the temperature detected by the second temperature detection unit and the temperature detected by the fourth temperature detection unit is less than a second threshold value. Determine
    The air conditioning system according to claim 1.
  3.  前記制御部は、前記第1温度差が第1の閾値未満であると判定した後、所定時間が経過するまでの間に前記第1温度差が第1の閾値以上となった場合、前記第2温度差が第2の閾値未満であれば、前記冷媒配管システムのうち前記第1の室内ユニットに接続された第1の冷媒配管および前記第1の室内ユニットに接続された第1の通信線のうち少なくとも一方が正しく接続されていると判定する、
     請求項1記載の空気調和システム。
    The control unit determines that the first temperature difference is greater than or equal to the first threshold value after a predetermined time elapses after the first temperature difference is determined to be less than the first threshold value. If the two temperature difference is less than the second threshold value, the first refrigerant pipe connected to the first indoor unit in the refrigerant pipe system and the first communication line connected to the first indoor unit. Determine that at least one of them is connected correctly,
    The air conditioning system according to claim 1.
  4.  前記制御部は、前記第1温度差が第1の閾値以上であり、且つ、前記第2温度差が第2の閾値以上であると判定した場合、前記判定から所定時間経過後に、前記第1の室内ユニットに対応して設けられた前記第1の温度検出部により検出された温度が、前記第2の室内ユニットに対応して設けられた前記第2の温度検出部により検出された温度以下である場合、前記第1の冷媒配管および前記第1の通信線のうち少なくとも一方が正しく接続されていると判定する、
     請求項3記載の空気調和システム。
    When the control unit determines that the first temperature difference is equal to or greater than a first threshold value and the second temperature difference is equal to or greater than a second threshold value, the control unit performs the first time after a predetermined time has elapsed since the determination. The temperature detected by the first temperature detector provided corresponding to the indoor unit is equal to or lower than the temperature detected by the second temperature detector provided corresponding to the second indoor unit. If it is, it is determined that at least one of the first refrigerant pipe and the first communication line is correctly connected.
    The air conditioning system according to claim 3.
  5.  前記制御部は、前記第1の室内ユニットについて前記判定を行った後に、前記冷媒配管システムのうち前記第2の室内ユニットに接続された第2の冷媒配管および前記第2の室内ユニットに接続された第2の通信線のうち少なくとも一方が正しく接続されているか否かを判定する、
     請求項4記載の空気調和システム。
    The controller is connected to the second refrigerant pipe connected to the second indoor unit and the second indoor unit in the refrigerant pipe system after performing the determination on the first indoor unit. Determining whether at least one of the second communication lines is correctly connected;
    The air conditioning system according to claim 4.
  6.  第3の熱交換器を有し、前記冷媒配管システムに接続可能な第3の室内ユニットと、
     前記第3の熱交換器の温度を検出する第5の温度検出部と、
     前記第3の室内ユニットに対し設けられ、前記第3の室内ユニットに対応する空調対象空間の温度を検出する第6の温度検出部と、を更に備え、
     前記制御部は、
     前記第1の室内ユニットに接続された第1の冷媒配管および前記第1の通信線のうち少なくとも一方が正しく接続されていると判定した場合、
     前記第2の温度検出部により検出された温度と前記第4の温度検出部により検出された温度との差分である第3温度差が第1の閾値以上であり、且つ、前記第5の温度検出部により検出された温度と前記第6の温度検出部により検出された温度との差分である第4温度差が第2の閾値未満である場合に、前記第2の室内ユニットに接続された冷媒配管システムのうち前記第2の室内ユニットに接続された第2の冷媒配管および前記第2の室内ユニットに接続された第2の通信線のうち少なくとも一方が正しく接続されていると判定する、
     請求項1記載の空気調和システム。
    A third indoor unit having a third heat exchanger and connectable to the refrigerant piping system;
    A fifth temperature detector for detecting the temperature of the third heat exchanger;
    A sixth temperature detector provided for the third indoor unit and detecting the temperature of the air-conditioning target space corresponding to the third indoor unit;
    The controller is
    When it is determined that at least one of the first refrigerant pipe connected to the first indoor unit and the first communication line is correctly connected,
    A third temperature difference, which is a difference between the temperature detected by the second temperature detection unit and the temperature detected by the fourth temperature detection unit, is greater than or equal to a first threshold, and the fifth temperature. When the fourth temperature difference, which is the difference between the temperature detected by the detection unit and the temperature detected by the sixth temperature detection unit, is less than the second threshold value, it is connected to the second indoor unit. It is determined that at least one of the second refrigerant pipe connected to the second indoor unit and the second communication line connected to the second indoor unit in the refrigerant pipe system is correctly connected.
    The air conditioning system according to claim 1.
  7.  前記制御部は、前記第1の冷媒配管および前記第1の通信線のうち少なくとも一方が正しく接続されていると判定した場合、前記第1の温度検出部により検出された温度および前記第3の温度検出部により検出された温度を、前記第2の室内ユニットに接続された第2の冷媒配管および前記第2の室内ユニットに接続された第2の通信線のうち少なくとも一方が正しく接続されているか否かを判定する際に使用しない、
     請求項1記載の空気調和システム。
    When it is determined that at least one of the first refrigerant pipe and the first communication line is correctly connected, the control unit detects the temperature detected by the first temperature detection unit and the third temperature At least one of the second refrigerant pipe connected to the second indoor unit and the second communication line connected to the second indoor unit is correctly connected to the temperature detected by the temperature detector. Not used to determine whether or not
    The air conditioning system according to claim 1.
  8.  前記制御部は、前記第1の室内ユニットに接続された第1の冷媒配管および前記第1の室内ユニットに接続された第1の通信線のうち少なくとも一方が正しく接続されているか否かを判定し、前記第1の室内ユニットについて判定後、前記判定から所定時間の間待機し、前記第2の冷媒配管および第2の通信線のうち少なくとも一方が正しく接続されているか否かを判定する、
     請求項5記載の空気調和システム。
    The control unit determines whether at least one of the first refrigerant pipe connected to the first indoor unit and the first communication line connected to the first indoor unit is correctly connected. And after determining about the first indoor unit, it waits for a predetermined time from the determination, and determines whether at least one of the second refrigerant pipe and the second communication line is correctly connected.
    The air conditioning system according to claim 5.
  9.  第1の室内ユニットは、前記第1の熱交換器によって熱交換された空気を、前記第1の室内ユニットに対応する空調対象空間に送風する第1のファンと、
     第2の室内ユニットは、前記第2の熱交換器によって熱交換された空気を、前記第2の室内ユニットに対応する空調対象空間に送風する第2のファンと、を更に備え、
     前記制御部は、前記第1の室内ユニットについて判定した後、前記判定から所定時間の間待機している間、少なくとも第2のファンをオン状態に制御する、
     請求項1記載の空気調和システム。
    The first indoor unit has a first fan for blowing the air heat-exchanged by the first heat exchanger to an air-conditioning target space corresponding to the first indoor unit;
    The second indoor unit further includes a second fan for blowing the air heat-exchanged by the second heat exchanger to an air-conditioning target space corresponding to the second indoor unit,
    The control unit, after determining the first indoor unit, controls at least the second fan to be on while waiting for a predetermined time from the determination.
    The air conditioning system according to claim 1.
  10.  前記圧縮機と前記第1の熱交換器との間に設けられ、前記圧縮機から吐出された冷媒が前記第1の熱交換器に流れる流量を制御する第1の膨張弁と、
     前記圧縮機と前記第2の熱交換器との間に設けられ、前記圧縮機から吐出された冷媒が前記第2の熱交換器に流れる流量を制御する第2の膨張弁と、を更に備え、
     前記制御部は、前記第1の室内ユニットについて判定した後、前記判定から所定時間の間待機している間、前記第1の膨張弁と前記第2の膨張弁とを開状態に制御する、
     請求項1記載の空気調和システム。
    A first expansion valve that is provided between the compressor and the first heat exchanger, and that controls a flow rate of refrigerant discharged from the compressor through the first heat exchanger;
    A second expansion valve that is provided between the compressor and the second heat exchanger, and that controls a flow rate of the refrigerant discharged from the compressor through the second heat exchanger. ,
    The controller controls the first expansion valve and the second expansion valve to be in an open state while waiting for a predetermined time from the determination after determining the first indoor unit.
    The air conditioning system according to claim 1.
PCT/JP2016/083368 2015-11-12 2016-11-10 Air conditioning system WO2017082346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16864307.0A EP3376126B1 (en) 2015-11-12 2016-11-10 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015221940 2015-11-12
JP2015-221940 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017082346A1 true WO2017082346A1 (en) 2017-05-18

Family

ID=58696118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083368 WO2017082346A1 (en) 2015-11-12 2016-11-10 Air conditioning system

Country Status (2)

Country Link
EP (1) EP3376126B1 (en)
WO (1) WO2017082346A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240692A1 (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Control device and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300397A (en) * 1993-04-14 1994-10-28 Daikin Ind Ltd Freezing preventive device of air conditioner
JP2002147824A (en) * 2000-11-14 2002-05-22 Hitachi Ltd Air conditioner
JP2013181697A (en) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp Multiple-unit air conditioning apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3216435B2 (en) * 1994-09-01 2001-10-09 ダイキン工業株式会社 Multi type air conditioner
JP5865103B2 (en) * 2012-02-07 2016-02-17 三菱電機株式会社 Air conditioner
JP2014074533A (en) * 2012-10-04 2014-04-24 Panasonic Corp Multi-type air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300397A (en) * 1993-04-14 1994-10-28 Daikin Ind Ltd Freezing preventive device of air conditioner
JP2002147824A (en) * 2000-11-14 2002-05-22 Hitachi Ltd Air conditioner
JP2013181697A (en) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp Multiple-unit air conditioning apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240692A1 (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Control device and control method
JPWO2020240692A1 (en) * 2019-05-28 2021-10-21 三菱電機株式会社 Control device and control method
JP7098057B2 (en) 2019-05-28 2022-07-08 三菱電機株式会社 Control device and control method

Also Published As

Publication number Publication date
EP3376126B1 (en) 2023-09-13
EP3376126A1 (en) 2018-09-19
EP3376126A4 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6932259B2 (en) Air conditioner and operating condition judgment method
EP3296656A1 (en) Air conditioning system, control method, and program
JP6636048B2 (en) Air conditioner
US11525599B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP2012177490A (en) Mediation device and air conditioning system
JP2015212594A (en) Degradation diagnostic method of compressor and refrigeration cycle device having the degradation diagnostic method
EP3208549B1 (en) Air conditioner
WO2017082346A1 (en) Air conditioning system
JP2008039388A (en) Multi-type air conditioner
KR20140094813A (en) An air conditioner, an air condition system and a control method thereof
JP2011163614A (en) Air conditioning control system
JPH11237097A (en) Multiroom air conditioner
JP6146606B2 (en) Air conditioner
AU2015267832B2 (en) Heat-recovery-type refrigeration apparatus
WO2021171448A1 (en) Refrigeration cycle device
JP3833497B2 (en) Air conditioner
WO2017104086A1 (en) Air conditioner
WO2016148003A1 (en) Refrigerating and air conditioning device
JP4587895B2 (en) Air conditioner
JPWO2018029783A1 (en) Air conditioner
JP6519098B2 (en) Air conditioner
JP2005180861A (en) Refrigerant natural circulation type cooling system
WO2020059077A1 (en) Air conditioner and control method
JP5640710B2 (en) Air conditioner
JP2006153397A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016864307

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP