JP2014074533A - Multi-type air conditioner - Google Patents

Multi-type air conditioner Download PDF

Info

Publication number
JP2014074533A
JP2014074533A JP2012221977A JP2012221977A JP2014074533A JP 2014074533 A JP2014074533 A JP 2014074533A JP 2012221977 A JP2012221977 A JP 2012221977A JP 2012221977 A JP2012221977 A JP 2012221977A JP 2014074533 A JP2014074533 A JP 2014074533A
Authority
JP
Japan
Prior art keywords
temperature
indoor
air conditioner
temperature sensor
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012221977A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakamura
康裕 中村
Nobuki Shima
伸起 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012221977A priority Critical patent/JP2014074533A/en
Publication of JP2014074533A publication Critical patent/JP2014074533A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multi-type air conditioner capable of precisely checking connection of refrigerant pipelines of plural indoor apparatuses and an outdoor apparatus.SOLUTION: In a multi-type air conditioner, an outdoor apparatus 3 having a compressor 12, an outdoor heat exchanger, a four-way valve 17, and expansion valves 13, 14 is connected to plural indoor apparatuses 1, 2 having a blowing fan, indoor heat exchangers 10, 11 and suction temperature sensors 7, 9 for detecting suction temperature of the indoor heat exchangers 10, 11 by refrigerant pipelines 4, 5. The air conditioner comprises connection determination means for determining that the plural indoor apparatuses 1, 2 and the outdoor apparatus 3 are properly connected with each other when a temperature difference between an initial value of the suction temperature detected by the suction temperature sensors 7, 9 and a predetermined value of the suction temperature after a predetermined time is not less than a specific value, and determining that the plural indoor apparatuses 1, 2 and the outdoor apparatus 3 are not properly connected with each other when the difference is less than the specific value.

Description

本発明は、室内機が正しく接続されているかどうかの接続判定をする制御手段を設けたマルチ形空気調和装置に関するものである。   The present invention relates to a multi-type air conditioner provided with control means for determining whether or not an indoor unit is correctly connected.

従来、マルチ形空気調和装置は、複数台の室内機と室外機とで構成されている(例えば、特許文献1参照)。   Conventionally, a multi-type air conditioner is configured by a plurality of indoor units and outdoor units (see, for example, Patent Document 1).

図1は、従来のマルチ形空気調和装置のブロック図である。   FIG. 1 is a block diagram of a conventional multi-type air conditioner.

A室内機1は、室外機3と冷媒配管4で接続されている。A室内機1には、室内熱交換器温度センサ6、吸い込み温度センサ7が設けられている。   The A indoor unit 1 is connected to the outdoor unit 3 through the refrigerant pipe 4. The A indoor unit 1 is provided with an indoor heat exchanger temperature sensor 6 and a suction temperature sensor 7.

また、B室内機2も、室外機3と冷媒配管5で接続されている。B室内機2には、室内熱交換器温度センサ8、吸い込み温度センサ9が設けられている。   The B indoor unit 2 is also connected to the outdoor unit 3 through the refrigerant pipe 5. The B indoor unit 2 is provided with an indoor heat exchanger temperature sensor 8 and a suction temperature sensor 9.

室外機3は、A室内機1およびB室内機2との間で、冷媒配管4および冷媒配管5により冷媒を循環させている。室外機3は、圧縮機12により冷媒を循環させるが、A室内機1に使用する膨張弁13、B室内機2に使用する膨張弁14により冷媒を分配する構成をとっている。   In the outdoor unit 3, the refrigerant is circulated through the refrigerant pipe 4 and the refrigerant pipe 5 between the A indoor unit 1 and the B indoor unit 2. The outdoor unit 3 circulates the refrigerant by the compressor 12, but has a configuration in which the refrigerant is distributed by the expansion valve 13 used for the A indoor unit 1 and the expansion valve 14 used for the B indoor unit 2.

特開平8−219600号公報JP-A-8-219600

しかしながら、前記従来の構成では、マルチ形空気調和装置を据え付け工事終了後に、室外機3と接続するA室内機1、B室内機2において、A室内機1と接続する冷媒配管4、そしてB室内機2と接続する冷媒配管5とが正しく接続されているかどうかを確認しなければいけなかった。   However, in the conventional configuration, after the installation work of the multi-type air conditioner is completed, in the A indoor unit 1 and the B indoor unit 2 connected to the outdoor unit 3, the refrigerant pipe 4 connected to the A indoor unit 1 and the B room It was necessary to check whether the refrigerant pipe 5 connected to the machine 2 was correctly connected.

例えば、A室内機1に冷媒配管5を接続し、B室内機2に冷媒配管4を接続する場合があるので接続確認を行う必要がある。その場合、A室内機1、B室内機2を順番に冷房運転を行い、それぞれの室内熱交換器温度センサ6、8が検出する温度が低下しているかを確認し、室内機と室外機が正しく接続されているかを確認する。   For example, since the refrigerant pipe 5 may be connected to the A indoor unit 1 and the refrigerant pipe 4 may be connected to the B indoor unit 2, it is necessary to check the connection. In that case, the A indoor unit 1 and the B indoor unit 2 are sequentially cooled, and it is confirmed whether the temperatures detected by the indoor heat exchanger temperature sensors 6 and 8 are lowered. Check that the connection is correct.

しかしながら、室内熱交換器温度センサ6、8の温度低下を検出するのに時間がかかったり、誤検出するという課題を有していた。   However, it takes time to detect the temperature drop of the indoor heat exchanger temperature sensors 6 and 8, and there is a problem of erroneous detection.

本発明は、前記従来の課題を解決するもので、複数の室内機と室外機との冷媒配管接続確認を短時間に精度良く行うことのできるマルチ形空気調和装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a multi-type air conditioner capable of accurately confirming refrigerant pipe connection between a plurality of indoor units and outdoor units in a short time. .

前記従来の課題を解決するために、本発明のマルチ形空気調和装置は、圧縮機、室外熱交換器、四方弁、及び流量制御膨張弁を有する室外機と、送風用のファン、室内熱交換器
、前記室内熱交換器の吸い込み温度を検出する吸い込み温度センサを有する複数の室内機とを冷媒配管で接続するマルチ形空気調和装置において、前記吸い込み温度センサが検出する吸い込み温度の初期値と、所定時間後の吸い込み温度の所定値との温度差が、一定値以上であると前記複数の室内機と前記室外機とが正しく接続されていると判定し、一定値未満であると前記複数の室内機と前記室外機とが正しく接続されていないと判定する、接続判定手段を設けたものである。
In order to solve the conventional problems, a multi-type air conditioner of the present invention includes an outdoor unit having a compressor, an outdoor heat exchanger, a four-way valve, and a flow control expansion valve, a fan for blowing air, and an indoor heat exchange. In a multi-type air conditioner that connects a plurality of indoor units having a suction temperature sensor that detects a suction temperature of the indoor heat exchanger with a refrigerant pipe, an initial value of the suction temperature detected by the suction temperature sensor; It is determined that the plurality of indoor units and the outdoor unit are correctly connected if the temperature difference from the predetermined value of the suction temperature after a predetermined time is a certain value or more, and if the temperature difference is less than a certain value, the plurality of Connection determination means for determining that the indoor unit and the outdoor unit are not correctly connected is provided.

これによって、複数の室内機と室外機とを取り付けたマルチ形空気調和装置において、据え付け工事終了後にそれぞれの室内機と冷媒配管が正しく取り付けられているかを判定する場合に、室内機の吸い込み温度センサを使用することにより、室内機の雰囲気温度の変化を少なくし、冷媒の温度変化を精度良く短時間に判定することができる。   As a result, in a multi-type air conditioner in which a plurality of indoor units and outdoor units are attached, when determining whether each indoor unit and refrigerant piping are correctly attached after the installation work is completed, the suction temperature sensor of the indoor unit By using this, the change in the atmospheric temperature of the indoor unit can be reduced, and the change in the temperature of the refrigerant can be accurately determined in a short time.

本発明は、複数の室内機と室外機を取り付けたマルチ形空気調和装置において、据え付け工事終了後にそれぞれの室内機と冷媒配管が正しく取り付けられているかを判定する場合に、室内機の吸い込み温度センサを使用することにより、短時間に精度良く判定することができる。   The present invention relates to a multi-type air conditioner in which a plurality of indoor units and outdoor units are attached. When determining whether each indoor unit and refrigerant piping are correctly attached after the installation work is completed, the suction temperature sensor of the indoor unit By using this, it is possible to determine with high accuracy in a short time.

従来および本発明の実施の形態におけるマルチ形空気調和装置のブロック図Block diagram of a conventional multi-type air conditioner according to an embodiment of the present invention 本発明の実施の形態における室内機内の温度センサの温度変化を示すグラフThe graph which shows the temperature change of the temperature sensor in the indoor unit in embodiment of this invention 本発明の実施の形態における室外機内の温度センサの温度変化を示すグラフThe graph which shows the temperature change of the temperature sensor in the outdoor unit in embodiment of this invention

第1の発明は、圧縮機、室外熱交換器、四方弁、及び流量制御膨張弁を有する室外機と、送風用のファン、室内熱交換器、前記室内熱交換器の吸い込み温度を検出する吸い込み温度センサを有する複数の室内機とを冷媒配管で接続するマルチ形空気調和装置において、前記吸い込み温度センサが検出する吸い込み温度の初期値と、所定時間後の吸い込み温度の所定値との温度差が、一定値以上であると前記複数の室内機と前記室外機とが正しく接続されていると判定し、一定値未満であると前記複数の室内機と前記室外機とが正しく接続されていないと判定する、接続判定手段を設けたことにより、据え付け工事終了後にそれぞれの室内機と冷媒配管が正しく取り付けられているかを判定する場合に、室内機の吸い込み温度センサを使用することにより、室内機の雰囲気温度の変化を少なくし、冷媒の温度変化を精度良く短時間に判定することができる。   The first invention includes an outdoor unit having a compressor, an outdoor heat exchanger, a four-way valve, and a flow control expansion valve, a fan for blowing air, an indoor heat exchanger, and a suction for detecting a suction temperature of the indoor heat exchanger In a multi-type air conditioner in which a plurality of indoor units having temperature sensors are connected by refrigerant piping, a temperature difference between an initial value of the suction temperature detected by the suction temperature sensor and a predetermined value of the suction temperature after a predetermined time is obtained. The plurality of indoor units and the outdoor unit are determined to be correctly connected if they are above a certain value, and the plurality of indoor units and the outdoor unit are not properly connected if they are less than a certain value. Use the indoor unit suction temperature sensor to determine whether each indoor unit and refrigerant piping are correctly installed after the installation work is completed by providing connection determination means And it allows to reduce the change in the ambient temperature of the indoor unit can be determined in a short time with high accuracy temperature variation of the refrigerant.

第2の発明は、前記流量制御膨張弁の近傍配管温度を検出する膨張弁近傍配管温度センサを備え、前記膨張弁近傍配管温度センサが検出する膨張弁近傍配管温度の初期値と、所定時間後の膨張弁近傍配管温度の所定値との温度差が、一定値以上であると前記複数の室内機と前記室外機とが正しく接続されていると判定し、一定値未満であると前記複数の室内機と前記室外機とが正しく接続されていないと判定する、接続判定手段を設けたことにより、据え付け工事終了後にそれぞれの室内機と冷媒配管が正しく取り付けられているかを判定する場合に、膨張弁近傍配管温度センサを使用することにより、室内機の雰囲気温度の変化を少なくし、冷媒の温度変化を精度良く短時間に判定することができる。   A second invention includes an expansion valve vicinity pipe temperature sensor for detecting a pipe temperature near the flow control expansion valve, and an initial value of the expansion valve vicinity pipe temperature detected by the expansion valve vicinity pipe temperature sensor and a predetermined time later. It is determined that the plurality of indoor units and the outdoor unit are correctly connected when the temperature difference from the predetermined value of the pipe temperature near the expansion valve is a certain value or more, and when the temperature difference is less than a certain value, the plurality of When determining whether each indoor unit and refrigerant piping are correctly installed after the installation work is completed by providing connection determination means that determines that the indoor unit and the outdoor unit are not correctly connected, expansion By using the valve vicinity pipe temperature sensor, the change in the atmospheric temperature of the indoor unit can be reduced, and the change in the temperature of the refrigerant can be accurately determined in a short time.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態におけるマルチ形空気調和装置のブロック図である(従来の実施の形態と同じである)。冷房時は、圧縮機12から吐出された冷媒は、室外機3か
らA室内機1へは、膨張弁13、冷媒配管4、室内熱交換器10、四方弁17を通り圧縮機12へと戻る。一方、B室内機2へは膨張弁14、冷媒配管5、室内熱交換器11、四方弁17を通り圧縮機12へと戻る。
(Embodiment 1)
FIG. 1 is a block diagram of a multi-type air conditioner according to an embodiment of the present invention (the same as the conventional embodiment). During cooling, the refrigerant discharged from the compressor 12 returns from the outdoor unit 3 to the A indoor unit 1 through the expansion valve 13, the refrigerant pipe 4, the indoor heat exchanger 10, and the four-way valve 17 and returns to the compressor 12. . On the other hand, the B indoor unit 2 returns to the compressor 12 through the expansion valve 14, the refrigerant pipe 5, the indoor heat exchanger 11, and the four-way valve 17.

また、暖房時は、四方弁17が切り替わり、冷房時とは逆方向に冷媒が流れる。   Further, the four-way valve 17 is switched during heating, and the refrigerant flows in the opposite direction to that during cooling.

図2は、本発明の実施の形態における室内機内の温度センサの温度変化を示すグラフである。一般的に室内熱交換器温度は、冷媒が流れるため温度の低下が大きく、吸い込み温度は温度の低下が小さい。しかし、熱交換器温度は室内温度、外気温度に応じて変化幅が大きく、また運転開始後から低圧が落ちることで温度が低下しやすい。また、冷媒に過剰に反応するために判定までに時間が必要になるので、熱交換器温度よりも吸い込み温度の温度変化により、短時間に精度よく判定することができる。   FIG. 2 is a graph showing a temperature change of the temperature sensor in the indoor unit according to the embodiment of the present invention. In general, the indoor heat exchanger temperature has a large temperature drop because the refrigerant flows, and the suction temperature has a small temperature drop. However, the temperature of the heat exchanger varies greatly according to the room temperature and the outside air temperature, and the temperature is likely to decrease due to a drop in the low pressure after the start of operation. Moreover, since it takes time to make a determination because it reacts excessively with the refrigerant, it can be accurately determined in a short time by the temperature change of the suction temperature rather than the heat exchanger temperature.

そして、接続判定する方法として、一般的に室内機を1台ずつ判定する。A室内機1から判定する場合は、膨張弁14を閉じてA室内機1にのみ冷媒を流し、室内吸い込み温度センサ7が検出する温度の初期値と、所定時間後の室内吸い込み温度センサ7が検出する温度の所定値との温度差(|初期値−所定値|)が一定値E以上になれば、冷媒が正しく流れていると判定する。しかし、この温度差が一定値E未満であれば、冷媒が正しく流れていないと判定する。   As a method for determining connection, generally, indoor units are determined one by one. When determining from the A indoor unit 1, the expansion valve 14 is closed and the refrigerant is allowed to flow only to the A indoor unit 1, and the initial value of the temperature detected by the indoor suction temperature sensor 7 and the indoor suction temperature sensor 7 after a predetermined time are determined. If the temperature difference (| initial value−predetermined value |) between the detected temperature and the predetermined value is equal to or greater than a certain value E, it is determined that the refrigerant is flowing correctly. However, if this temperature difference is less than a certain value E, it is determined that the refrigerant is not flowing correctly.

そして、その後、B室内機2についても、膨張弁13を閉じてB室内機2にのみ冷媒を流し、吸い込み温度センサ9が検出する温度の初期値と、所定時間後の室内吸い込み温度センサ9が検出する温度の所定値との温度差(|初期値−所定値|)により、A室内機1と同様に冷媒の流れを判定する。   After that, for the B indoor unit 2, the expansion valve 13 is closed and the refrigerant is allowed to flow only through the B indoor unit 2, and the initial value of the temperature detected by the suction temperature sensor 9 and the indoor suction temperature sensor 9 after a predetermined time are The refrigerant flow is determined in the same manner as the A indoor unit 1 based on the temperature difference (| initial value−predetermined value |) of the detected temperature.

なお、より精度を上げるために、温度差を1〜n回まで積算して判定を行う。室内機に冷媒を流す時に室内送風がショートサーキットするようにすることにより、短時間に精度良く判定することができる。   In order to improve accuracy, the temperature difference is integrated up to 1 to n times for determination. By making the indoor air flow a short circuit when the refrigerant is allowed to flow through the indoor unit, it can be accurately determined in a short time.

図3は、本発明の実施の形態における室外機内の温度センサの温度変化を示すグラフである。室外機の液管温度センサ15、16、およびガス管温度センサ18、19を使うことにより、室外機のみでも誤配管を判定することができる。   FIG. 3 is a graph showing a temperature change of the temperature sensor in the outdoor unit in the embodiment of the present invention. By using the liquid pipe temperature sensors 15 and 16 and the gas pipe temperature sensors 18 and 19 of the outdoor unit, it is possible to determine erroneous piping only with the outdoor unit.

A室内機1から判定する場合は、膨張弁14を閉じてA室内機1にのみ冷媒を流し、初期値(液管温度センサ15が検出する温度とガス管温度センサ18が検出する温度から算出)と所定値(所定時間後の、液管温度センサ15が検出する温度とガス管温度センサ18が検出する温度から算出)との温度差(|初期値−所定値|)が一定値E以上になれば、冷媒が正しく流れていると判定する。しかし、この温度差が一定値E未満であれば、冷媒が正しく流れていないと判定する。   When determining from the indoor unit A, the expansion valve 14 is closed and the refrigerant is allowed to flow only through the indoor unit 1, and the initial value (calculated from the temperature detected by the liquid pipe temperature sensor 15 and the temperature detected by the gas pipe temperature sensor 18). ) And a predetermined value (calculated from the temperature detected by the liquid pipe temperature sensor 15 and the temperature detected by the gas pipe temperature sensor 18 after a predetermined time) (| initial value−predetermined value |) is equal to or greater than a predetermined value E If it becomes, it will determine with the refrigerant | coolant flowing correctly. However, if this temperature difference is less than a certain value E, it is determined that the refrigerant is not flowing correctly.

B室内機2についても、膨張弁13を閉じてB室内機2にのみ冷媒を流し、初期値(液管温度センサ16が検出する温度とガス管温度センサ19が検出する温度から算出)と所定値(所定時間後の、液管温度センサ16が検出する温度とガス管温度センサ19が検出する温度から算出)との温度差(|初期値−所定値|)により、A室内機1と同様に冷媒の流れを判定する。そして、より精度を上げるために、温度差を1〜n回まで積算して判定を行う。   For the B indoor unit 2 as well, the expansion valve 13 is closed and the refrigerant is allowed to flow only through the B indoor unit 2, and the initial value (calculated from the temperature detected by the liquid pipe temperature sensor 16 and the temperature detected by the gas pipe temperature sensor 19) and a predetermined value are set. Similar to the A indoor unit 1 by the temperature difference (| initial value−predetermined value |) between the values (calculated from the temperature detected by the liquid pipe temperature sensor 16 and the temperature detected by the gas pipe temperature sensor 19 after a predetermined time). The refrigerant flow is determined. And in order to raise a precision more, a temperature difference is integrated to 1 to n times and it determines.

なお、初期値、所定値および温度差は以下の計算式で算出する。   The initial value, the predetermined value, and the temperature difference are calculated by the following calculation formula.

初期値=A×液管温度+B×ガス管温度
所定値=C×液管温度+D×ガス管温度
そして、所定値は精度を上げるために積算を行う。
Initial value = A × Liquid pipe temperature + B × Gas pipe temperature Predetermined value = C × Liquid pipe temperature + D × Gas pipe temperature The predetermined value is integrated to increase accuracy.

温度差=|初期値−(所定値1+所定値2+・・・所定値n)/n|
温度差が大きければ、冷媒が各々の室内機の熱交換器に流れていることを示している。初期値、所定値は、係数値A、B、C、Dを変化させることにより、より正確に判定を行うことができる。
Temperature difference = | initial value− (predetermined value 1 + predetermined value 2+... Predetermined value n) / n |
If the temperature difference is large, it indicates that the refrigerant is flowing in the heat exchanger of each indoor unit. The initial value and the predetermined value can be determined more accurately by changing the coefficient values A, B, C, and D.

これらの判定制御を据え付け工事後に行い、冷媒配管が正しく取り付けられているかどうかの判定を行うことができる。   These determination controls can be performed after installation work to determine whether or not the refrigerant pipe is correctly attached.

以上のように、本発明にかかるマルチ形空気調和装置は、冷媒配管が正しく取り付けられているかどうかを短時間に精度良く判定することができ、2室以上のマルチ形空気調和装置の用途にも適用できる。   As described above, the multi-type air conditioner according to the present invention can accurately determine in a short time whether or not the refrigerant pipe is correctly attached, and can also be used for a multi-type air conditioner having two or more rooms. Applicable.

1 A室内機
2 B室内機
3 室外機
4 冷媒配管
5 冷媒配管
6 室内熱交換器温度センサ
7 吸い込み温度センサ
8 室内熱交換器温度センサ
9 吸い込み温度センサ
10 室内熱交換器
11 室内熱交換器
12 圧縮機
13 膨張弁
14 膨張弁
15 液管温度センサ
16 液管温度センサ
17 四方弁
18 ガス管温度センサ
19 ガス管温度センサ
DESCRIPTION OF SYMBOLS 1 A indoor unit 2 B indoor unit 3 Outdoor unit 4 Refrigerant piping 5 Refrigerant piping 6 Indoor heat exchanger temperature sensor 7 Suction temperature sensor 8 Indoor heat exchanger temperature sensor 9 Suction temperature sensor 10 Indoor heat exchanger 11 Indoor heat exchanger 12 Compressor 13 Expansion valve 14 Expansion valve 15 Liquid pipe temperature sensor 16 Liquid pipe temperature sensor 17 Four-way valve 18 Gas pipe temperature sensor 19 Gas pipe temperature sensor

Claims (2)

圧縮機、室外熱交換器、四方弁、及び流量制御膨張弁を有する室外機と、送風用のファン、室内熱交換器、前記室内熱交換器の吸い込み温度を検出する吸い込み温度センサを有する複数の室内機とを冷媒配管で接続するマルチ形空気調和装置において、前記吸い込み温度センサが検出する吸い込み温度の初期値と、所定時間後の吸い込み温度の所定値との温度差が、一定値以上であると前記複数の室内機と前記室外機とが正しく接続されていると判定し、一定値未満であると前記複数の室内機と前記室外機とが正しく接続されていないと判定する、接続判定手段を設けたことを特徴とするマルチ形空気調和装置。 A plurality of outdoor units having a compressor, an outdoor heat exchanger, a four-way valve, and a flow rate control expansion valve; a fan for blowing air; an indoor heat exchanger; and a suction temperature sensor for detecting a suction temperature of the indoor heat exchanger. In a multi-type air conditioner that connects an indoor unit with a refrigerant pipe, a temperature difference between an initial value of the suction temperature detected by the suction temperature sensor and a predetermined value of the suction temperature after a predetermined time is a certain value or more. Connection determining means for determining that the plurality of indoor units and the outdoor unit are correctly connected, and determining that the plurality of indoor units and the outdoor unit are not correctly connected if less than a certain value A multi-type air conditioner characterized by comprising 前記流量制御膨張弁の近傍配管温度を検出する膨張弁近傍配管温度センサを備え、前記膨張弁近傍配管温度センサが検出する膨張弁近傍配管温度の初期値と、所定時間後の膨張弁近傍配管温度の所定値との温度差が、一定値以上であると前記複数の室内機と前記室外機とが正しく接続されていると判定し、一定値未満であると前記複数の室内機と前記室外機とが正しく接続されていないと判定する、接続判定手段を設けたことを特徴とするマルチ形空気調和装置。 An expansion valve vicinity pipe temperature sensor for detecting a pipe temperature near the flow control expansion valve is provided, and an initial value of the expansion valve vicinity pipe temperature detected by the expansion valve vicinity pipe temperature sensor, and an expansion valve vicinity pipe temperature after a predetermined time. It is determined that the plurality of indoor units and the outdoor unit are correctly connected if the temperature difference from the predetermined value is equal to or greater than a certain value, and if the temperature difference is less than a certain value, the plurality of indoor units and the outdoor unit are determined. And a multi-type air conditioner, characterized in that a connection determination means is provided for determining that and are not correctly connected.
JP2012221977A 2012-10-04 2012-10-04 Multi-type air conditioner Pending JP2014074533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221977A JP2014074533A (en) 2012-10-04 2012-10-04 Multi-type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221977A JP2014074533A (en) 2012-10-04 2012-10-04 Multi-type air conditioner

Publications (1)

Publication Number Publication Date
JP2014074533A true JP2014074533A (en) 2014-04-24

Family

ID=50748794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221977A Pending JP2014074533A (en) 2012-10-04 2012-10-04 Multi-type air conditioner

Country Status (1)

Country Link
JP (1) JP2014074533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376126A4 (en) * 2015-11-12 2019-06-19 Toshiba Carrier Corporation Air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376126A4 (en) * 2015-11-12 2019-06-19 Toshiba Carrier Corporation Air conditioning system

Similar Documents

Publication Publication Date Title
US9765979B2 (en) Heat-pump system with refrigerant charge diagnostics
EP2728280B1 (en) Air conditioner and control method thereof
JP2017009267A (en) Air-conditioning system
JP2015059691A (en) Air conditioner and air conditioning system
JP2005241050A (en) Air conditioning system
CN105571075B (en) A kind of control method of water-cooled multi-connected machine return-air increasing enthalpy
CN108286773A (en) Progress control method, device, air conditioner and computer readable storage medium
JP2017009268A (en) Air-conditioning system
CN111140990A (en) Filth blockage detection method for air conditioner heat exchanger and air conditioner
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
US11268721B2 (en) HVAC system prognostics and diagnostics based on temperature rise or drop
US20190301759A1 (en) Method of and system for detecting loss of refrigerant charge
JPWO2012050087A1 (en) Heat source equipment
JP2015206509A (en) Cold/hot heat equipment
JP2013204863A (en) Multi-air conditioner
JP2005257219A (en) Air conditioner
JP4840108B2 (en) Compressor protection control method for air conditioner
CN104541110A (en) Radiant air conditioner
CN107560105B (en) Method and device for judging connection pipe error of four-way valve and machine readable storage medium
CN108885022B (en) Air conditioner outlet air temperature estimation device and computer readable recording medium
KR20090099909A (en) Air conditioner and method of controlling the same
JP2011252641A (en) Air conditioner
JP2014074533A (en) Multi-type air conditioner
JP2006118765A (en) Air conditioner
JP2014013119A (en) Multi-split type air conditioning system