JP2006153397A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006153397A
JP2006153397A JP2004348095A JP2004348095A JP2006153397A JP 2006153397 A JP2006153397 A JP 2006153397A JP 2004348095 A JP2004348095 A JP 2004348095A JP 2004348095 A JP2004348095 A JP 2004348095A JP 2006153397 A JP2006153397 A JP 2006153397A
Authority
JP
Japan
Prior art keywords
indoor
cooling capacity
temperature
air
side cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348095A
Other languages
Japanese (ja)
Inventor
Tomiyuki Noma
富之 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004348095A priority Critical patent/JP2006153397A/en
Publication of JP2006153397A publication Critical patent/JP2006153397A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of determining the probability of frosting on an indoor unit by comparing cooling capacity calculated from an operating state of the indoor unit with cooling capacity calculated from an operating state of an outdoor unit. <P>SOLUTION: This air conditioner comprises an indoor differential temperature operating means for operating differential temperature between an indoor temperature and an indoor heat exchanger temperature in a cooling operation, a refrigerant-side cooling capacity function obtained by functionizing the relationship of a prescribed indoor humidity, cooling capacity under a prescribed indoor fan air volume and an outside air temperature while applying an operational frequency of a compressor as a parameter in advance, an air-side cooling capacity function obtained by functionizing the relationship of cooling capacity and a result of the operation by the indoor differential temperature operating means while applying the determined air volume of the indoor fan as a parameter in advance, and a cooling capacity comparing means for comparing the refrigerant-side cooling capacity derived from the refrigerant-side cooling capacity function and the air-side cooling capacity derived from the air-side cooling capacity function during the cooling operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和機に関わり、室内機への露付防止手段、ないしは冷凍サイクルの異常検出手段を備えている空気調和機に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner provided with a means for preventing dew condensation on an indoor unit or an abnormality detecting means for a refrigeration cycle.

従来、この種の空気調和機は、室内温度と室内熱交換器温度との差を吹き出し部温度差として算出し、室内湿度に応じて、吹き出し部に露付が生じるような室内温度と室内熱交換器温度との温度差の限界値を露付温度差として算出し、吹き出し部温度差と露付温度差とを比較し、吹き出し部温度差が露付温度差を超過した場合に、圧縮機の運転周波数を制限する露付防止手段を備えたものがある(例えば、特許文献1参照)。 Conventionally, this type of air conditioner calculates the difference between the indoor temperature and the indoor heat exchanger temperature as the temperature difference of the blowout part, and the room temperature and the indoor heat that cause the blowout part to be exposed depending on the indoor humidity. Calculate the limit value of the temperature difference with the exchanger temperature as the dew temperature difference, compare the blower temperature difference with the dew temperature difference, and if the blower temperature difference exceeds the dew temperature difference, the compressor There is one provided with a dew prevention means for limiting the operation frequency (see, for example, Patent Document 1).

図5は特許文献1に記載された従来の空気調和機による圧縮機の運転周波数と室内温度と吹き出し部温度差と室内湿度との関係を示すグラフを示すものである。   FIG. 5 is a graph showing the relationship among the operating frequency of the compressor by the conventional air conditioner described in Patent Document 1, the room temperature, the temperature difference of the blowing section, and the room humidity.

図5において、横軸は室内湿度Hであり、縦軸は室内温度DIと室内熱交換器温度DEとの差として算出される吹き出し部温度差Δdである。右下がりの直線f=100Hz、80Hz、60Hz、40Hz、20Hzは、圧縮機の運転周波数fを各周波数に固定した場合の、室内湿度Hと吹き出し部温度差Δdとの値を直線で結んだものである。   In FIG. 5, the horizontal axis is the indoor humidity H, and the vertical axis is the blowing portion temperature difference Δd calculated as the difference between the indoor temperature DI and the indoor heat exchanger temperature DE. Downward straight lines f = 100 Hz, 80 Hz, 60 Hz, 40 Hz, and 20 Hz are values obtained by connecting the values of the indoor humidity H and the blower temperature difference Δd with a straight line when the operation frequency f of the compressor is fixed to each frequency. It is.

ここで、直線Lo:Δd=d0は、室内湿度に依存せず、室内湿度H2において露付が生じる限界の吹き出し部温度差d0の値である。   Here, the straight line Lo: Δd = d0 is a value of the limit blowing portion temperature difference d0 that does not depend on the indoor humidity and causes dew at the indoor humidity H2.

従って、室内湿度H2においては、吹き出し部温度差Δdがd0を超過すると露付が生じるが、吹き出し部温度Δdがd0未満では露付が生じない。   Therefore, in the indoor humidity H2, dew condensation occurs when the blowing portion temperature difference Δd exceeds d0, but dew condensation does not occur when the blowing portion temperature Δd is less than d0.

一方、直線L1:Δd=aH+bは、各室内湿度において露付が生じる限界の吹き出し温度差Δdの値を直線で結んだものである。この直線L1は、同図に示すように右下がりの直線であり、室内湿度Hが大きくなるほど露付温度差が減少する。   On the other hand, a straight line L1: Δd = aH + b is obtained by connecting the values of the limit blowing temperature difference Δd at which dew is generated at each indoor humidity with a straight line. The straight line L1 is a straight line that descends to the right as shown in the figure. As the indoor humidity H increases, the dew temperature difference decreases.

即ち、室内湿度Hが大きくなるほど、露付が生じやすくなり、室内熱交換器と室内温度との温度差Δdが小さくても露付が生じる。   That is, as the indoor humidity H increases, dew is more likely to occur, and dew is generated even if the temperature difference Δd between the indoor heat exchanger and the room temperature is small.

このような直線l1を求めるには、各室内湿度Hにおいて、実際に露付が生じる限界の状態での室内温度DI、室内熱交換器温度DE及び圧縮機の運転周波数fを測定することによって求めることができ、この測定結果より、定数a,bを決定することができる。   Such a straight line l1 is obtained by measuring the indoor temperature DI, the indoor heat exchanger temperature DE, and the operating frequency f of the compressor in a limit state where dew is actually generated at each indoor humidity H. The constants a and b can be determined from the measurement result.

すなわち、室内湿度H、運転周波数fに応じて室内機に露付が発生する限界を関数として定め、限界を超えた場合に圧縮機の運転周波数を制限するように制御することで、室内湿度が低いときに、従来より圧縮機の運転周波数を高くしても、露付を生じることなく冷房能力を大きくすることができ、室温を目標温度に速やかに近づけることができるようにしている。
特開2001−221484号公報
In other words, the limit of the occurrence of dew in the indoor unit is determined as a function according to the indoor humidity H and the operating frequency f, and when the limit is exceeded, control is performed so as to limit the operating frequency of the compressor. Even when the operating frequency of the compressor is higher than before, the cooling capacity can be increased without causing dew, and the room temperature can be brought close to the target temperature quickly.
JP 2001-221484 A

しかしながら、前記従来の構成は、室内湿度を検知するために湿度センサを必要とし、該目的にのみ使用するにはコスト高となるという課題を有していた。   However, the above-described conventional configuration has a problem that a humidity sensor is required to detect indoor humidity, and the cost is high when used only for the purpose.

本発明は、前記従来の課題を解決するもので、湿度センサを使用せず、冷凍サイクルの特性により、室内湿度を推定して露付きの危険性の有無、および冷凍サイクルの異常の有無を判定することができるようにした空気調和機を提供することを目的とする。   The present invention solves the above-described conventional problems, and without using a humidity sensor, estimates the indoor humidity based on the characteristics of the refrigeration cycle, and determines whether there is a risk of dew condensation and whether there is an abnormality in the refrigeration cycle. An object of the present invention is to provide an air conditioner that can be used.

前記従来の課題を解決するために、本発明の空気調和機は、少なくとも圧縮機、室外熱交換器を備えた室外機と、少なくとも室内ファン、室内熱交換器を備えた室内機と、前記室外機周辺の外気温を検出する外気温センサと、前記室内機周辺の室内温度を検出する室内温度センサと、前記室内熱交換器の温度を検出する室内熱交換器温度センサと、室内温度と室内熱交換器温度の差温を演算する室内差温演算手段と、予め前記圧縮機の運転周波数をパラメータとして所定の室内湿度、所定の室内ファン風量設定における冷房能力と外気温との関係を関数化した冷媒側冷房能力関数と、予め前記室内ファンの設定風量をパラメータとして冷房能力と前記室内差温演算手段の演算結果の関係を関数化した空気側冷房能力関数と、冷房運転中に前記冷媒側冷房能力関数により導出される冷媒側冷房能力と前記空気側冷房能力関数により導出される空気側冷房能力とを比較する冷房能力比較手段を備えた構成としたものである。   In order to solve the conventional problems, an air conditioner according to the present invention includes an outdoor unit including at least a compressor and an outdoor heat exchanger, an indoor unit including at least an indoor fan and an indoor heat exchanger, and the outdoor unit. An outside air temperature sensor that detects an outside air temperature around the unit, an indoor temperature sensor that detects an indoor temperature around the indoor unit, an indoor heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger, an indoor temperature and an indoor temperature An indoor differential temperature calculation means for calculating the differential temperature of the heat exchanger temperature, and a function of the relationship between the cooling capacity and the outside air temperature at a predetermined indoor humidity and a predetermined indoor fan air volume setting in advance using the operating frequency of the compressor as a parameter The refrigerant-side cooling capacity function, the air-side cooling capacity function obtained by functionalizing the relationship between the cooling capacity and the calculation result of the indoor differential temperature calculation means in advance using the set air volume of the indoor fan as a parameter, and during the cooling operation, Is obtained by a structure having a cooling capacity comparing means for comparing the air-side cooling capacity is derived as the refrigerant cooling capacity is derived by medium side cooling ability function by the air-side cooling ability function.

これによって、空調機器内部に露付きの危険性がある運転条件を関数として備えており、その関数に基づいて圧縮機の運転周波数を制御できるので、湿度センサがなくても、露付きが発生しない限界に近い運転周波数で運転でき、室温を目標温度に速やかに近づけることができるようになる。   As a result, operating conditions with the risk of dew condensation inside the air conditioning equipment are provided as a function, and the operation frequency of the compressor can be controlled based on the function, so dew condensation does not occur even without a humidity sensor. It is possible to operate at an operating frequency close to the limit, and to quickly bring the room temperature close to the target temperature.

また、本発明の空気調和機は、冷房能力比較手段の演算結果に基づき、室内機の吸い込み空気フィルターの目詰まり度合いを判定するフィルター目詰まり判定手段を備えたものである。   Further, the air conditioner of the present invention includes a filter clogging determination unit that determines the degree of clogging of the intake air filter of the indoor unit based on the calculation result of the cooling capacity comparison unit.

これによって、室内機の風量が設定風量に対して所定値以下まで低下した場合に、フィルターの目詰まりが進行して所定の風量が出ていないことを判定できるようになる。   As a result, when the air volume of the indoor unit is reduced to a predetermined value or less with respect to the set air volume, it can be determined that the filter is clogged and the predetermined air volume is not output.

また、本発明の空気調和機は、冷房能力比較手段の演算結果に基づき、膨張弁が正常に動作しているか否かを判定する膨張弁動作判定手段を備えたものである。   The air conditioner of the present invention further includes expansion valve operation determination means for determining whether or not the expansion valve is operating normally based on the calculation result of the cooling capacity comparison means.

これによって、膨張弁が開いた状態で動作しなくなった異常な状態をを判定できるようになる。   As a result, it is possible to determine an abnormal state in which the expansion valve is not operating when the expansion valve is open.

また、本発明の空気調和機は、冷房能力比較手段の演算結果に基づき、冷媒量が適正か否かを判定する冷媒量判定手段を備えたものである。   Further, the air conditioner of the present invention includes a refrigerant amount determination unit that determines whether or not the refrigerant amount is appropriate based on the calculation result of the cooling capacity comparison unit.

これによって、冷媒量が極端に少なくなり、圧縮機の運転に対して蒸発温度が低下しない異常な状態をを判定できるようになる。   As a result, the refrigerant amount becomes extremely small, and an abnormal state where the evaporation temperature does not decrease with respect to the operation of the compressor can be determined.

本発明の空気調和機は、湿度センサを使用せず、冷凍サイクルの特性により、室内湿度を推定して露付きの危険性の有無、および冷凍サイクルの異常の有無を判定することを実現することができる。   The air conditioner of the present invention realizes determining the presence or absence of the risk of dew condensation and the presence or absence of abnormality in the refrigeration cycle by estimating the indoor humidity from the characteristics of the refrigeration cycle without using a humidity sensor. Can do.

第1の発明は、少なくとも圧縮機、室外熱交換器を備えた室外機と、少なくとも室内ファン、室内熱交換器を備えた室内機と、前記室外機周辺の外気温を検出する外気温センサ
と、前記室内機周辺の室内温度を検出する室内温度センサと、前記室内熱交換器の温度を検出する室内熱交換器温度センサと、室内温度と室内熱交換器温度の差温を演算する室内差温演算手段と、予め前記圧縮機の運転周波数をパラメータとして所定の室内湿度、所定の室内ファン風量設定における冷房能力と外気温との関係を関数化した冷媒側冷房能力関数と、予め前記室内ファンの設定風量をパラメータとして冷房能力と前記室内差温演算手段の演算結果の関係を関数化した空気側冷房能力関数と、冷房運転中に前記冷媒側冷房能力関数により導出される冷媒側冷房能力と前記空気側冷房能力関数により導出される空気側冷房能力とを比較する冷房能力比較手段を備えることにより、空調機器内部に露付きの危険性がある運転条件を関数として備えており、その関数に基づいて圧縮機の運転周波数を制御できるので、湿度センサがなくても、露付きが発生しない限界に近い運転周波数で運転でき、室温を目標温度に速やかに近づけることができる。
A first invention includes an outdoor unit including at least a compressor and an outdoor heat exchanger, an indoor unit including at least an indoor fan and an indoor heat exchanger, and an outdoor air temperature sensor that detects an outdoor air temperature around the outdoor unit; An indoor temperature sensor for detecting an indoor temperature around the indoor unit, an indoor heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, and an indoor difference for calculating a difference between the indoor temperature and the indoor heat exchanger temperature A temperature calculation means, a refrigerant side cooling capacity function obtained by functionalizing a relationship between a cooling capacity and an outside air temperature in a predetermined indoor humidity and a predetermined indoor fan air volume setting in advance using the operating frequency of the compressor as a parameter, and the indoor fan in advance The air-side cooling capacity function obtained by functionalizing the relationship between the cooling capacity and the calculation result of the indoor differential temperature calculation means with the set air volume as a parameter, and the refrigerant side derived from the refrigerant-side cooling capacity function during cooling operation By providing a cooling capacity comparison means for comparing the cooling capacity and the air-side cooling capacity derived from the air-side cooling capacity function, the air conditioner has an operating condition with a risk of dew condensation as a function, Since the operating frequency of the compressor can be controlled based on the function, it is possible to operate at an operating frequency close to the limit at which dew does not occur even without a humidity sensor, and the room temperature can be quickly brought close to the target temperature.

第2の発明は、特に、第1の発明の冷房能力比較手段の演算結果を、室内機の吸い込み空気フィルターの目詰まり度合いを判定するフィルター目詰まり判定手段に用いることで、
室内機の風量が設定風量に対して所定値以下まで低下した場合に、フィルターの目詰まりが進行して所定の風量が出ていないことを判定できるようにすることができる。
In particular, the second invention uses the calculation result of the cooling capacity comparison means of the first invention as a filter clogging determination means for determining the degree of clogging of the intake air filter of the indoor unit.
When the air volume of the indoor unit has decreased to a predetermined value or less with respect to the set air volume, it can be determined that the filter has been clogged and the predetermined air volume has not been output.

第3の発明は、特に、第1の発明の冷房能力比較手段の演算結果を、膨張弁が正常に動作しているか否かを判定する膨張弁動作判定手段に用いることで、膨張弁が開いた状態で動作しなくなった異常な状態をを判定できるようにすることができる。   In particular, the third invention uses the calculation result of the cooling capacity comparison means of the first invention as an expansion valve operation determination means for determining whether or not the expansion valve is operating normally, thereby opening the expansion valve. It is possible to determine an abnormal state that does not work in a state where the operation has occurred.

第4の発明は、特に、第1の発明の冷房能力比較手段の演算結果を、冷媒量が適正か否かを判定する冷媒量判定手段に用いることで、冷媒量が極端に少なくなり、圧縮機の運転に対して蒸発温度が低下しない異常な状態をを判定できるようにすることができる。   In the fourth aspect of the invention, in particular, the calculation result of the cooling capacity comparison unit of the first aspect is used for the refrigerant amount determination unit for determining whether or not the refrigerant amount is appropriate. It is possible to determine an abnormal state in which the evaporation temperature does not decrease with respect to the operation of the machine.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

なお、この実施の形態によって本発明が限定されるものではない。   Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の制御ブロック図を示すものである。
(Embodiment 1)
FIG. 1 is a control block diagram of the air conditioner according to the first embodiment of the present invention.

図1において、圧縮機1はインバータ21により所定の運転周波数Fで駆動されるとともに、四方弁2、室外熱交換器3、膨張弁4、室内熱交換器5と環状に冷媒配管接続されて冷凍サイクルを形成する。室内熱交換器5と室内ファン6は同一の筐体内に備えられ室内機12を形成する。   In FIG. 1, the compressor 1 is driven by an inverter 21 at a predetermined operating frequency F, and is connected to a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5 in an annular refrigerant pipe to be refrigerated. Form a cycle. The indoor heat exchanger 5 and the indoor fan 6 are provided in the same housing and form an indoor unit 12.

外気温センサ7は室外機11に取り付けられ、室外機11周辺の外気温Toを検出する。   The outside air temperature sensor 7 is attached to the outdoor unit 11 and detects the outside air temperature To around the outdoor unit 11.

室内温度センサ8は室内機12に取り付けられ、室内機12周辺の室内温度Taを検出する。   The indoor temperature sensor 8 is attached to the indoor unit 12 and detects the indoor temperature Ta around the indoor unit 12.

室内熱交換器温度センサ9は室内熱交換器5の温度Teを検出する。室内差温演算手段22は室内温度センサ8の検知温度Taと室内熱交換器温度センサ9の検知温度Teの差温ΔTを演算し、室内ファン6の設定風量qiとともに空気側冷房能力関数23に伝送される。   The indoor heat exchanger temperature sensor 9 detects the temperature Te of the indoor heat exchanger 5. The indoor temperature difference calculating means 22 calculates a difference temperature ΔT between the detected temperature Ta of the indoor temperature sensor 8 and the detected temperature Te of the indoor heat exchanger temperature sensor 9, and the air temperature cooling capacity function 23 together with the set air volume qi of the indoor fan 6. Is transmitted.

外気温センサ7の検知値Toは、インバータ21の運転周波数Fとともに冷媒側冷房能力関数24に伝送される。   The detection value To of the outside air temperature sensor 7 is transmitted to the refrigerant side cooling capacity function 24 together with the operating frequency F of the inverter 21.

空気側冷房能力関数23により求められた空気側冷房能力Qair、および冷媒側冷房能力関数24により求められた冷媒側冷房能力Qrefは、冷房能力比較手段25に伝送され、露付き判定手段26は冷房能力比較手段25の比較結果により露付きの危険性を判定し、インバータ21の運転周波数を抑制するように制御するものである。   The air-side cooling capacity Qair determined by the air-side cooling capacity function 23 and the refrigerant-side cooling capacity Qref determined by the refrigerant-side cooling capacity function 24 are transmitted to the cooling capacity comparison means 25, and the dew determination means 26 is the cooling function. The risk of dew is determined based on the comparison result of the capability comparison means 25, and control is performed so as to suppress the operating frequency of the inverter 21.

以上のように構成された空気調和機について、以下その動作、作用を図2、および図3を用いて説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below using FIG. 2 and FIG.

図2は空気側冷房能力関数23に記憶された関数の概念を示したものである。   FIG. 2 shows the concept of the function stored in the air side cooling capacity function 23.

空気側冷房能力関数23は、予め室内機12で露付きの危険性がある条件(例えば室内乾球温度が27℃、室内相対湿度が85%、室内ファン弱風設定)における冷房能力QairLと差温ΔTの関係を、一次関数の近似式QairL=a3*ΔT+b3として記憶しておく。   The air-side cooling capacity function 23 is different from the cooling capacity QairL in a condition in which there is a risk of dew condensation in the indoor unit 12 in advance (for example, the indoor dry bulb temperature is 27 ° C., the indoor relative humidity is 85%, and the indoor fan is set at low wind). The relationship of the temperature ΔT is stored as a linear function approximate expression QairL = a3 * ΔT + b3.

同様に室内ファン中風設定における一次関数の近似式QairM=a2*ΔT+b2、および室内ファン強風設定における近似式QairH=a1*ΔT+b1も記憶しておく。   Similarly, an approximate expression QairM = a2 * ΔT + b2 of a linear function in indoor fan medium wind setting and an approximate expression QairH = a1 * ΔT + b1 in indoor fan strong wind setting are also stored.

冷房運転開始から常時、各温度センサからの入力をもとに演算を行い、例えば、室内ファン弱風設定で、室内温度Taと室内熱交換器温度Teの差温ΔTが15Kであった場合、その時点での空気側冷房能力Qair=Qair1を算出する。   For example, when the temperature difference ΔT between the indoor temperature Ta and the indoor heat exchanger temperature Te is 15K in the setting of the indoor fan weak wind, the calculation is always performed based on the input from each temperature sensor from the start of the cooling operation. The air-side cooling capacity Qair = Qair1 at that time is calculated.

図3は冷媒側冷房能力関数24に記憶された関数の概念を示したものである。   FIG. 3 shows the concept of the function stored in the refrigerant side cooling capacity function 24.

冷媒側冷房能力関数24は、空気側冷房能力関数23を設定した条件と同等の室内条件において、運転周波数Fと外気温Toを変動させた場合の冷房能力Qrefを2元1次関数Qref=c*T0+d*F+eとして記憶しておく。   The refrigerant-side cooling capacity function 24 is a binary linear function Qref = c when the operating frequency F and the outside air temperature To are changed under indoor conditions equivalent to the conditions for which the air-side cooling capacity function 23 is set. * T0 + d * F + e is stored.

冷房能力Qrefは室内ファン設定により変動するが、ここでは露付きの危険性が高い室内ファン弱風設定のときの冷房能力をQrefとしている。   Although the cooling capacity Qref varies depending on the indoor fan setting, here, the cooling capacity when the indoor fan is set at low wind with a high risk of dew is Qref.

冷房運転開始から常時、各温度センサからの入力をもとに演算を行い、例えば、運転周波数F=40Hzで、外気温To=27℃であった場合、その時点での冷媒側冷房能力Qref=Qref1を算出する。   For example, when the operation frequency F = 40 Hz and the outside air temperature To = 27 ° C., the refrigerant side cooling capacity Qref = at that time is calculated based on the input from each temperature sensor. Qref1 is calculated.

特に露付きの危険性がある室内湿度が高い条件では、顕熱比が小さくなり、室内温度Taと室内熱交換器温度Teの差が小さくなり、空気側冷房能力関数23が算出した空気側冷房能力Qairは、露付きの危険性がない室内湿度が低い条件での運転に比べて小さいと算出される。   Especially under conditions of high indoor humidity where there is a risk of dew condensation, the sensible heat ratio becomes small, the difference between the indoor temperature Ta and the indoor heat exchanger temperature Te becomes small, and the air-side cooling calculated by the air-side cooling capacity function 23 is performed. The capacity Qair is calculated to be smaller than the operation under the condition of low indoor humidity where there is no danger of dew.

図4は湿り空気線図上に、露付きの危険性がある運転状態を示す線分A1−Bと、露付きの危険性のない運転状態を示す線分A2−Cを示している。   FIG. 4 shows, on the wet air diagram, a line segment A1-B indicating an operating state where there is a risk of dew and a line segment A2-C indicating an operating state where there is no risk of dew.

吸い込み空気温度は点A1、点A2ともA℃であり、冷房能力を示すエンタルピ差は両条件とも等しいとした場合、露付きの危険性がある運転状態を示す線分A1−Bの差温ΔTはA−B℃、露付きの危険性のない運転状態を示す線分A2−Cの差温ΔTはA−C℃
となり、露付きの危険性がある運転状態A1−Bの方が小さい。
When the intake air temperature is A ° C at both points A1 and A2, and the enthalpy difference indicating the cooling capacity is equal in both conditions, the difference temperature ΔT of the line segment A1-B indicating the operating state where there is a risk of dew condensation Is A-B ° C, the temperature difference ΔT of the line A2-C showing the operating state without danger of dew is A-C ° C
Thus, the operating state A1-B with the risk of dew is smaller.

差温ΔTより算出される空気側冷房能力Qairにおいても、露付きの危険性がある運転状態の方が小さくなることは明白である。   Even in the air-side cooling capacity Qair calculated from the temperature difference ΔT, it is obvious that the operating state with the risk of dew is smaller.

ここで、露付きの危険性が生じる限界の冷房能力を、冷媒側冷房能力関数24により定めておき、冷房運転中に空気側冷房能力関数23が算出した空気側冷房能力Qairと大小比較し、Qair<Qrefとなった場合に実際に露付きが発生する危険性があると判断することで、湿度センサを用いなくても露付きが発生する前に運転周波数Fを抑制して、露付きを防止することができる。   Here, the cooling capacity at the limit at which the danger of dew condensation is determined by the refrigerant-side cooling capacity function 24, and compared with the air-side cooling capacity Qair calculated by the air-side cooling capacity function 23 during the cooling operation, By determining that there is a risk of actual dew formation when Qair <Qref, the operating frequency F is suppressed before dew generation occurs without using a humidity sensor. Can be prevented.

また、本実施の形態では、室内ファン風量が設定風量に対して低下した場合、室内温度Taと室内熱交換器温度Teの差温ΔTが大きくなり、差温ΔTより算出される空気側冷房能力Qairも大きくなることから、冷房運転中に空気側冷房能力関数23が算出した空気側冷房能力Qairと冷媒側冷房能力Qrefを大小比較し、Qair>Qref+所定値となった場合に室内風量の低下、すなわちフィルター目詰まりを判定することもできる。   Further, in the present embodiment, when the indoor fan air volume decreases with respect to the set air volume, the temperature difference ΔT between the room temperature Ta and the indoor heat exchanger temperature Te increases, and the air-side cooling capacity calculated from the temperature difference ΔT. Since Qair also increases, the air-side cooling capacity Qair calculated by the air-side cooling capacity function 23 during the cooling operation is compared with the refrigerant-side cooling capacity Qref, and when Qair> Qref + predetermined value, the indoor air volume decreases. That is, filter clogging can also be determined.

また、本実施の形態では、膨張弁が開状態で動作しなくなった異常な状態、および冷媒が極端に少なくなった異常な状態のときに室内温度Taと室内熱交換器温度Teの差温ΔTが極端に小さくなり、差温ΔTより算出される空気側冷房能力Qairも極端に小さくなることから、冷房運転中に空気側冷房能力関数23が算出した空気側冷房能力Qairと冷媒側冷房能力Qrefを大小比較し、Qair<Qref−所定値となった場合に膨張弁の異常、および冷媒量の異常を判定することもできる。   In the present embodiment, the temperature difference ΔT between the indoor temperature Ta and the indoor heat exchanger temperature Te in an abnormal state in which the expansion valve is in an open state and in an abnormal state in which the refrigerant is extremely low. Since the air-side cooling capacity Qair calculated from the temperature difference ΔT is extremely small, the air-side cooling capacity Qair and the refrigerant-side cooling capacity Qref calculated by the air-side cooling capacity function 23 during the cooling operation are also reduced. It is also possible to determine whether the expansion valve is abnormal or the refrigerant amount is abnormal when Qair <Qref−predetermined value.

以上のように、本発明にかかる空気調和機は、湿度センサを使用せず、冷凍サイクルの特性により、室内湿度を推定して露付きの危険性の有無、および冷凍サイクルの異常の有無を判定することが可能となるので、吐出温度保護や電流保護の冷凍サイクルの保護動作による異常の補完等の用途にも適用できる。   As described above, the air conditioner according to the present invention does not use a humidity sensor and estimates the indoor humidity based on the characteristics of the refrigeration cycle to determine whether there is a risk of dew condensation and whether there is an abnormality in the refrigeration cycle. Therefore, the present invention can also be applied to applications such as complementation of abnormality by the protective operation of the refrigeration cycle for discharge temperature protection and current protection.

本発明の実施の形態1における制御ブロック図Control block diagram according to Embodiment 1 of the present invention 本発明の実施の形態1における空気側冷房能力関数の設定例を示す図The figure which shows the example of a setting of the air side cooling capability function in Embodiment 1 of this invention 本発明の実施の形態1における冷媒側冷房能力関数の設定例を示す図The figure which shows the example of a setting of the refrigerant | coolant side cooling capability function in Embodiment 1 of this invention 本発明の実施の形態1における作用を説明する湿り空気線図Wet air diagram illustrating the operation of the first embodiment of the present invention 従来の圧縮機の運転周波数と室内温度と吹出し部温度差と室内温度との関係図Relationship diagram between operating frequency of conventional compressor, indoor temperature, temperature difference of outlet and indoor temperature

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室外熱交換器
4 膨張弁
5 室内熱交換器
6 室内ファン
7 外気温センサ
8 室内温度センサ
9 室内熱交換器温度センサ
11 室外機
12 室内機
21 インバータ
22 室内差温演算手段
23 空気側冷房能力関数
24 冷媒側冷房能力関数
25 冷房能力比較手段
26 露付き判定手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Expansion valve 5 Indoor heat exchanger 6 Indoor fan 7 Outside temperature sensor 8 Indoor temperature sensor 9 Indoor heat exchanger temperature sensor 11 Outdoor unit 12 Indoor unit 21 Inverter 22 Indoor temperature difference calculation Means 23 Air-side cooling capacity function 24 Refrigerant-side cooling capacity function 25 Cooling capacity comparison means 26 Dew determination means

Claims (4)

少なくとも圧縮機、室外熱交換器を備えた室外機と、少なくとも室内ファン、室内熱交換器を備えた室内機と、前記室外機周辺の外気温を検出する外気温センサと、前記室内機周辺の室内温度を検出する室内温度センサと、前記室内熱交換器の温度を検出する室内熱交換器温度センサと、室内温度と室内熱交換器温度の差温を演算する室内差温演算手段と、予め前記圧縮機の運転周波数をパラメータとして所定の室内湿度、所定の室内ファン風量設定における冷房能力と外気温との関係を関数化した冷媒側冷房能力関数と、予め前記室内ファンの設定風量をパラメータとして冷房能力と前記室内差温演算手段の演算結果の関係を関数化した空気側冷房能力関数と、冷房運転中に前記冷媒側冷房能力関数により導出される冷媒側冷房能力と前記空気側冷房能力関数により導出される空気側冷房能力とを比較する冷房能力比較手段を備え、前記冷房能力比較手段の演算結果に基づき、室内機に露付きの危険性があるか否かを判定する露付き判定手段を備えた空気調和機。 An outdoor unit provided with at least a compressor and an outdoor heat exchanger; an indoor unit provided with at least an indoor fan and an indoor heat exchanger; an outdoor temperature sensor for detecting an outdoor temperature around the outdoor unit; and An indoor temperature sensor for detecting the indoor temperature, an indoor heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, an indoor differential temperature calculating means for calculating a differential temperature between the indoor temperature and the indoor heat exchanger temperature, Using the operating frequency of the compressor as a parameter, the refrigerant-side cooling capacity function that functions as a function of the relationship between the cooling capacity and the outside air temperature at a predetermined indoor humidity and a predetermined indoor fan air volume setting, and the preset air volume of the indoor fan as a parameter. An air-side cooling capacity function obtained by functionalizing the relationship between the cooling capacity and the calculation result of the indoor differential temperature calculation means; the refrigerant-side cooling capacity derived from the refrigerant-side cooling capacity function during cooling operation; Cooling capacity comparison means for comparing the air-side cooling capacity derived by the air-side cooling capacity function is provided, and it is determined whether there is a risk of dew condensation on the indoor unit based on the calculation result of the cooling capacity comparison means. An air conditioner equipped with dew determination means. 冷房能力比較手段の演算結果に基づき、室内機の吸い込み空気フィルターの目詰まり度合いを判定するフィルター目詰まり判定手段を備えた請求項1記載の空気調和機。 The air conditioner according to claim 1, further comprising a filter clogging determination unit that determines a degree of clogging of the suction air filter of the indoor unit based on a calculation result of the cooling capacity comparison unit. 冷房能力比較手段の演算結果に基づき、膨張弁が正常に動作しているか否かを判定する膨張弁動作判定手段を備えた請求項1記載の空気調和機。 The air conditioner according to claim 1, further comprising expansion valve operation determination means for determining whether or not the expansion valve is operating normally based on a calculation result of the cooling capacity comparison means. 冷房能力比較手段の演算結果に基づき、冷媒量が適正か否かを判定する冷媒量判定手段を備えた請求項1記載の空気調和機。 The air conditioner according to claim 1, further comprising a refrigerant amount determination unit that determines whether or not the refrigerant amount is appropriate based on a calculation result of the cooling capacity comparison unit.
JP2004348095A 2004-12-01 2004-12-01 Air conditioner Pending JP2006153397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348095A JP2006153397A (en) 2004-12-01 2004-12-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348095A JP2006153397A (en) 2004-12-01 2004-12-01 Air conditioner

Publications (1)

Publication Number Publication Date
JP2006153397A true JP2006153397A (en) 2006-06-15

Family

ID=36631910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348095A Pending JP2006153397A (en) 2004-12-01 2004-12-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP2006153397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232588A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Air conditioner
JP2010048459A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
JP2014219162A (en) * 2013-05-09 2014-11-20 三菱電機株式会社 Air conditioner
CN110631204A (en) * 2018-06-25 2019-12-31 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232588A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Air conditioner
JP2010048459A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
JP2014219162A (en) * 2013-05-09 2014-11-20 三菱電機株式会社 Air conditioner
CN110631204A (en) * 2018-06-25 2019-12-31 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner

Similar Documents

Publication Publication Date Title
JP6341808B2 (en) Refrigeration air conditioner
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
WO2016159152A1 (en) Indoor air conditioning unit
US20050056031A1 (en) Refrigerant leakage sensing system and method
JP6569899B2 (en) Air conditioning system, control method and program
JP6061819B2 (en) Air conditioner
JP7257782B2 (en) air conditioning system
US20190170600A1 (en) Systems and methods for detecting refrigerant leaks in heating, ventilating, and air conditioning (hvac) systems
JP2008064439A (en) Air conditioner
US11255560B2 (en) Air-conditioning apparatus and method of determining operation condition
WO2015199190A1 (en) Indoor unit of air conditioner
JPH10153353A (en) Air conditioner
JP2013257089A (en) Refrigeration device
JP5505477B2 (en) AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER
JP4985608B2 (en) Air conditioner
JP2006207932A (en) Air conditioner
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
CN110726225A (en) Multi-split system and control method thereof
JP2005133958A (en) Refrigerating cycle device and its control method
JP2006153397A (en) Air conditioner
JP2009192096A (en) Air conditioner
JP2020176798A (en) Air conditioner
JP2011149611A (en) Air-conditioning apparatus
JPH09159293A (en) Compressor protection controller for air conditioner
JP6444536B2 (en) Compressor deterioration diagnosis device and compressor deterioration diagnosis method