WO2017081934A1 - 浸漬ノズル - Google Patents

浸漬ノズル Download PDF

Info

Publication number
WO2017081934A1
WO2017081934A1 PCT/JP2016/076915 JP2016076915W WO2017081934A1 WO 2017081934 A1 WO2017081934 A1 WO 2017081934A1 JP 2016076915 W JP2016076915 W JP 2016076915W WO 2017081934 A1 WO2017081934 A1 WO 2017081934A1
Authority
WO
WIPO (PCT)
Prior art keywords
immersion nozzle
central
molten steel
center
protrusion
Prior art date
Application number
PCT/JP2016/076915
Other languages
English (en)
French (fr)
Inventor
福永 新一
有人 溝部
憲一 大木
大樹 古川
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Priority to AU2016351763A priority Critical patent/AU2016351763B2/en
Priority to KR1020187006296A priority patent/KR102091575B1/ko
Priority to BR112018009320-3A priority patent/BR112018009320B1/pt
Priority to CA3002507A priority patent/CA3002507C/en
Priority to CN201680052194.7A priority patent/CN108025352B/zh
Priority to RU2018120725A priority patent/RU2698033C1/ru
Priority to EP16863898.9A priority patent/EP3375545B1/en
Priority to ES16863898T priority patent/ES2813048T3/es
Priority to US15/774,319 priority patent/US10799942B2/en
Publication of WO2017081934A1 publication Critical patent/WO2017081934A1/ja
Priority to ZA2018/02127A priority patent/ZA201802127B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the present invention relates to an immersion nozzle for continuous casting in which molten steel is poured into a mold from a tundish, and in particular, in the lateral direction (vertical direction) near the discharge hole of the immersion nozzle as used for a thin slab, a medium thickness slab, etc.
  • the present invention relates to a submerged nozzle having a flat cross-section (a shape other than a perfect circle or a square, which is different in length from one side to the other).
  • a continuous casting immersion nozzle (hereinafter also simply referred to as “immersion nozzle”) installed at the bottom of the tundish is used.
  • immersion nozzle installed at the bottom of the tundish is used.
  • the molten steel is poured into the mold.
  • the immersion nozzle is composed of a tubular body having a bottom portion in which an upper end portion is an inlet for molten steel and a molten steel passage (inner hole) extending downward from the molten steel inlet is formed inside.
  • a pair of discharge holes communicating with the molten steel flow path (inner hole) are formed on the side surfaces so as to face each other.
  • the immersion nozzle is used with its lower part immersed in molten steel in the mold. This prevents splashing of the molten steel poured and prevents oxidation by blocking the contact between the molten steel and the atmosphere.
  • the molten steel in the mold is rectified so that impurities such as slag and non-metallic inclusions floating on the molten metal surface are not caught in the molten steel.
  • Patent Document 1 shows a flat immersion nozzle in which discharge holes are provided on the short side wall
  • Patent Document 2 shows a flat immersion nozzle in which discharge holes are also provided on the lower end surface.
  • these flat immersion nozzles increase the width of the inner hole between the discharge hole from the molten steel inlet to the mold.
  • the molten steel flow in the immersion nozzle is likely to be disturbed, and the discharge flow to the mold is also disturbed.
  • This turbulence in the molten steel flow is caused by increased fluctuation of the molten metal surface (molten steel surface) in the mold, entanglement of oxide powder as impurities and inclusions in the slab, uneven temperature, etc. It may also cause an increased risk. Therefore, it is necessary to stabilize the molten steel flow in the immersion nozzle and discharged.
  • Patent Document 3 discloses an immersion nozzle in which at least two bending facets are formed from a point (center) on a plane below the inner hole toward the lower edge of the discharge hole. Has been. Furthermore, this patent document 3 discloses an immersion nozzle including a flow divider for dividing a molten steel flow into two streams. In the flat immersion nozzle shown in Patent Document 3, the flow of the molten steel in the immersion nozzle is different from that in an internal space such as Patent Document 1 and Patent Document 2 that does not have means for changing the flow direction and form. The stability of is increased.
  • the problem to be solved by the present invention is to provide an immersion nozzle that stabilizes the molten steel discharge flow and stabilizes the molten metal surface in the mold, that is, reduces the fluctuations in the flat immersion nozzle. As a result, it aims at the improvement of slab quality.
  • the present invention provides the following flat immersion nozzles 1 to 7.
  • the immersion nozzle having a flat shape in which the width Wn of the inner hole is larger than the thickness Tn of the inner hole includes a portion (hereinafter referred to as a “center protrusion”) that protrudes from the central portion of the wall surface in the width direction of the flat portion.
  • the ratio Wp / Wn of the length Wp in the width direction of the projecting portion to Wn is 0.2 or more and 0.7 or less, and the central projecting portions are symmetrically arranged in a pair, and the pair of central projecting portions
  • the total length Tp in the thickness direction of the immersion nozzle is 0.15 or more and 0.75 or less of the Tn. (Claim 1) 2. 2.
  • upward protrusions hereinafter referred to as “upward protrusions”
  • upward protrusions above the central protrusion.
  • laim 5 6
  • the width Wn and the thickness Tn of the inner hole are the width of the inner hole (the length in the long side direction) at the upper end position of the pair of discharge holes provided on the short side wall of the immersion nozzle. , Thickness (length in the short side direction).
  • the direction of the molten steel flow can be controlled continuously without fixing or completely separating the molten steel flow, and an appropriate balance of the molten steel flow within the nozzle can be achieved. Can be secured.
  • the molten steel discharge flow can be stabilized, the fluctuation of the molten metal surface in the mold can be reduced, and the molten steel flow in the mold can be stabilized. As a result, slab quality can be improved.
  • FIG. 4 is an image view showing an example of an immersion nozzle according to the present invention in which a central protrusion is installed, where (a) is a cross-sectional view passing through the center on the short side, and (b) is a cross-sectional view passing through the center on the long side (view AA). .
  • It is an image figure which shows the example of the immersion nozzle of this invention which installed the upper protrusion in addition to the center protrusion part, (a) is sectional drawing which passes along the short side center, (b) is sectional drawing which passes along the long side center (view) AA).
  • FIG. 2 is an image view of a lower portion viewed from a cross section BB of the central protrusion in FIG.
  • FIG. 2 is an image diagram of a cross section showing an example in which a C portion (lower immersion nozzle) in FIG. 1 is shown and a central protruding portion is inclined in a discharge hole direction.
  • FIG. 5 is an image diagram showing another example of the cross section similar to FIG. 4, showing an example in which Wp is larger and discharge holes are also provided at the bottom.
  • FIG. 6 is a cross-sectional view of the center of the immersion nozzle in the width direction (AA position in FIG. 3 and the like), and is an image diagram showing an example in which the upper surface of the central protrusion is inclined toward the center of the inner hole.
  • FIG. 5 is a view of a cross section taken along the line AA in FIG.
  • FIG. 4 is an image diagram illustrating an example in which the protruding length of the central protruding portion in the inner hole central direction gradually decreases from the center in the inner hole width direction. It is an image figure which shows the lower part of the immersion nozzle (FIG. 2) of this invention which installed the upper protrusion part in addition to the center protrusion part. It is an image figure which shows the example (others are the same as FIG. 1) with a protrusion part by the immersion nozzle by a prior art.
  • the molten steel flow falling from the molten steel inlet which is a narrow hole at the center of the upper end of the immersion nozzle, tends to concentrate in the center.
  • the molten steel flow velocity near the center and the end in the flat part width direction of the immersion nozzle tends to be greatly different.
  • the inventors of the present invention have found that the turbulence of the molten steel discharge flow from the flat immersion nozzle is a factor having a large influence due to the concentration of the molten steel flow at the center of the inner hole. Therefore, the present invention reduces the flow rate of the molten steel to the center of the inner hole and provides an appropriate balance with the flow rate toward the discharge hole.
  • a molten steel flow toward the end in the width direction it is also possible to form a molten steel flow toward the end in the width direction to some extent by installing a diverting means as in the cited document 3.
  • a diverting means as in the cited document 3.
  • a part of the inner hole that is, a molten steel flow separated into a single narrow area is generated, and a part having a different flow direction and flow velocity at each position of the inner hole is formed. Prone to occur.
  • the molten steel flow may be biased in either direction, causing significant disturbance in the nozzle or discharge flow.
  • the present invention provides a means for gently controlling the flow direction and flow velocity of the portion through which the molten steel flow passes, i.e., from the inner hole wall to the inner hole space side, without fixed and complete diversion of the molten steel flow in the inner hole.
  • a projecting portion While projecting, a projecting portion is installed in a state where the projecting portion maintains the open portion of the inner hole space.
  • the molten steel flow is dispersed on the end side in the width direction, that is, on the discharge hole side while avoiding the concentration near the center. Can be provided.
  • the projecting portion having such a function is first installed at the center of the wall surface in the width direction (long side) of the flat portion of the immersion nozzle (center projecting portion).
  • the upper surface of the central protruding portion can be inclined in the width direction of the immersion nozzle and downward, that is, in the direction of the discharge hole, with the central portion on the long side of the protruding portion as the apex. Such an inclination can be further optimized by changing the flow rate and flow form of the molten steel.
  • the upper surface of the central projecting portion can be inclined in the central direction of the immersion nozzle thickness direction, that is, on the space side and downward, with the boundary portion with the wall surface of the immersion nozzle width direction (long side) as the apex. Such an inclination can be further optimized by changing the flow rate and flow form of the molten steel.
  • the protruding length of the upper surface of the central protruding portion can be inclined so that the central portion in the immersion nozzle width direction (long side) is gradually reduced toward both ends of the immersion nozzle width direction as the largest vertex. Such an inclination can be further optimized by changing the flow rate and flow form of the molten steel.
  • the discharge holes on the short side wall are long and open in the vertical direction, so the discharge flow rate tends to decrease toward the upper side of the discharge holes, especially in the vicinity of the upper end. There is often a backflow phenomenon that is drawn into the area. Therefore, in the present invention, in addition to the above-described central protrusion, one or a plurality of protrusions (upward protrusions) can be installed above the center protrusion.
  • the upper protrusions can have the same structure as the above-described central protrusion, and can be installed in a pair at symmetrical positions at an arbitrary distance from the central longitudinal axis of the immersion nozzle.
  • This upward protruding part supplements the function of equalizing the flow velocity distribution for each position in the longitudinal direction of the discharge hole by suppressing the decrease of the flow rate above the discharge hole or the backflow near the upper end.
  • this upper protrusion can also optimize the protrusion length, angle, width, etc. according to the individual immersion nozzle structure, operating conditions, etc. without dividing the inner hole space. it can.
  • the width direction and downward inclination of the upper surface of the lower central protrusion, the immersion nozzle thickness direction and downward inclination, and the like can also be applied to the upper protrusion. By applying such an inclination to the upper protrusion, the flow velocity and flow form of the molten steel can be further changed and optimized in the same manner.
  • protrusions (the central protrusion and the upper protrusion) can obtain the effect if they are installed in a flat portion where the fluctuation of the molten steel flow increases as described above.
  • the position in the height direction in the immersion nozzle does not need to match the position in the height direction of the discharge hole. However, it depends on the operating conditions, the structure of the inner hole of the immersion nozzle, the structure of the discharge hole, etc. What is necessary is just to install in the optimal position.
  • the bottom of the immersion nozzle may be a wall surface having a simple diversion function without forming a discharge hole in the vicinity of the center as shown in FIGS. 1, 2, and 4, and it may be provided with a discharge hole as shown in FIG. Also good.
  • the total discharge rate (speed) to the mold is not sufficient with the discharge holes on the side wall due to the structure of the immersion nozzle and the mold for individual operating conditions, or the molten steel in the lateral or upward direction in the mold
  • the flow of molten steel, the flow rate of each part, or the form of discharge flow The flow rate also changes. Therefore, it is preferable to optimize depending on the degree and structure of the flatness and the relationship with individual operating conditions.
  • the present invention is particularly suitable for an immersion nozzle having Wn / Tn of approximately 5 or more.
  • Example 1 is the first embodiment of the present invention shown in FIG. 1, that is, the width of the central projection portion of an immersion nozzle having only the central projection portion as the projection portion (hereinafter also simply referred to as “first configuration”).
  • the comparative example is an immersion nozzle having a structure shown in FIG. 9, that is, a structure in which a protruding portion is removed from the immersion nozzle in the form of FIG.
  • the specifications of the immersion nozzle are as follows. ⁇ Total length: 1165mm -Molten steel inlet: ⁇ 86mm ⁇ Inner hole width (Wn) at the upper end of the discharge hole: 255 mm ⁇ Inner hole thickness (Tn) at the upper end of the discharge hole: 34 mm -Height from the nozzle lower end surface at the upper end position of the discharge hole: 146.5 mm ⁇ Height of the central protrusion (height from the nozzle lower end surface): 155 mm ⁇ Length of center protrusion (left and right length from the center): 80mm ⁇ Wall thickness of immersion nozzle: approx. 25mm ⁇ Thickness (vertex) of the bottom of the immersion nozzle: height 100 mm
  • the degree of fluctuation of the molten metal surface in the mold was calculated by measuring the distance from the upper direction to the surface of the water using an ultrasonic sensor, assuming the water surface as the molten metal surface (molten steel surface) in continuous casting. The measurement was performed at a total of four locations of a 50 mm position and a quarter width from the width end on both sides in the lateral width direction with the immersion nozzle as the center, and the difference between the maximum and the minimum of the fluctuation height was calculated.
  • the inclination angle is 0 degree (no inclination)
  • the protrusion thickness in the width direction of the central protrusion is constant (rectangular view in the top view), and there is no inclination toward the center of the inner hole .
  • Table 1 shows the results of the degree of mold surface fluctuation in the mold expressed as an index (hereinafter also referred to simply as “variation index”) with the value of the comparative example (structure of FIG. 9) being 100.
  • the target variation index is set to 40 or less.
  • the Wp / Wn ratio is 0.2 to 0.7 and the Tp / Tn ratio is 0.15 to 0.75. It can be seen that the target of 40 or less can be obtained in the case of. It can also be seen that the highest effect is obtained and preferable when the Tp / Tn ratio is 0.5 and the Wp / Wn ratio is 0.5.
  • Example 2 is a submerged nozzle according to the first embodiment of the present invention shown in FIG. 1, and shows the results of water model experiments showing the degree of variation in the mold surface in the mold with a structure inclined from the center of the central protrusion to the discharge hole side and downward. It is.
  • Wp / Wn ratio is 0.1, 0.5, 0.8, and Tp / Tn ratio is 0.1, 0.5, 0.9.
  • Table 2 shows the results. As a result, it can be seen that in any case, as the tilt angle increases, the level of mold level fluctuation in the mold decreases. It should be noted that, under these conditions, the target of 40 or less can be obtained at any angle when the Wp / Wn ratio is 0.5 and the Tp / Tn ratio is 0.5.
  • Example 3 is the immersion nozzle according to the first embodiment of the present invention shown in FIG. 1, and the upper surface of the central protruding portion is the boundary between the central protruding portion and the wall surface (long side) in the width direction of the immersion nozzle on the upper surface.
  • It is a water model experimental result which shows the influence of the inclination in the center protrusion part structure (refer FIG. 6) which inclines in the center direction of the thickness direction of a submerged nozzle at the top and it is below.
  • the Wp / Wn ratio is 0.1, 0.5, 0.8, the Tp / Tn ratio is 0.5, the inclination angle toward the discharge hole side is 45 degrees, the inclination angle toward the thickness center is 30 degrees, The experiment was conducted at 45 degrees. For comparison, an experiment was also conducted in the case where the above elements were not tilted under the same conditions (tilt angle was 0 degree).
  • Table 3 shows the results. As a result, it can be seen that in any case, as the tilt angle increases, the level of mold level fluctuation in the mold decreases. In addition, in the case of Wp / Wn ratio 0.5 and Tp / Tn ratio 0.5, it turns out that target 40 or less can be obtained at any angle.
  • Example 3 is an immersion nozzle according to the first embodiment of the present invention shown in FIG. 1, wherein the protrusion length is gradually shortened from the center of the central protrusion in the width (end) direction of the immersion nozzle, and the upper surface of the central protrusion is shown. It is a water model experiment result which shows the extent of hot metal surface fluctuation in a mold when an angle is provided in view and a pentagonal structure is formed (see FIG. 7).
  • the Wp / Wn ratio is 0.1, 0.5, 0.8, the Tp / Tn ratio is 0.5, the inclination angle toward the width direction discharge hole side is 45 degrees, and the inclination angle toward the thickness center direction is 0
  • the experiment was conducted with a degree (no inclination) and a length of 8 mm at the center of the central protrusion. For comparison, an experiment was also conducted in the case where no angle was provided (upper surface rectangle) with the above-described elements as the same conditions.
  • Table 4 shows the results. As a result, it can be seen that, for any Wp / Wn ratio, when the length of the end portion is 4 mm, the degree of mold surface fluctuation in the mold becomes small. Note that when the Wp / Wn ratio is 0.5, the Tp / Tn ratio is 0.5, and the inclination angle of the central protrusion with respect to the horizontal (horizontal) direction of the immersion nozzle is 45 degrees, any top surface shape having an angle may be used. It can be seen that the target of 40 or less can be obtained.
  • Example 5 is the second form of the present invention shown in FIG. 8, that is, a form in which an upper projecting part is installed above the center projecting part (hereinafter also simply referred to as “second form”).
  • second form a form in which an upper projecting part is installed above the center projecting part
  • the lower center protruding portion has the center at a position 150 mm from the lower end surface (outer surface) of the immersion nozzle, the length in the discharge hole direction is 80 mm on each of the left and right sides, and the Wp / Wn ratio is 0.1, 0.5, 0. 8.
  • the Tp / Tn ratio is 0.5, the inclination angle toward the width direction discharge hole side is 45 degrees, the inclination angle toward the center of the thickness is 0 degrees (no inclination), and the top surface shape is rectangular (no angle)
  • the upper projecting portion is located above the lower central projecting portion and at the left and right positions 50 mm from the center in the width direction of the immersion nozzle, the inclination angle to the discharge hole side is 45 degrees, and the length in the discharge hole direction is Experiments were performed with 60 mm and 40 mm. For comparison, an experiment was also conducted in the case where no upward projecting portion was installed under the same conditions.
  • Table 5 shows the results. As a result, it can be seen that, in any case, when the upward projecting portion is installed, the level of the molten metal surface in the mold is reduced. In addition, in the case of Wp / Wn ratio 0.5 and Tp / Tn ratio 0.5, it turns out that target 40 or less can be obtained by any upward protrusion part length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

本発明は,扁平状の浸漬ノズルにおいて,溶鋼吐出流を安定化させ,鋳型内湯面を安定化させる,すなわちその変動を小さくする浸漬ノズルを提供する。本発明では,内孔の幅Wnが内孔の厚さTnより大きい扁平状である浸漬ノズルにおいて,扁平部分の幅方向の壁面中央部に中央突出部1を設けた。この中央突出部1の幅方向の長さWpのWnに対する比Wp/Wnは0.2以上0.7以下である。中央突出部1は対称に一対で配置されており,一対の中央突出部の厚さ方向の合計長さTpは,Tnの0.15以上0.75以下である。

Description

浸漬ノズル
 本発明は,タンディッシュから鋳型内に溶鋼を注湯する連続鋳造用の浸漬ノズルに関し、特に,薄スラブ,中厚スラブ等用として用いられるような,浸漬ノズルの吐出孔付近の横方向(鉛直方向に垂直な方向)断面が,扁平状(真円,正方形以外の,一辺と他の辺の長さが異なる形状をいう)の浸漬ノズルに関する。
 溶鋼を連続的に冷却凝固させて所定形状の鋳片を形成する連続鋳造工程では,タンディッシュの底部に設置された連続鋳造用浸漬ノズル(以下では,単に「浸漬ノズル」ともいう。)を介して鋳型内に溶鋼が注湯される。
 一般に,浸漬ノズルは,上端部が溶鋼の導入口とされ,この溶鋼導入口から下方に延びる溶鋼流路(内孔)が内部に形成された,底部を有する管体からなり,管体の下部側面には,溶鋼流路(内孔)と連通する一対の吐出孔が対向して形成されている。浸漬ノズルは,その下部を鋳型内の溶鋼中に浸漬させた状態で使用される。これにより,注湯された溶鋼の飛散を防止すると共に,溶鋼と大気との接触を遮断して酸化を防止している。また,浸漬ノズルを使用することにより鋳型内の溶鋼が整流化され,湯面を浮遊するスラグや非金属介在物などの不純物が溶鋼中へ巻き込まれないようにしている。
 近年,連続鋳造時に薄スラブ,中厚スラブ等の,厚さが薄い鋳片を製造することが増えている。このような連続鋳造用の薄い鋳型に対応するための浸漬ノズルは扁平状にする必要がある。例えば特許文献1には短辺側側壁に吐出孔を設置した扁平状浸漬ノズルが,特許文献2にはさらに下端面にも吐出孔を設けた扁平状浸漬ノズルが示されている。これらの扁平状の浸漬ノズルでは一般的に,溶鋼導入口から鋳型への吐出孔の間でその内孔の幅を拡大させることになる。
 しかし,このような内孔の幅が拡大する形状かつ扁平形状の場合,浸漬ノズル内の溶鋼流が乱れやすくなり,その鋳型への吐出流も乱れる。この溶鋼流の乱れは鋳型内の湯面(溶鋼表面)の変動増大や,不純物・介在物としての酸化物のパウダーの鋳片への巻き込み,温度不均一化等,鋳片品質不良や操業の危険性増大等を惹き起こす原因ともなる。したがって浸漬ノズル内及び吐出する溶鋼流を安定化させることが必要となる。
 これら溶鋼流を安定化させるために,例えば特許文献3には,内孔の下方の平面上の点(中心)から吐出孔の下縁に向かう少なくとも2個の曲げファセットを形成した浸漬ノズルが開示されている。さらにこの特許文献3には,溶鋼流を2本のストリームに分流する分流器を備える浸漬ノズルが開示されている。この特許文献3に示された扁平状の浸漬ノズルでは,特許文献1や特許文献2のような内部空間に流動方向・形態を変える手段を備えない浸漬ノズルに比較すると,浸漬ノズル内の溶鋼流の安定性は高くなる。
 しかし,このような左右方向の溶鋼流を分流するような手段の場合,依然,左右の吐出孔間での溶鋼吐出流の変動が大きくなって,それによる鋳型内湯面の変動が大きくなることがある。
特開平11-5145号公報 特開平11-47897号公報 特表2001-501132号公報
 本発明が解決しようとする課題は,扁平状の浸漬ノズルにおいて,溶鋼吐出流を安定化させ,鋳型内湯面を安定化させる,すなわちその変動を小さくする浸漬ノズルを提供することにある。ひいては鋳片品質の向上を目的とする。
 本発明は,次の1から7の扁平状の浸漬ノズルである。
1.内孔の幅Wnが内孔の厚さTnより大きい扁平状である浸漬ノズルにおいて,扁平部分の幅方向の壁面中央部に突出した部分(以下「中央突出部」という。)を備え,前記中央突出部の前記幅方向の長さWpの前記Wnに対する比Wp/Wnが0.2以上0.7以下であり,前記中央突出部は対称に一対で配置されており,前記一対の中央突出部の前記厚さ方向の合計長さTpは,前記Tnの0.15以上0.75以下である,浸漬ノズル。(請求項1)
2.前記中央突出部は,前記幅方向の中央を頂点にして吐出孔方向下方に傾斜している,前記1に記載の浸漬ノズル。(請求項2)
3.前記中央突出部の上面は,前記幅方向の浸漬ノズル壁面との境界部を頂点にして前記厚さ方向かつ下方に傾斜している,前記1又は前記2に記載の浸漬ノズル。(請求項3)
4.前記中央突出部の上面の突出長さは,前記Wpの中央部が最も大きく,当該中央部から両端部に向かって漸減する,前記1から前記3のいずれかに記載の浸漬ノズル。(請求項4)
5.前記中央突出部の上方に突出部(以下「上方突出部」という。)を1又は複数備えた,前記1から前記4のいずれかに記載の浸漬ノズル。(請求項5)
6.前記上方突出部は吐出孔方向に傾斜している,前記5に記載の浸漬ノズル。(請求項6)
7.前記幅と前記厚さとの比Wn/Tnが5以上である,前記1から前記6のいずれかに記載の浸漬ノズル。(請求項7)
 なお,本発明において前記の内孔の幅Wn,厚さTnとは,浸漬ノズルの短辺側側壁部に設けた一対の吐出孔の上端位置における内孔の幅(長辺方向の長さ),厚さ(短辺方向の長さ)のことをいう。
 本発明の扁平状の浸漬ノズルにより,溶鋼流を固定的又は完全に分離することなく,溶鋼流の方向を連続的な状態で制御することができ,ノズル内での溶鋼流の適度なバランスを確保することができる。これにより溶鋼吐出流を安定化させ,鋳型内湯面の変動を小さくして鋳型内溶鋼流を安定化させることができる。ひいては鋳片品質を向上させることができる。
中央突出部を設置した本発明の浸漬ノズルの例を示すイメージ図で,(a)は短辺側中心を通る断面図,(b)は長辺側中心を通る断面図(視A-A)ある。 中央突出部に加え上方突出部を設置した本発明の浸漬ノズルの例を示すイメージ図で,(a)は短辺側中心を通る断面図,(b)は長辺側中心を通る断面図(視A-A)である。 図1の中央突出部上部B-B断面から下方を観たイメージ図である。 図1のC部(浸漬ノズル下部)を示し,かつ,中央突出部が吐出孔方向に傾斜した例を示す断面のイメージ図である。 図4同様の断面の他の例で,Wpがより大きく,また底部にも吐出孔を設置した例を示すイメージ図である。 浸漬ノズル幅方向中心(図3等のA-A位置)の断面図であって,中央突出部の上面が内孔中央方向に傾斜する例を示すイメージ図である。 図4のA-A位置の断面を上から観た図であって,中央突出部の内孔中央方向の突出長さが中央から内孔幅方向で漸減する例を示すイメージ図である。 中央突出部に加え上方突出部を設置した本発明の浸漬ノズル(図2)の下部を示すイメージ図である。 従来技術による浸漬ノズルで,突出部が無い例(他は図1同様)を示すイメージ図である。
 浸漬ノズルの上端中央部の狭い孔である溶鋼流入口から落下する溶鋼流は中央に集中する傾向にある。特に内孔に障害物が無い場合には,浸漬ノズルの扁平部分幅方向の中心付近と端部付近での溶鋼流速は大きく異なる傾向がある。
 本発明者らは,このような扁平状の浸漬ノズルからの溶鋼吐出流の乱れは,この内孔中心部への溶鋼流の集中が影響度の大きい要因であることを知見した。そこで,本発明はこの内孔中心部への溶鋼流量を減じて,吐出孔方向への流量との適度なバランスを備えることとする。
 前記引用文献3のような分流手段を設置することでも或る程度,幅方向端部側への溶鋼流を形成することはできる。しかしそのような固定的又は完全な分流を行った場合は,内孔での一部分すなわち単一の狭い範囲ごとに分離した溶鋼流を生じ,内孔の場所ごとに流動方向及び流速が異なる部分を生じ易い。特に溶鋼流量制御等による流量や方向の変動があった場合には溶鋼流はどちらかに偏って,ノズル内ないし吐出流に著しい乱れを生じることがある。
 本発明は内孔での溶鋼流の固定的・完全な分流をせず,溶鋼流が通過する部分の流動方向・流速を緩やかに制御するための手段,すなわち内孔壁から内孔空間側に突出しつつも,その突出部分において内孔空間の解放部分を維持した状態の突出部を設置する。この突出部により,またその設置場所,長さ,方向等を調整することにより,溶鋼流を中心付近に集中させることを避けつつ幅方向端部側すなわち吐出孔側に分散して,適度なバランスを備えることができる。しかも単に分散するだけではなく,突出部を設置した領域でも空間が連通しているので,溶鋼流を完全に分断した状態ではなく,緩やかに混合されて均一化しながら分散する流れとなる。この結果,吐出領域を狭い領域に分断して異なる方向・流速の部分を生ずることなく均一な吐出流を得ることに寄与することができる。このような機能を備える突出部は,第一に浸漬ノズルの扁平部分の幅方向(長辺側)の壁面中央部に設置する(中央突出部)。
 前記の中央突出部の上面は,突出部長辺側の中央部を頂点にして浸漬ノズル幅方向かつ下方すなわち吐出孔方向に傾斜させることもできる。このような傾斜により,溶鋼の流速や流動形態をさらに変化させ,最適化することもできる。
 また前記の中央突出部の上面は,浸漬ノズル幅方向(長辺側)壁面との境界部を頂点にして浸漬ノズル厚さ方向の中心方向すなわち空間側かつ下方に傾斜させることもできる。このような傾斜により,溶鋼の流速や流動形態をさらに変化させ,最適化することもできる。
 さらに前記の中央突出部の上面の突出長さは,浸漬ノズル幅方向(長辺側)の中央部が最も大きい頂点として浸漬ノズル幅方向両端部に向かって漸減するように傾斜させることもできる。このような傾斜により,溶鋼の流速や流動形態をさらに変化させ,最適化することもできる。
 扁平状の浸漬ノズルでは短辺側側壁部の吐出孔が縦方向に長く開放する形態になるので,その吐出孔では上方側ほど吐出流速が小さくなる傾向があり,特に上端部付近では浸漬ノズル内に引き込む逆流現象もしばしば観られる。そこで,本発明では前述の中央突出部に加え,その上方に1又は複数の突出部(上方突出部)を設置することができる。この上方突出部は,前述の中央突出部と同様な構造にすることができ,また,浸漬ノズルの中心縦軸から任意の距離を置いた左右対称の位置に一対で設置することもできる。
 この上方突出部は,特に吐出孔上方での流速の低下,ないしは上端部付近での逆流を抑制して,吐出孔の縦方向の位置ごとの流速分布を均一化する機能を補完する。この上方突出部も,下方の中央突出部と同様に内孔空間を分断せずに,その突出長さや角度,幅等を,個別の浸漬ノズル構造,操業条件等に応じて最適化することができる。そして,前記下方の中央突出部の上面の幅方向かつ下方への傾斜,浸漬ノズル厚さ方向かつ下方への傾斜等は,当該上方突出部にも適用することができる。上方突出部にこのような傾斜を施すことにより,同様に溶鋼の流速や流動形態をさらに変化させ,最適化することもできる。
 これら突出部(中央突出部及び上方突出部)は,前述のように溶鋼流の変動が大きくなる扁平部分に設置すればその効果を得ることができる。その浸漬ノズル内での高さ方向の位置は,吐出孔の高さ方向位置と一致させる必要はないが,操業条件,浸漬ノズル内孔の構造,吐出孔の構造等との相対的な関係で最適な位置に設置すればよい。
 なお,浸漬ノズル内部の底部は,図1,図2,図4のように中央付近に吐出孔を形成しないで,単なる分流機能を有する壁面としてもよく,図5のように吐出孔を設けてもよい。個別の操業条件に対する浸漬ノズルの構造や鋳型との関係で,鋳型への総吐出量(速度)が側壁部の吐出孔だけでは不十分な場合,又は鋳型内での横方向若しくは上方向の溶鋼流速を相対的に減じたい場合等に,底部に吐出孔を設けることが好ましい。
 扁平状の浸漬ノズルではその内孔空間の扁平の程度(すなわち,長辺側長さと短辺側長さの比の大小)によって,溶鋼の流動形態や部分ごとの流速,ないしは吐出流の形態・流速も変化する。したがって,この扁平の程度・構造や個別の操業条件との関係により,最適化することが好ましい。なお,経験上,内孔の幅と厚さとの比Wn/Tnが概ね5以上である浸漬ノズルでは,浸漬ノズルの中央付近と幅方向両端部との流速の差が顕著になり,吐出孔からの流動形態の違いや流速分布の変動等が顕著になる傾向がある。したがって本発明はWn/Tnが概ね5以上である浸漬ノズルに特に好適である。
 次に本発明を実施例と共に説明する。
 実施例1は図1に示す本発明の第1の形態すなわち突出部として中央突出部のみを設置した形態(以下単に「第1の形態」ともいう。)の浸漬ノズルにつき,中央突出部の幅Wpの浸漬ノズル内孔の幅(長辺方向の長さ)Wnに対する比Wp/Wnと鋳型内湯面変動程度,及び中央突出部の空間方向への突出長さ(一対の合計の長さ)Tpの浸漬ノズル内孔の厚さ(短辺方向の長さ)Tnに対する比Tp/Tnと鋳型内湯面変動程度を示す,水モデル実験結果である。
 比較例は図9に示す構造,すなわち図1の形態の浸漬ノズルから突出部を取り除いた構造の浸漬ノズルとした。
浸漬ノズルの仕様は次の通りである。
・全長                    : 1165mm
・溶鋼導入口                 : φ86mm
・吐出孔上端位置の内孔幅(Wn)       : 255mm
・吐出孔上端位置の内孔厚さ(Tn)      : 34mm
・吐出孔上端位置のノズル下端面からの高さ   : 146.5mm
・中央突出部の高さ(ノズル下端面からの高さ) : 155mm
・中央突出部の長さ(中央からの左右長さ)   : 80mm
・浸漬ノズルの壁厚さ             : 約25mm
・浸漬ノズルの底部の厚さ(頂点)       : 高さ100mm
鋳型,流体の条件は次の通りである。
・鋳型の幅             : 1650mm
・鋳型の厚さ            : 65mm(中央上端部185mm)
・浸漬深さ(吐出孔上端から水面まで): 180mm
・流体の供給速度          : 3.5t/分
 ※溶鋼に換算した値
 鋳型内湯面変動程度は,水面を連続鋳造における鋳型内の湯面(溶鋼表面)とみなし,その上方向から超音波センサーを用いて水面までの距離を測定し,その変動高さを算出した。測定は浸漬ノズルを中心に左右幅方向両サイドの幅端部から50mm位置と1/4幅の合計4箇所で行い,その変動高さの最大と最小の差を算出した値とした。
 なお,前記の浸漬ノズルの仕様,鋳型,流体の条件は,実施例2以下の全ての実施例について同様である。
 中央突出部のいずれの方向へも,傾斜角度は0度(傾斜無し),中央突出部の幅方向の突出厚さは一定(上面視矩形),内孔中央方向への傾斜はない構造とした。
 鋳型内湯面変動程度を,比較例(図9の構造)の値を100とする指数(以下単に「変動指数」ともいう。)で表した結果を表1に示す。
 本変動指数を基準にすると,連続鋳造の実操業において約40を超えると鋳片の品質低下が許容程度を超えることがわかっている。そこで,本発明では,本発明の課題を解決することができる,すなわち目標の変動指数を40以下とした。
 この結果,図9の比較例に対し中央突出部を設置した構造では,Wp/Wn比が0.2以上0.7以下,かつTp/Tn比が0.15以上0.75以下の実施例の場合に目標の40以下を得ることができることがわかる。また,Tp/Tn比が0.5でWp/Wn比が0.5の場合が最も高い効果が得られ,好ましいことがわかる。
Figure JPOXMLDOC01-appb-T000001
 実施例2は図1に示す本発明の第1の形態の浸漬ノズルで,中央突出部の中央から吐出孔側かつ下方に傾斜させた構造での鋳型内湯面変動程度を示す,水モデル実験結果である。
 Wp/Wn比は0.1,0.5,0.8,Tp/Tn比は0.1,0.5,0.9の中央突出部構造にて,浸漬ノズルの横(水平)方向に対する中央突出部の傾斜角度を30度,45度とした場合を実験した。なお,比較のために,上記諸要素を同じ条件として傾斜していない(傾斜角度0度)場合も実験した。
 表2に結果を示す。この結果,いずれの場合も傾斜角度が大きくなるほど鋳型内湯面変動程度は小さくなることがわかる。なお,この条件中では,Wp/Wn比0.5,Tp/Tn比0.5の場合に,いずれの角度でも目標の40以下を得ることができることがわかる。
Figure JPOXMLDOC01-appb-T000002
 実施例3は図1に示す本発明の第1の形態の浸漬ノズルで,中央突出部の上面が,この中央突出部とその上面の浸漬ノズル幅方向の壁面(長辺)との境界部を頂点にして浸漬ノズルの厚さ方向の中心方向かつ下方に傾斜している中央突出部構造(図6参照)における傾斜の影響を示す,水モデル実験結果である。
 Wp/Wn比は0.1,0.5,0.8,Tp/Tn比は0.5,吐出孔側への傾斜角度は45度,前記厚さ中央方向への傾斜角度を30度,45度とした場合を実験した。
なお,比較のために,上記諸要素を同じ条件として傾斜していない(傾斜角度0度)場合も実験した。
 表3に結果を示す。この結果,いずれの場合も傾斜角度が大きくなるほど鋳型内湯面変動程度は小さくなることがわかる。なお,Wp/Wn比0.5,Tp/Tn比0.5の場合では,いずれの角度でも目標の40以下を得ることができることがわかる。
Figure JPOXMLDOC01-appb-T000003
 実施例3は図1に示す本発明の第1の形態の浸漬ノズルで,中央突出部の中央から浸漬ノズルの幅(端部)方向に突出長さを漸次短くして,中央突出部の上面視で角度を設けて五角形構造(図7参照)とした場合の鋳型内湯面変動程度を示す,水モデル実験結果である。
 Wp/Wn比は0.1,0.5,0.8,Tp/Tn比は0.5,幅方向吐出孔側への傾斜角度は45度,前記厚さ中央方向への傾斜角度は0度(傾斜無し),中央突出部中央の頂点の長さ8mmとした場合を実験した。なお,比較のために,上記諸要素を同じ条件として角度を設けていない(上面長方形)の場合も実験した。
 表4に結果を示す。この結果,いずれのWp/Wn比の場合も端部の長さが4mmの場合に鋳型内湯面変動程度は小さくなることがわかる。なお,Wp/Wn比0.5,Tp/Tn比0.5,浸漬ノズルの横(水平)方向に対する中央突出部の傾斜角度を45度の場合は,角度を有するいずれの上面形状の場合も目標の40以下を得ることができることがわかる。
Figure JPOXMLDOC01-appb-T000004
 実施例5は図8に示す本発明の第2の形態,すなわち下方の中央突出部に加え,その上方に上方突出部を設置した形態(以下単に「第2の形態」ともいう。)で,上方突出部を浸漬ノズルの縦方向中心軸から任意の距離を置いた左右対称の位置に一対で設置した浸漬ノズルでの鋳型内湯面変動程度を示す,水モデル実験結果である。
 下方の中央突出部は,浸漬ノズル下端面(外面)から150mmの位置の中央を頂点とし,吐出孔方向の長さを左右各々80mm,Wp/Wn比は0.1,0.5,0.8,Tp/Tn比は0.5,幅方向吐出孔側への傾斜角度は45度,前記厚さ中央方向への傾斜角度は0度(傾斜無し),上面形状は矩形(角度無し)とし,上方突出部は,前記下方の中央突出部の上方,浸漬ノズル幅方向中心から左右それぞれ50mmの位置を始点とし,吐出孔側への傾斜角度を45度,その吐出孔方向への長さを60mm,40mmとした場合を実験した。なお,比較のために,上記諸要素を同じ条件として上方突出部を設置していない場合も実験した。
 表5に結果を示す。この結果,いずれの場合も上方突出部を設置すると鋳型内湯面変動程度は小さくなることがわかる。なお,Wp/Wn比0.5,Tp/Tn比0.5の場合では,いずれの上方突出部長さでも目標の40以下を得ることができることがわかる。
Figure JPOXMLDOC01-appb-T000005
 以上,本発明の実施例と共に実施の形態について説明したが,本発明は何ら上述の形態に限定されるものではなく,特許請求の範囲に記載されている事項の範囲内で他の実施の形態や変形例も含むものである。
 10:浸漬ノズル
 1:突出部
 1a:中央突出部
 1b:上方突出部
 2:溶鋼導入口
 3:内孔(溶鋼流路)
 4:吐出孔(短辺側の壁部分)
 5:底部
 6:吐出孔(底部)

Claims (7)

  1.  内孔の幅Wnが内孔の厚さTnより大きい扁平状である浸漬ノズルにおいて,扁平部分の幅方向の壁面中央部に突出した部分(以下「中央突出部」という。)を備え,前記中央突出部の前記幅方向の長さWpの前記Wnに対する比Wp/Wnが0.2以上0.7以下であり,前記中央突出部は対称に一対で配置されており,前記一対の中央突出部の前記厚さ方向の合計長さTpは,前記Tnの0.15以上0.75以下である,浸漬ノズル。
  2.  前記中央突出部は,前記幅方向の中央を頂点にして吐出孔方向下方に傾斜している,請求項1に記載の浸漬ノズル。
  3.  前記中央突出部の上面は,前記幅方向の浸漬ノズル壁面との境界部を頂点にして前記厚さ方向かつ下方に傾斜している,請求項1又は請求項2に記載の浸漬ノズル。
  4.  前記中央突出部の上面の突出長さは,前記Wpの中央部が最も大きく,当該中央部から両端部に向かって漸減する,請求項1から請求項3のいずれかに記載の浸漬ノズル。
  5.  前記中央突出部の上方に突出部(以下「上方突出部」という。)を1又は複数備えた,請求項1から請求項4のいずれかに記載の浸漬ノズル。
  6.  前記上方突出部は吐出孔方向に傾斜している,請求項5に記載の浸漬ノズル。
  7.  前記幅と前記厚さとの比Wn/Tnが5以上である,請求項1から請求項6のいずれかに記載の浸漬ノズル。
PCT/JP2016/076915 2015-11-10 2016-09-13 浸漬ノズル WO2017081934A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2016351763A AU2016351763B2 (en) 2015-11-10 2016-09-13 Immersion nozzle
KR1020187006296A KR102091575B1 (ko) 2015-11-10 2016-09-13 침지 노즐
BR112018009320-3A BR112018009320B1 (pt) 2015-11-10 2016-09-13 Bocal de imersão
CA3002507A CA3002507C (en) 2015-11-10 2016-09-13 Immersion nozzle
CN201680052194.7A CN108025352B (zh) 2015-11-10 2016-09-13 浸渍喷嘴
RU2018120725A RU2698033C1 (ru) 2015-11-10 2016-09-13 Погружной стакан
EP16863898.9A EP3375545B1 (en) 2015-11-10 2016-09-13 Immersion nozzle
ES16863898T ES2813048T3 (es) 2015-11-10 2016-09-13 Boquilla de inmersión
US15/774,319 US10799942B2 (en) 2015-11-10 2016-09-13 Immersion nozzle
ZA2018/02127A ZA201802127B (en) 2015-11-10 2018-04-03 Immersion nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015220580A JP6577841B2 (ja) 2015-11-10 2015-11-10 浸漬ノズル
JP2015-220580 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017081934A1 true WO2017081934A1 (ja) 2017-05-18

Family

ID=58695980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076915 WO2017081934A1 (ja) 2015-11-10 2016-09-13 浸漬ノズル

Country Status (12)

Country Link
US (1) US10799942B2 (ja)
EP (1) EP3375545B1 (ja)
JP (1) JP6577841B2 (ja)
KR (1) KR102091575B1 (ja)
CN (1) CN108025352B (ja)
AU (1) AU2016351763B2 (ja)
BR (1) BR112018009320B1 (ja)
CA (1) CA3002507C (ja)
ES (1) ES2813048T3 (ja)
RU (1) RU2698033C1 (ja)
WO (1) WO2017081934A1 (ja)
ZA (1) ZA201802127B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153195A1 (ja) 2019-01-21 2020-07-30 黒崎播磨株式会社 浸漬ノズル
WO2023181937A1 (ja) * 2022-03-23 2023-09-28 日本製鉄株式会社 浸漬ノズル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11958106B2 (en) 2019-03-04 2024-04-16 Krosakiharima Corporation Plate holding device, plate detaching apparatus, plate attaching apparatus, and plate attaching-detaching apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58361A (ja) * 1981-06-22 1983-01-05 Kurosaki Refract Co Ltd 溶融金属鋳造用ノズル
JP2004122226A (ja) * 2002-07-31 2004-04-22 Shinagawa Refract Co Ltd 鋳造用ノズル
CN101733373A (zh) * 2009-12-23 2010-06-16 重庆大学 一种薄板坯连铸结晶器用浸入式水口
CN101966567A (zh) * 2010-10-19 2011-02-09 维苏威高级陶瓷(苏州)有限公司 薄坯板浸入式水口
CN103231048A (zh) * 2013-05-17 2013-08-07 辽宁科技大学 高拉速ftsc薄板坯连铸结晶器用四孔式浸入式水口

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN191421B (ja) * 1994-06-15 2003-11-29 Vesuvius Frnance Sa
UA51734C2 (uk) 1996-10-03 2002-12-16 Візувіус Крусібл Компані Занурений стакан для пропускання рідкого металу і спосіб пропускання рідкого металу через нього
JPH115145A (ja) 1997-04-22 1999-01-12 Toshiba Ceramics Co Ltd 一体化浸漬ノズル及びその製造方法
JPH1147897A (ja) 1997-07-31 1999-02-23 Nippon Steel Corp 薄肉広幅鋳片連続鋳造用浸漬ノズル
FR2777485B1 (fr) * 1998-04-16 2000-05-19 Usinor Busette pour l'indroduction de metal liquide dans une lingotiere de coulee continue des metaux
WO2004011175A1 (ja) * 2002-07-31 2004-02-05 Shinagawa Refractories Co., Ltd. 鋳造用ノズル
EP1657009A1 (en) * 2004-11-12 2006-05-17 ARVEDI, Giovanni Improved submerged nozzle for steel continuous casting
US20060243760A1 (en) * 2005-04-27 2006-11-02 Mcintosh James L Submerged entry nozzle
KR101035337B1 (ko) * 2008-03-27 2011-05-20 구로사키 하리마 코포레이션 연속 주조용 침지 노즐
CN201313176Y (zh) * 2008-11-27 2009-09-23 中钢集团洛阳耐火材料研究院有限公司 一种具有特殊外形的薄板坯连铸用浸入式水口
CN101524752B (zh) * 2009-04-22 2011-02-02 华耐国际(宜兴)高级陶瓷有限公司 薄板坯浸入式水口
CN201565600U (zh) * 2009-12-23 2010-09-01 重庆大学 一种薄板坯连铸结晶器用浸入式水口
JP5645736B2 (ja) * 2011-03-31 2014-12-24 黒崎播磨株式会社 連続鋳造用浸漬ノズル
EP2815820B9 (en) * 2013-06-20 2017-03-01 Refractory Intellectual Property GmbH & Co. KG Refractory submerged entry nozzle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58361A (ja) * 1981-06-22 1983-01-05 Kurosaki Refract Co Ltd 溶融金属鋳造用ノズル
JP2004122226A (ja) * 2002-07-31 2004-04-22 Shinagawa Refract Co Ltd 鋳造用ノズル
CN101733373A (zh) * 2009-12-23 2010-06-16 重庆大学 一种薄板坯连铸结晶器用浸入式水口
CN101966567A (zh) * 2010-10-19 2011-02-09 维苏威高级陶瓷(苏州)有限公司 薄坯板浸入式水口
CN103231048A (zh) * 2013-05-17 2013-08-07 辽宁科技大学 高拉速ftsc薄板坯连铸结晶器用四孔式浸入式水口

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3375545A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153195A1 (ja) 2019-01-21 2020-07-30 黒崎播磨株式会社 浸漬ノズル
JP2020116591A (ja) * 2019-01-21 2020-08-06 黒崎播磨株式会社 浸漬ノズル
JP7134105B2 (ja) 2019-01-21 2022-09-09 黒崎播磨株式会社 浸漬ノズル
EP3915696A4 (en) * 2019-01-21 2022-09-14 Krosakiharima Corporation SUB JET
WO2023181937A1 (ja) * 2022-03-23 2023-09-28 日本製鉄株式会社 浸漬ノズル

Also Published As

Publication number Publication date
BR112018009320A2 (ja) 2018-11-06
JP6577841B2 (ja) 2019-09-18
CA3002507A1 (en) 2017-05-18
BR112018009320A8 (pt) 2019-02-26
ZA201802127B (en) 2019-01-30
EP3375545B1 (en) 2020-07-15
CA3002507C (en) 2020-01-21
RU2698033C1 (ru) 2019-08-21
AU2016351763A1 (en) 2018-06-21
KR20180037249A (ko) 2018-04-11
KR102091575B1 (ko) 2020-03-20
EP3375545A4 (en) 2019-04-03
CN108025352A (zh) 2018-05-11
US20200188991A1 (en) 2020-06-18
EP3375545A1 (en) 2018-09-19
CN108025352B (zh) 2020-04-21
BR112018009320B1 (pt) 2022-07-19
ES2813048T3 (es) 2021-03-22
AU2016351763B2 (en) 2019-08-22
US10799942B2 (en) 2020-10-13
JP2017087264A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
WO2017081934A1 (ja) 浸漬ノズル
CN103442826B (zh) 连续铸造用浸入式水口
WO2011121802A1 (ja) 浸漬ノズル
CN108495727B (zh) 带有导流块的连铸水口
JP7134105B2 (ja) 浸漬ノズル
EP1759789B1 (en) Pouring tube structure and pouring method for uphill casting
JP2004283857A (ja) 鋼の連続鋳造用ノズル
JP5673162B2 (ja) 連続鋳造方法および連続鋳造装置
JP2009125750A (ja) 連続鋳造用浸漬ノズル
KR20240034747A (ko) 침지 노즐
JPH10193052A (ja) 薄肉広幅鋳片連続鋳造用浸漬ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187006296

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3002507

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018009320

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016863898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018120725

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016351763

Country of ref document: AU

Date of ref document: 20160913

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018009320

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180508