WO2017080392A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2017080392A1
WO2017080392A1 PCT/CN2016/104305 CN2016104305W WO2017080392A1 WO 2017080392 A1 WO2017080392 A1 WO 2017080392A1 CN 2016104305 W CN2016104305 W CN 2016104305W WO 2017080392 A1 WO2017080392 A1 WO 2017080392A1
Authority
WO
WIPO (PCT)
Prior art keywords
order modulation
modulation symbols
subcarrier
symbols
constellation
Prior art date
Application number
PCT/CN2016/104305
Other languages
English (en)
French (fr)
Inventor
吴涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187016108A priority Critical patent/KR102137646B1/ko
Priority to RU2018121092A priority patent/RU2686664C1/ru
Priority to EP21212419.2A priority patent/EP4027551B1/en
Priority to JP2018524362A priority patent/JP6686137B2/ja
Priority to EP16863569.6A priority patent/EP3364555B1/en
Publication of WO2017080392A1 publication Critical patent/WO2017080392A1/zh
Priority to US15/975,720 priority patent/US10419262B2/en
Priority to US16/546,159 priority patent/US10819553B2/en
Priority to US16/948,569 priority patent/US11140017B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a data transmission method and apparatus.
  • Dual Carrier Modulation is a technology that uses frequency diversity to improve transceiver performance.
  • Frequency diversity is to transmit a signal at the transmitting end by using two relatively large transmitting frequencies simultaneously, and synthesizing after receiving two radio frequency signals simultaneously at the receiving end. Because of different working frequencies, the correlation between electromagnetic waves is extremely small. The fading probability of each electromagnetic wave is also different. Therefore, frequency diversity is particularly effective against frequency selective fading, and the transmission and reception performance can be improved.
  • Embodiments of the present invention provide a data transmission method and apparatus to improve transceiving performance of data transmission.
  • the present invention provides a data transmission method, including:
  • the information bits to be transmitted are modulated according to a low-order constellation to generate 4m low-order modulation symbols, where m is an integer greater than or equal to 1;
  • the 4m high-order modulation symbols to be transmitted are classified into four categories, wherein the 4th (i-1)+1 high-order modulation symbols are the first high-order modulation symbols, and the 4th ( I-1) +2 high-order modulation symbols are second high-order modulation symbols, 4th (i-1)+3 high-order modulation symbols are third high-order modulation symbols, 4th (i-1)+4
  • the high-order modulation symbols are fourth higher-order modulation symbols, where 1 ⁇ i ⁇ l and are integers;
  • Transmitting the 4m high-order modulation symbols to be sent respectively on different carriers of the two antennas including:
  • the precoding matrix Q is respectively multiplied by a column vector composed of every 4 low order modulation symbols in the 4m low order modulation symbols to obtain 4m to be matched with the high order constellation diagram.
  • High-order modulation symbols sent including:
  • Precoding matrix Multiplying the column vector [s 0 s 1 s 2 s 3 ] T composed of 4 quadrature phase shift keying QPSK symbols to obtain 4 256QAM modulation symbols to be transmitted corresponding to the 256 quadrature amplitude modulation QAM constellation diagram , respectively [x 0 x 1 x 2 x 3 ] T , where x 0 is the first higher-order modulation symbol, x 1 is the second higher-order modulation symbol, x 2 is the third higher-order modulation symbol, and x 3 is The fourth higher order modulation symbol, [ ] T represents transposition.
  • the precoding matrix Q is respectively multiplied by a column vector composed of every 4 low order modulation symbols in the 4m low order modulation symbols to obtain 4m to be matched with the high order constellation diagram.
  • High-order modulation symbols sent including:
  • [s 0 s 1 s 2 s 3 ] T multiplying, and obtaining four 128QAM modulation symbols to be transmitted corresponding to the 128QAM constellation, respectively, are [x 0 x 1 x 2 x 3 ] T , where x 0 is The first higher order modulation symbol, x 1 is the second higher order modulation symbol, x 2 is the third higher order modulation symbol, and x 3 is the fourth higher order modulation symbol, and [ ] T represents transposition.
  • the precoding matrix Q is respectively multiplied by a column vector composed of every 4 low order modulation symbols in the 4m low order modulation symbols to obtain 4m to be matched with the high order constellation diagram.
  • High-order modulation symbols sent including:
  • Precoding matrix Multiplying the column vector [s 0 s 1 s 2 s 3 ] T composed of 4 BPSK symbols to obtain 4 modulation symbols to be transmitted corresponding to the QPSK constellation, respectively [x 0 x 1 x 2 x 3 And T , wherein x 0 is a first higher order modulation symbol, x 1 is a second higher order modulation symbol, x 2 is a third higher order modulation symbol, and x 3 is a fourth higher order modulation symbol.
  • the present invention provides a data transmission method, including:
  • the two receiving antennas receive signals on two carriers, wherein the two receiving antennas are a first receiving antenna and a second receiving antenna, respectively, and the two carriers are a first subcarrier and a second subcarrier, respectively, wherein the first receiving
  • the signal received by the antenna on the first subcarrier is r 11
  • the signal received by the second receiving antenna on the first subcarrier is r 21
  • the signal received by the first receiving antenna on the second subcarrier is r 12
  • the signal received by the second receiving antenna on the second subcarrier is r 22 ;
  • the estimated values of the 4m low-order modulation symbols are demodulated according to the corresponding lower-order constellation, and an estimated value of information bits transmitted by the transmitting end is obtained.
  • the low order modulation symbols are quadrature phase shift keying QPSK modulation symbols or binary phase shift keying BPSK modulation symbols.
  • the present invention provides a data transmission method, including:
  • the high order modulation symbols are 256 quadrature amplitude modulated QAM modulation symbols or are quadrature phase shift keying QPSK modulation symbols.
  • the present invention provides a data transmission apparatus, including:
  • a modulation module configured to modulate information bits to be transmitted according to a low-order constellation to generate 4m low-order modulation symbols, where m is an integer greater than or equal to 1;
  • a processing module configured to multiply the precoding matrix Q by a column vector composed of every 4 low-order modulation symbols in the 4m low-order modulation symbols, to obtain 4m high-order to be transmitted corresponding to the high-order constellation diagram Modulation symbol
  • a sending module configured to send, on the different carriers of the two antennas, the 4m high-order modulation symbols to be sent respectively.
  • the 4m high-order modulation symbols to be transmitted are classified into four categories, wherein the 4th (i-1)+1 high-order modulation symbols are the first high-order modulation symbols, and the 4th ( I-1) +2 high-order modulation symbols are second high-order modulation symbols, 4th (i-1)+3 high-order modulation symbols are third high-order modulation symbols, 4th (i-1)+4
  • the high-order modulation symbols are fourth higher-order modulation symbols, where 1 ⁇ i ⁇ l and are integers;
  • the sending module is specifically configured to send the first high-order modulation symbol on the first sub-carrier of the first transmit antenna, and send the second high-order modulation symbol on the first sub-carrier of the second transmit antenna, and the third The high order modulation symbol is transmitted on a second subcarrier of the first transmit antenna; the fourth higher order modulation symbol is transmitted on a second subcarrier of the second transmit antenna.
  • the processing module is specifically configured to:
  • Precoding matrix Multiplying the column vector [s 0 s 1 s 2 s 3 ] T composed of 4 quadrature phase shift keying QPSK symbols to obtain 4 256QAM modulation symbols to be transmitted corresponding to the 256 quadrature amplitude modulation QAM constellation diagram , respectively [x 0 x 1 x 2 x 3 ] T , where x 0 is the first higher-order modulation symbol, x 1 is the second higher-order modulation symbol, x 2 is the third higher-order modulation symbol, and x 3 is The fourth higher order modulation symbol, [ ] T represents transposition.
  • the processing module is specifically for
  • [s 0 s 1 s 2 s 3 ] T multiplying, and obtaining four 128QAM modulation symbols to be transmitted corresponding to the 128QAM constellation, respectively, are [x 0 x 1 x 2 x 3 ] T , where x 0 is The first higher order modulation symbol, x 1 is the second higher order modulation symbol, x 2 is the third higher order modulation symbol, and x 3 is the fourth higher order modulation symbol, and [ ] T represents transposition.
  • the processing module is specifically for
  • Precoding matrix Multiplying the column vector [s 0 s 1 s 2 s 3 ] T composed of 4 BPSK symbols to obtain 4 modulation symbols to be transmitted corresponding to the QPSK constellation, respectively [x 0 x 1 x 2 x 3 And T , wherein x 0 is a first higher order modulation symbol, x 1 is a second higher order modulation symbol, x 2 is a third higher order modulation symbol, and x 3 is a fourth higher order modulation symbol.
  • the present invention provides a data transmission apparatus, including:
  • a receiving module configured to receive signals on two carriers, where the receiving module is disposed in the first receiving antenna and the second receiving antenna, where the two carriers are a first subcarrier and a second subcarrier, respectively, where the first receiving antenna received on the first sub-carrier signal is r 11, received by the second receiving antenna on the first sub-carrier signal is r 21, received by the first receiving antenna at the second subcarrier signal r 12, The signal received by the second receiving antenna on the second subcarrier is r 22 ;
  • a channel equalization module configured to perform channel equalization on [r 11 r 21 r 12 r 22 ] T , to obtain an estimated value of 4 m low-order modulation symbols, where m is an integer greater than or equal to 1;
  • a demodulation module configured to demodulate the estimated values of the 4m low-order modulation symbols according to a corresponding low-order constellation to obtain an estimated value of the information bits sent by the transmitting end.
  • the low order modulation symbols are quadrature phase shift keying QPSK modulation symbols or binary phase shift keying BPSK modulation symbols.
  • the present invention provides a data transmission apparatus, including:
  • a channel equalization module configured to perform channel equalization on signals received by the two antennas on the first subcarrier, to obtain an estimated value of 2m first high-order modulation symbols, where m is an integer greater than or equal to 1;
  • the channel equalization module is further configured to perform channel equalization on signals received by the two antennas on the second subcarrier, and obtain an estimated value of 2m second high order modulation symbols;
  • a demodulation module configured to demodulate an estimated value of the 2m first high-order modulation symbols according to a mapping manner of the high-order constellation image to obtain a first estimated value of the information bits sent by the transmitting end;
  • the demodulation module is further configured to: demodulate the estimated values of the 2m second high-order modulation symbols according to a mapping manner of the high-order constellation image to obtain a second estimated value of the information bits sent by the transmitting end;
  • a processing module configured to combine the first estimated value of the information bit sent by the sending end with the second estimated value of the information bit sent by the sending end, to obtain an estimated value of the information bit sent by the sending end.
  • the high order modulation symbols are 256 quadrature amplitude modulated QAM modulation symbols or are quadrature phase shift keying QPSK modulation symbols.
  • the data transmission method and apparatus provided by the embodiments of the present invention generate a 4m low-order modulation symbol by modulating information bits to be transmitted according to a low-order constellation diagram, and form a column consisting of a precoding matrix Q and 4m low-order modulation symbols.
  • the vector is multiplied to obtain 4m high-order modulation symbols to be transmitted corresponding to the high-order constellation, and the 4m high-order modulation symbols to be transmitted are respectively transmitted on different carriers of the two antennas.
  • the high-order modulation symbols to be transmitted include some or all information bits to be transmitted, so that the same signal can be simultaneously transmitted in different antennas of multiple antennas to implement frequency diversity and spatial diversity, thereby improving the transmission and reception performance of data transmission.
  • FIG. 1 is a schematic diagram of an application scenario of the present invention
  • Embodiment 1 of a data transmission method according to the present invention
  • Embodiment 2 of a data transmission method according to the present invention
  • Embodiment 4 is a schematic flowchart of Embodiment 3 of a data transmission method according to the present invention.
  • FIG. 5 is a schematic flowchart diagram of Embodiment 4 of a data transmission method according to the present invention.
  • Figure 6 is a BPSK constellation diagram of the present invention.
  • Figure 7 is a QPSK constellation diagram of the present invention.
  • Embodiment 8 is a schematic flowchart of Embodiment 5 of a data transmission method according to the present invention.
  • Embodiment 6 of a data transmission method according to the present invention is a schematic flowchart of Embodiment 6 of a data transmission method according to the present invention.
  • FIG. 10 is a schematic flowchart diagram of Embodiment 7 of a data transmission method according to the present invention.
  • Figure 11 is a 256QAM constellation diagram of the present invention.
  • Embodiment 8 of a data transmission method according to the present invention.
  • FIG. 13 is a schematic flowchart of Embodiment 9 of a data transmission method according to the present invention.
  • FIG. 14 is a schematic flowchart diagram of Embodiment 10 of a data transmission method according to the present invention.
  • Figure 15 is a 128QAM constellation diagram of the present invention.
  • FIG. 16 is a schematic flowchart diagram of Embodiment 11 of a data transmission method according to the present invention.
  • Embodiment 17 is a schematic structural diagram of Embodiment 1 of a data transmission device according to the present invention.
  • FIG. 18 is a schematic structural diagram of Embodiment 2 of a data transmission apparatus according to the present invention.
  • Embodiment 3 of a data transmission apparatus is a schematic structural diagram of Embodiment 3 of a data transmission apparatus according to the present invention.
  • Embodiment 4 of a data transmission apparatus according to the present invention.
  • FIG. 21 is a schematic structural diagram of Embodiment 5 of a data transmission apparatus according to the present invention.
  • FIG. 22 is a schematic structural diagram of Embodiment 6 of a data transmission apparatus according to the present invention.
  • the present invention is realized by simultaneously transmitting a signal to achieve frequency diversity and spatial diversity.
  • FIG. 1 is a schematic diagram of an application scenario of the present invention.
  • FIG. 1 is a schematic structural diagram of a 2 ⁇ 2 MIMO system, which includes a transmitter and a receiver, and FIG. 1
  • the transmitter in the schematic diagram of the diagram includes two transmit antennas, which are a first transmit antenna M-1T and a second transmit antenna M-2T, respectively, and the receiver includes two receive antennas, respectively a first receive antenna M-2R and The second receiving antenna M-2R, there are four channels between the two transmitting antennas and the two receiving antennas, respectively 1-1 (the channel between the first transmitting antenna and the first receiving antenna), 1-2 (the first a channel between a transmitting antenna and a second receiving antenna), 2-1 (a channel between the second transmitting antenna and the first receiving antenna) and 2-2 (a channel between the second transmitting antenna and the second receiving antenna) ).
  • FIG. 2 is a schematic flowchart of Embodiment 1 of a data transmission method according to the present invention. The method in this embodiment is performed by a transmitter, as shown in FIG. 2:
  • S201 modulate information bits to be transmitted according to a low-order constellation to generate 4m low-order modulation symbols.
  • n is an integer greater than or equal to 1.
  • S202 Multiply the precoding matrix Q by a column vector composed of every 4 low-order modulation symbols in 4m low-order modulation symbols, to obtain 4m high-order modulators corresponding to the high-order constellation diagram. number.
  • the precoding matrix Q is obtained according to the 4m low order modulation symbols and the high order constellation.
  • the higher order modulation symbols to be transmitted contain some or all of the information bits to be transmitted.
  • QPSK Quadri Phase Shift Key
  • the high-order modulation symbol contains half of the information bits to be transmitted; during transmission, one information bit is transmitted on one subcarrier of all the transmitting antennas. For example, if four information bits are transmitted, the first subcarrier of the first transmit antenna, and the second subcarrier of the second transmit antenna contain information of information bit 1 and information bit 2, the second subcarrier of the first transmit antenna, and the second The first subcarrier of the transmit antenna contains information of information bits 3 and information bits 4.
  • S203 Send 4m high-order modulation symbols to be transmitted, respectively, on different carriers of the two antennas.
  • the 4m high-order modulation symbols to be transmitted are classified into four categories, wherein the 4th (i-1)+1 high-order modulation symbols are the first high-order modulation symbols, and the 4th (i-1)+2 The high-order modulation symbol is the second higher-order modulation symbol, the 4th (i-1)+3 higher-order modulation symbols are the third higher-order modulation symbols, and the 4th (i-1)+4 higher-order modulation symbols are a fourth higher order modulation symbol, wherein 1 ⁇ i ⁇ l and is an integer;
  • the first higher order modulation symbol is transmitted on the first subcarrier of the first transmit antenna
  • the second higher order modulation symbol is transmitted on the first subcarrier of the second transmit antenna
  • the third higher order modulation symbol is transmitted.
  • the information bits to be transmitted are modulated according to a low-order constellation diagram to generate 4m low-order modulation symbols, and the precoding matrix Q is multiplied by a column vector composed of 4m low-order modulation symbols to obtain a high sum.
  • the 4m high-order modulation symbols to be transmitted corresponding to the order constellation are transmitted on the different carriers of the 2 antennas corresponding to the 4m high-order modulation symbols to be transmitted.
  • the high-order modulation symbol to be transmitted contains some or all information bits to be transmitted, and thus, the same signal It can transmit simultaneously on different carriers of multiple antennas to achieve frequency diversity and spatial diversity, thus improving the transmission and reception performance of data transmission.
  • FIG. 3 and FIG. 4 are two methods performed by a receiver, wherein the method of FIG. 3 corresponds to a joint demodulation method, and the method of FIG. 4 corresponds to a method of independent demodulation and then combining, as shown in FIG. And a detailed description of FIG.
  • FIG. 3 is a schematic flowchart of Embodiment 2 of a data transmission method according to the present invention. The method in this embodiment is performed by a receiver, as shown in FIG. 3:
  • S301 Two receiving antennas receive signals on two carriers.
  • the two receiving antennas are respectively a first receiving antenna and a second receiving antenna, and the two carriers are respectively a first subcarrier and a second subcarrier, wherein the signal received by the first receiving antenna on the first subcarrier is r 11 , the signal received by the second receiving antenna on the first subcarrier is r 21 , the signal received by the first receiving antenna on the second subcarrier is r 12 , and the second receiving antenna is received on the second subcarrier
  • the signal to arrive is r 22 .
  • n is an integer greater than or equal to 1.
  • S303 Demodulate the estimated values of the 4m low-order modulation symbols according to the corresponding low-order constellation to obtain an estimated value of the information bits sent by the transmitting end.
  • channel equalization is performed on a column vector composed of signals received by two receiving antennas on different carriers, and an estimated value of 4m low-order modulation symbols is obtained, and then an estimated value of 4m low-order modulation symbols is obtained.
  • Demodulation according to the corresponding low-order constellation, obtaining an estimated value of the information bits sent by the transmitting end, and obtaining an estimated value of the information bits sent by the transmitting end by means of joint demodulation, the same signal may be different in multiple receiving antennas
  • the carrier is simultaneously received to implement frequency diversity and spatial diversity, thereby improving the transmission and reception performance of the data transmission.
  • FIG. 4 is a schematic flowchart of Embodiment 3 of a data transmission method according to the present invention. The method in this embodiment is performed by a receiver, as shown in FIG. 4:
  • S401 Perform channel equalization on signals received by the two antennas on the first subcarrier, and obtain an estimated value of 2m first high order modulation symbols.
  • n is an integer greater than or equal to 1.
  • S402 Perform channel equalization on signals received by the two antennas on the second subcarrier, and obtain 2m. Estimates of the second higher order modulation symbols.
  • S403 Demodulate the estimated values of the 2m first high-order modulation symbols according to the mapping manner of the high-order constellation map to obtain a first estimated value of the information bits sent by the transmitting end.
  • S404 Demodulate the estimated values of the 2m second high-order modulation symbols according to the mapping manner of the high-order constellation map to obtain a second estimated value of the information bits sent by the transmitting end.
  • S405 Combine the first estimated value of the information bit sent by the sending end with the second estimated value of the information bit sent by the sending end to obtain an estimated value of the information bit sent by the transmitting end.
  • an estimated value of 2m first high-order modulation symbols is obtained, and the two antennas are received on the second subcarrier.
  • the signal is channel-equalized, and the estimated values of the 2m second high-order modulation symbols are obtained, and the estimated values of the 2m first high-order modulation symbols are demodulated according to the mapping manner of the high-order constellation map to obtain the information bits sent by the transmitting end.
  • the first estimated value is obtained by demodulating the estimated values of the 2m first high-order modulation symbols according to the mapping manner of the high-order constellation map to obtain a second estimated value of the information bits sent by the transmitting end, and transmitting the information sent by the transmitting end
  • the first estimated value of the bit is combined with the second estimated value of the information bit transmitted by the transmitting end to obtain an estimated value of the information bit transmitted by the transmitting end. That is, the estimated value of the information bits transmitted by the transmitting end is obtained by independent demodulation and then combining, and the same signal can be simultaneously received by different carriers of multiple receiving antennas to implement frequency diversity and spatial diversity, thereby improving data transmission. Transceiver performance.
  • the SQPSK and QPSK are taken as an example for detailed description.
  • S501 Modulate 4 information bits to be transmitted according to a BPSK constellation to generate 4 BPSK symbols.
  • BPSK Binary Phase Shift Keying
  • S502 Multiply the precoding matrix Q by a column vector composed of four BPSK symbols to obtain four high order modulation symbols to be transmitted corresponding to the QPSK constellation.
  • Precoding matrix According to the 4 low-order modulation symbols and the QPSK constellation, [s 0 s 1 s 2 s 3 ] T is a column vector composed of 4 BPSK symbols, and 4 high-order modulation symbols to be transmitted are respectively [x 0 x 1 x 2 x 3 ] T
  • S503 transmitting x 0 on the first subcarrier of the first transmit antenna, transmitting x 1 on the first subcarrier of the second transmit antenna, and transmitting x 2 on the second subcarrier of the first transmit antenna; x 3 will be sent on the second subcarrier of the second transmission antenna.
  • four information bits to be transmitted are modulated according to a BPSK constellation, four BPSK symbols are generated, and a precoding matrix Q is multiplied by a column vector composed of four BPSK symbols to obtain a QPSK constellation map.
  • 4 high-order modulation symbols to be transmitted transmitting x 0 on the first subcarrier of the first transmit antenna, transmitting x 1 on the first subcarrier of the second transmit antenna, and transmitting x 2 on the first transmit transmitting the second subcarrier of the antenna;
  • x 3 will be sent on the second subcarrier of the second transmit antenna;
  • s 0 simultaneously transmitted on the first subcarrier and the second subcarrier also a first emitter transmit antenna and the second transmit antenna, while achieving a frequency diversity and space diversity
  • s 1 simultaneously transmitted on the first subcarrier and the second subcarrier also transmitting a first transmit antenna and a second transmit antenna, while achieving Frequency diversity and spatial diversity.
  • S801 Perform channel equalization on a column vector composed of signals received by two receiving antennas on two carriers, to obtain an estimated value of four BPSK symbols.
  • the column vector composed of the signals received by the two receiving antennas on the two carriers is among them, wherein r 1,1 represents a signal received by the first receiving antenna on the first subcarrier, r 2,1 represents a signal received by the second receiving antenna on the first subcarrier, and r 1,2 represents the first receiving The signal received by the antenna on the second subcarrier, r 2,2 represents the signal received by the second receive antenna on the second subcarrier.
  • h 11,1 represents the channel response of the first transmitting antenna to the first receiving antenna on the first subcarrier
  • h 12,1 represents the channel response of the first transmitting antenna to the second receiving antenna on the first subcarrier
  • h 21,1 Representing the channel response of the second transmitting antenna to the first receiving antenna on the first subcarrier
  • h 22,1 indicating the channel response of the second transmitting antenna to the second receiving antenna on the first subcarrier
  • h 11,2 indicating the second sub on a carrier to the first transmit antenna a first receive antenna channel response
  • h 12,2 represents the second subcarrier first transmission antenna to the second receiving antenna channel response
  • h 21,2 denotes a second sub-carriers on a second The channel response of the transmitting antenna to the first receiving antenna
  • h 22, 2 represents the channel response of the second transmitting antenna to the second receiving antenna on the second subcarrier.
  • the estimated values of the four BPSK symbols are expressed as: with among them,
  • S802 Demodulate the estimated values of the four BPSK modulation symbols according to the mapping manner of the BPSK constellation, and obtain an estimated value of the information bits sent by the transmitting end.
  • channel equalization is performed on a column vector composed of signals received by two receiving antennas on two carriers, and an estimated value of four BPSK symbols is obtained.
  • the estimated values of the four BPSK modulation symbols are in accordance with the BPSK constellation.
  • the mapping mode is demodulated, and the estimated value of the information bits sent by the transmitting end is obtained, that is, the estimated value of the information bits transmitted by the transmitting end is obtained by joint demodulation, and the same signal can be simultaneously used on different carriers of multiple receiving antennas. Receive, achieve frequency diversity and spatial diversity, therefore, improve the transmission and reception performance of data transmission.
  • S901 Perform channel equalization on signals received by the two antennas on the first subcarrier, and obtain estimated values of the two first high order modulation symbols.
  • the signals received by the two antennas on the first subcarrier can be expressed as:
  • r 1,1 represents a signal received by the first receiving antenna on the first subcarrier
  • r 2,1 represents a signal received by the second receiving antenna on the first subcarrier
  • Signal received on the first subcarrier Perform channel equalization processing to obtain estimated values of two first high-order modulation symbols, respectively with
  • S902 Perform channel equalization on signals received by the two antennas on the second subcarrier, and obtain estimated values of the two second higher order modulation symbols.
  • the signals received by the two antennas on the second subcarrier can be expressed as:
  • r 1 , 2 represents a signal received by the first receiving antenna on the second subcarrier
  • r 2 , 2 represents a signal received by the second receiving antenna on the second subcarrier
  • Signal received on the second subcarrier Perform channel equalization processing to obtain estimated values of two second higher-order modulation symbols, respectively with
  • S903 Demodulate the estimated values of the two first high-order modulation symbols according to a mapping manner of the QPSK constellation to obtain a first estimated value of the information bits sent by the transmitting end.
  • the first estimated value can be expressed as:
  • S904 Demodulate the estimated values of the two second high-order modulation symbols according to the mapping manner of the QPSK constellation to obtain a second estimated value of the information bits sent by the transmitting end.
  • the second estimated value can be expressed as:
  • S905 Combine the first estimated value of the information bit sent by the transmitting end with the second estimated value of the information bit sent by the transmitting end to obtain an estimated value of the information bit sent by the transmitting end.
  • an estimated value of two first high-order modulation symbols is obtained, and signals received by the two antennas on the second subcarrier are obtained.
  • Perform channel equalization obtain estimation values of two second high-order modulation symbols, and demodulate the estimated values of the two first high-order modulation symbols according to the mapping manner of the QPSK constellation to obtain the first information bits sent by the transmitting end.
  • Estimating the value according to the mapping manner of the QPSK constellation, demodulating the estimated values of the two second higher-order modulation symbols to obtain a second estimated value of the information bits sent by the transmitting end, and first estimating the information bits sent by the transmitting end
  • the value is combined with the second estimated value of the information bits sent by the transmitting end to obtain an estimated value of the information bits sent by the transmitting end, that is, the estimated value of the information bits sent by the transmitting end is obtained by independent demodulation and then combining, the same Signal can be on multiple receiving days Different carriers of the line are simultaneously received to implement frequency diversity and spatial diversity, thereby improving the transmission and reception performance of the data transmission.
  • QPSK as an example flow diagram, QPSK implementation is divided into two types, the first implementation of the high-order constellation diagram is 256 Quadrature Amplitude Modulation (QAM) constellation diagram, the second implementation The high-order constellation of the mode is a 128QAM constellation;
  • QAM Quadrature Amplitude Modulation
  • FIG. 10 the schematic diagram of the process of the transmitting end is as shown in FIG. 10:
  • S1001 The eight information bits to be transmitted are modulated according to a QPSK constellation to generate four QPSK symbols.
  • the QPSK constellation diagram is shown in Figure 7.
  • S1002 Multiply the precoding matrix Q by a column vector composed of four QPSK symbols to obtain four high order modulation symbols to be transmitted corresponding to the 256QAM constellation.
  • the 256QAM constellation diagram is shown in Figure 11, the precoding matrix According to the 4 low-order modulation symbols and the 256QAM constellation,
  • This coefficient ( ⁇ 8, ⁇ 4, ⁇ 2, ⁇ 1) (for the starting point, look for a combination Q that can generate orthogonal matrices.
  • the 16 vectors generated above are cyclically shifted to generate 64 row vectors. Taking (8, 4, 2, 1) as an example, you can generate 4 row vectors: (8, 4, 2, 1), (1, 8, 4, 2), (2, 1, 8, 4), (4, 2, 1, 8). By analogy, a total of 64 row vectors can be generated.
  • a column vector consisting of 4 QPSK symbols, 4 high-order modulation symbols to be transmitted, respectively x 1 , x 2 , x 3 and x 4 ;
  • S1003 transmitting x 0 on a first subcarrier of the first transmit antenna, transmitting x 1 on a first subcarrier of the second transmit antenna, and transmitting x 2 on a second subcarrier of the first transmit antenna; x 3 will be sent on the second subcarrier of the second transmission antenna.
  • eight information bits to be transmitted are modulated according to a QPSK constellation, four QPSK symbols are generated, and a precoding matrix Q is multiplied by a column vector composed of four QPSK symbols to obtain a 256QAM constellation corresponding to the 256QAM constellation.
  • the receiving end has two processing modes, wherein the first type is shown in FIG. 12, and the second type is shown in FIG. 13: First, the first mode is introduced:
  • S1201 Perform channel equalization on a column vector composed of signals received by two receiving antennas on two carriers, to obtain an estimated value of four QPSK symbols.
  • the column vector composed of the signals received by the two receiving antennas on the two carriers is among them, wherein r 1,1 represents a signal received by the first receiving antenna on the first subcarrier, r 2,1 represents a signal received by the second receiving antenna on the first subcarrier, and r 1,2 represents the first receiving The signal received by the antenna on the second subcarrier, r 2,2 represents the signal received by the second receive antenna on the second subcarrier.
  • h 11,1 represents the channel response of the first transmitting antenna to the first receiving antenna on the first subcarrier
  • h 12,1 represents the channel response of the first transmitting antenna to the second receiving antenna on the first subcarrier
  • h 21,1 Representing the channel response of the second transmitting antenna to the first receiving antenna on the first subcarrier
  • h 22,1 indicating the channel response of the second transmitting antenna to the second receiving antenna on the first subcarrier
  • h 11,2 indicating the second sub on a carrier to the first transmit antenna a first receive antenna channel response
  • h 12,2 represents the second subcarrier first transmission antenna to the second receiving antenna channel response
  • h 21,2 denotes a second sub-carriers on a second The channel response of the transmitting antenna to the first receiving antenna
  • h 22, 2 represents the channel response of the second transmitting antenna to the second receiving antenna on the second subcarrier.
  • the estimated values of the four QPSK symbols are expressed as: with among them,
  • S1202 Demodulate the estimated values of the four QPSK modulation symbols according to the mapping manner of the QPSK constellation, and obtain an estimated value of the information bits sent by the transmitting end.
  • an estimated value of four QPSK symbols is obtained, and an estimated value of four QPSK modulation symbols is according to a QPSK constellation diagram.
  • the mapping mode is demodulated to obtain an estimated value of the information bits transmitted by the transmitting end. That is, the estimated value of the information bits transmitted by the transmitting end is obtained by joint demodulation, and the same signal can be simultaneously received by different carriers of multiple receiving antennas to implement frequency diversity and spatial diversity, thereby improving the transmission and reception performance of the data transmission.
  • S1301 Perform channel equalization on signals received by the two antennas on the first subcarrier, and obtain estimated values of the two first higher order modulation symbols.
  • the signals received by the two antennas on the first subcarrier can be expressed as:
  • r 1,1 represents a signal received by the first receiving antenna on the first subcarrier
  • r 2,1 represents a signal received by the second receiving antenna on the first subcarrier
  • Signal received on the first subcarrier Perform channel equalization processing to obtain estimated values of two first high-order modulation symbols, respectively with
  • S1302 Perform channel equalization on signals received by the two antennas on the second subcarrier, and obtain estimated values of the two second higher order modulation symbols.
  • the signals received by the two antennas on the second subcarrier can be expressed as:
  • r 1 , 2 represents a signal received by the first receiving antenna on the second subcarrier
  • r 2 , 2 represents a signal received by the second receiving antenna on the second subcarrier
  • Signal received on the second subcarrier Perform channel equalization processing to obtain estimated values of two second higher-order modulation symbols, respectively with
  • S1303 Demodulate the estimated values of the two first high-order modulation symbols according to a mapping manner of the 256QAM constellation to obtain a first estimated value of the information bits sent by the transmitting end.
  • the first estimated value can be expressed as:
  • S1304 Demodulate the estimated values of the two second high-order modulation symbols according to a mapping manner of the 256QAM constellation to obtain a second estimated value of the information bits sent by the transmitting end.
  • the second estimated value can be expressed as:
  • S1305 Combine the first estimated value of the information bits sent by the transmitting end with the second estimated value of the information bits sent by the transmitting end to obtain an estimated value of the information bits sent by the transmitting end.
  • an estimated value of two first high-order modulation symbols is obtained, and signals received by the two antennas on the second subcarrier are obtained.
  • Perform channel equalization obtain an estimated value of the N second high-order modulation symbols, and demodulate the estimated values of the two first high-order modulation symbols according to a mapping manner of the 256QAM constellation to obtain the first information bit sent by the transmitting end.
  • Estimating the value according to the mapping manner of the 256QAM constellation, demodulating the estimated values of the two second higher-order modulation symbols to obtain a second estimated value of the information bits sent by the transmitting end, and first estimating the information bits sent by the transmitting end
  • the value is combined with the second estimated value of the information bits sent by the transmitting end to obtain an estimated value of the information bits sent by the transmitting end, that is, the estimated value of the information bits sent by the transmitting end is obtained by independent demodulation and then combining, the same
  • the signal can be simultaneously received on different carriers of multiple receiving antennas to achieve frequency diversity and spatial diversity, thereby improving the transceiving performance of data transmission.
  • S1401 The eight information bits to be transmitted are modulated according to a QPSK constellation to generate four QPSK symbols.
  • the QPSK constellation diagram is shown in Figure 7.
  • S1402 Multiply the precoding matrix Q by a column vector composed of four QPSK symbols to obtain four high order modulation symbols to be transmitted corresponding to the 128QAM constellation.
  • the 128QAM constellation diagram is shown in Figure 15, the precoding matrix Obtained according to the four low-order modulation symbols and the 128QAM constellation, specifically, similar to the 256QAM constellation, except that the coefficient combination is ( ⁇ 1, ⁇ 1, ⁇ 1, e ⁇ j0.25 ⁇ );
  • a column vector consisting of 4 QPSK symbols, 4 high-order modulation symbols to be transmitted, respectively x 0 , x 1 , x 2 and x 3 ;
  • eight information bits to be transmitted are modulated according to a QPSK constellation, four QPSK symbols are generated, and a precoding matrix Q is multiplied by a column vector composed of four QPSK symbols to obtain a 128QAM constellation corresponding to the 128QAM constellation.
  • the receiving end is handled as shown in Figure 16:
  • S1601 Perform channel equalization on a column vector composed of signals received by two receiving antennas on two carriers, to obtain an estimated value of four QPSK symbols.
  • the column vector composed of the signals received by the two receiving antennas on the two carriers is among them, wherein r 1,1 represents a signal received by the first receiving antenna on the first subcarrier, r 2,1 represents a signal received by the second receiving antenna on the first subcarrier, and r 1,2 represents the first receiving The signal received by the antenna on the second subcarrier, r 2,2 represents the signal received by the second receive antenna on the second subcarrier.
  • h 11,1 represents the channel response of the first transmitting antenna to the first receiving antenna on the first subcarrier
  • h 12,1 represents the channel response of the first transmitting antenna to the second receiving antenna on the first subcarrier
  • h 21,1 Representing the channel response of the second transmitting antenna to the first receiving antenna on the first subcarrier
  • h 22,1 indicating the channel response of the second transmitting antenna to the second receiving antenna on the first subcarrier
  • h 11,2 indicating the second sub on a carrier to the first transmit antenna a first receive antenna channel response
  • h 12,2 represents the second subcarrier first transmission antenna to the second receiving antenna channel response
  • h 21,2 denotes a second sub-carriers on a second The channel response of the transmitting antenna to the first receiving antenna
  • h 22, 2 represents the channel response of the second transmitting antenna to the second receiving antenna on the second subcarrier.
  • the estimated values of the four QPSK symbols are expressed as: with among them,
  • S1602 Demodulate the estimated values of the four QPSK modulation symbols according to the mapping manner of the QPSK constellation, and obtain an estimated value of the information bits sent by the transmitting end.
  • an estimated value of four QPSK symbols is obtained, and an estimated value of four QPSK modulation symbols is according to a QPSK constellation diagram.
  • the mapping mode is demodulated to obtain an estimated value of the information bits transmitted by the transmitting end. That is, the estimated value of the information bits transmitted by the transmitting end is obtained by joint demodulation, and the same signal can be simultaneously received by different carriers of multiple receiving antennas to implement frequency diversity and spatial diversity, thereby improving the transmission and reception performance of the data transmission.
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a data transmission apparatus according to the present invention.
  • the transposition of this embodiment includes a modulation module 1701, a processing module 1702, and a sending module 1703, where the modulation module 1701 is configured to send
  • the information bits are modulated according to a low-order constellation to generate 4m low-order modulation symbols, wherein the m is an integer greater than or equal to 1;
  • the processing module 1702 is configured to separately use the precoding matrix Q and the 4m low-order modulation Multiplying the column vectors of every 4 low-order modulation symbols in the symbol to obtain 4m high-order modulation symbols to be transmitted corresponding to the high-order constellation;
  • the transmitting module 1703 is configured to use the 4m high-order modulations to be transmitted
  • the symbols are respectively transmitted on different carriers of two antennas.
  • the 4m high-order modulation symbols to be transmitted are classified into four categories, wherein the 4th (i-1)+1 high-order modulation symbols are the first high-order modulation symbols, and the 4th (i) -1) +2 higher order modulation symbols are second higher order modulation symbols, 4th (i-1) + 3 higher order modulation symbols are third higher order modulation symbols, 4th (i-1) + 4
  • the high-order modulation symbol is a fourth higher-order modulation symbol, where 1 ⁇ i ⁇ l and is an integer;
  • the sending module is specifically configured to send the first high-order modulation symbol on the first sub-carrier of the first transmit antenna, and send the second high-order modulation symbol on the first sub-carrier of the second transmit antenna, and the third The high order modulation symbol is transmitted on a second subcarrier of the first transmit antenna; the fourth higher order modulation symbol is transmitted on a second subcarrier of the second transmit antenna.
  • processing module 1702 is specifically configured to:
  • Precoding matrix Multiplying the column vector [s 0 s 1 s 2 s 3 ] T composed of 4 quadrature phase shift keying QPSK symbols to obtain 4 256QAM modulation symbols to be transmitted corresponding to the 256 quadrature amplitude modulation QAM constellation diagram , respectively, is [x 0 x 1 x 2 x 3 ] T , where x 0 is the first higher-order modulation symbol, x 1 is the second higher-order modulation symbol, x 2 is the third higher-order modulation symbol, and x 3 is The fourth higher order modulation symbol, [ ] T represents transposition.
  • processing module 1702 is specifically configured to
  • [s 0 s 1 s 2 s 3 ] T multiplying, and obtaining four 128QAM modulation symbols to be transmitted corresponding to the 128QAM constellation, respectively, are [x 0 x 1 x 2 x 3 ] T , where x 0 is The first higher order modulation symbol, x 1 is the second higher order modulation symbol, x 2 is the third higher order modulation symbol, and x 3 is the fourth higher order modulation symbol, and [ ] T represents transposition.
  • processing module 1702 is specifically configured to
  • Precoding matrix Multiplying the column vector [s 0 s 1 s 2 s 3 ] T composed of 4 BPSK symbols to obtain 4 modulation symbols to be transmitted corresponding to the QPSK constellation, respectively [x 0 x 1 x 2 x 3 And T , wherein x 0 is a first higher order modulation symbol, x 1 is a second higher order modulation symbol, x 2 is a third higher order modulation symbol, and x 3 is a fourth higher order modulation symbol.
  • the device of this embodiment is correspondingly used to implement the technical solution of the method embodiment shown in FIG. 5 or FIG. 10 or FIG. 14 , and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of Embodiment 2 of a data transmission apparatus according to the present invention.
  • the apparatus of this embodiment includes a receiving module 1801, a channel equalization module 1802, and a demodulation module 1803, where the receiving module 1801 is used in 2 Receiving signals on the carrier, wherein the receiving module is disposed on the first receiving antenna and the second receiving antenna, where the two carriers are the first subcarrier and the second subcarrier, respectively, wherein the first receiving antenna receives on the first subcarrier
  • the received signal is r 11 , the signal received by the second receiving antenna on the first subcarrier is r 21 , the signal received by the first receiving antenna on the second subcarrier is r 12 , and the second receiving antenna is in the second
  • the signal received on the subcarrier is r 22 ;
  • the channel equalization module 1802 is configured to perform channel equalization on [r 11 r 21 r 12 r 22 ] T to obtain an estimated value of 4 m low order modulation symbols, where m is
  • the low order modulation symbols are quadrature phase shift keying QPSK modulation symbols or binary phase shift keying BPSK modulation symbols.
  • the device in this embodiment is correspondingly used to implement the technical solution of the method embodiment shown in FIG. 8 or FIG. 12, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 19 is a schematic structural diagram of Embodiment 3 of a data transmission apparatus according to the present invention.
  • the apparatus of this embodiment includes a channel equalization module 1901, a demodulation module 1902, and a processing module 1903, wherein the channel equalization module 1901 is configured to The signals received by the two antennas on the first subcarrier are channel-equalized to obtain an estimated value of 2m first high-order modulation symbols, where m is an integer greater than or equal to 1; the channel equalization module 1901 is also used to pair 2 The signal received by the antenna on the second subcarrier is subjected to channel equalization to obtain an estimated value of 2m second higher order modulation symbols; the demodulation module 1902 is configured to map 2m first high order according to the mapping manner of the high order constellation The estimated value of the modulation symbol is demodulated to obtain a first estimated value of the information bit sent by the transmitting end; the demodulation module 1902 is further configured to perform the estimation of the 2m second high-order modulation symbol according to the
  • the processing module 1903 is configured to use the first estimated value of the information bits sent by the transmitting end and the information bit sent by the transmitting end The combined estimation value, obtain an estimate information bits transmitted by the transmitting side.
  • the high order modulation symbol is a 256 quadrature amplitude modulated QAM modulation symbol or a quadrature phase shift keying QPSK modulation symbol.
  • the device of this embodiment is correspondingly used to implement the technical solution of the method embodiment shown in FIG. 9 or FIG. 13 or FIG. 16 , and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 20 is a schematic structural diagram of Embodiment 4 of a data transmission apparatus according to the present invention. As shown in FIG. 20, a modulator 2001, a processor 2002, and a transmitter 2003, wherein a modulator 2001 is configured to use information bits to be transmitted according to a low-order constellation.
  • the picture is modulated to generate 4m low-order modulation symbols, wherein the m is an integer greater than or equal to 1;
  • the processor 2002 is configured to respectively use the precoding matrix Q and each of the 4m low-order modulation symbols in the lower order Multiplying the column vectors of the modulation symbols to obtain 4m high-order modulation symbols to be transmitted corresponding to the high-order constellation diagram;
  • the transmitter 2003 is configured to respectively correspond to the 4m high-order modulation symbols to be transmitted in two The antenna is transmitted on different carriers.
  • the apparatus of this embodiment is correspondingly applicable to perform the method shown in FIG. 5 or FIG. 10 or FIG.
  • the technical solution of the example has similar implementation principles and technical effects, and will not be further described herein.
  • FIG. 21 is a schematic structural diagram of Embodiment 5 of a data transmission apparatus according to the present invention.
  • the apparatus of this embodiment includes a receiver 2101, a channel equalizer 2102, and a demodulator 2103.
  • the receiver 2101 is configured to receive signals on two carriers. wherein the receiving module is deployed at a first reception antenna and the second receiver antenna, the first two carriers are sub-carriers and a second sub-carrier, wherein the first receive antenna at the first subcarrier signal r 11
  • the signal received by the second receiving antenna on the first subcarrier is r 21
  • the signal received by the first receiving antenna on the second subcarrier is r 12
  • the second receiving antenna is received on the second subcarrier.
  • the signal is r 22 ;
  • the channel equalizer 2102 is configured to perform channel equalization on [r 11 r 21 r 12 r 22 ] T to obtain an estimated value of 4 m low-order modulation symbols, where m is an integer greater than or equal to 1; and the demodulator 2103 is configured to The estimated values of the 4m low-order modulation symbols are demodulated according to the corresponding lower-order constellation, and an estimated value of information bits transmitted by the transmitting end is obtained.
  • the device in this embodiment is correspondingly used to implement the technical solution of the method embodiment shown in FIG. 8 or FIG. 12, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 22 is a schematic structural diagram of Embodiment 6 of a data transmission apparatus according to the present invention.
  • the apparatus of this embodiment includes a channel equalizer 2201, a demodulator 2202, and a processor 2203, wherein the channel equalizer 2201 is configured to use two antennas in the first
  • the received signal on the subcarrier is subjected to channel equalization to obtain an estimated value of 2m first high order modulation symbols, the m being an integer greater than or equal to 1;
  • the channel equalizer 2201 is further configured to use 2 antennas in the second subcarrier
  • the received signal is subjected to channel equalization to obtain an estimated value of 2m second high-order modulation symbols;
  • the demodulator 2202 is configured to perform estimation on the estimated values of the 2m first high-order modulation symbols according to a mapping manner of the high-order constellation map.
  • the demodulator 2202 is further configured to demodulate the estimated values of the 2m second high-order modulation symbols according to the mapping manner of the high-order constellation map to obtain the sending end a second estimated value of the information bits;
  • the processor 2203 is configured to combine the first estimated value of the information bits sent by the sending end with the second estimated value of the information bits sent by the sending end, to obtain a sending end The estimated value of the information bits.
  • the device of this embodiment is correspondingly used to implement the technical solution of the method embodiment shown in FIG. 9 or FIG. 13 or FIG. 16 , and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program When the program is executed, the execution includes the implementation of each method described above.
  • the foregoing storage medium includes the following various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供一种数据传输方法和装置,通过将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,将预编码矩阵Q与4m个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。待发送的高阶调制符号包含了部分或者所有待发送的信息比特,从而,同一个信号可以在多个天线不同的载波同时发送,实现频率分集和空间分集,因此,提高数据传输的收发性能。

Description

数据传输方法和装置
本申请要求于2015年11月13日提交中国专利局、申请号为CN201510780892.6、发明名称为“数据传输方法和装置”的CN专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术,尤其涉及一种数据传输方法和装置。
背景技术
双载波调制(Dual Carrier Modulation,简称:DCM)是一种利用频率分集提升收发性能的技术。
频率分集是在发信端将一个信号利用两个间隔较大的发信频率同时发射,在接信端同时接收两个射频信号后合成,由于工作频率不同,电磁波之间的相关性极小,各电磁波的衰落概率也不同,因此,频率分集抗频率选择性衰落特别有效,能够提升收发性能。例如:假设待发送的信号为s1和s2,将s1和s2组合后生成信号x1和x2,其中,x1=α1s11s2,x2=α2s12s2;将x1和x2在不同的频率(载波)上同时发送出去,接收端同时接收两个射频信号后合成,以实现频率分集,从而提升收发性能。
然而,随着无线通信技术的飞速发展,人们对收发性能的提升的需求进一步提高,现有技术的数据传输方法的收发性能无法满足人们的需求。
发明内容
本发明实施例提供一种数据传输方法和装置,以提高数据传输的收发性能。
第一方面,本发明提供一种数据传输方法,包括:
将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,其中,所述m为大于等于1的整数;
将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号;
将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。
在一个可能的设计中,所述4m个待发送的高阶调制符号分为四类,其中,第4(i-1)+1个高阶调制符号为第一高阶调制符号、第4(i-1)+2个高阶调制符号为第二高阶调制符号、第4(i-1)+3个高阶调制符号为第三高阶调制符号,第4(i-1)+4个高阶调制符号为第四高阶调制符号,其中,1≤i≤l且为整数;
所述将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送,包括:
将第一高阶调制符号在第一发射天线的第一子载波上发送,将第二高阶调制符号在第二发射天线的第一子载波上发送,将第三高阶调制符号在第一发射天线的第二子载波上发送;将第四高阶调制符号在第二发射天线的第二子载波上发送。
在一个可能的设计中,所述将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,包括:
将预编码矩阵
Figure PCTCN2016104305-appb-000001
与4个正交相移键控QPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和256正交振幅调制QAM星座图相对应的4个待发送的256QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
在一个可能的设计中,所述将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,包括:
将预编码矩阵
Figure PCTCN2016104305-appb-000002
与4个QPSK符号组成的列向量
[s0 s1 s2 s3]T相乘,得到和128QAM星座图相对应的4个待发送的128QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
在一个可能的设计中,所述将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,包括:
将预编码矩阵
Figure PCTCN2016104305-appb-000003
与4个BPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和QPSK星座图相对应的4个待发送的调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号。
第二方面,本发明提供一种数据传输方法,包括:
2个接收天线在2个载波上接收信号,其中,2个接收天线分别为第一接收天线与第二接收天线,2个载波分别为第一子载波与第二子载波,其中,第一接收天线在第一子载波上接收到的信号为r11,第二接收天线在第一子载波上接收到的信号为r21,第一接收天线在第二子载波上接收到的信号为r12,第二接收天线在第二子载波上接收到的信号为r22
对[r11 r21 r12 r22]T进行信道均衡后,得到4m个低阶调制符号的估计值,所述m为大于等于1的整数;
对所述4m个低阶调制符号的估计值按照对应的低阶星座图进行解调,获得发送端发送的信息比特的估计值。
在一个可能的设计中,所述低阶调制符号为正交相移键控QPSK调制符号或者二进制相移键控BPSK调制符号。
第三方面,本发明提供一种数据传输方法,包括:
对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值,所述m为大于等于1的整数;
对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m个第二高阶调制符号的估计值;
根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值;
根据高阶星座图的映射方式,对2m个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值;
将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
在一个可能的设计中,所述高阶调制符号为256正交振幅调制QAM调制符号或者为正交相移键控QPSK调制符号。
第四方面,本发明提供一种数据传输装置,包括:
调制模块,用于将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,其中,所述m为大于等于1的整数;
处理模块,用于将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号;
发送模块,用于将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。
在一个可能的设计中,所述4m个待发送的高阶调制符号分为四类,其中,第4(i-1)+1个高阶调制符号为第一高阶调制符号、第4(i-1)+2个高阶调制符号为第二高阶调制符号、第4(i-1)+3个高阶调制符号为第三高阶调制符号,第4(i-1)+4个高阶调制符号为第四高阶调制符号,其中,1≤i≤l且为整数;
所述发送模块具体用于将第一高阶调制符号在第一发射天线的第一子载波上发送,将第二高阶调制符号在第二发射天线的第一子载波上发送,将第三高阶调制符号在第一发射天线的第二子载波上发送;将第四高阶调制符号在第二发射天线的第二子载波上发送。
在一个可能的设计中,所述处理模块具体用于:
将预编码矩阵
Figure PCTCN2016104305-appb-000004
与4个正交相移键控QPSK符号组 成的列向量[s0 s1 s2 s3]T相乘,得到和256正交振幅调制QAM星座图相对应的4个待发送的256QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
在一个可能的设计中,所述处理模块具体用于
将预编码矩阵
Figure PCTCN2016104305-appb-000005
与4个QPSK符号组成的列向量
[s0 s1 s2 s3]T相乘,得到和128QAM星座图相对应的4个待发送的128QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
在一个可能的设计中,所述处理模块具体用于
将预编码矩阵
Figure PCTCN2016104305-appb-000006
与4个BPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和QPSK星座图相对应的4个待发送的调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号。
第五方面,本发明提供一种数据传输装置,包括:
接收模块,用于在2个载波上接收信号,其中,接收模块部署在第一接收天线与第二接收天线,2个载波分别为第一子载波与第二子载波,其中,第一接收天线在第一子载波上接收到的信号为r11,第二接收天线在第一子载波上接收到的信号为r21,第一接收天线在第二子载波上接收到的信号为r12,第二接收天线在第二子载波上接收到的信号为r22
信道均衡模块,用于对[r11 r21 r12 r22]T进行信道均衡后,得到4m个低阶调制符号的估计值,所述m为大于等于1的整数;
解调模块,用于对所述4m个低阶调制符号的估计值按照对应的低阶星座图进行解调,获得发送端发送的信息比特的估计值。
在一个可能的设计中,所述低阶调制符号为正交相移键控QPSK调制符号或者二进制相移键控BPSK调制符号。
第六方面,本发明提供一种数据传输装置,包括:
信道均衡模块,用于对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值,所述m为大于等于1的整数;
所述信道均衡模块还用于对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m个第二高阶调制符号的估计值;
解调模块,用于根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值;
所述解调模块,还用于根据高阶星座图的映射方式,对2m个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值;
处理模块,用于将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
在一个可能的设计中,所述高阶调制符号为256正交振幅调制QAM调制符号或者为正交相移键控QPSK调制符号。
本发明实施例提供的数据传输方法和装置,通过将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,将预编码矩阵Q与4m个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。待发送的高阶调制符号包含了部分或者所有待发送的信息比特,从而,同一个信号可以在多个天线不同的载波同时发送,实现频率分集和空间分集,因此,提高数据传输的收发性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获 得其他的附图。
图1为本发明的应用场景示意图;
图2为本发明数据传输方法实施例一的流程示意图;
图3为本发明数据传输方法实施例二的流程示意图;
图4为本发明数据传输方法实施例三的流程示意图;
图5为本发明数据传输方法实施例四的流程示意图;
图6为本发明BPSK星座图;
图7为本发明QPSK星座图;
图8为本发明数据传输方法实施例五的流程示意图;
图9为本发明数据传输方法实施例六的流程示意图;
图10为本发明数据传输方法实施例七的流程示意图;
图11为本发明256QAM星座图;
图12为本发明数据传输方法实施例八的流程示意图;
图13为本发明数据传输方法实施例九的流程示意图;
图14为本发明数据传输方法实施例十的流程示意图;
图15为本发明128QAM星座图;
图16为本发明数据传输方法实施例十一的流程示意图;
图17为本发明数据传输装置实施例一的结构示意图;
图18为本发明数据传输装置实施例二的结构示意图;
图19为本发明数据传输装置实施例三的结构示意图;
图20为本发明数据传输装置实施例四的结构示意图;
图21为本发明数据传输装置实施例五的结构示意图;
图22为本发明数据传输装置实施例六的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明为了提高数据传输的收发性能,通过将发送信号同时实现频率分集和空间分集来实现。
本发明的应用场景如图1所示,图1为本发明的应用场景示意图,图1所示为2×2MIMO系统的结构示意图,该系统中括一个发射机和一个接收机,并且图1所示的结构示意图中的发射机包括2个发射天线,分别为第一发射天线M-1T和第二发射天线M-2T,接收机包含两个接收天线,分别为第一接收天线M-2R和第二接收天线M-2R,2个发射天线和2个接收天线之间共存在四条信道,分别为1-1(第一发射天线到第一接收天线之间的信道)、1-2(第一发射天线到第二接收天线之间的信道)、2-1(第二发射天线到第一接收天线之间的信道)和2-2(第二发射天线到第二接收天线之间的信道)。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本发明数据传输方法实施例一的流程示意图,本实施例的方法由发射机执行,如图2所示:
S201:将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号。
其中,m为大于等于1的整数。
S202:将预编码矩阵Q分别与4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符 号。
其中,预编码矩阵Q为根据所述4m个低阶调制符号和所述高阶星座图得到的。
待发送的高阶调制符号包含了部分或者所有待发送的信息比特。
例如:
对于正交相移键控(Quadri Phase Shift Key,简称:QPSK),高阶调制符号中包含了所有的待发送的信息比特。在发送过程中,一个信息比特在所有的发送天线和子载波中都发送了,如在第一发射天线第一子载波,第一发射天线第二子载波,第二发射天线第一子载波,第二发射天线第二子载波上发送的符号都包含比特1的信息。
对于SQPSK,高阶调制符号中包含了一半的待发送信息比特;在发送过程中,一个信息比特在所有的发送天线的一个子载波发送。如发送4个信息比特,第一发射天线的第一子载波,第二发射天线的第二子载波都包含信息比特1和信息比特2的信息,第一发射天线的第二子载波,第二发射天线的第一子载波都包含信息比特3和信息比特4的信息。
S203:将4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。
其中,4m个待发送的高阶调制符号分为四类,其中,第4(i-1)+1个高阶调制符号为第一高阶调制符号、第4(i-1)+2个高阶调制符号为第二高阶调制符号、第4(i-1)+3个高阶调制符号为第三高阶调制符号,第4(i-1)+4个高阶调制符号为第四高阶调制符号,其中,1≤i≤l且为整数;
具体地,将第一高阶调制符号在第一发射天线的第一子载波上发送,将第二高阶调制符号在第二发射天线的第一子载波上发送,将第三高阶调制符号在第一发射天线的第二子载波上发送;将第四高阶调制符号在第二发射天线的第二子载波上发送。
本发明实施例,通过将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,将预编码矩阵Q与4m个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。待发送的高阶调制符号包含了部分或者所有待发送的信息比特,从而,同一个信号 可以在多个天线不同的载波同时发送,实现频率分集和空间分集,因此,提高数据传输的收发性能。
图3和图4是由接收机执行的两种方法,其中,图3的方法对应的是联合解调的方式,图4的方法对应的是独立解调然后进行合并的方式,详见图3和图4的详细描述。
图3为本发明数据传输方法实施例二的流程示意图,本实施例的方法由接收机执行,如图3所示:
S301:2个接收天线在2个载波上接收信号。
其中,2个接收天线分别为第一接收天线与第二接收天线,2个载波分别为第一子载波与第二子载波,其中,第一接收天线在第一子载波上接收到的信号为r11,第二接收天线在第一子载波上接收到的信号为r21,第一接收天线在第二子载波上接收到的信号为r12,第二接收天线在第二子载波上接收到的信号为r22
S302:对[r11 r21 r12 r22]T进行信道均衡后,得到4m个低阶调制符号的估计值。
其中,m为大于等于1的整数。
S303:对所述4m个低阶调制符号的估计值按照对应的低阶星座图进行解调,获得发送端发送的信息比特的估计值。
本实施例中,通过对2个接收天线在不同载波上接收到的信号组成的列向量进行信道均衡,得到4m个低阶调制符号的估计值,然后,对4m个低阶调制符号的估计值按照对应的低阶星座图进行解调,获得发送端发送的信息比特的估计值,通过联合解调的方式获得发送端发送的信息比特的估计值,同一个信号可以在多个接收天线的不同的载波同时接收,实现频率分集和空间分集,因此,提高数据传输的收发性能。
图4为本发明数据传输方法实施例三的流程示意图,本实施例的方法由接收机执行,如图4所示:
S401:对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值。
其中,m为大于等于1的整数。
S402:对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m 个第二高阶调制符号的估计值。
S403:根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值。
S404:根据高阶星座图的映射方式,对2m个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值。
S405:将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
本实施例中,通过对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值,对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m个第二高阶调制符号的估计值,根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值,根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值,将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。即通过独立解调然后再进行合并的方式获得发送端发送的信息比特的估计值,同一个信号可以在多个接收天线的不同的载波同时接收,实现频率分集和空间分集,因此,提高数据传输的收发性能。
下面以SQPSK和QPSK为例进行详细的描述:下面各实施例中,均以m=1为例进行描述。
1、以SQPSK为例流程示意图,发射端的流程示意图如图5所示:
S501:将待发送的4个信息比特按照BPSK星座图进行调制,生成4个BPSK符号。
其中,二进制相移键控(Binary Phase Shift Keying,简称:BPSK)星座图如图6所示,4个信息比特分别为b0、b1、b2和b3,4个BPSK符号分别s0、s1、s2和s3,sk=2*bk-1,k=0、1、2和3。
S502:将预编码矩阵Q与4个BPSK符号组成的列向量相乘,得到和QPSK星座图对应的4个待发送的高阶调制符号。
其中,QPSK星座图如图6所示,
预编码矩阵
Figure PCTCN2016104305-appb-000007
为根据4个低阶调制符号和QPSK星座图得到的,[s0 s1 s2 s3]T为4个BPSK符号组成的列向量,4个待发送的高阶调制符号,分别为[x0 x1 x2 x3]T
Figure PCTCN2016104305-appb-000008
S503:将x0在第一发射天线的第一子载波上发送,将x1在第二发射天线的第一子载波上发送,将x2在第一发射天线的第二子载波上发送;将x3在第二发射天线的第二子载波上发送。
本实施例中,将将待发送的4个信息比特按照BPSK星座图进行调制,生成4个BPSK符号,将预编码矩阵Q与4个BPSK符号组成的列向量相乘,得到和QPSK星座图对应的4个待发送的高阶调制符号,将x0在第一发射天线的第一子载波上发送,将x1在第二发射天线的第一子载波上发送,将x2在第一发射天线的第二子载波上发送;将x3在第二发射天线的第二子载波上发送;可以看出,s0同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,s1同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集。从而,提高数据传输的收发性能。
接收端的处理方式有两种,其中第一种如图8所示,第二种如图9所示:先介绍第一种方式:
S801:对2个接收天线在两个载波上接收到的信号组成的列向量进行信道均衡,得到4个BPSK符号的估计值。
其中,2个接收天线在两个载波上接收到的信号组成的列向量为
Figure PCTCN2016104305-appb-000009
其中,
Figure PCTCN2016104305-appb-000010
其中,r1,1表示第一接收天线在第一子载波上接收到的信号,r2,1表示第二接收天线在第一子载波上接收到的信号,r1,2表示第一接收天线在第二子载波上接收到的信号,r2,2表示第二接收天线在第二子载波上接收到的信号。h11,1表示第一子载波上第一发送天线到第一接收天线的信道响应,h12,1表示第一子载波上第一发送天线到第二接收天线的信道响应,h21,1表示第一子载波上第二发送天线到第一接收天线的信道响应,h22,1表示第一子载波上第二发送天线到第二接收天线的信道响应,h11,2表示第二子载波上第一发送天线到第一接收天线的信道响应,h12,2表示第二子载波上第一发送天线到第二接收天线的信道响应,h21,2表示第二子载波上第二发送天线到第一接收天线的信道响应,h22,2表示第二子载波上第二发送天线到第二接收天线的信道响应。
4个BPSK符号的估计值分别表示为:
Figure PCTCN2016104305-appb-000011
Figure PCTCN2016104305-appb-000012
其中,
Figure PCTCN2016104305-appb-000013
其中,W为信道均衡矩阵,如果采用线性最小均方误差方法,相应的信道均衡矩阵为W=(GHG+δ2I4)-1GH,如果采用迫零方法,相应的信道均衡矩阵为W=G-1,其中,
Figure PCTCN2016104305-appb-000014
δ2为噪声功率,I4为4阶的单位矩阵,( )-1表示对矩阵求逆。
S802:对4个BPSK调制符号的估计值按照BPSK星座图的的映射方式进行解调,获得发送端发送的信息比特的估计值。
本实施例,通过对2个接收天线在两个载波上接收到的信号组成的列向量进行信道均衡,得到4个BPSK符号的估计值,对4个BPSK调制符号的估计值按照BPSK星座图的的映射方式进行解调,获得发送端发送的信息比特的估计值,即通过联合解调的方式获得发送端发送的信息比特的估计值,同一个信号可以在多个接收天线的不同的载波同时接收,实现频率分集和空间分集,因此,提高数据传输的收发性能。
第二种如图9所示:
S901:对2个天线在第一子载波上接收到的信号进行信道均衡,获得2个第一高阶调制符号的估计值。
2个天线在第一子载波上接收到的信号可以表示为:
Figure PCTCN2016104305-appb-000015
其中,r1,1表示第一接收天线在第一子载波上接收到的信号,r2,1表示第二接收天线在第一子载波上接收到的信号。
对在第一子载波上接收到的信号
Figure PCTCN2016104305-appb-000016
进行信道均衡处理,得到2个第一高阶调制符号的估计值,分别为
Figure PCTCN2016104305-appb-000017
Figure PCTCN2016104305-appb-000018
其中,
Figure PCTCN2016104305-appb-000019
其中,W为信道均衡矩阵,如果采用线性最小均方误差方法,相应的信道均衡矩阵为W=(GHG+δ2I4)-1GH,如果采用迫零方法,相应的信道均衡矩阵为W=G-1,其中,
Figure PCTCN2016104305-appb-000020
δ2为噪声功率,I4为4阶的单位矩阵,( )-1表示对矩阵求逆。
S902:对2个天线在第二子载波上接收到的信号进行信道均衡,获取2个第二高阶调制符号的估计值。
2个天线在第二子载波上接收到的信号可以表示为:
Figure PCTCN2016104305-appb-000021
其中,r1,2表示第一接收天线在第二子载波上接收到的信号,r2,2表示第二接收天线在第二子载波上接收到的信号。
对在第二子载波上接收到的信号
Figure PCTCN2016104305-appb-000022
进行信道均衡处理,得到2个第二高阶调制符号的估计值,分别为
Figure PCTCN2016104305-appb-000023
Figure PCTCN2016104305-appb-000024
其中,
Figure PCTCN2016104305-appb-000025
其中,W为信道均衡矩阵,如果采用线性最小均方误差方法,相应的信道均衡矩阵为W=(GHG+δ2I4)-1GH,如果采用迫零方法,相应的信道均衡矩阵为W=G-1,其中,
Figure PCTCN2016104305-appb-000026
δ2为噪声功率,I4为4阶的单位矩阵,( )-1表示对矩阵求逆。
S903:根据QPSK星座图的映射方式,对2个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值。
其中,第一估计值可以表示为:
Figure PCTCN2016104305-appb-000027
Figure PCTCN2016104305-appb-000028
S904:根据QPSK星座图的映射方式,对2个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值。
其中,第二估计值可以表示为:
Figure PCTCN2016104305-appb-000029
Figure PCTCN2016104305-appb-000030
S905:将发送端发送的信息比特的第一估计值和发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
其中,发送端发送的信息比特的估计值为
Figure PCTCN2016104305-appb-000031
Figure PCTCN2016104305-appb-000032
其中,
Figure PCTCN2016104305-appb-000033
k=0,1,2,3。
本实施例,通过对2个天线在第一子载波上接收到的信号进行信道均衡,获得2个第一高阶调制符号的估计值,对2个天线在第二子载波上接收到的信号进行信道均衡,获取2个第二高阶调制符号的估计值,根据QPSK星座图的映射方式,对2个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值,根据QPSK星座图的映射方式,对2个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值,将发送端发送的信息比特的第一估计值和发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值,即通过独立解调然后再进行合并的方式获得发送端发送的信息比特的估计值,同一个信号可以在多个接收天 线的不同的载波同时接收,实现频率分集和空间分集,因此,提高数据传输的收发性能。
2、以QPSK为例流程示意图,QPSK的实现方式分为两种,第一种实现方式的高阶星座图为256正交振幅调制(Quadrature Amplitude Modulation,简称:QAM)星座图,第二种实现方式的高阶星座图为128QAM星座图;
在第一种实现方式中,发射端的流程示意图如图10所示:
S1001:将待发送的8个信息比特按照QPSK星座图进行调制,生成4个QPSK符号。
其中,QPSK星座图如图7所示,8个信息比特分别为bk,k=0,1,……,7,4个BPSK符号分别s0、s1、s2和s3,sk=(2*b2k-1)+j(2*b2k+1-1),k=0、1、2和3。
S1002:将预编码矩阵Q与4个QPSK符号组成的列向量相乘,得到和256QAM星座图对应的4个待发送的高阶调制符号。
其中,256QAM星座图如图11所示,预编码矩阵
Figure PCTCN2016104305-appb-000034
为根据4个低阶调制符号和256QAM星座图得到的,
具体地,一个256QAM符号可以拆分成4个QPSK符号的组合,即s=(±8)*s0+(±4)*s1+(±2)*s2+(±1)*s3。我们以该系数组合(±8,±4,±2,±1)(为出发点,寻找能够生成正交矩阵的组合Q。
我们易知,系数(±8,±4,±2,±1)的组合可以生成384种不同的行向量,生成方法如下:
1)首先按照(±8,±4,±2,±1)的顺序生成16个行向量如下:
(8,4,2,1),(8,4,2,-1),(8,4,-2,1),(8,4,-2,-1),
(8,-4,2,1),(8,-4,2,-1),(8,-4,-2,1),(8,-4,-2,-1),(-8,4,2,1),(-8,4,2,-1),(-8,4,-2,1),(-8,4,-2,-1),(-8,-4,2,1),(-8,-4,2,-1),(-8,-4,-2,1),(-8,-4, -2,-1)。
对上述生成的16个向量循环移位,生成64个行向量。以(8,4,2,1)为例,可以生成4个行向量:(8,4,2,1),(1,8,4,2),(2,1,8,4),(4,2,1,8)。依次类推,可以生成共64个行向量。
2)同样按照(±8,±4,±1,±2),(±8,±2,±4,±1),(±8,±2,±1,±4),(±8,±1,±2,±4),(±8,±1,±4,±2)的顺序生成64*5个行向量如下:
不失一般性,我们先固定第一行向量的值为:(8,4,-2,1),然后在剩下的383个行向量中寻找和其正交的行向量,找到的行向量为(4,-8,1,2)。确定第一和第二行向量后,我们在剩下的382个行向量中寻找和第一和第二行向量都正交的行向量,其值为(2,1,8,-4)。依此类推,寻找剩下的381个行向量中寻找和第一,第二,第三行向量都正交的行向量,其值为(1,-2,-4,-8)。
Figure PCTCN2016104305-appb-000035
为4个QPSK符号组成的列向量,4个待发送的高阶调制符号,分别为x1、x2、x3和x4
Figure PCTCN2016104305-appb-000036
S1003:将x0在第一发射天线的第一子载波上发送,将x1在第二发射天线的第一子载波上发送,将x2在第一发射天线的第二子载波上发送;将x3在第二发射天线的第二子载波上发送。
本实施例中,将待发送的8个信息比特按照QPSK星座图进行调制,生成4个QPSK符号,将预编码矩阵Q与4个QPSK符号组成的列向量相乘,得到和256QAM星座图对应的4个待发送的高阶调制符号,将x0在第一发射天线的第一子载波上发送,将x1在第二发射天线的第一子载波上发送,将x2在第一发射天线的第二子载波上发送;将x3在第二发射天线的第二子载波上发送,可以看出,s0同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间 分集,s1同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,s2同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,s3同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,从而,提高数据传输的收发性能。
在第一种实现方式中,接收端的处理方式有两种,其中第一种如图12所示,第二种如图13所示:先介绍第一种方式:
如图12所示:
S1201:对2个接收天线在两个载波上接收到的信号组成的列向量进行信道均衡,得到4个QPSK符号的估计值。
其中,2个接收天线在两个载波上接收到的信号组成的列向量为
Figure PCTCN2016104305-appb-000037
其中,
Figure PCTCN2016104305-appb-000038
其中,r1,1表示第一接收天线在第一子载波上接收到的信号,r2,1表示第二接收天线在第一子载波上接收到的信号,r1,2表示第一接收天线在第二子载波上接收到的信号,r2,2表示第二接收天线在第二子载波上接收到的信号。h11,1表示第一子载波上第一发送天线到第一接收天线的信道响应,h12,1表示第一子载波上第一发送天线到第二接收天线的信道响应,h21,1表示第一子载波上第二发送天线到第一接收天线的信道响应,h22,1表示第一子载波上第二发送天线到第二接收天线的信道响应,h11,2表示第二子载波上第一发送天线到第一接收天线的信道响应,h12,2表示第二子载波上第一发送天线到第二接收天线的信道响应,h21,2表示第二子载波上第二发送天线到第一接收天线的信道响应,h22,2表示第二子载波上第二发送天线到第二接收天线的信道响应。
4个QPSK符号的估计值分别表示为:
Figure PCTCN2016104305-appb-000039
Figure PCTCN2016104305-appb-000040
其中,
Figure PCTCN2016104305-appb-000041
其中,W为信道均衡矩阵,如果采用线性最小均方误差方法,相应的信道均衡矩阵为W=(GHG+δ2I4)-1GH,如果采用迫零方法,相应的信道均衡矩阵为W=G-1,其中,δ2为噪声功率,I4为4阶的单位矩阵,( )-1表示对矩阵求逆。
S1202:对4个QPSK调制符号的估计值按照QPSK星座图的的映射方式进行解调,获得发送端发送的信息比特的估计值。
本实施例,通过对2个接收天线在两个载波上接收到的信号组成的列向量进行信道均衡,得到4个QPSK符号的估计值,对4个QPSK调制符号的估计值按照QPSK星座图的的映射方式进行解调,获得发送端发送的信息比特的估计值。即通过联合解调的方式获得发送端发送的信息比特的估计值,同一个信号可以在多个接收天线的不同的载波同时接收,实现频率分集和空间分集,因此,提高数据传输的收发性能。
第二种方式:
如图13所示:
S1301:对2个天线在第一子载波上接收到的信号进行信道均衡,获得2个第一高阶调制符号的估计值。
2个天线在第一子载波上接收到的信号可以表示为:
Figure PCTCN2016104305-appb-000043
其中,r1,1表示第一接收天线在第一子载波上接收到的信号,r2,1表示第二接收天线在第一子载波上接收到的信号。
对在第一子载波上接收到的信号
Figure PCTCN2016104305-appb-000044
进行信道均衡处理,得到2个第一 高阶调制符号的估计值,分别为
Figure PCTCN2016104305-appb-000045
Figure PCTCN2016104305-appb-000046
其中,
Figure PCTCN2016104305-appb-000047
其中,W为信道均衡矩阵,如果采用线性最小均方误差方法,相应的信道均衡矩阵为W=(GHG+δ2I4)-1GH,如果采用迫零方法,相应的信道均衡矩阵为W=G-1,其中,
Figure PCTCN2016104305-appb-000048
δ2为噪声功率,I4为4阶的单位矩阵,( )-1表示对矩阵求逆。
S1302:对2个天线在第二子载波上接收到的信号进行信道均衡,获取2个第二高阶调制符号的估计值。
2个天线在第二子载波上接收到的信号可以表示为:
Figure PCTCN2016104305-appb-000049
其中,r1,2表示第一接收天线在第二子载波上接收到的信号,r2,2表示第二接收天线在第二子载波上接收到的信号。
对在第二子载波上接收到的信号
Figure PCTCN2016104305-appb-000050
进行信道均衡处理,得到2个第二高阶调制符号的估计值,分别为
Figure PCTCN2016104305-appb-000051
Figure PCTCN2016104305-appb-000052
其中,
Figure PCTCN2016104305-appb-000053
其中,W为信道均衡矩阵,如果采用线性最小均方误差方法,相应的信道均衡矩阵为W=(GHG+δ2I4)-1GH,如果采用迫零方法,相应的信道均衡矩阵为W=G-1,其中,
Figure PCTCN2016104305-appb-000054
δ2为噪声功率,I4为4阶的单位矩阵,( )-1表示对矩阵求逆。
S1303:根据256QAM星座图的映射方式,对2个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值。
其中,第一估计值可以表示为:
Figure PCTCN2016104305-appb-000055
Figure PCTCN2016104305-appb-000056
S1304:根据256QAM星座图的映射方式,对2个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值。
其中,第二估计值可以表示为:
Figure PCTCN2016104305-appb-000057
Figure PCTCN2016104305-appb-000058
S1305:将发送端发送的信息比特的第一估计值和发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
其中,发送端发送的信息比特的估计值为
Figure PCTCN2016104305-appb-000059
Figure PCTCN2016104305-appb-000060
其中,
Figure PCTCN2016104305-appb-000061
k=0,1,2,3,4,5,6,7。
本实施例,通过对2个天线在第一子载波上接收到的信号进行信道均衡,获得2个第一高阶调制符号的估计值,对2个天线在第二子载波上接收到的信号进行信道均衡,获取N个第二高阶调制符号的估计值,根据256QAM星座图的映射方式,对2个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值,根据256QAM星座图的映射方式,对2个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值,将发送端发送的信息比特的第一估计值和发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值,即通过独立解调然后再进行合并的方式获得发送端发送的信息比特的估计值,同一个信号可以在多个接收天线的不同的载波同时接收,实现频率分集和空间分集,因此,提高数据传输的收发性能。
在第二种实现方式中,发射端的流程示意图如图14所示:
S1401:将待发送的8个信息比特按照QPSK星座图进行调制,生成4个QPSK符号。
其中,QPSK星座图如图7所示,8个信息比特分别为bk,k=0,1,……,7,4个BPSK符号分别s0、s1、s2和s3,sk=(2*b2k-1)+j(2*b2k+1-1),k=0、1、2和3。
S1402:将预编码矩阵Q与4个QPSK符号组成的列向量相乘,得到和128QAM星座图对应的4个待发送的高阶调制符号。
其中,128QAM星座图如图15所示,预编码矩阵
Figure PCTCN2016104305-appb-000062
为根据4个低阶调制符号和128QAM星座图得到的,具体地,与256QAM星座图类似,不同的是系数组合为(±1,±1,±1,e±j0.25π);
Figure PCTCN2016104305-appb-000063
为4个QPSK符号组成的列向量,4个待发送的高阶调制符号,分别为x0、x1、x2和x3
Figure PCTCN2016104305-appb-000064
S1403:将x0在第一发射天线的第一子载波上发送,将x1在第二发射天线的第一子载波上发送,将x2在第一发射天线的第二子载波上发送;将x3在第二发射天线的第二子载波上发送。
本实施例中,将待发送的8个信息比特按照QPSK星座图进行调制,生成4个QPSK符号,将预编码矩阵Q与4个QPSK符号组成的列向量相乘,得到和128QAM星座图对应的4个待发送的高阶调制符号,将x0在第一发射天线的第一子载波上发送,将x1在第二发射天线的第一子载波上发送,将x2在第一发射天线的第二子载波上发送;将x3在第二发射天线的第二子载波上发送,可以看出,s0同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,s1同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,s2同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,s3同时在第一子载波和第二子载波上发送,也在第一发射天线和第二发射天线上发送,同时实现了频率分集和空间分集,从而,提高数据传输的收发性能。
接收端的处理方式如图16所示:
S1601:对2个接收天线在两个载波上接收到的信号组成的列向量进行信道均衡,得到4个QPSK符号的估计值。
其中,2个接收天线在两个载波上接收到的信号组成的列向量为
Figure PCTCN2016104305-appb-000065
其中,
Figure PCTCN2016104305-appb-000066
其中,r1,1表示第一接收天线在第一子载波上接收到的信号,r2,1表示第二接收天线在第一子载波上接收到的信号,r1,2表示第一接收天线在第二子载波上接收到的信号,r2,2表示第二接收天线在第二子载波上接收到的信号。h11,1表示第一子载波上第一发送天线到第一接收天线的信道响应,h12,1表示第一子载波上第一发送天线到第二接收天线的信道响应,h21,1表示第一子载波上第二发送天线到第一接收天线的信道响应,h22,1表示第一子载波上第二发送天线到第二接收天线的信道响应,h11,2表示第二子载波上第一发送天线到第一接收天线的信道响应,h12,2表示第二子载波上第一发送天线到第二接收天线的信道响应,h21,2表示第二子载波上第二发送天线到第一接收天线的信道响应,h22,2表示第二子载波上第二发送天线到第二接收天线的信道响应。
4个QPSK符号的估计值分别表示为:
Figure PCTCN2016104305-appb-000067
Figure PCTCN2016104305-appb-000068
其中,
Figure PCTCN2016104305-appb-000069
其中,W为信道均衡矩阵,如果采用线性最小均方误差方法,相应的信道均衡矩阵为W=(GHG+δ2I4)-1GH,如果采用迫零方法,相应的信道均衡矩阵为W=G-1,其中,
Figure PCTCN2016104305-appb-000070
δ2为噪声功率,I4为4阶的单位矩阵,( )-1表示对矩阵求逆。
S1602:对4个QPSK调制符号的估计值按照QPSK星座图的的映射方式进行解调,获得发送端发送的信息比特的估计值。
本实施例,通过对2个接收天线在两个载波上接收到的信号组成的列向量进行信道均衡,得到4个QPSK符号的估计值,对4个QPSK调制符号的估计值按照QPSK星座图的的映射方式进行解调,获得发送端发送的信息比特的估计值。即通过联合解调的方式获得发送端发送的信息比特的估计值,同一个信号可以在多个接收天线的不同的载波同时接收,实现频率分集和空间分集,因此,提高数据传输的收发性能。
图17为本发明数据传输装置实施例一的结构示意图,如图17所示,本实施例的转置包括调制模块1701、处理模块1702和发送模块1703,其中,调制模块1701用于将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,其中,所述m为大于等于1的整数;处理模块1702用于将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号;发送模块1703用于将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。
在上述实施例中,所述4m个待发送的高阶调制符号分为四类,其中,第4(i-1)+1个高阶调制符号为第一高阶调制符号、第4(i-1)+2个高阶调制符号为第二高阶调制符号、第4(i-1)+3个高阶调制符号为第三高阶调制符号,第4(i-1)+4个高阶调制符号为第四高阶调制符号,其中,1≤i≤l且为整数;
所述发送模块具体用于将第一高阶调制符号在第一发射天线的第一子载波上发送,将第二高阶调制符号在第二发射天线的第一子载波上发送,将第三高阶调制符号在第一发射天线的第二子载波上发送;将第四高阶调制符号在第二发射天线的第二子载波上发送。
在上述实施例中,所述处理模块1702具体用于:
将预编码矩阵
Figure PCTCN2016104305-appb-000071
与4个正交相移键控QPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和256正交振幅调制QAM星座图相对应的4个待发送的256QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第 一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
在上述实施例中,所述处理模块1702具体用于
将预编码矩阵
Figure PCTCN2016104305-appb-000072
与4个QPSK符号组成的列向量
[s0 s1 s2 s3]T相乘,得到和128QAM星座图相对应的4个待发送的128QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
在上述实施例中,所述处理模块1702具体用于
将预编码矩阵
Figure PCTCN2016104305-appb-000073
与4个BPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和QPSK星座图相对应的4个待发送的调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号。
本实施例的装置,对应地可用于执行图5或图10或图14所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图18为本发明数据传输装置实施例二的结构示意图,如图18所示,本实施例的装置包括接收模块1801、信道均衡模块1802和解调模块1803,其中,接收模块1801用于在2个载波上接收信号,其中,接收模块部署在第一接收天线与第二接收天线,2个载波分别为第一子载波与第二子载波,其中,第一接收天线在第一子载波上接收到的信号为r11,第二接收天线在第一子载波上接收到的信号为r21,第一接收天线在第二子载波上接收到的信号为r12,第二接收天线在第二子载波上接收到的信号为r22;信道均衡模块1802用于对[r11 r21 r12 r22]T进行信道均衡后,得到4m个低阶调制符号的估计值,所述m为 大于等于1的整数;解调模块1803用于对所述4m个低阶调制符号的估计值按照对应的低阶星座图进行解调,获得发送端发送的信息比特的估计值。
在上述实施例中,所述低阶调制符号为正交相移键控QPSK调制符号或者二进制相移键控BPSK调制符号。
本实施例的装置,对应地可用于执行图8或图12所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图19为本发明数据传输装置实施例三的结构示意图,如图19所示,本实施例的装置包括信道均衡模块1901、解调模块1902和处理模块1903,其中,信道均衡模块1901用于对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值,所述m为大于等于1的整数;信道均衡模块1901还用于对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m个第二高阶调制符号的估计值;解调模块1902用于根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值;解调模块1902还用于根据高阶星座图的映射方式,对2m个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值;处理模块1903用于将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
在上述实施例中,所述高阶调制符号为256正交振幅调制QAM调制符号或者为正交相移键控QPSK调制符号。
本实施例的装置,对应地可用于执行图9或图13或图16所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图20为本发明数据传输装置实施例四的结构示意图,如图20所示,调制器2001、处理器2002和发射器2003,其中,调制器2001用于将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,其中,所述m为大于等于1的整数;处理器2002用于将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号;发射器2003用于将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。
本实施例的装置,对应地可用于执行图5或图10或图14所示方法实施 例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图21为本发明数据传输装置实施例五的结构示意图,本实施例的装置包括接收器2101、信道均衡器2102和解调器2103,其中,接收器2101用于在2个载波上接收信号,其中,接收模块部署在第一接收天线与第二接收天线,2个载波分别为第一子载波与第二子载波,其中,第一接收天线在第一子载波上接收到的信号为r11,第二接收天线在第一子载波上接收到的信号为r21,第一接收天线在第二子载波上接收到的信号为r12,第二接收天线在第二子载波上接收到的信号为r22
信道均衡器2102用于对[r11 r21 r12 r22]T进行信道均衡后,得到4m个低阶调制符号的估计值,所述m为大于等于1的整数;解调器2103用于对所述4m个低阶调制符号的估计值按照对应的低阶星座图进行解调,获得发送端发送的信息比特的估计值。
本实施例的装置,对应地可用于执行图8或图12所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图22为本发明数据传输装置实施例六的结构示意图,本实施例的装置包括信道均衡器2201、解调器2202和处理器2203,其中,信道均衡器2201用于对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值,所述m为大于等于1的整数;信道均衡器2201还用于对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m个第二高阶调制符号的估计值;解调器2202用于根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值;解调器2202还用于根据高阶星座图的映射方式,对2m个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值;处理器2203用于将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
本实施例的装置,对应地可用于执行图9或图13或图16所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施 例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种数据传输方法,其特征在于,包括:
    将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,其中,所述m为大于等于1的整数;
    将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号;
    将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。
  2. 根据权利要求1所述的方法,其特征在于,所述4m个待发送的高阶调制符号分为四类,其中,第4(i-1)+1个高阶调制符号为第一高阶调制符号、第4(i-1)+2个高阶调制符号为第二高阶调制符号、第4(i-1)+3个高阶调制符号为第三高阶调制符号,第4(i-1)+4个高阶调制符号为第四高阶调制符号,其中,1≤i≤l且为整数;
    所述将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送,包括:
    将第一高阶调制符号在第一发射天线的第一子载波上发送,将第二高阶调制符号在第二发射天线的第一子载波上发送,将第三高阶调制符号在第一发射天线的第二子载波上发送;将第四高阶调制符号在第二发射天线的第二子载波上发送。
  3. 根据权利要求2所述的方法,其特征在于,所述将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,包括:
    将预编码矩阵
    Figure PCTCN2016104305-appb-100001
    与4个正交相移键控QPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和256正交振幅调制QAM星座图相对应的4个待发送的256QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
  4. 根据权利要求2所述的方法,其特征在于,所述将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,包括:
    将预编码矩阵
    Figure PCTCN2016104305-appb-100002
    与4个QPSK符号组成的列向量
    [s0 s1 s2 s3]T相乘,得到和128QAM星座图相对应的4个待发送的128QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
  5. 根据权利要求2所述的方法,其特征在于,所述将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号,包括:
    将预编码矩阵
    Figure PCTCN2016104305-appb-100003
    与4个BPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和QPSK星座图相对应的4个待发送的调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号。
  6. 一种数据传输方法,其特征在于,包括:
    2个接收天线在2个载波上接收信号,其中,2个接收天线分别为第一接收天线与第二接收天线,2个载波分别为第一子载波与第二子载波,其中,第一接收天线在第一子载波上接收到的信号为r11,第二接收天线在第一子载波上接收到的信号为r21,第一接收天线在第二子载波上接收到的信号为r12,第二接收天线在第二子载波上接收到的信号为r22
    对[r11 r21 r12 r22]T进行信道均衡后,得到4m个低阶调制符号的估计值,所述m为大于等于1的整数;
    对所述4m个低阶调制符号的估计值按照对应的低阶星座图进行解调, 获得发送端发送的信息比特的估计值。
  7. 根据权利要求6所述的方法,其特征在于,所述低阶调制符号为正交相移键控QPSK调制符号或者二进制相移键控BPSK调制符号。
  8. 一种数据传输方法,其特征在于,包括:
    对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值,所述m为大于等于1的整数;
    对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m个第二高阶调制符号的估计值;
    根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值;
    根据高阶星座图的映射方式,对2m个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值;
    将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
  9. 根据权利要求8所述的方法,其特征在于,所述高阶调制符号为256正交振幅调制QAM调制符号或者为正交相移键控QPSK调制符号。
  10. 一种数据传输装置,其特征在于,包括:
    调制模块,用于将待发送的信息比特按照低阶星座图进行调制,生成4m个低阶调制符号,其中,所述m为大于等于1的整数;
    处理模块,用于将预编码矩阵Q分别与所述4m个低阶调制符号中每4个低阶调制符号组成的列向量相乘,得到和高阶星座图对应的4m个待发送的高阶调制符号;
    发送模块,用于将所述4m个待发送的高阶调制符号分别对应的在2个天线的不同载波上发送。
  11. 根据权利要求10所述的装置,其特征在于,所述4m个待发送的高阶调制符号分为四类,其中,第4(i-1)+1个高阶调制符号为第一高阶调制符号、第4(i-1)+2个高阶调制符号为第二高阶调制符号、第4(i-1)+3个高阶调制符号为第三高阶调制符号,第4(i-1)+4个高阶调制符号为第四高阶调制符号,其中,1≤i≤l且为整数;
    所述发送模块具体用于将第一高阶调制符号在第一发射天线的第一子载 波上发送,将第二高阶调制符号在第二发射天线的第一子载波上发送,将第三高阶调制符号在第一发射天线的第二子载波上发送;将第四高阶调制符号在第二发射天线的第二子载波上发送。
  12. 根据权利要求11所述的装置,其特征在于,所述处理模块具体用于:
    将预编码矩阵
    Figure PCTCN2016104305-appb-100004
    与4个正交相移键控QPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和256正交振幅调制QAM星座图相对应的4个待发送的256QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
  13. 根据权利要求11所述的装置,其特征在于,所述处理模块具体用于
    将预编码矩阵
    Figure PCTCN2016104305-appb-100005
    与4个QPSK符号组成的列向量
    [s0 s1 s2 s3]T相乘,得到和128QAM星座图相对应的4个待发送的128QAM调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号,[ ]T表示转置。
  14. 根据权利要求11所述的装置,其特征在于,所述处理模块具体用于
    将预编码矩阵
    Figure PCTCN2016104305-appb-100006
    与4个BPSK符号组成的列向量[s0 s1 s2 s3]T相乘,得到和QPSK星座图相对应的4个待发送的调制符号,分别为[x0 x1 x2 x3]T,其中,x0为第一高阶调制符号、x1为第二高阶调制符号、x2为第三高阶调制符号和x3为第四高阶调制符号。
  15. 一种数据传输装置,其特征在于,包括:
    接收模块,用于在2个载波上接收信号,其中,接收模块部署在第一接收天线与第二接收天线,2个载波分别为第一子载波与第二子载波,其中,第一接收天线在第一子载波上接收到的信号为r11,第二接收天线在第一子载波上接收到的信号为r21,第一接收天线在第二子载波上接收到的信号为r12,第二接收天线在第二子载波上接收到的信号为r22
    信道均衡模块,用于对[r11 r21 r12 r22]T进行信道均衡后,得到4m个低阶调制符号的估计值,所述m为大于等于1的整数;
    解调模块,用于对所述4m个低阶调制符号的估计值按照对应的低阶星座图进行解调,获得发送端发送的信息比特的估计值。
  16. 根据权利要求15所述的装置,其特征在于,所述低阶调制符号为正交相移键控QPSK调制符号或者二进制相移键控BPSK调制符号。
  17. 一种数据传输装置,其特征在于,包括:
    信道均衡模块,用于对2个天线在第一子载波上接收到的信号进行信道均衡,获得2m个第一高阶调制符号的估计值,所述m为大于等于1的整数;
    所述信道均衡模块还用于对2个天线在第二子载波上接收到的信号进行信道均衡,获取2m个第二高阶调制符号的估计值;
    解调模块,用于根据高阶星座图的映射方式,对2m个第一高阶调制符号的估计值进行解调获得发送端发送的信息比特的第一估计值;
    所述解调模块,还用于根据高阶星座图的映射方式,对2m个第二高阶调制符号的估计值进行解调获得发送端发送的信息比特的第二估计值;
    处理模块,用于将所述发送端发送的信息比特的第一估计值和所述发送端发送的信息比特的第二估计值合并,获得发送端发送的信息比特的估计值。
  18. 根据权利要求17所述的装置,其特征在于,所述高阶调制符号为256正交振幅调制QAM调制符号或者为正交相移键控QPSK调制符号。
PCT/CN2016/104305 2015-11-13 2016-11-02 数据传输方法和装置 WO2017080392A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020187016108A KR102137646B1 (ko) 2015-11-13 2016-11-02 데이터 전송 방법 및 장치
RU2018121092A RU2686664C1 (ru) 2015-11-13 2016-11-02 Способ и устройство для передачи данных
EP21212419.2A EP4027551B1 (en) 2015-11-13 2016-11-02 Data transmission method and apparatus
JP2018524362A JP6686137B2 (ja) 2015-11-13 2016-11-02 データ送信方法および装置
EP16863569.6A EP3364555B1 (en) 2015-11-13 2016-11-02 Data transmission method and device
US15/975,720 US10419262B2 (en) 2015-11-13 2018-05-09 Data transmission method and apparatus
US16/546,159 US10819553B2 (en) 2015-11-13 2019-08-20 Data transmission method and apparatus
US16/948,569 US11140017B2 (en) 2015-11-13 2020-09-23 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510780892.6 2015-11-13
CN201510780892.6A CN106712826B (zh) 2015-11-13 2015-11-13 数据传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/975,720 Continuation US10419262B2 (en) 2015-11-13 2018-05-09 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017080392A1 true WO2017080392A1 (zh) 2017-05-18

Family

ID=58694446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104305 WO2017080392A1 (zh) 2015-11-13 2016-11-02 数据传输方法和装置

Country Status (7)

Country Link
US (3) US10419262B2 (zh)
EP (2) EP3364555B1 (zh)
JP (2) JP6686137B2 (zh)
KR (1) KR102137646B1 (zh)
CN (2) CN106712826B (zh)
RU (1) RU2686664C1 (zh)
WO (1) WO2017080392A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698735B (zh) * 2017-10-20 2020-02-18 北京字节跳动网络技术有限公司 一种异频分集数据处理方法及装置
CN111083081A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 基于双载波调制的数据通信方法及相关装置
CN113746515B (zh) * 2020-05-29 2023-06-06 华为技术有限公司 应用电磁超表面阵列的数据发送方法、装置及系统
CN113810069B (zh) * 2020-06-16 2023-10-20 华为技术有限公司 用于传输信号的通信装置及信号传输方法
CN111988255B (zh) * 2020-07-15 2022-12-09 郑州轻工业大学 一种基于分解和分布式调制的物理层安全传输方法及系统
CN112688866B (zh) * 2020-12-22 2023-03-21 上海金卓科技有限公司 一种数据发送、数据接收方法、电子设备及存储介质
CN116418645A (zh) * 2021-12-31 2023-07-11 华为技术有限公司 一种高频场景下的通信方法及装置
KR102647891B1 (ko) * 2022-12-20 2024-03-14 중앙대학교 산학협력단 세그멘티드 빔포빙 기반 다중-빔 공간 벡터 결합 mimo 통신 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1717889A (zh) * 2002-10-25 2006-01-04 高通股份有限公司 多天线通信系统的发送分集处理
US7499020B2 (en) * 2000-11-14 2009-03-03 Fujitsu Takamisawa Component Limited Input system and input device
CN101471757A (zh) * 2007-12-25 2009-07-01 华为技术有限公司 一种接收合并方法、系统和设备
CN101521514A (zh) * 2008-10-13 2009-09-02 重庆无线绿洲通信技术有限公司 结合重复累积码的多元编码调制方法及装置
CN102007747A (zh) * 2008-04-18 2011-04-06 皇家飞利浦电子股份有限公司 改进的双载波调制预编码
CN102857290A (zh) * 2007-04-26 2013-01-02 三星电子株式会社 用于发射信号及接收信号的方法、发射机链及接收机链
JP2013066208A (ja) * 2007-06-25 2013-04-11 Samsung Electronics Co Ltd 遅延ダイバーシティと空間−周波数ダイバーシティによる送信方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050345B1 (en) * 1999-08-09 2011-11-01 Kamilo Feher QAM and GMSK systems
US7010029B1 (en) * 2000-04-13 2006-03-07 At&T Corp. Equalization of transmit diversity space-time coded signals
US7306674B2 (en) * 2001-01-19 2007-12-11 Chevron U.S.A. Inc. Nucleation of diamond films using higher diamondoids
JP4119696B2 (ja) * 2001-08-10 2008-07-16 松下電器産業株式会社 送信装置、受信装置及び無線通信方法
US7359466B2 (en) * 2001-08-24 2008-04-15 Lucent Technologies Inc. Signal detection by a receiver in a multiple antenna time-dispersive system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
CN1918809B (zh) * 2004-02-12 2011-05-25 日本电气株式会社 移动通信系统和用于该系统的无线设备
US7512185B2 (en) * 2004-03-08 2009-03-31 Infineon Technologies Ag Dual carrier modulator for a multiband OFDM UWB transceiver
TW200607272A (en) * 2004-05-11 2006-02-16 Matsushita Electric Ind Co Ltd OFDM reception apparatus and method
JP2006246176A (ja) * 2005-03-04 2006-09-14 Nec Corp Mimo受信装置、受信方法および無線通信システム
US7344985B2 (en) * 2005-04-01 2008-03-18 Texas Instruments Incorporated Nickel alloy silicide including indium and a method of manufacture therefor
US7697620B2 (en) * 2005-11-14 2010-04-13 Ibiquity Digital Corporation Equalizer for AM in-band on-channel radio receivers
JP5302687B2 (ja) * 2005-12-12 2013-10-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Qamコンステレーションの整数拡散回転行列及びデコード−再変調−転送協調的通信方式へのその適用
CN103986556B (zh) * 2006-08-17 2019-07-02 英特尔公司 用于在mimo无线通信系统中提供有效预编码反馈的方法和设备
US8102930B2 (en) 2007-03-28 2012-01-24 Agere Systems Inc. Demodulation of 16-QAM, DCM data symbols using two hybrid-QPSK constellations
EP1978666B1 (en) * 2007-04-02 2014-01-22 Sequans Communications Method for transmitting and estimating symbols coded with coding matrix, as well as corresponding receiver and transmitter
US8045632B2 (en) * 2007-04-18 2011-10-25 Texas Instruments Incorporated Systems and methods for dual-carrier modulation encoding and decoding
WO2009016573A2 (en) * 2007-07-27 2009-02-05 Koninklijke Philips Electronics, N.V. System and method of transmitting and receiving mimo-ofdm signals
CN101447854B (zh) * 2007-11-27 2012-11-07 上海华为技术有限公司 数据发送/转发/处理方法及装置
EP2071758A1 (en) 2007-12-11 2009-06-17 Sony Corporation OFDM-Transmitting apparatus and method, and OFDM-receiving apparatus and method
JP5480632B2 (ja) 2007-12-27 2014-04-23 株式会社クレハ 接着性フッ化ビニリデン系樹脂シート
KR101490262B1 (ko) 2008-01-02 2015-02-05 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
TWI474693B (zh) * 2008-03-10 2015-02-21 Koninkl Philips Electronics Nv 用於多重次載波聯合預編碼的技術
CN101599785B (zh) * 2009-06-25 2013-01-02 北京邮电大学 一种多小区联合传输方法
JP5500379B2 (ja) 2010-09-03 2014-05-21 ソニー株式会社 データ処理装置、及びデータ処理方法
CN101986587B (zh) * 2010-10-25 2013-04-03 北京邮电大学 一种克服弱散射的多天线码本选择调制方法
JP5637393B2 (ja) * 2011-04-28 2014-12-10 ソニー株式会社 データ処理装置、及び、データ処理方法
CN102833043A (zh) * 2012-08-25 2012-12-19 华南理工大学 空分复用多天线系统基于旋转星座图的编解码方法
US8885766B2 (en) * 2012-09-11 2014-11-11 Inphi Corporation Optical communication interface utilizing N-dimensional double square quadrature amplitude modulation
RU2523190C1 (ru) * 2012-11-27 2014-07-20 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Способ итеративного детектирования и декодирования сигнала в системах связи с mimo каналом
WO2014123388A1 (ko) * 2013-02-08 2014-08-14 엘지전자 주식회사 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국
CN104539336A (zh) * 2014-12-26 2015-04-22 江苏中兴微通信息科技有限公司 一种利用发送分集的空间调制方法及装置
US10134412B2 (en) * 2015-09-03 2018-11-20 Shure Acquisition Holdings, Inc. Multiresolution coding and modulation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499020B2 (en) * 2000-11-14 2009-03-03 Fujitsu Takamisawa Component Limited Input system and input device
CN1717889A (zh) * 2002-10-25 2006-01-04 高通股份有限公司 多天线通信系统的发送分集处理
CN102857290A (zh) * 2007-04-26 2013-01-02 三星电子株式会社 用于发射信号及接收信号的方法、发射机链及接收机链
JP2013066208A (ja) * 2007-06-25 2013-04-11 Samsung Electronics Co Ltd 遅延ダイバーシティと空間−周波数ダイバーシティによる送信方法
CN101471757A (zh) * 2007-12-25 2009-07-01 华为技术有限公司 一种接收合并方法、系统和设备
CN102007747A (zh) * 2008-04-18 2011-04-06 皇家飞利浦电子股份有限公司 改进的双载波调制预编码
CN101521514A (zh) * 2008-10-13 2009-09-02 重庆无线绿洲通信技术有限公司 结合重复累积码的多元编码调制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364555A4 *

Also Published As

Publication number Publication date
US10819553B2 (en) 2020-10-27
EP3364555B1 (en) 2021-12-22
JP6686137B2 (ja) 2020-04-22
EP3364555A4 (en) 2018-10-31
EP3364555A1 (en) 2018-08-22
RU2686664C1 (ru) 2019-04-30
US20180262381A1 (en) 2018-09-13
KR102137646B1 (ko) 2020-07-24
CN106712826A (zh) 2017-05-24
JP7216681B2 (ja) 2023-02-01
US10419262B2 (en) 2019-09-17
KR20180084852A (ko) 2018-07-25
EP4027551B1 (en) 2024-02-14
EP4027551A1 (en) 2022-07-13
US11140017B2 (en) 2021-10-05
CN112134605A (zh) 2020-12-25
CN112134605B (zh) 2024-04-09
CN106712826B (zh) 2020-09-04
US20190372821A1 (en) 2019-12-05
JP2020115664A (ja) 2020-07-30
JP2018537906A (ja) 2018-12-20
US20210075663A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2017080392A1 (zh) 数据传输方法和装置
US20160212616A1 (en) Secure Transmissions Of Narrowband Digital Signals
US20210111786A1 (en) Wireless Communication Device and Corresponding Apparatus, Method and Computer Program
JP2021119657A (ja) 受信装置、受信方法、および、集積回路
US20210111784A1 (en) Wireless Communication Device and Corresponding Apparatus, Method and Computer Program
CN109121463B (zh) 发送装置和发送方法
Hara et al. Ambient OFDM pilot-aided backscatter communications: Concept and design
CN106302299B (zh) 一种多用户接入方法及装置
CN107078854B (zh) 发送节点、接收节点和在其中执行的方法
US9306691B2 (en) Methods and devices for transmission of signals in a telecommunication system
Sergienko Noncoherent reception of short PSK data packets with pilot symbols
Xu et al. A novel self-interference cancellation scheme for full duplex with differential spatial modulation
Ju et al. An effective self-interference cancellation scheme for spatial modulated full duplex systems
Mahal et al. Jammer blind estimation of a third-party OFDM channel
Ugrelidze et al. Four-Dimensional Hybrid Signals with Spatial Modulation Systems
CN109600156B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US8976899B2 (en) Apparatus and method for transmitting/receiving data in mobile communication system
Miyasaka et al. A study on MIMO OFDM transmissions using inter-polarization spreading
CN114826358A (zh) 一种高抗破译性能的方向调制方法与系统
JP2010183177A (ja) 無線受信機、無線受信方法および無線受信プログラム
WO2016041197A1 (zh) 双流发射方法和发射机
Bharathi et al. DOUBLY SELECTIVE CHANNEL ESTIMATION IN FBMC-OQAM AND OFDMSYSTEMS
KR20110040405A (ko) 채널 추정에 사용되는 데이터의 오버헤드를 줄이기 위한 통신 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018524362

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2016863569

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016108

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016108

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2018121092

Country of ref document: RU