WO2017078454A1 - 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법 - Google Patents

반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법 Download PDF

Info

Publication number
WO2017078454A1
WO2017078454A1 PCT/KR2016/012642 KR2016012642W WO2017078454A1 WO 2017078454 A1 WO2017078454 A1 WO 2017078454A1 KR 2016012642 W KR2016012642 W KR 2016012642W WO 2017078454 A1 WO2017078454 A1 WO 2017078454A1
Authority
WO
WIPO (PCT)
Prior art keywords
dai
harq
ack
pdsch
base station
Prior art date
Application number
PCT/KR2016/012642
Other languages
English (en)
French (fr)
Inventor
박동현
Original Assignee
주식회사 아이티엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티엘 filed Critical 주식회사 아이티엘
Publication of WO2017078454A1 publication Critical patent/WO2017078454A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present invention relates to wireless communication supporting carrier aggregation, and more particularly, to determine the size of a HARQ-ACK codebook on an uplink data transmission channel and to perform HARQ operation based on the determined size of the HARQ-ACK codebook.
  • An apparatus and method for performing the invention are described in detail below.
  • CA Carrier Aggregation
  • CC component carriers
  • Each serving cell is defined by bandwidth and center frequency.
  • LAA licensed assisted access
  • the HARQ ACK may be transmitted on a new uplink control channel (PUCCH format 4 or 5), or may be transmitted together with the uplink data channel (also called piggyback).
  • PUCCH format 4 or 5 the uplink data channel
  • piggyback the uplink data channel
  • the terminal may determine the ACK or NACK of the downlink data channels received by the terminal, and generate the HARQ ACK with reference to the HARQ ACK codebook.
  • the terminal transmits the HARQ ACK based on the HARQ ACK codebook of the size determined based on the downlink data channels recognized by the terminal, if the terminal does not recognize some downlink data channels themselves due to deterioration of the channel state.
  • the size of the HARQ ACK codebook referenced by the terminal and the size of the HARQ ACK codebook intended by the actual base station may vary.
  • both the terminal and the base station must accurately grasp the size of the dynamically changing HARQ ACK codebook.
  • An object of the present invention is to provide an apparatus and method for performing HARQ operation in a wireless communication system supporting carrier aggregation.
  • a method of performing a hybrid automatic repeat request (HARQ) by a terminal in a wireless communication system supporting carrier aggregation includes the number of physical downlink shared channels (PDSCHs) accumulated to the current subframe and a semi persistent scheduling (SPS) in a bundling window related to the HARQ-ACK report of the UE based on at least one serving cell.
  • a cumulative downlink assignment indicator (A-DAI) field indicating the sum of the number of physical downlink control channels (PDCCHs) indicating a release and scheduling associated with the HARQ-ACK report of the terminal.
  • a downlink grant from a base station on a first PDCCH including a total DAI (T-DAI) field indicating a sum of all the number of PDSCHs and the number of PDCCHs indicating an SPS release;
  • T-DAI total DAI
  • Receiving a first PDSCH indicated by a PDCCH from the base station and an uplink grant indicating transmission of a physical uplink shared channel (PUSCH) on the second PDCCH;
  • Receiving from a base station determining a size of a HARQ-ACK codebook to which HARQ-ACK for the first PDSCH is mapped based on the A-DAI and the T-DAI, and HARQ- for the first PDSCH Sending an ACK to the base station on the PUSCH.
  • a terminal for performing a hybrid automatic repeat request (HARQ) in a wireless communication system supporting carrier aggregation is provided.
  • the terminal is based on at least one serving cell, the number of physical downlink shared channels (PDSCHs) accumulated to the current subframe in a bundling window related to HARQ-ACK reporting of the terminal and semi persistent scheduling (SPS)
  • a cumulative downlink assignment indicator (A-DAI) field indicating the sum of the number of physical downlink control channels (PDCCHs) indicating a release and scheduling associated with the HARQ-ACK report of the terminal.
  • a downlink grant from a base station on a first PDCCH including a total DAI (T-DAI) field indicating a sum of all the number of PDSCHs and the number of PDCCHs indicating an SPS release
  • T-DAI total DAI
  • receiving the first PDCCH Receives a first PDSCH indicated by the base station, and the uplink grant indicating the transmission of a physical uplink shared channel (PUSCH) to the base station on a second PDCCH
  • T-DAI total DAI
  • PUSCH physical uplink shared channel
  • a size of an HARQ-ACK codebook to which an RF unit and a HARQ-ACK to which the first PDSCH is to be mapped are determined based on the A-DAI and the T-DAI, and the HARQ-ACK to the first PDSCH. It includes a processor for generating.
  • the RF unit may transmit a HARQ-ACK for the first PDSCH to the base station on the PUSCH.
  • the T-DAI field may be 2 bits or 3 bits.
  • the scheduled PDSCH and the PDCCH indicating the SPS release may be counted in all subframes in the bundling window.
  • the scheduled PDSCH and the PDCCH indicating the SPS release may be counted to the current subframe in the bundling window.
  • the size of the HARQ-ACK codebook is fixed to one of 1 bit and 2 bits of the HARQ-ACK corresponding to the first PDSCH. It may be determined on the premise that
  • Both the terminal and the base station can accurately determine the size of the HARQ ACK codebook that is dynamically changing.
  • the uplink HARQ-ACK overhead can be efficiently adjusted, and reliable uplink transmission and downlink data performance can be guaranteed.
  • 1A to 1F illustrate an example of applying a downlink grant including an A-DAI field and a T-DAI field to an FDD or TDD PUCCH cell group.
  • FIG. 2 is an explanatory diagram illustrating a method of calculating a size of a HARQ-ACK codebook according to a second embodiment.
  • FIG. 3 is an explanatory diagram for explaining a method of determining a size of a HARQ-ACK codebook when there is DL SPS PDSCH transmission according to an example of the present invention.
  • FIG. 4 is an explanatory diagram illustrating a method of determining a size of a HARQ-ACK codebook when there is a DL SPS PDSCH transmission according to another embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method for transmitting HARQ-ACK by a terminal according to an example of the present invention.
  • FIG. 6 is a flowchart illustrating a method for transmitting HARQ-ACK by a terminal according to another example of the present invention.
  • FIG. 7 is a flowchart illustrating a method of receiving an HARQ-ACK by a base station according to an example of the present invention.
  • FIG. 8 is a flowchart illustrating a method of receiving an HARQ-ACK by a base station according to another example of the present invention.
  • FIG. 9 is a block diagram illustrating a terminal and a base station according to an example of the present invention.
  • the present specification describes a wireless communication network, and the work performed in the wireless communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the wireless communication network, or the corresponding wireless network. Work can be done in the terminal coupled to.
  • a system for example, a base station
  • Work can be done in the terminal coupled to.
  • the wireless communication system of the present specification is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system includes at least one base station (BS) 11.
  • BS base station
  • Each base station provides a communication service for a specific geographic area or frequency area and may be called a site.
  • a site may be divided into a number of areas, which may be called sectors, and each sector may have a different cell ID.
  • a user equipment (UE) constituting a wireless communication system may be fixed or mobile, and may have a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), and a wireless device. Other terms may be referred to as a device, a personal digital assistant, a wireless modem, a handheld device, and the like.
  • a base station constituting a wireless communication system generally refers to a station communicating with a terminal, and includes an evolved-NodeB (eNodeB), a Base Transceiver System (BTS), an Access Point, an Femto eNodeB, and a home.
  • eNodeB evolved-NodeB
  • BTS Base Transceiver System
  • Access Point an Femto eNodeB
  • Femto eNodeB Femto eNodeB
  • Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells.
  • downlink means a communication or communication path from a base station to a terminal
  • uplink means a communication or communication path from a terminal to a base station.
  • a transmitter may be part of a base station and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • Layers of a radio interface protocol between the terminal and the base station may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • the physical layer is connected to a higher layer, a media access control (MAC) layer, through a transport channel.
  • Data is transmitted through a transport channel between the MAC layer and the physical layer.
  • Transport channels are classified according to how data is transmitted over the air interface.
  • data is transmitted through a physical channel between different physical layers (that is, between a physical layer of a terminal and a base station).
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes space generated by time, frequency, and a plurality of antennas as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel (PDCCH) of a physical channel informs a terminal of resource allocation of a PCH (Paging CHannel) and DL-SCH (DownLink Shared CHannel) and HARQ (Hybrid Automatic Repeat Request) information related to the DL-SCH,
  • the terminal may carry an uplink scheduling grant informing of resource allocation of uplink transmission.
  • Physical Uplink Shared Channel (PDSCH) carries DL-SCH including downlink data.
  • the Physical Uplink Control CHannel (PUCCH) carries uplink control information such as HARQ ACK / NACK, scheduling request, and CQI for downlink transmission.
  • the PUSCH Physical Uplink Shared CHannel
  • UL-SCH Uplink Shared CHannel
  • the PUSCH may include channel state information (CSI) information such as HARQ ACK / NACK and CQI.
  • CSI channel state information
  • LAA Local Area Network
  • SCell primary serving cell
  • LAA is a technology that binds a licensed band and an unlicensed band to one using a licensed carrier (LC) of an LTE licensed band as an anchor.
  • LC licensed carrier
  • the UE accesses the network to the licensed band to use the service, and the base station may offload the traffic of the licensed band to the unlicensed band by combining the licensed band and the unlicensed band with a CA according to circumstances.
  • the communication system which can be configured in the terminal 5 or more up to 32 serving cells by the CA, not only determines the size of the HARQ-ACK codebook semi-statically by the lead of a higher layer such as RRC, but also the channel. It should be possible to adjust the size of the HARQ-ACK codebook adaptively or dynamically. This is to efficiently adjust the uplink HARQ-ACK overhead and to ensure reliable uplink transmission and downlink data performance.
  • the operation in a higher layer such as RRC may include at least one of the following operations (1) to (4).
  • the operation of the higher layer may include an operation of indicating whether semi-static HARQ-ACK codebook configuration or dynamic HARQ-ACK codebook configuration is to be applied.
  • the base station may transmit information indicating the configuration of the semi-static HARQ-ACK codebook or the dynamic HARQ-ACK codebook to the terminal.
  • the semi-static HARQ-ACK codebook configuration is a first mode in which the base station transmits a higher layer signal for the size of the HARQ-ACK codebook to the terminal.
  • the dynamic HARQ-ACK codebook configuration is a second mode in which the base station does not transmit a higher layer signal for the size of the HARQ-ACK codebook to the terminal. In the second mode, the UE needs to determine (or predict or determine) the size of the dynamic HARQ-ACK codebook using information other than the higher layer signal. Specific embodiments thereof will be described later.
  • the reason for distinguishing modes is that, when the number of serving cells is about 6-7, the method of applying the dynamic HARQ codebook increases the complexity of the base station and the terminal implementation compared to the gain for the optimization purpose of the size of the HARQ-ACK codebook. Because you can. Therefore, even for CAs of more than five serving cells, a configuration of HARQ-ACK codebook size based on semi-static parameters needs to be supported.
  • the operation of the higher layer may include an FDD / TDD PUCCH cell group configuration.
  • the PUCCH SCell when the PUCCH SCell is not configured, there may be only one cell group including the PCell. In this case, the cell group concept is virtually eliminated and is the same as before.
  • the PUCCH SCell when a PUCCH SCell is configured, up to two PUCCH cell groups may be configured.
  • the operation of higher layers may include more than five serving cell configurations in an FDD CA or TDD CA (including a TDD-FDD CA). Meanwhile, in a TDD CA or a TDD-FDD CA, a plurality of downlink subframes may be associated with one uplink subframe as a bundling window. In this case, even if five or less serving cells are configured, more HARQ-ACK bits may be generated (e.g. HARQ-ACK number of bits> 22). Therefore, in the TDD CA or the TDD-FDD CA, the number of serving cells may be determined based on 22 bits, which is the maximum size of HARQ-ACK bits that PUCCH format 3 can transmit.
  • the operation of the higher layer includes setting of RRC parameters necessary for the PUCCH format 4 or 5 configuration.
  • the terminal determines (or predicts or determines) the size of the HARQ-ACK codebook based on downlink control information (DCI). )can do.
  • DCI downlink control information
  • the DCI is information that is mapped and transmitted on the PDCCH or EPDCCH and includes a downlink grant for scheduling downlink data transmission and an uplink grant for scheduling uplink data transmission.
  • the DCI when up to 32 serving cells are configured in the terminal, the DCI includes an accumulated downlink assignment indicator (A-DAI) field and a total downlink assignment indicator (T).
  • A-DAI accumulated downlink assignment indicator
  • T total downlink assignment indicator
  • the DCI may include one integrated DAI field including both the indications of the A-DAI and the T-DAI.
  • the description will be made on the assumption that the T-DAI instruction is performed by a separate T-DAI field. However, even in the case of an integrated DAI field, the instructions or processing method may be applied in the same manner.
  • the A-DAI is again included in the downlink grant (DL A-DAI).
  • UL DAI is present in the uplink grant.
  • the DL A-DAI indicates the number of PDSCHs accumulated up to the current subframe in the serving cell CC / bundling window and the number of downlink (E) PDCCHs indicating the SPS release based on at least one serving cell.
  • the DL A-DAI is transmitted by a 2-bit or 3-bit A-DAI field included in the downlink grant.
  • the UL DAI indicates the total number of PDSCHs scheduled by the base station in the bundling window and the number of downlink (E) PDCCHs indicating the SPS release based on at least one serving cell.
  • the definition and utilization method differ depending on whether the A-DAI field is included in the downlink grant or the uplink grant.
  • A-DAI may be used only in TDD UL-DL configuration 1-6 and may not be used in TDD UL-DL configuration 0.
  • the TDD UL-DL configuration may include: i) a TDD system supporting different TDD-UL-DL configurations for each serving cell, or ii) a DL reference UL-DL configuration for HARQ-ACK timing in a TDD-FDD CA configuration. In the case of a TDD system using a DL configuration, it may be considered to be replaced by a DL reference UL-DL configuration.
  • the cumulative number of PDSCHs received by the UE within the configured serving cell (or CC) and the bundling window (A
  • the size of the HARQ-ACK codebook should be determined based on DAI). For example, when the cumulative number of PDSCHs is 2, 2 bits of HARQ-ACK are generated based on 1 TB (transport block) per PDSCH. That is, the size of the HARQ-ACK codebook is 2.
  • the terminal has one accumulated PDSCH. It is recognized that the 1-bit HARQ-ACK is generated and transmitted to the base station. In this case, the size of the HARQ-ACK codebook is 1. However, since the base station transmits two PDSCHs, the base station expects to transmit HARQ-ACK based on the size 2 HARQ-ACK codebook, but the size 1 codebook based HARQ-ACK is different from that originally intended by the base station.
  • A-DAI alone has a limit in predicting the size of reliable HARQ-ACK codebook.
  • the UE loses the last (E) PDCCH or PDSCH transmitted by the base station, or if 1CW or 2CW is transmitted in the MIMO transmission mode, it is a problem.
  • This embodiment defines a DCI including the T-DAI so that the base station and the terminal can support reliable dynamic HARQ-ACK codebook configuration.
  • the T-DAI indicates the number of all PDSCHs scheduled in association with the HARQ-ACK report of the UE. All PDSCHs are then counted over the frequency axis (set serving cells) and time axis (bundling window).
  • the T-DAI may indicate the total number of (E) PDCCHs (DL assignments) indicating the PDSCH / SPS release associated with the current subframe.
  • the T-DAI may indicate the total number of (E) PDCCH assignments (E) PDCCH assignments indicating PDSCH / SPS release within the configured serving cell / bundling window size.
  • the T-DAI may count based on the CW (TB) number rather than counting the (E) PDCCH indicating the PDSCH / SPS release in the above two counting methods.
  • the T-DAI may indicate the sum of the number of all PDSCHs scheduled in association with the HARQ-ACK report of the UE and the number of (E) PDCCHs indicating the SPS release. At this time, all PDSCHs and (E) PDCCH indicating SPS release are counted on the frequency axis and the time axis.
  • T-DAI is transmitted by the T-DAI field included in the downlink grant.
  • the T-DAI field may be 2 bits or 3 bits.
  • the T-DAI is used together with the A-DAI to determine the size of the dynamic HARQ-ACK codebook by the UE.
  • the A-DAI indicates the number of (E) PDCCHs indicating the accumulated PDSCH / SPS release for every DCI transmission, while the T-DAI indicates the (E) PDCCH indicating the entire PDSCH / SPS release for every DCI transmission. There is a difference in indicating the same number of times. T-DAI prevents confusion that occurs when the A-DAI value fails to be acquired at the last time or on the serving cell, and may help improve overall DL data performance.
  • DL SPS PDSCH transmission transmitted without a DL grant may be included or excluded.
  • the form in which A-DAI and / or T-DAI is applied and the method of determining the size of the HARQ-ACK codebook include a duplex scheme of the serving cell in which the number of CA possible serving cells and the PUCCH are transmitted (because HARQ-ACK transmission timing according thereto). Can be determined depending on The table summarizes this:
  • 1A to 1F illustrate an example of applying a downlink grant including an A-DAI field and a T-DAI field to an FDD or TDD PUCCH cell group.
  • 1A to 1D illustrate a case in which a T-DAI indicates the number of all PDSCHs scheduled on a frequency axis and a time axis for a specific UE up to the current subframe and / or the number of (E) PDCCHs indicating an SPS release.
  • 1E and 1F are cases in which the T-DAI indicates the number of all PDSCHs scheduled on the frequency axis and time axis and / or the number of (E) PDCCHs indicating SPS releases for a specific UE over all subframes. .
  • an A-DAI field and a T-DAI field are included in a downlink grant in an FDD PUCCH cell group.
  • the downlink grant in CC # 0 includes the A-DAI field 1 and the T-DAI field 1
  • the downlink grant in CC # 2 includes the A-DAI field 2 and the T-DAI field 2.
  • the downlink grant at 4 includes A-DAI field 3 and the T-DAI field 3
  • the downlink grant at CC # 5 includes A-DAI field 4 and T-DAI field 4, and at CC # 8
  • the downlink grant includes the A-DAI field 5 and the T-DAI field 5.
  • the A-DAI field and the T-DAI field are included in a downlink grant in a TDD PUCCH cell group.
  • TDD each serving cell is extended to a plurality of downlink subframes by a bundling window, and the A-DAI is cumulatively increased in the order of increasing CC number on the frequency axis and in increasing order of subframe number.
  • T-DAI 8 regardless of CC in DL subframe # 1.
  • T-DAI 12 regardless of CC in DL subframe # 2.
  • the number of PDSCHs scheduled on the frequency / time axis up to DL subframe # 3, the last downlink subframe of the bundling window, is 16 including the previous DL subframes # 0, # 1, and # 2.
  • T-DAI 16.
  • CC # 0, # 2, and # 4 are MIMO modes, but only CC # 0 and # 2 are 2 TB per CC transmissions, and the remaining CCs are 1 TB per CC transmissions.
  • FIG. 1D when some CCs are set to the MIMO mode, 2 TB per CC is possible.
  • CC # 0, # 1, and # 2 are MIMO modes, but only 2 TB per CC transmission is performed only in CC # 0 and # 1, and 1 TB per CC transmission is performed for the remaining CCs.
  • FIG. 1D is an example of performing DAI counting in units of CW as in FIG. 1C.
  • TDD is a PUCCH serving cell, it is extended to a plurality of subframes by a bundling window, and A-DAI is cumulatively increased in the order of increasing CC number on the frequency axis and then in increasing order of subframe number.
  • (A-DAI, T-DAI) of CC # 0 in DL subframe # 0 is (2, 6), and then (A-DAI, T-DAI) in CC # 2, # 4, # 5, # 8. Becomes (3, 6), (4, 6), (5, 6), (6, 6).
  • T-DAI 10 regardless of CC in DL subframe # 1.
  • T-DAI 14 regardless of CC in DL subframe # 2.
  • FIG. 1E illustrates a case in which MIMO is not set
  • FIG. 1F illustrates a case in which MIMO is set for some CCs and counts A-DAI and TDAI based on CW (TB). therefore.
  • A-DAI is increased by 2 in CC # 0 and CC # 1.
  • embodiments in which a terminal dynamically determines a size of a HARQ-ACK codebook based on A-DAI and T-DAI are disclosed.
  • embodiments of the present invention should simultaneously perform HARQ-ACK reporting on downlink data (PDSCH) transmission in a previous subframe of the current subframe in a current subframe in which uplink data (PUSCH) transmission is to be performed. It is assumed to be the case.
  • the present embodiments can be equally applied even when HARQ-ACK report is made based on the PUCCH format.
  • PUSCH transmission indicated in the previous subframe (eg subframe n-4 in FDD PUCCH cell group, subframe nk in TDD PUCCH cell group) of the current subframe (eg subframe n) is transmitted in the previous subframe (eg subframe n-4 in FDD).
  • a case may be transmitted together with HARQ-ACK information on (E) PDCCH indicating a PDSCH and an SPS release transmitted in a PUCCH cell group and a subframe nk in TDD PUCCH cell group.
  • the UE determines (or calculates) the size of the HARQ-ACK codebook for the (E) PDCH indicating PDSCH and SPS release transmitted on at least one serving cell based on the T-DAI field included in the downlink grant. )can do.
  • Two embodiments are published regarding a method of determining the size of a HARQ-ACK codebook based on a T-DAI field.
  • the terminal first determines the T-DAI allocated to the actual terminal based on the A-DAI field and the T-DAI field.
  • one T-DAI field value may correspond to a plurality of T-DAIs (ie, T-DAI sets). In other words, there may be a plurality of T-DAIs indicated by one T-DAI field value. For example, if the T-DAI field is 2 bits as shown in Table 2 below, the T-DAI field has four values (X ⁇ total ) such as 00, 01, 10, 11, and one value is a plurality of fields . May be mapped to T-DAIs.
  • the T-DAI allocated to the actual UE may be any one of a set ⁇ 1, 5, 9, 13, 17, 21, 25, 29 ⁇ .
  • the T-DAI can be indicated by minimizing the number of bits of the T-DAI field added to the DCI format. This is possible because there is a hypothesis that the probability of missing four (2) T-DAI field (E) PDCCHs in succession is very low.
  • the UE receives the A-DAI field and the T- received in one bundling window (a plurality of serving cells (or CCs) on one subframe in FDD and a plurality of serving cells (or CCs) on a plurality of subframes in TDD).
  • the T-DAI allocated to the actual UE can be derived.
  • the terminal considers the A-DAI value.
  • the terminal may regard 5, which is closest to 4 out of ⁇ 1, 5, 9, 13, 17, 21, 25, 29 ⁇ , as a T-DAI allocated to the actual terminal. The terminal determines that one PDCCH is lost.
  • T-DAI field is 3 bits
  • Table 3 an example in which one T-DAI field value corresponds to multiple T-DAI is shown in Table 3 below.
  • the T-DAI allocated to the actual UE may be any one of a set ⁇ 1, 9, 17, 24, 32 ⁇ .
  • the method of deriving the T-DAI allocated to the actual terminal is the same as described in Table 2.
  • the UE determines the size of the HARQ-ACK codebook based on the determined number of bits (1 or 2) of the HARQ-ACK for the PDSCH determined for each T-DAI and serving cell. Or calculate.
  • the UE may have an A-DAI field and a T-DAI field. T-DAI determined by may be used as the size of the HARQ-ACK codebook.
  • the UE is actually CW for the missing PDSCH in the serving cell set to the MIMO transmission mode. Since the number of (or TBs) is unknown, the size of the HARQ-ACK codebook is calculated assuming that HARQ-ACK is a fixed number of bits in the MIMO transmission mode.
  • the HARQ-ACK corresponding to one A-DAI field may be fixedly 1 bit.
  • the UE calculates the size of the HARQ-ACK codebook based on the determined T-DAI on the assumption that the HARQ-ACK for the missed PDSCH is 1 bit.
  • the terminal generates one bit HARQ-NACK according to the fixed number of bits for the missed PDSCH.
  • the HARQ-ACK corresponding to one A-DAI field may be fixedly 2 bits per CC. In this case, the number of CWs actually scheduled in the PDSCH on the serving cell configured as MIMO is not considered.
  • the UE assumes that the HARQ-ACK for the PDSCH missed in the serving cell in which MIMO is configured is 2 bits.
  • the size of the HARQ-ACK codebook is calculated based on the determined T-DAI.
  • the terminal generates a 2-bit HARQ-NACK according to the fixed number of bits for the missed PDSCH.
  • the size of the HARQ-ACK codebook is determined based on the value of the received T-DAI field.
  • This embodiment is a method for determining the size of a HARQ-ACK codebook on the assumption that an FDD PUCCH cell group is applied.
  • the UE determines the size of the HARQ-ACK codebook based on the value of the T-DAI field and performs HARQ-ACK transmission.
  • the terminal first calculates the total number of scheduled serving cells (or CCs).
  • Equation 1 An example of a method of calculating the total number of scheduled serving cells (or CCs) is shown in Equation 1 below.
  • B DL represents the number of serving cells or CWs for which HARQ-ACK reporting is required among all serving cells. For example, if a PUSCH is transmitted in subframe n, B DL means the number of serving cells (or DL CCs) or CW required for HARQ-ACK reporting in subframe n-4 when the FDD PUCCH cell.
  • the assumption of the number of HARQ-ACK bits is as follows. i) If a 2TB transmission mode is configured for a serving cell, it is assumed that 1-bit HARQ-ACK always corresponds to each serving cell by applying spatial bundling to the serving cell. ii) If the 1TB transmission mode is configured for the serving cell, it is not necessary to apply spatial bundling to the serving cell, and assume 1 bit per CC.
  • Equation 1 X ⁇ total is a value of the T-DAI field, and the value may be 1 to 2 k depending on the number of bits.
  • a T-DAI set as shown in Table 2 or Table 3 may correspond to the T-DAI field.
  • D represents the number of serving cells or CWs including (E) PDCCH indicating PDSCH and SPS releases received by the terminal among all the serving cells configured in the terminal.
  • X ⁇ total and D may be counted in units of (E) PDCCH indicating PDSCH / DL SPS release or counted in units of CW. In either case, the same counting method should be applied to X ⁇ total and D.
  • E PDCCH indicating PDSCH / DL SPS release
  • CW counted in units of CW.
  • the same counting method should be applied to X ⁇ total and D.
  • FIG. 2 is an explanatory diagram illustrating a method of calculating a size of a HARQ-ACK codebook according to a second embodiment.
  • an FDD PUCCH cell and 12 serving cells are configured in a terminal, and DL scheduling (or allocation) is indicated by the base station for each serving cell as shown in FIG. 2 in subframe n-4. It is assumed that a PUSCH transmission is indicated in subframe n (HARQ-ACK transmission timing) by an uplink grant. In addition, it is assumed that T-DAI counting is performed by (E) PDCCH unit indicating PDSCH / DL SPS release.
  • D 6 which is the final cumulative number of (E) PDCCHs indicating the PDSCH / DL SPS release received by the UE.
  • whether the serving cell # 9 loses the DL scheduling may be recognized by the terminal based on the DL A-DAI and / or other recognition methods.
  • FIG. 3 is an explanatory diagram for explaining a method of determining a size of a HARQ-ACK codebook when there is DL SPS PDSCH transmission according to an example of the present invention.
  • HARQ-ACK bits to be transmitted on the corresponding PUSCH are associated with the DL SPS PDSCH as well as the (E) PDCCH indicating the PDSCH and / or SPS release indicated by the at least one downlink grant.
  • the base station further increases the count by an additional 1 to the (E) PDCCH indicating the PDSCH transmission and DL SPS release indicated by the downlink grant in consideration of the DL SPS PDSCH transmission when configuring the T-DAI.
  • T-DAI 12
  • FIG. 4 is an explanatory diagram illustrating a method of determining a size of a HARQ-ACK codebook when there is a DL SPS PDSCH transmission according to another embodiment of the present invention.
  • the DL SPS PDSCH is excluded from configuring T-DAI. That is, the base station sets the T-DAI only by the number of (E) PDCCHs indicating the PDSCH and SPS release indicated by the (E) PDCCH.
  • the terminal and the base station determine the size of the final HARQ-ACK codebook by adding N ⁇ to the size of the HARQ-ACK codebook calculated based on the T-DAI. Where N ⁇ has a value of 1 if there is a DL SPS PSCH transmission and 0 otherwise.
  • [Case 2] A method of determining based on a downlink grant including a T-DAI field and an uplink grant including a T-DAI field.
  • PUSCH transmission indicated in a previous subframe (eg subframe n-4 in FDD PUCCH cell, subframe nk in TDD PUCCH cell) of the current subframe (eg subframe n) is transmitted in a previous subframe (eg subframe n-4 in FDD PUCCH cell).
  • the UE indicates a PDSCH and SPS release transmitted on at least one serving cell based on at least one of a DL T-DAI field included in a downlink grant and a UL T-DAI field included in an uplink grant ( E)
  • the size of the HARQ-ACK codebook for the PDCH may be determined (or calculated).
  • Case 2 is used only when the A-DAI field and the DL T-DAI field are included in a downlink grant (ie DCI format 1 / 1A / 1B / 1D / 2 / 2A / 2B / 2C / 2D).
  • a UL grant ie DCI format 0/4
  • Options 1 to 4 a method for determining the size of a HARQ-ACK codebook is proposed. .
  • the reason for distinguishing the DL T-DAI field and the UL T-DAI field is to distinguish the names when substantially the same T-DAI field is included in the downlink grant and the uplink grant.
  • the same may be referred to as the T-DAI field.
  • the base station repeatedly transmits the T-DAI field not only through the downlink grant but also through the uplink grant, because the UE cannot properly receive the T-DAI actually allocated. For example, when a small number of downlink grants are scheduled within a serving cell / bundling window (only TDD), the UE may miss all of the corresponding downlink grants.
  • (E) PDCCH prepared due to the failure of the LBT is not properly transmitted and dropped, a plurality of DAI values are not transmitted to the UE (especially, a transmission corresponding to a continuous (E) PDCCH). In the end, the UE may cause confusion about the actual DAI value.
  • the base station may transmit an uplink grant including the UL T-DAI field to the terminal.
  • the UE determines the size of the entire HARQ-ACK codebook based on the methods of Option 1 to 4, and HARQ- ACK transmission may be performed.
  • the terminal calculates the size of the HARQ-ACK codebook on the PUSCH based on the UL T-DAI field.
  • the terminal may derive the T-DAI allocated to the actual terminal based on the UL T-DAI field, and the derivation method may use the same method as in Case 1.
  • the terminal accepts this as an error condition and the DL T-DAI and UL
  • the size of the HARQ-ACK codebook may be determined based on the most recently received T-DAI. Or, if the UE recently received the DL T-DAI and the UL T-DAI in the same subframe, but the value is different, the size of the HARQ-ACK codebook is determined based on one of the DL T-DAI and the UL T-DAI. . Or, the size of the HARQ-ACK codebook is always determined based on the UL T-DAI value.
  • the UL T-DAI field is used for the FDD PUCCH cell group, but the legacy DAI field and the T-DAI field are selectively used for the TDD PUCCH cell group.
  • a criterion for selecting which field is used may be based on a TDD UL-DL configuration (or DL reference UL-DL configuration) of a TDD PUCCH cell group. For example, when the TDD PUCCH cell group is TDD UL-DL configuration # 5, the T-DAI field may be used, and when the other TDD UL-DL configuration is used, the conventional DAI field may be used instead of the T-DAI field.
  • the UE may determine the size of the HARQ-ACK codebook by reusing the conventional DAI field. This is different from the case of the FDD PUCCH cell group in which the T-DAI field is used.
  • the uplink grant for the FDD PUCCH cell group does not include any DAI field
  • the uplink grant for the TDD PUCCH cell group may selectively select a conventional DAI field or a UL T-DAI field. It may include.
  • the criteria for selecting which fields are included may be according to the TDD UL-DL configuration (or DL reference UL-DL configuration) of the TDD PUCCH cell group.
  • the UE may indicate whether the corresponding DAI field is a UL T-DAI field or a conventional DAI field by adding a 1-bit indication field for the DAI configuration in the DCI format.
  • the UE determines the size of the entire HARQ-ACK codebook based on the methods of Alt 1 to 3, and HARQ -ACK transmission may be performed.
  • Alt 1 to 3 are methods for determining the size of the HARQ-ACK codebook, especially when the UE does not receive the T-DAI field in both the downlink grant and the uplink grant.
  • the UE is based on the DAI value (value accumulated in the CC region at every scheduling) and the size of the HARQ-ACK codebook on the PUSCH based on the information included in the downlink grant. Determine B DL .
  • the additional information on the size of the HARQ-ACK codebook is information that can be provided to the terminal by the base station or the terminal to the base station to solve the problem of the loss of the DL allocation having the DAI field.
  • the value indicated by the DAI field corresponding to the lowest index is T-DAI. Therefore, no additional T-DAI field is required in the (E) PDCCH.
  • FIG. 5 is a flowchart illustrating a method for transmitting HARQ-ACK by a terminal according to an example of the present invention. This is a case where the T-DAI field is included only in the downlink grant according to Case 1.
  • the terminal receives a downlink grant including an A-DAI field and a T-DAI field from a base station on a PDCCH (S500).
  • the terminal may receive information indicating the configuration of a semi-static HARQ-ACK codebook or a dynamic HARQ-ACK codebook from the base station.
  • the semi-static HARQ-ACK codebook configuration is a first mode in which the base station transmits a higher layer signal for the size of the HARQ-ACK codebook to the terminal.
  • the dynamic HARQ-ACK codebook configuration is a second mode in which the base station does not transmit a higher layer signal for the size of the HARQ-ACK codebook to the terminal. In the second mode, the UE may determine the sizes of the T-DAI and HARQ-ACK codebooks based on the A-DAI field and the T-DAI field.
  • the terminal receives the PDSCH indicated by the PDCCH from the base station (S505).
  • the PDSCH may be transmitted by the number corresponding to the T-DAI on a frequency (at least one serving cell or CC) or a time axis (at least one subframe) within a given bundling window.
  • the terminal receives an uplink grant indicating transmission of a PUSCH from the base station on the (E) PDCCH (S510).
  • the downlink grant in step S500 and the uplink grant in step S510 may be received in the same subframe n.
  • the PUSCH may be transmitted in a next subframe (e.g. subframe n + 4 in FDD PUCCH cell, subframe n + k in TDD PUCCH cell) together with HARQ-ACK information on the PDCCH indicating the PDSCH.
  • the PUSCH may be transmitted with HARQ-ACK information on the (E) PDCCH indicating the PDSCH and the SPS release.
  • the T-DAI field may correspond to a T-DAI set. For example, when the T-DAI field is 2 bits, Table 2 may be followed, and when the T-DAI field is 3 bits, Table 3 may be followed.
  • the terminal determines the T-DAI allocated to the actual terminal in the T-DAI set (S515).
  • the A-DAI field and the T-DAI field may be used for this determination.
  • the determination method of the T-DAI allocated to the actual UE in step S515 includes the determination methods of the T-DAI introduced in Case 1.
  • the terminal determines the size of the HARQ-ACK codebook (S520).
  • the UE calculates the size of the HARQ-ACK codebook includes the method of calculating the size of the HARQ-ACK codebook introduced in Case 1.
  • the UE generates HARQ-ACK according to whether or not the decoding of the (E) PDCCHs indicating the PDSCH / DL SPS release corresponding to the T-DAI succeeds (S525).
  • ACK or NACKs for each of (E) PDCCHs indicating a PDSCH / DL SPS release corresponding to a T-DAI are transmitted on one PUSCH associated with the UE, the UE transmits the PDSCH / DL SPS corresponding to the T-DAI.
  • HARQ-ACK can be generated.
  • the UE may generate a NACK for the missed (E) PDCCH or PDSCH, and a detailed operation thereof includes a method for generating HARQ-ACK for the missed PDCCH or PDSCH in Case 1 and Case 2.
  • the terminal transmits the generated HARQ-ACK to the base station on the PUSCH of the next subframe (e.g. subframe n + 4 in FDD PUCCH cell group, subframe n + k in TDD PUCCH cell group) (S530).
  • the next subframe e.g. subframe n + 4 in FDD PUCCH cell group, subframe n + k in TDD PUCCH cell group
  • FIG. 6 is a flowchart illustrating a method for transmitting HARQ-ACK by a terminal according to another example of the present invention. This is a case where the T-DAI field is included in both the downlink grant and the uplink grant according to Case 2.
  • the UE receives a downlink grant including an A-DAI field and a DL T-DAI field and an uplink grant including an UL T-DAI field from a base station on a different (E) PDCCH (S600). ).
  • the uplink grant may include a legacy DAI field instead of a UL T-DAI field according to an option (see Table 5).
  • the terminal may receive information indicating the configuration of a semi-static HARQ-ACK codebook or a dynamic HARQ-ACK codebook from the base station.
  • the semi-static HARQ-ACK codebook configuration is a first mode in which the base station transmits a higher layer signal for the size of the HARQ-ACK codebook to the terminal.
  • the dynamic HARQ-ACK codebook configuration is a second mode in which the base station does not transmit a higher layer signal for the size of the HARQ-ACK codebook to the terminal. In the second mode, the UE may determine the size of the final T-DAI and HARQ-ACK codebook based on the A-DAI field, the DL T-DAI field, and the UL T-DAI field.
  • the terminal receives the PDSCH indicated by the PDCCH from the base station (S605).
  • the PDSCH may be transmitted by the number corresponding to the final T-DAI on a frequency (at least one serving cell or CC) or a time axis (at least one subframe) within a given bundling window.
  • the terminal receives an uplink grant indicating transmission of a PUSCH from the base station on the PDCCH (S610).
  • the uplink grant in step S600 and the uplink grant in step S610 may be the same or different. In the former case, the downlink grant in step S600 and the uplink grant in step S610 may be received in the same subframe n.
  • the PUSCH may be transmitted in a next subframe (e.g. subframe n + 4 in FDD PUCCH cell group, subframe n + k in TDD PUCCH cell group) together with HARQ-ACK information on the PDCCH indicating the PDSCH.
  • the PUSCH may be transmitted with HARQ-ACK information on the (E) PDCCH indicating the PDSCH and the SPS release.
  • the T-DAI field may correspond to a T-DAI set. For example, when the T-DAI field is 2 bits, Table 2 may be followed, and when the T-DAI field is 3 bits, Table 3 may be followed.
  • the terminal determines the DL T-DAI based on the DL T-DAI field and determines the UL T-DAI based on the UL T-DAI field (S615).
  • the determination method of the DL T-DAI and the UL T-DAI in step S615 includes the determination methods of the T-DAI introduced in Case 1.
  • the terminal determines the size of the HARQ-ACK codebook based on the final T-DAI (S620).
  • step S620 the UE compares the DL T-DAI and the UL T-DAI, determining the final T-DAI based on the comparison result, and the HARQ-ACK codebook based on the A-DAI and the final T-DAI. Calculating the size of the.
  • step S620 may include the size calculation method of the HARQ-ACK codebook introduced in Case 2.
  • the terminal may determine the size of the entire HARQ-ACK codebook based on the methods of Alt 1 to 3 of Case 2 and perform HARQ-ACK transmission.
  • the UE generates HARQ-ACK according to whether decoding of PDSCHs corresponding to the final T-DAI is successful (S625).
  • the UE determines the combination of the ACK or NACK for the PDSCH corresponding to the final T-DAI using the calculated size.
  • HARQ-ACK can be generated.
  • the UE may generate a NACK for the missed PDCCH or PDSCH, and specific operations thereof include a method for generating HARQ-ACK for the missed PDCCH or PDSCH in Case 1 and Case 2.
  • the terminal transmits the generated HARQ-ACK to the base station on the PUSCH of the next subframe (e.g. subframe n + 4 in FDD, subframe n + k in TDD) (S630).
  • the next subframe e.g. subframe n + 4 in FDD, subframe n + k in TDD
  • FIG. 7 is a flowchart illustrating a method of receiving an HARQ-ACK by a base station according to an example of the present invention. This is a case where the T-DAI field is included only in the downlink grant according to Case 1.
  • the base station configures A-DAI and T-DAI and PDCCH a downlink grant including an A-DAI field indicating the configured A-DAI and a T-DAI field indicating the configured T-DAI. Transmit to the terminal on (S700). Prior to step S700, the base station may transmit information indicating the configuration of a semi-static HARQ-ACK codebook or a dynamic HARQ-ACK codebook to the terminal.
  • the semi-static HARQ-ACK codebook configuration is a first mode in which the base station transmits a higher layer signal for the size of the HARQ-ACK codebook to the terminal.
  • the dynamic HARQ-ACK codebook configuration is a second mode in which the base station does not transmit a higher layer signal for the size of the HARQ-ACK codebook to the terminal.
  • the UE may determine the sizes of the T-DAI and HARQ-ACK codebooks based on the A-DAI field and the T-DAI field.
  • the base station transmits the PDSCH indicated by the PDCCH to the terminal (S705).
  • the PDSCH may be transmitted by the number corresponding to the T-DAI on a frequency (at least one serving cell or CC) or a time axis (at least one subframe) within a given bundling window.
  • the base station transmits an uplink grant indicating transmission of the PUSCH to the terminal on the PDCCH (S710).
  • the downlink grant in step S700 and the uplink grant in step S710 may be transmitted in the same subframe n.
  • the PUSCH may be transmitted in a next subframe (e.g. subframe n + 4 in FDD PUCCH cell group, subframe n + k in TDD PUCCH cell group) together with HARQ-ACK information on the PDCCH indicating the PDSCH.
  • the PUSCH may be transmitted with HARQ-ACK information on the (E) PDCCH indicating the PDSCH and the SPS release.
  • the T-DAI field may correspond to a T-DAI set. For example, when the T-DAI field is 2 bits, Table 2 may be followed, and when the T-DAI field is 3 bits, Table 3 may be followed.
  • the base station receives the HARQ-ACK from the terminal on the PUSCH of the next subframe (e.g. subframe n + 4 in FDD PUCCH cell group, subframe n + k in TDD PUCCH cell group) (S715).
  • the next subframe e.g. subframe n + 4 in FDD PUCCH cell group, subframe n + k in TDD PUCCH cell group
  • FIG. 8 is a flowchart illustrating a method of receiving an HARQ-ACK by a base station according to another example of the present invention. This is a case where the T-DAI field is included in both the downlink grant and the uplink grant according to Case 2.
  • the base station configures A-DAI, DL T-DAI, and UL T-DAI, and sets an A-DAI field indicating the A-DAI and a DL T-DAI field indicating the DL T-DAI.
  • the uplink grant including the downlink grant and the UL T-DAI field indicating the UL T-DAI is transmitted to the UE on different or the same PDCCH (S800).
  • the uplink grant may include a legacy DAI field instead of a UL T-DAI field according to an option (see Table 5).
  • the base station may transmit information indicating the configuration of a semi-static HARQ-ACK codebook or a dynamic HARQ-ACK codebook to the terminal.
  • the semi-static HARQ-ACK codebook configuration is a first mode in which the base station transmits a higher layer signal for the size of the HARQ-ACK codebook to the terminal.
  • the dynamic HARQ-ACK codebook configuration is a second mode in which the base station does not transmit a higher layer signal for the size of the HARQ-ACK codebook to the terminal. In the second mode, the UE may determine the size of the final T-DAI and HARQ-ACK codebook based on the A-DAI field, the DL T-DAI field, and the UL T-DAI field.
  • the base station transmits the PDSCH indicated by the PDCCH to the terminal (S805).
  • the PDSCH may be transmitted by the number corresponding to the final T-DAI on a frequency (at least one serving cell or CC) or a time axis (at least one subframe) within a given bundling window.
  • the base station transmits an uplink grant indicating transmission of the PUSCH to the terminal on the PDCCH (S810).
  • the uplink grant in step S800 and the uplink grant in step S810 may be the same or may be different. In the former case, the downlink grant in step S800 and the uplink grant in step S810 may be received in the same subframe n.
  • the PUSCH may be transmitted in a next subframe (e.g. subframe n + 4 in FDD, subframe n + k in TDD) together with HARQ-ACK information on the PDCCH indicating the PDSCH.
  • the PUSCH may be transmitted with HARQ-ACK information on the (E) PDCCH indicating the PDSCH and the SPS release.
  • the T-DAI field may correspond to a T-DAI set. For example, when the T-DAI field is 2 bits, Table 2 may be followed, and when the T-DAI field is 3 bits, Table 3 may be followed.
  • the base station receives the HARQ-ACK from the terminal on the PUSCH of the next subframe (e.g. subframe n + 4 in FDD, subframe n + k in TDD) (S815).
  • the next subframe e.g. subframe n + 4 in FDD, subframe n + k in TDD
  • FIG. 9 is a block diagram illustrating a terminal and a base station according to an example of the present invention.
  • the terminal 900 calculates the size of an RQ-ACK codebook, generates an HARQ-ACK, and transmits an HARQ-ACK according to Case 1 and Case 2 posted herein.
  • the base station 9950 performs an operation corresponding to the operation of the terminal 900 according to Case 1 and Case 2 disclosed herein.
  • the terminal 900 includes a processor 910, an RF unit 920, and a memory 925.
  • the processor 910 implements the functions, processes, and / or methods proposed herein. In more detail, the processor 910 implements all operations of the terminal described in the embodiments of FIGS. 1 to 6, which are disclosed herein, and performs a method of determining a HARQ-ACK codebook size.
  • the memory 925 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 920 is connected to the processor 910 to transmit and / or receive a radio signal. For example, the RF unit 920 transmits a HARQ ACK to the base station 950, or includes a downlink grant including an A-DAI field and a T-DAI field from the base station 950, or a T-DAI field. An uplink grant, PDSCH, PDCCH, higher layer signal, etc. may be received.
  • the processor 900 decodes and analyzes a downlink grant, an uplink grant, a PDCCH, a PDSCH, a higher layer signal received from the RF unit 920, and performs HARQ-ACK generation and transmission accordingly. do.
  • the base station 950 includes a memory 955, a processor 960, and an RF unit 965.
  • Processor 960 implements the functions, processes, and / or methods proposed herein.
  • the processor 960 implements all operations corresponding to the operation of the terminal in FIGS. 1 to 6, which are disclosed herein, and implements all operations of the base station in FIGS. 7 and 8.
  • the memory 955 is connected to the processor 960 and stores various information for driving the processor 960.
  • the RF unit 965 is connected to the processor 960 to transmit and / or receive a radio signal.
  • the RF unit 965 receives the HARQ ACK from the terminal 900 or the A-DAI field, the T-DAI field, the DL T-DAI field, the UL T-DAI field, the downlink to the terminal 900.
  • a grant, an uplink grant, a PDSCH, a PDCCH, an upper layer signal, etc. may be transmitted.
  • the processor 960 may include the A-DAI field, the T-DAI field, the DL T-DAI field, the UL T-DAI field, the downlink grant, the uplink grant, the PDSCH, and the like to be transmitted through the RF unit 965.
  • PDCCH generates higher layer signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 반송파 집성을 지원하는 무선통신 시스템에서 HARQ 동작을 수행하는 장치 및 방법에 관한 것으로서, 단말은 하향링크 그랜트에 포함된 T-DAI 필드를 기반으로 적어도 하나의 서빙셀상으로 전송되는 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCH에 대한 HARQ-ACK 코드북의 크기를 결정할 수 있다.

Description

반송파 집성을 지원하는 무선통신 시스템에서 HARQ 동작을 수행하는 장치 및 방법
본 발명은 반송파 집성을 지원하는 무선통신에 관한 것으로서, 보다 구체적으로는 상향링크 데이터 전송 채널상에서 HARQ-ACK 코드북(codebook)의 크기를 결정하고, 결정된 크기의 HARQ-ACK 코드북에 기반하여 HARQ 동작을 수행하는 장치 및 방법에 관한 것이다.
반송파 집성(CA: Carrier Aggregation)은 복수의 반송파를 지원하는 것으로서 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 주파수를 서빙셀(serving cell) 또는 요소 반송파(CC: Component Carrier)라고 한다. 각 서빙셀은 대역폭과 중심 주파수로 정의된다. CA를 사용하면, 주파수 영역에서 물리적으로 연속(continuous) 또는 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 낼 수 있다.
최근 무선 통신 트래픽이 급증함에 따라 LAA(licensed assisted access)의 도입이 고려되고 있다. 이는 이동통신 사업자에게 배타적으로 할당되는 면허 대역(licensed band) 뿐 아니라 비면허 대역(unlicensed band)의 주파수들을 활용하여 CA를 수행하는 방안이다. 이에 따르면 기존 면허 대역에서 집성 가능한 서빙셀들의 개수 보다 더 많은 서빙셀들(최대 32개)을 연접할 수 있다.
이렇게 늘어난 서빙셀들이 CA에 의해 단말에 구성될 때, 늘어난 서빙셀의 개수에 따라 하향링크 데이터 채널들이 증가하게 되고, 하향링크 데이터 채널의 성공적인 수신여부를 나타내는 HARQ ACK이 더 많이 단말에서 기지국으로 전송되어야 할 수 있다. 여기서, HARQ ACK은 새로운 상향링크 제어채널(PUCCH 포맷 4 또는 5)상으로 전송될 수도 있고, 상향링크 데이터 채널과 함께 전송될 수도 있다(이를 피기백(piggyback)이라고도 함). 다수 하향링크 데이터 채널들 각각에 대한 ACK 또는 NACK들이 연관된(associated) 하나의 상향링크 데이터 채널상에서 전송될 때, 각 하향링크 데이터 채널에 대한 ACK 또는 NACK의 조합은 HARQ ACK 코드북에 포함된 하나의 코드에 대응할 수 있다. 따라서 단말은 자신이 수신한 하향링크 데이터 채널들의 ACK 또는 NACK을 판단하고, HARQ ACK 코드북을 참조하여 HARQ ACK을 생성할 수 있다.
한편 LAA와 같은 경우 비면허 대역(unlicensed band)에 대한 채널획득이 랜덤하게 발생하기 때문에, 하향링크 데이터 채널의 개수도 그에 따라 동적으로 변화하고, 그 결과로서 상향링크 데이터 채널에 피기백되는 HARQ ACK 코드북의 크기 또한 동적으로 변할 수 있다. 이 경우 단말은 자신이 인지한 하향링크 데이터 채널들을 기준으로 결정된 크기의 HARQ ACK 코드북에 기반하여 HARQ ACK을 전송하는데, 만약 채널상태의 악화로 인해 단말이 일부 하향링크 데이터 채널 자체를 인지하지 못하는 경우, 단말이 참조한 HARQ ACK 코드북의 크기와 실제 기지국이 의도한 HARQ ACK 코드북 크기는 달라질 수 있다.
따라서, 단말이 HARQ ACK을 성공적으로 인코딩하고 기지국이 HARQ ACK을 성공적으로 디코딩하기 위해서는 단말과 기지국은 둘다 동적으로 변화하는 HARQ ACK 코드북의 크기를 정확히 파악하고 있어야 한다. 그런데, 이를 달성하는 기술에 대해 아직까지 정의/게시된 것이 없어, 이에 대한 문제점을 해결하기 위한 방안이 필요한 실정이다.
본 발명의 기술적 과제는 반송파 집성을 지원하는 무선통신 시스템에서 HARQ 동작을 수행하는 장치 및 방법을 제공함에 있다.
본 발명의 일 양태에 따르면, 반송파 집성을 지원하는 무선통신 시스템에서 단말에 의한 HARQ(hybrid automatic repeat request)의 수행방법을 제공한다. 상기 방법은 적어도 하나의 서빙셀을 기준으로 상기 단말의 HARQ-ACK 보고와 관련된 번들링 윈도우(bundling window) 내에서 현재 서브프레임까지 누적된 PDSCH(physical downlink shared channel)의 수 및 SPS(semi persistent scheduling) 릴리즈(release)를 지시하는 PDCCH(physical downlink control channel)의 수의 합을 지시하는 누적 하향링크 할당 지시자(accumulated downlink assignment indicator: A-DAI) 필드와, 상기 단말의 HARQ-ACK 보고와 연관되어 스케줄링된 모든 PDSCH의 수 및 SPS 릴리즈를 지시하는 PDCCH의 수의 합을 지시하는 전체 DAI(total DAI: T-DAI) 필드를 포함하는 하향링크 그랜트를 제1 PDCCH상에서 기지국으로부터 수신하는 단계, 상기 제1 PDCCH에 의해 지시되는 제1 PDSCH를 상기 기지국으로부터 수신하는 단계, PUSCH(physical uplink shared channel)의 전송을 지시하는 상향링크 그랜트를 제2 PDCCH상에서 상기 기지국으로부터 수신하는 단계, 상기 제1 PDSCH에 관한 HARQ-ACK이 맵핑될 HARQ-ACK 코드북의 크기를 상기 A-DAI 및 상기 T-DAI에 기반하여 결정하는 단계, 및 상기 제1 PDSCH에 관한 HARQ-ACK을 상기 PUSCH상에서 상기 기지국으로 전송하는 단계를 포함한다.
본 발명의 다른 양태에 따르면, 반송파 집성을 지원하는 무선통신 시스템에서 HARQ(hybrid automatic repeat request)를 수행하는 단말을 제공한다. 상기 단말은 적어도 하나의 서빙셀을 기준으로 상기 단말의 HARQ-ACK 보고와 관련된 번들링 윈도우(bundling window) 내에서 현재 서브프레임까지 누적된 PDSCH(physical downlink shared channel)의 수 및 SPS(semi persistent scheduling) 릴리즈(release)를 지시하는 PDCCH(physical downlink control channel)의 수의 합을 지시하는 누적 하향링크 할당 지시자(accumulated downlink assignment indicator: A-DAI) 필드와, 상기 단말의 HARQ-ACK 보고와 연관되어 스케줄링된 모든 PDSCH의 수 및 SPS 릴리즈를 지시하는 PDCCH의 수의 합을 지시하는 전체 DAI(total DAI: T-DAI) 필드를 포함하는 하향링크 그랜트를 제1 PDCCH상에서 기지국으로부터 수신하고, 상기 제1 PDCCH에 의해 지시되는 제1 PDSCH를 상기 기지국으로부터 수신하며, PUSCH(physical uplink shared channel)의 전송을 지시하는 상향링크 그랜트를 제2 PDCCH상에서 상기 기지국으로부터 수신하는 RF부, 및 상기 제1 PDSCH에 관한 HARQ-ACK이 맵핑될 HARQ-ACK 코드북의 크기를 상기 A-DAI 및 상기 T-DAI에 기반하여 결정하고, 상기 제1 PDSCH에 관한 HARQ-ACK을 생성하는 프로세서를 포함한다.
여기서, 상기 RF부는 상기 제1 PDSCH에 관한 HARQ-ACK을 상기 PUSCH상에서 상기 기지국으로 전송할 수 있다.
일례로서, 상기 T-DAI 필드는 2비트 또는 3비트일 수 있다.
다른 예로서, 상기 스케줄링된 모든 PDSCH 및 상기 SPS 릴리즈를 지시하는 PDCCH는, 상기 번들링 윈도우 내의 모든 서브프레임에서 카운트된 것일 수 있다.
또 다른 예로서, 상기 스케줄링된 모든 PDSCH 및 상기 SPS 릴리즈를 지시하는 PDCCH는, 상기 번들링 윈도우 내에서 현재 서브프레임까지 카운트된 것일 수 있다.
또 다른 예로서, 상기 제1 PDSCH가 수신되는 서빙셀이 MIMO 전송모드로 설정된 경우, 상기 HARQ-ACK 코드북의 크기는 상기 제1 PDSCH에 대응하는 HARQ-ACK가 1비트 및 2비트 중 어느 하나로 고정됨을 전제로 결정될 수 있다.
단말과 기지국 모두 동적으로 변화하는 HARQ ACK 코드북의 크기를 정확히 파악할 수 있다. 또한 상향링크 HARQ-ACK 오버헤드가 효율적으로 조절되고, 신뢰성 있는 상향링크 전송 및 하향링크 데이터 성능이 보장될 수 있다.
도 1a 내지 도 1f는 본 발명에 따른 A-DAI 필드와 T-DAI 필드를 포함하는 하향링크 그랜트를 FDD 또는 TDD PUCCH 셀 그룹에 적용한 예시이다.
도 2는 제2 실시예에 따라 HARQ-ACK 코드북의 크기를 계산하는 방법을 도시한 설명도이다.
도 3은 본 발명의 일례에 따른 DL SPS PDSCH 전송이 존재하는 경우에 HARQ-ACK 코드북의 크기 결정방법을 설명하는 설명도이다.
도 4는 본 발명의 다른 예에 따른 DL SPS PDSCH 전송이 존재하는 경우에 HARQ-ACK 코드북의 크기 결정방법을 설명하는 설명도이다.
도 5는 본 발명의 일례에 따른 단말에 의해 HARQ-ACK을 전송하는 방법을 도시한 순서도이다.
도 6은 본 발명의 다른 예에 따른 단말에 의해 HARQ-ACK을 전송하는 방법을 도시한 순서도이다.
도 7은 본 발명의 일례에 따른 기지국에 의해 HARQ-ACK을 수신하는 방법을 도시한 순서도이다.
도 8은 본 발명의 다른 예에 따른 기지국에 의해 HARQ-ACK을 수신하는 방법을 도시한 순서도이다.
도 9는 본 발명의 일례에 따른 단말과 기지국을 도시한 블록도이다.
본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다.
본 명세서의 무선통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국은 특정한 지리적 영역 또는 주파수 영역에 대해 통신 서비스를 제공하며, 사이트(site)라고 불릴 수 있다. 사이트(site)는 섹터라 부를 수 있는 다수의 영역들로 나누어질 수 있으며, 상기 섹터는 각기 서로 다른 셀 아이디를 가질 수가 있다.
무선통신 시스템을 구성하는 단말(user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 무선통신 시스템을 구성하는 기지국은 일반적으로 단말과 통신하는 지점(station)을 말하며, eNodeB (evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(Femto eNodeB), 가내 기지국(Home eNodeB: HeNodeB), 릴레이(relay), 원격 무선 헤드(Remote Radio Head: RRH)등 다른 용어로 불릴 수 있다. 셀(15a, 15b, 15c)은 기지국이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
이하에서 하향링크(downlink)는 기지국에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 기지국으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다. 단말과 기지국 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 제1 계층(L1), 제2 계층(L2), 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공한다.
물리계층은 상위 계층인 매체접근제어(MAC: Media Access Control) 계층과 전송채널(transport channel)을 통해 연결된다. 데이터는 MAC 계층과 물리계층 사이에서 전송채널을 통해 전달된다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 전송되는가에 따라 분류된다. 또한, 데이터는 서로 다른 물리계층 사이(즉, 단말과 기지국의 물리계층 사이)에서 물리채널을 통해 전달된다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수 및 복수의 안테나로 생성된 공간을 무선자원으로 활용한다.
일 예로, 물리채널 중 PDCCH(Physical Downlink Control CHannel)는 단말에게 PCH(Paging CHannel)와 DL-SCH(DownLink Shared CHannel)의 자원 할당 및 DL-SCH와 관련된 HARQ(Hybrid Automatic Repeat Request) 정보를 알려주며, 단말로 상향링크 전송의 자원 할당을 알려주는 상향링크 스케줄링 그랜트를 나를 수 있다. PDSCH(Physical Uplink Shared Channel)는 하향링크 데이터를 포함하는 DL-SCH를 나른다. 또한, PUCCH(Physical Uplink Control CHannel)는 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다. 또한, PUSCH(Physical Uplink Shared CHannel)는 상향링크 데이터를 포함하는 UL-SCH(UpLink Shared CHannel)을 나른다. 기지국의 설정 및 요청에 따라 필요 시 PUSCH는 HARQ ACK/NACK 및 CQI와 같은 CSI(Channel State Information) 정보를 포함할 수 있다.
이하 LAA(License Assisted Access)라 함은 면허 대역 또는 스펙트럼(spectrum)에서 동작하는 주서빙셀(primary serving cell: PCell)의 보조를 기반으로 비면허 대역 또는 비면허 스펙트럼에서 동작하는 하나 또는 그 이상의 부서빙셀(secondary serving cell: SCell)들에 대한 CA 동작을 지원하는 무선 통신 기법을 나타낸다. 다시 말하면, LAA는 LTE 면허 대역의 반송파(licensed carrier : 이하 LC)을 앵커(anchor)로 하여, 면허 대역과 비면허 대역을 CA를 이용하여 하나로 묶는 기술이다. 단말은 면허 대역으로 망에 접속하여 서비스를 이용하고, 기지국이 상황에 따라 면허 대역과 비면허 대역을 CA로 결합하여 면허 대역의 트래픽(traffic)을 비면허 대역으로 오프로딩(offloading)시킬 수 있다.
CA에 의해 단말에 5개 이상 최대 32개 서빙셀까지 구성될 수 있는 통신 시스템은, RRC와 같은 상위계층의 주도에 의해 반정적으로(semi-statically) HARQ-ACK 코드북 크기를 결정할 뿐만 아니라, 채널상황에 적응적으로 또는 동적으로(Dynamically) HARQ-ACK 코드북 크기를 조절할 수 있어야 한다. 이는 상향링크 HARQ-ACK 오버헤드를 효율적으로 조절하고 신뢰성 있는 상향링크 전송 및 하향링크 데이터 성능을 보장하기 위함이다.
따라서 32개까지의 서빙셀이 단말에 구성되는 경우, RRC와 같은 상위계층(higher layer)에서의 동작은 다음의 (1) 내지 (4) 동작들 중 적어도 하나를 포함할 수 있다.
(1) HARQ-ACK 코드북 구성(codebook configuration)
상위계층의 동작은 반정적 HARQ-ACK 코드북 구성이 적용될지 동적 HARQ-ACK 코드북 구성이 적용될지에 대한 지시 동작을 포함할 수 있다. 이를 위해, 기지국이 반정적 HARQ-ACK 코드북 또는 동적 HARQ-ACK 코드북의 구성을 지시하는 정보를 단말로 전송할 수 있다. 반정적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하는 제1 모드이다. 반면, 동적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하지 않는 제2 모드이다. 제2 모드에서 단말은 상위계층 시그널이 아닌 다른 정보를 이용하여 동적 HARQ-ACK 코드북의 크기를 결정(또는 예측, 판단)해야 하는데, 이에 관한 구체적인 실시예들은 후술된다.
이와 같이 모드를 구분하는 이유는, 서빙셀의 수가 6개~7개 정도이면 동적 HARQ 코드북을 적용하는 방식이 HARQ-ACK 코드북 크기에 대한 최적화 목적에 대한 이득 대비 기지국과 단말의 구현의 복잡도가 증가할 수 있기 때문이다. 따라서, 5개를 초과하는 서빙셀들의 CA에 있어서도 반정적 파라미터들을 기반으로 하는 HARQ-ACK 코드북 크기의 구성이 지원될 필요가 있다.
(2) FDD/TDD PUCCH 셀 그룹 구성
상위계층의 동작은 FDD/TDD PUCCH 셀 그룹 구성을 포함할 수 있다. 일례로서 PUCCH SCell이 구성되지 않은 경우, PCell을 포함하는 오직 하나의 셀 그룹이 존재할 수 있다. 이 경우 셀 그룹 개념이 사실상 없어지고 종래와 동일하다. 다른 예로서 PUCCH SCell이 구성된 경우, 최대 2개의 PUCCH 셀 그룹이 구성될 수 있다.
(3) FDD CA 또는 TDD CA(TDD-FDD CA포함)에서 5개를 초과하는 서빙셀 구성
상위계층의 동작은 FDD CA 또는 TDD CA(TDD-FDD CA포함)에서 5개를 초과하는 서빙셀 구성을 포함할 수 있다. 한편, TDD CA 또는 TDD-FDD CA에서는 복수의 하향링크 서브프레임들이 번들링 윈도우(bundling window)로서 하나의 상향링크 서브프레임에 연관될(associated) 수 있다. 이 경우 5개 이하의 서빙셀이 구성되더라도 더 많은 HARQ-ACK 비트들이 생성될 수 있다(e.g. HARQ-ACK 비트수 > 22). 따라서, TDD CA 또는 TDD-FDD CA에서는 PUCCH 포맷 3가 전송할 수 있는 HARQ-ACK 비트의 최대 사이즈인 22비트를 기준으로 그 서빙셀의 수가 결정될 수 있다.
(4) PUCCH 포맷 4 또는 5 구성
상위계층의 동작은 PUCCH 포맷 4 또는 5 구성을 위해 필요한 RRC 파라미터의 설정을 포함한다.
단말 및/또는 기지국에 동적 HARQ-ACK 코드북 구성(제2 모드)이 적용된 경우, 단말은 하향링크 제어정보(downlink control information: DCI)에 기반하여 HARQ-ACK 코드북의 크기를 결정(또는 예측, 판단)할 수 있다.
DCI는 PDCCH 또는 EPDCCH상에 맵핑되어 전송되는 정보로서, 하향링크 데이터 전송을 스케줄링하는 하향링크 그랜트(downlink grant)와 상향링크 데이터 전송을 스케줄링하는 상향링크 그랜트(uplink grant)를 포함한다. 본 실시예에 따르면 32개까지의 서빙셀이 단말에 구성되는 경우, DCI는 누적적 하향링크 할당 지시자(accumulated downlink assignment indicator: A-DAI) 필드와 전체 하향링크 할당 지시자(total downlink assignment indicator: T-DAI) 필드 중 적어도 하나를 포함할 수 있다. 또는, DCI는 A-DAI와 T-DAI의 지시내용을 모두 포함하는 하나의 통합된 DAI 필드를 포함할 수 있다. 이하의 실시예에서는 T-DAI의 지시가 별도의 T-DAI 필드에 의해 행해지는 경우를 가정하여 설명하나, 통합된 DAI 필드의 경우에도 그 지시내용이나 처리 방법은 동일하게 적용될 수 있다.
A-DAI는 다시 하향링크 그랜트에 포함된다 (DL A-DAI). UL DAI는 상향링크 그랜트에 존재한다.
DL A-DAI는 적어도 하나의 서빙셀을 기준으로 설정된 서빙셀CC/번들링 윈도우 내의 현재 서브프레임까지 누적된 PDSCH의 수 및 SPS 릴리즈(release)를 지시하는 하향링크 (E)PDCCH 수를 지시한다. 그리고 DL A-DAI는 하향링크 그랜트에 포함된 2비트 또는 3비트의 A-DAI 필드에 의해 전송된다.
UL DAI는 적어도 하나의 서빙셀을 기준으로 번들링 윈도우 내에서 기지국에 의해서 스케줄링된 전체 PDSCH의 수 및 SPS 릴리즈(release)를 지시하는 하향링크 (E)PDCCH 수를 지시한다.
즉, A-DAI 필드가 하향링크 그랜트 또는 상향링크 그랜트에 포함되는지에 따라 그 정의와 활용 방법이 다르다. 한편, A-DAI는 TDD UL-DL 구성 1-6에서만 사용되고, TDD UL-DL 구성 0에서는 사용되지 않을 수 있다. 또한 TDD UL-DL 구성은 i) 서빙셀별로 다른 TDD-UL-DL 구성을 지원하는 TDD 시스템, 또는 ii) TDD-FDD CA 설정에서 HARQ-ACK 타이밍을 위해 DL 기준 UL-DL 구성(reference UL-DL configuration)이 사용되는 TDD 시스템 경우, DL 기준 UL-DL 구성으로 대체되어 고려될 수 있다.
HARQ-ACK 코드북의 크기가 고정되는 반정적 HARQ-ACK 코드북 구성에서와 달리, 동적 HARQ-ACK 코드북 구성에서는 설정된 서빙셀(또는 CC)과 번들링 윈도우 내에서 단말이 수신하는 PDSCH의 누적적인 수(A-DAI)를 기반으로 HARQ-ACK 코드북의 크기를 판단해야 한다. 예를 들어, 누적적인 PDSCH의 수가 2인 경우 1 TB(transport block) per PDSCH를 기준으로 2비트의 HARQ-ACK이 생성된다. 즉, HARQ-ACK 코드북의 크기는 2이다. 그런데, 만약 기지국이 번들링 윈도우 내에서 2개의 PDSCH를 단말로 전송하였는데, 단말이 마지막 PDSCH에 관한 PDCCH(또는 EPDCCH)의 검출에 실패한 경우(두번째 A-DAI 유실), 단말은 누적된 PDSCH가 1개인 것으로 인지하고, 1비트의 HARQ-ACK을 생성하여 기지국으로 전송한다. 이 경우 HARQ-ACK 코드북의 크기는 1이다. 그런데, 기지국은 2개의 PDSCH를 전송하였기 때문에 크기 2인 HARQ-ACK 코드북 기반으로 HARQ-ACK이 전송될 것을 기대하였는데, 크기 1의 코드북 기반의 HARQ-ACK은 원래 기지국이 의도한 것과는 다르다.
이와 같이 동적 HARQ-ACK 코드북 구성에서 A-DAI만으로는 신뢰성 있는 HARQ-ACK 코드북의 크기를 예측하는데 한계가 있다. 특히 단말이 기지국에 의해서 전송된 마지막 (E)PDCCH나 PDSCH를 유실(missing) 하는 경우 또는 MIMO 전송 모드에서 1CW가 전송되었는지 2CW가 전송되었는지 만약 해당 (E)PDCCH를 유실한 경우 문제가 된다.
본 실시예는 기지국과 단말이 신뢰성 있는 동적 HARQ-ACK 코드북 구성을 지원할 수 있도록 T-DAI를 포함하는 DCI를 정의한다.
T-DAI는 단말의 HARQ-ACK 보고와 연관되어 스케줄링된 모든 PDSCH의 수를 지시한다. 이때 모든 PDSCH들은 주파수 축(설정된 서빙셀들) 및 시간 축(번들링 윈도우)상에 걸쳐서 카운트된다. T-DAI는 현재 서브프레임을 기준으로 연관된 PDSCH/SPS 릴리즈를 지시하는 (E)PDCCH(DL assignment)의 총 수를 지시할 수 있다. 또는 T-DAI는 설정된 서빙셀/번들링 윈도우 크기 내에 PDSCH/SPS 릴리즈를 지시하는 (E)PDCCH 할당(DL assignment)의 총 수를 지시할 수 있다. 또는 T-DAI는 위의 2가지 카운팅 방법들 내에서 PDSCH/SPS 릴리즈를 지시하는 (E)PDCCH를 카운팅 하는 것이 아닌 CW(TB) 수를 기준으로 카운팅할 수 도 있다.
또는, T-DAI는 단말의 HARQ-ACK 보고와 연관되어 스케줄링된 모든 PDSCH의 수와, SPS 릴리즈를 지시하는 (E)PDCCH의 수의 합을 지시할 수 있다. 이때 모든 PDSCH들과 SPS 릴리즈를 지시하는 (E)PDCCH는 주파수 축 및 시간 축상에 걸쳐서 카운트된다.
T-DAI는 하향링크 그랜트에 포함된 T-DAI 필드에 의해 전송된다. T-DAI 필드는 2비트 또는 3비트일 수 있다. T-DAI는 A-DAI와 함께 단말이 동적 HARQ-ACK 코드북의 크기를 결정하는데 사용된다. A-DAI는 매 DCI의 전송시마다 누적된 PDSCH/SPS 릴리즈를 지시하는 (E)PDCCH의 수를 지시하는 반면, T-DAI는 매 DCI의 전송시마다 전체 PDSCH/SPS 릴리즈를 지시하는 (E)PDCCH 의 수를 동일하게 지시하는 점에서 차이가 있다. T-DAI는 마지막 시간 또는 서빙셀상에서 A-DAI 값의 획득에 실패하였을 경우 발생하는 혼란을 방지하며, 전체 DL 데이터 성능을 향상시키는데 도움을 줄 수 있다. 또한 T-DAI를 카운트함에 있어서, 하향링크 그랜트(DL DCI) 없이 전송되는 DL SPS PDSCH 전송이 포함될 수도 있고, 제외될 수도 있다.
여기서, A-DAI 및/또는 T-DAI가 적용되는 형태와 HARQ-ACK 코드북의 크기 결정 방법은 CA 가능한 서빙셀의 수 및 PUCCH가 전송되는 서빙셀의 듀플렉스 방식(왜냐하면 그것에 따라서 HARQ-ACK 전송 타이밍이 변경되기 때문에)에 의존적으로 결정될 수 있다. 이를 정리한 표는 다음과 같다.
표 1
Figure PCTKR2016012642-appb-T000001
도 1a 내지 도 1f는 본 발명에 따른 A-DAI 필드와 T-DAI 필드를 포함하는 하향링크 그랜트를 FDD 또는 TDD PUCCH 셀 그룹에 적용한 예시이다.
도 1a 내지 도 1d는 T-DAI가 현재 서브프레임까지 특정 단말을 위해 주파수 축 및 시간 축상에서 스케줄링된 모든 PDSCH의 수 및/또는 SPS 릴리즈를 지시하는 (E)PDCCH의 수를 지시하는 경우이고, 도 1e와 도 1f는 T-DAI가 모든 서브프레임에 걸쳐 특정 단말을 위해 주파수 축 및 시간 축상에서 스케줄링된 모든 PDSCH의 수 및/또는 SPS 릴리즈를 지시하는 (E)PDCCH의 수를 지시하는 경우이다.
도 1a를 참조하면, FDD PUCCH 셀 그룹에서 하향링크 그랜트에 A-DAI 필드와 T-DAI 필드가 포함된 경우이다. CC#0에서의 하향링크 그랜트는 A-DAI 필드1, T-DAI 필드1을 포함하고, CC#2에서의 하향링크 그랜트는 A-DAI 필드2, T-DAI 필드2를 포함하며, CC#4에서의 하향링크 그랜트는 A-DAI 필드3, T-DAI 필드3을 포함하고, CC#5에서의 하향링크 그랜트는 A-DAI 필드4, T-DAI 필드4를 포함하고, CC#8에서의 하향링크 그랜트는 A-DAI 필드5, T-DAI 필드5를 포함한다고 하자.
현재 서브프레임 기준으로 주파수 축 및 시간 축상에서 스케줄링된 모든 PDSCH의 수는 5이다(CC #0, #2, #4, #5, #8). 따라서, T-DAI 필드1, T-DAI 필드2, T-DAI 필드3, T-DAI 필드4, T-DAI 필드5는 모두 T-DAI=5를 지시한다.
한편, A-DAI 필드1, 2, 3, 4, 5는 CC #0, #2, #4, #5, #8에서 순차적으로 A-DAI=1, A-DAI=2, A-DAI=3, A-DAI=4, A-DAI=5를 지시한다. 따라서, CC #0, #2, #4, #5, #8에서 (A-DAI, T-DAI)는 각각 (1, 5), (2, 5), (3, 5), (4, 5), (5, 5)로 주어진다.
도 1b를 참조하면, TDD PUCCH 셀 그룹에서 하향링크 그랜트에 A-DAI 필드와 T-DAI 필드가 포함된 경우이다. TDD이므로 각각의 서빙셀 마다 번들링 윈도우에 의해 다수의 하향링크 서브프레임으로 확장되고, 주파수 축상에서 CC 번호 증가순서대로, 그리고 서브프레임 번호의 증가 순서대로 A-DAI가 누적적으로 증가한다. 반면, T-DAI는 현재 서브프레임까지 특정 단말을 위해 주파수 축 및 시간 축상에서 스케줄링된 모든 PDSCH의 수 및/또는 SPS 릴리즈를 지시하는 (E)PDCCH의 수를 지시한다. 예를 들어, DL subframe #0까지 주파수/시간 축에서 스케줄링된 PDSCH의 수는 총 5개이므로, DL subframe #0에서 CC를 불문하고 T-DAI=5이다.
한편, DL subframe #1까지 주파수/시간 축에서 스케줄링된 PDSCH의 수는 이전 DL subframe #0을 포함하여 총 8개이므로, DL subframe #1에서 CC를 불문하고 T-DAI=8이다. 마찬가지로 DL subframe #2까지 주파수/시간 축에서 스케줄링된 PDSCH의 수는 이전 DL subframe #0, #1을 포함하여 총 12개이므로, DL subframe #2에서 CC를 불문하고 T-DAI=12이다. 그리고 번들링 윈도우의 마지막 하향링크 서브프레임인 DL subframe #3까지 주파수/시간 축에서 스케쥴링된 PDSCH의 수는 이전 DL subframe #0, #1, #2를 포함하여 총 16개이므로 DL subframe #3에서 CC를 분문하고 T-DAI=16이다.
도 1c를 참조하면, 일부 CC가 MIMO 모드로 설정된 경우로서, 2TB per CC가 가능한 경우이다. 도 1c에서는 CC #0, #2, #4가 MIMO 모드이나, 오직 CC #0, #2만이 2TB per CC 전송이고, 나머지 CC들은 1TB per CC 전송인 경우이다.
현재 서브프레임 기준으로 주파수 축 및 시간 축상에서 스케줄링된 모든 PDSCH내의 CW(TB)수는 7이다(2(CC #0)+2(CC #2)+1(CC #4),1(CC #5)+1(CC #8)). 따라서, 현재 서브프레임의 각 CC에서 전송되는 모든 T-DAI 필드들은 T-DAI=7을 지시한다. 즉, 하향링크 그랜트 내의 A-DAI/T-DAI 필드들은 PDSCH 전송 단위가 아닌 CW (TB) 단위로 그 카운팅을 수행한다. 단, DL SPS 릴리즈를 지시하는 (E)PDCCH 전송은 항상 1CW를 기준으로 카운팅할 수 있다.
한편, 2TB per CC이면, 해당 CC에서의 2개 CW(TB)를 가지는 PDSCH가 전송되기 때문에, 만약 A-DAI 카운팅을 CW단위로 한다면, A-DAI는 매 PDSCH당(또는 서빙셀당) 2씩 증가한다. 그리고 이에 대한 HARQ-ACK도 2비트가 필요하기 때문에 HARQ-ACK 코드북의 크기가 2씩 증가한다. 따라서 도 1c에서 CC #0, #2까지 (A-DAI, T-DAI)는 (2, 7), (4, 7)이고, CC #4, #5, #8에서 (A-DAI, T-DAI)는 (5, 7), (6, 7), (7, 7)이 된다.
도 1d를 참조하면, 일부 CC가 MIMO 모드로 설정된 경우로서, 2TB per CC가 가능한 경우이다. 도 1d에서는 CC #0, #1, #2가 MIMO 모드이나, 오직 CC #0, #1에서만 2TB per CC 전송인 경우이고, 나머지 CC에서는 1TB per CC 전송인 경우이다. 도 1d 또한 도 1c와 마찬가지로 CW 단위로 DAI 카운팅을 수행한 예제이다.
또한 TDD가 PUCCH 서빙셀이므로 번들링 윈도우에 의해 다수의 서브프레임으로 확장되고, 먼저 주파수 축상에서 CC 번호 증가순서대로, 그리고 그 다음 서브프레임 번호의 증가 순서대로 A-DAI가 누적적으로 증가한다. 반면, T-DAI는 현재 서브프레임까지 특정 단말을 위해 주파수 축 및 시간 축상에서 스케줄링된 모든 PDSCH의 수 및/또는 SPS 릴리즈를 지시하는 (E)PDCCH의 수를 지시한다. 예를 들어, DL subframe #0까지 주파수/시간 축에서 스케줄링된 PDSCH의 수는 2TB(CW) in CC #0를 고려하여 총 6개이므로, DL subframe #0에서 CC를 불문하고 T-DAI=6이다. 따라서 DL subframe #0에서 CC #0의 (A-DAI, T-DAI)는 (2, 6)이고, 이후 CC #2, #4, #5, #8에서 (A-DAI, T-DAI)는 (3, 6), (4, 6), (5, 6), (6, 6)이 된다.
한편, DL subframe #1까지 주파수/시간 축에서 스케줄링된 PDSCH의 수는 이전 DL subframe #0을 포함하여 총 10개이므로, DL subframe #1에서 CC를 불문하고 T-DAI=10이다. 마찬가지로 DL subframe #2까지 주파수/시간 축에서 스케줄링된 PDSCH의 수는 이전 DL subframe #0, #1을 포함하여 총 14개이므로, DL subframe #2에서 CC를 불문하고 T-DAI=14이다.
도 1e 및 도 1f는 T-DAI가 번들링 윈도우 내의 모든 서브프레임에 걸쳐 특정 단말을 위해 주파수 축 및 시간 축상에서 스케줄링된 모든 PDSCH의 수 및/또는 SPS 릴리즈를 지시하는 (E)PDCCH의 수를 지시하는 경우이다. 따라서, 도 1e에서는 PDSCH가 스케줄된 모든 서브프레임 및 CC에 걸쳐서 T-DAI=16으로 고정되고, 도 1f에서는 PDSCH가 스케줄된 모든 서브프레임 및 CC에 걸쳐서 T-DAI=19로 고정된다. 도 1e에서는 PDSCH와 DL SPS 릴리즈를 지시하는 (E)PDCCH 수를 기반으로 카운팅 하였다. 또한, 도 1e는 MIMO가 설정되지 않은 경우이고, 도 1f는 일부 CC에 대해 MIMO가 설정된 경우이고 CW(TB)를 기준으로 A-DAI와 TDAI를 카운팅한 예제이다. 따라서. 도 1f에서 CC #0, CC #1에서 A-DAI가 2씩 증가하게 된다.
이하에서는 A-DAI와 T-DAI에 기반하여, 단말이 동적으로 HARQ-ACK 코드북의 크기를 결정하는 실시예들이 게시된다. 구체적으로 본 실시예들은 상향링크 데이터(PUSCH) 전송이 수행되어야 할 현재 서브프레임에서, 상기 현재 서브프레임의 이전 서브프레임에서의 하향링크 데이터(PDSCH) 전송에 대한 HARQ-ACK 보고가 동시에 수행되어야 하는 경우로 가정하여 설명된다. 그러나, 본 실시예들은 PUCCH 포맷에 기반하여 HARQ-ACK 보고가 이루어지는 경우에도 동일하게 적용될 수 있다.
[Case 1] T-DAI 필드를 포함하는 하향링크 그랜트를 기반으로 결정하는 방법
현재 서브프레임(e.g. subframe n)의 이전 서브프레임(e.g. subframe n-4 in FDD PUCCH 셀 그룹, subframe n-k in TDD PUCCH 셀 그룹)에서 지시된 PUSCH 전송이, 이전 서브프레임(e.g. subframe n-4 in FDD PUCCH 셀 그룹, subframe n-k in TDD PUCCH 셀 그룹)에서 전송된 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH에 대한 HARQ-ACK 정보와 함께 전송되는 경우가 발생할 수 있다.
이 경우, 단말은 하향링크 그랜트에 포함된 T-DAI 필드를 기반으로 적어도 하나의 서빙셀상으로 전송되는 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCH에 대한 HARQ-ACK 코드북의 크기를 결정(또는 계산)할 수 있다. T-DAI 필드를 기반으로 HARQ-ACK 코드북의 크기를 결정하는 방법에 관하여 2가지 실시예가 게시된다.
(제1 실시예) 실제 단말에 할당된 T-DAI를 기반으로 HARQ-ACK 코드북의 크기를 결정
본 실시예에 따르면 단말은 먼저 A-DAI 필드 및 T-DAI 필드를 기반으로 실제 단말에게 할당된 T-DAI를 결정한다.
여기서, 하나의 T-DAI 필드 값은 다수의 T-DAI(즉, T-DAI 집합)에 대응할 수 있다. 다시 말해, 하나의 T-DAI 필드 값에 의해 지시되는 T-DAI는 복수 개일 수 있다. 예를 들어, 아래 표 2와 같이 T-DAI 필드가 2비트일 경우, T-DAI 필드는 00, 01, 10, 11 이렇게 4개의 값(XΔΑΙ total)을 가지는데, 하나의 값은 복수의 T-DAI들에 맵핑될 수 있다.
표 2
Figure PCTKR2016012642-appb-T000002
표 2를 참조하면, XΔΑΙ total=1인 경우, 실제 단말에게 할당된 T-DAI는 집합 {1, 5, 9, 13, 17, 21, 25, 29} 중 어느 하나일 수 있다. 이와 같은 방식에 따르면, DCI 포맷에 추가되는 T-DAI 필드의 비트수를 최소화함으로써 T-DAI를 지시할 수 있다. 이것이 가능한 이유는 연속적으로 4개 (2bit T-DAI 필드 가정) (E)PDCCH를 놓칠(missing) 확률은 매우 낮다라는 가정이 있기 때문이다. 단말은 하나의 번들링 윈도우 내에서(FDD에서는 하나의 서브프레임상에서 복수의 서빙셀(또는 CC), TDD에서는 복수의 서브프레임상에서 복수의 서빙셀(또는 CC)) 수신한 A-DAI 필드와 T-DAI 필드를 고려해서 실제 단말에게 할당된 T-DAI를 유도할 수 있다.
예를 들면, 표 2에서 T-DAI 필드가 0,0인 경우 잠재적인 T-DAI는 {1, 5, 9, 13, 17, 21, 25, 29}인데, 단말은 A-DAI 값을 고려해서 하나의 값을 실제 할당된 T-DAI로 유도할 수 있다. 단말이 수신한 하향링크 그랜트 내의 T-DAI 필드가 0,0이고, 단말이 마지막 서브프레임에서 수신한 하향링크 그랜트 내의 A-DAI=4라고 하자. 그런데, 4는 T-DAI 집합 {1, 5, 9, 13, 17, 21, 25, 29}에 존재하지 않는다. 따라서, 단말은 {1, 5, 9, 13, 17, 21, 25, 29} 중에서 4에 가장 가까운 5를 실제 단말에게 할당된 T-DAI라고 간주할 수 있다. 그리고 단말은 1개의 PDCCH이 유실된 것으로 판단한다.
이후 단말은 A-DAI=5에 해당하는 PDSCH에 대한 HARQ-ACK을 NACK으로 설정(set)하고, "T-DAI=5"를 기준으로 HARQ-ACK 코드북의 크기를 계산한다.
T-DAI 필드가 3비트일 경우, 하나의 T-DAI 필드 값이 다수의 T-DAI에 대응하는 예시는 아래 표 3과 같다.
표 3
Figure PCTKR2016012642-appb-T000003
표 3을 참조하면, XΔΑΙ total=1인 경우, 실제 단말에게 할당된 T-DAI는 집합 {1, 9, 17, 24, 32} 중 어느 하나일 수 있다. 실제 단말에 할당된 T-DAI를 유도하는 방법은 표 2에서의 설명과 동일하다.
실제 단말에게 할당된 T-DAI가 결정되면, 단말은 상기 결정된 T-DAI 및 서빙셀별로 정해지는 PDSCH에 대한 HARQ-ACK의 비트수(1 또는 2)를 기반으로 HARQ-ACK 코드북의 크기를 결정 또는 계산할 수 있다.
만약, 서빙셀별로 정해지는 PDSCH에 대한 HARQ-ACK의 비트수 및 T-DAI의 카운팅(counting)이 부호어(codeword: CW) 단위로 이루어지는 경우에는, 단말은 A-DAI 필드와 T-DAI 필드에 의해 결정된 T-DAI를 HARQ-ACK 코드북의 크기로 삼을 수 있다.
그런데 만약, 서빙셀별로 정해지는 PDSCH에 대한 HARQ-ACK의 비트수 및 T-DAI의 카운팅이 PDSCH 단위로 이루어지는 경우에는, 단말은 MIMO 전송 모드로 설정된 서빙셀에서 놓친(missing) PDSCH에 대한 실제 CW(또는 TB)의 개수를 알 수 없기 때문에, MIMO 전송 모드시 HARQ-ACK가 사전에 고정된 비트 수임을 전제로 하여 HARQ-ACK 코드북의 크기를 계산한다.
상기 고정된 비트수의 일례로서, 모든 서빙셀에서 공간 번들링(spatial bundling)이 적용되는 것을 전제로, 하나의 A-DAI 필드에 대응하는 HARQ-ACK은 고정적으로 1비트일 수 있다. 단말은 놓친 PDSCH에 대한 HARQ-ACK이 1비트임을 전제로, 상기 결정된 T-DAI에 기반하여 HARQ-ACK 코드북의 크기를 계산한다. 그리고 단말은 놓친 PDSCH에 대해 상기 고정된 비트수에 따라서 1 비트의 HARQ-NACK을 생성한다.
상기 고정된 비트수의 다른 예로서, MIMO 전송 모드가 설정된 서빙셀에 대해, 하나의 A-DAI 필드에 대응하는 HARQ-ACK은 고정적으로 2비트 per CC일 수 있다. 이 경우 상기 MIMO로 설정된 서빙셀상의 PDSCH에 실제 스케줄링된 CW의 개수는 고려되지 않는다. 단말은 MIMO가 설정된 서빙셀에서 놓친 PDSCH에 대한 HARQ-ACK이 2비트임을 전제로. 상기 결정된 T-DAI에 기반하여 HARQ-ACK 코드북의 크기를 계산한다. 그리고 단말은 놓친 PDSCH에 대해 상기 고정된 비트수에 따라서 2 비트의 HARQ-NACK을 생성한다.
(제2 실시예) 수신된 T-DAI 필드의 값을 기반으로 HARQ-ACK 코드북의 크기를 결정
본 실시예는 FDD PUCCH 셀 그룹이 적용되는 상황을 전제로 HARQ-ACK 코드북의 크기를 결정하는 방법이다. 수신된 (E)PDCCH(DCI 포맷 0 또는 4)를 기반으로 PUSCH 전송이 수행된 경우, 단말은 T-DAI 필드의 값을 기반으로 HARQ-ACK 코드북의 크기를 결정하고 HARQ-ACK 전송을 수행한다. 이를 구현하기 위해, 본 실시예에 따른 단말은 먼저 전체 스케줄링된 서빙셀(또는 CC)들의 수를 계산한다.
전체 스케줄링된 서빙셀(또는 CC)들의 수를 계산하는 방법의 일례는 하기 수학식 1과 같다.
수학식 1
Figure PCTKR2016012642-appb-M000001
수학식 1을 참조하면, BDL은 전체 서빙셀 중 HARQ-ACK 보고가 필요한 서빙셀들 또는 CW의 수를 나타낸다. 예를 들어, PUSCH가 서브프레임 n에서 전송된다면, BDL은 FDD PUCCH 셀인 경우 서브프레임 n-4에서 HARQ-ACK 보고가 필요한 서빙셀(또는 DL CC)들의 수 또는 CW의 수를 의미한다.
서빙셀(또는 DL CC)들의 수로 계산되는 경우에 있어서, HARQ-ACK 비트수의 가정은 다음과 같다. i) 서빙셀에 2TB 전송 모드가 설정되면 해당 서빙셀에 공간 번들링을 적용함으로써 각 서빙셀마다 항상 1비트의 HARQ-ACK이 대응하는 것을 가정한다. ii) 서빙셀에 1TB 전송 모드가 설정되면 해당 서빙셀에 공간 번들링을 적용할 필요가 없고, 1비트 per CC를 가정한다.
다시 수학식 1에서, XΔΑΙ total은 T-DAI 필드의 값으로서, 비트수에 따라 그 값이 1~2k일 수 있다. 여기서, T-DAI 필드가 2비트 또는 3비트인 경우, T-DAI 필드에는 표 2 또는 표 3과 같은 T-DAI 집합이 대응할 수 있다.
그리고 D는 단말에 구성된 전체 서빙셀들 중에서, 단말에 의해서 수신된 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH가 포함된 서빙셀의 수 또는 CW의 수를 나타낸다.
XΔΑΙ total와 D는 PDSCH/DL SPS 릴리즈를 지시하는 (E)PDCCH 단위로 카운팅될 수도 있고, CW 단위로 카운팅될 수도 있다. 어느 경우이는 XΔΑΙ total와 D에는 동일한 카운팅 방식이 적용되어야 한다. 수학식 1에 따라 HARQ-ACK 코드북의 크기를 계산하는 예시는 도 2와 같다.
도 2는 제2 실시예에 따라 HARQ-ACK 코드북의 크기를 계산하는 방법을 도시한 설명도이다.
도 2를 참조하면, 단말에 FDD PUCCH 셀 및 12개의 서빙셀(또는 CC)가 설정되고, 서브프레임 n-4에서 도 2와 같이 각 서빙셀별로 DL 스케줄링(또는 할당)들이 기지국에 의해서 지시되었고, 상향링크 그랜트에 의해 PUSCH 전송이 서브프레임 n(HARQ-ACK 전송 타이밍)에서 지시된 경우를 가정한다. 또한 T-DAI 카운팅은 PDSCH/ DL SPS 릴리즈를 지시하는 (E)PDCCH 단위로 하는 것으로 가정한다.
기지국이 상기 하향링크 그랜트 내에 T-DAI 필드(2비트)를 '10'으로 설정하여 단말로 전송하면, XΔΑΙ total=3이 기지국에 의해서 단말에게 지시된다.
만약 단말이 서빙셀 인덱스 9에 해당하는 DL 할당을 놓쳤을 경우, 결과적으로 단말이 수신한 PDSCH/ DL SPS 릴리즈를 지시하는 (E)PDCCH 최종 누적 수인 D=6이다. 이때, PUSCH로 피기백되는 HARQ-ACK 코드북의 크기는 수학식 2에 의해서 BDL=3+celing{(6-3)/22}22=7이다. 여기서 서빙셀 #9의 DL 스케줄링에 대한 유실 여부는 DL A-DAI 및/또는 기타 다른 인지 방법을 기반으로 단말이 인식할 수 있다.
도 3은 본 발명의 일례에 따른 DL SPS PDSCH 전송이 존재하는 경우에 HARQ-ACK 코드북의 크기 결정방법을 설명하는 설명도이다.
도 3을 참조하면, 해당 PUSCH 상에서 전송되어야 하는 HARQ-ACK 비트들이 적어도 하나 이상의 하향링크 그랜트에 의해서 지시된 PDSCH 및/또는 SPS 릴리즈를 지시하는 (E)PDCCH 뿐만 아니라, DL SPS PDSCH와 연관된 것이 있는 경우에, 기지국은 T-DAI를 설정할 때 DL SPS PDSCH 전송을 고려해서 하향링크 그랜트에 의해서 지시되는 PDSCH 전송 및 DL SPS 릴리즈를 지시하는 (E)PDCCH 에 추가적으로 1만큼을 카운트를 더 증가시킨다.
도 3에서, DL 서브프레임 #0, #1, #2, #3 및 서빙셀 #0, #2, #4, #5, #8에 걸쳐서 PDSCH만 카운트할 경우 총 12개인데(T-DAI=12), DL SPS PDSCH가 존재하므로 기지국은 T-DAI의 카운트를 1만큼 증가시켜 T-DAI=13으로 설정한다.
도 4는 본 발명의 다른 예에 따른 DL SPS PDSCH 전송이 존재하는 경우에 HARQ-ACK 코드북의 크기 결정방법을 설명하는 설명도이다.
도 4를 참조하면, T-DAI를 설정함에 있어서 DL SPS PDSCH는 제외된다. 즉, 기지국은 (E)PDCCH에 의해서 지시된 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH 개수만으로 T-DAI을 설정한다. 그리고, 단말과 기지국은 상기 T-DAI를 기반으로 계산된 HARQ-ACK 코드북의 크기에 NΤΠΤ 값을 더해서 최종 HARQ-ACK 코드북의 크기를 결정한다. 여기서 NΤΠΤ는 DL SPS PSCH 전송이 있는 경우에 1값을 가지고 그렇지 않으면 0이다.
만약 DL SPS PDSCH 전송에 해당되는 HARQ-ACK 정보만이 PUSCH를 통해 전송되어야 한다면, 하향링크 그랜트의 부존재로 인해 단말이 A-DAI 필드 및 T-DAI 필드를 확인할 수 없기 때문에 만약 DL SPS PDSCH를 수신하였다면, 단말은 NΤΠΤ=1을 최종 HARQ-ACK 코드북의 크기로 간주하고 HARQ-ACK 전송을 수행한다.
Case 1에서는 단말이 하향링크 그랜트에 포함된 A-DAI 필드 및 T-DAI 필드들을 기반으로 PUSCH 상의 HARQ-ACK 코드북의 크기를 유도하기 때문에, 상향링크 그랜트에 T-DAI 필드의 포함을 고려하지 않는다. 물론, TDD 시스템에서는 DAI 필드가 상향링크 그랜트내에 존재할 수 있는 바, 여기에는 레가시 TDD 시스템에서의 DAI 필드의 기능이 동일하게 적용될 수 있으며, 이를 정리하면 다음의 표와 같다.
표 4
Figure PCTKR2016012642-appb-T000004
[Case 2] T-DAI 필드를 포함하는 하향링크 그랜트 및 T-DAI 필드를 포함하는 상향링크 그랜트를 기반으로 결정하는 방법.
현재 서브프레임(e.g. subframe n)의 이전 서브프레임(e.g. subframe n-4 in FDD PUCCH 셀, subframe n-k in TDD PUCCH셀)에서 지시된 PUSCH 전송이, 이전 서브프레임(e.g. subframe n-4 in FDD PUCCH 셀, subframe n-k in TDD PUCCH 셀)에서 전송된 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH에 대한 HARQ-ACK 정보와 함께 전송되는 경우가 발생할 수 있다.
이 경우, 단말은 하향링크 그랜트에 포함된 DL T-DAI 필드 및 상향링크 그랜트에 포함된 UL T-DAI 필드 중 적어도 하나를 기반으로 적어도 하나의 서빙셀상으로 전송되는 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCH에 대한 HARQ-ACK 코드북의 크기를 결정(또는 계산)할 수 있다.
즉, Case 1과 달리 Case 2에서는 하향링크 그랜트 뿐만 아니라 상향링크 그랜트도 T-DAI 필드를 포함한다. 이는 HARQ-ACK 코드북의 크기를 결정하는데 있어서 하향링크 그랜트만으로는 충분한 신뢰성이 보장될 수 없는 경우, 상향링크 그랜트에 T-DAI 필드를 포함시킴으로써 중복 체크를 가능하도록 한다. Case 2에 따르면 상향링크 그랜트에 T-DAI 필드가 포함될 수 있기 때문에, 표 4는 하기 표 5와 같이 수정될 수 있다.
표 5
Figure PCTKR2016012642-appb-T000005
표 5를 참조하면, Case 2는 하향링크 그랜트(i.e. DCI 포맷 1/1A/1B/1D/2/2A/2B/2C/2D)내에 A-DAI 필드 및 DL T-DAI 필드가 포함된 경우 뿐만 아니라 상향링크 그랜트(i.e. DCI 포맷 0/4)에도 UL T-DAI 필드 및/또는 종래 TDD DAI 필드가 포함된 경우에(Option 1~4), HARQ-ACK 코드북의 크기를 결정하는 방법을 제안한다. 여기서, DL T-DAI 필드와 UL T-DAI 필드를 구분하는 이유는, 실질적으로 동일한 T-DAI 필드가 하향링크 그랜트에 포함되는 경우와 상향링크 그랜트에 포함되는 경우 그 명칭을 구분하기 위한 것이며, T-DAI 필드로서 동일하게 호칭될 수 있음은 물론이다.
기지국이 하향링크 그랜트 뿐만 아니라 상향링크 그랜트를 통해 T-DAI 필드를 중복하여 전송하는 이유는, 단말이 실제 할당받은 T-DAI를 제대로 수신하지 못하는 경우를 배제할 수 없기 때문이다. 예를 들어, 적은 수의 하향링크 그랜트가 서빙셀/번들링 윈도우(only TDD)내에서 스케줄링 되는 경우, 단말이 해당 하향링크 그랜트들을 모두 놓치는 경우가 발생할 수 있다. 또한 LAA 환경에서, LBT의 실패로 인해서 준비된 (E)PDCCH가 제대로 전송되지 못하고 드롭(drop)되는 경우, 다수의 DAI 값이 단말에게 전송되지 못하므로(특히 연속적인 (E)PDCCH에 해당하는 전송), 결국 단말은 실제 DAI 값에 대한 혼란을 일으킬 수 있다. 왜냐하면 DAI 필드의 비트 수는 2~3개로 제한적인데, 모듈로(modulo) 연산의 한계에 도달한 경우에 모호성(ambiguity)을 야기하기 때문이다. 예를 들어, 2비트의 DAI 필드의 경우 연속적인 4개의 (E)PDCCH를 놓치면 모듈로 연산이 정상적으로 수행될 수 없다.
이러한 문제 상황에서도 HARQ-ACK 코드북 크기를 정확히 도출하기 위해, Case 2의 실시예에 따르면 기지국이 UL T-DAI 필드를 포함하는 상향링크 그랜트를 단말로 전송할 수 있다.
(제3 실시예) PUSCH 전송이 (E)PDCCH(DCI 포맷 0/4)에 의해서 지시되는 경우, 단말은 Option 1~4의 방법들을 기반으로 전체 HARQ-ACK 코드북의 크기를 결정하고, HARQ-ACK 전송을 수행할 수 있다.
일례로서, Option 1의 경우, 상향링크 그랜트 내에 UL T-DAI 필드가 포함되어 있다. 따라서, 단말은 UL T-DAI 필드에 기반하여 PUSCH 상의 HARQ-ACK 코드북의 크기를 계산한다. 이때, 단말은 UL T-DAI 필드에 기반하여 실제 단말에 할당된 T-DAI를 도출할 수 있으며, 도출 방법은 Case 1에서와 동일한 방법이 사용될 수 있다. 여기서 만약 DL T-DAI에 기반하여 계산된 HARQ-ACK 코드북의 크기와, UL T-DAI에 기반하여 계산된 HARQ-ACK 코드북의 크기가 다르면, 단말은 이를 오류 상황으로 받아들이고 DL T-DAI와 UL T-DAI 중에서 가장 최근에 수신한 것을 기준으로 HARQ-ACK 코드북의 크기를 결정할 수 있다. 또는 만약 단말이 최근에 DL T-DAI와 UL T-DAI를 동일한 서브프레임에서 수신하였는데 그 값이 다르면 DL T-DAI 및 UL T-DAI중 어느 하나를 기준으로 HARQ-ACK 코드북의 크기를 결정한다. 또는 UL T-DAI 값을 기준으로 항상 HARQ-ACK 코드북의 크기를 결정한다.
다른 예로서, Option 2의 경우, FDD PUCCH 셀 그룹에는 UL T-DAI 필드가 사용되지만, TDD PUCCH 셀 그룹에는 종래(legacy) DAI 필드와 T-DAI 필드가 선택적으로 사용된다. 이때 어느 필드가 사용될지 선택하는 기준은 TDD PUCCH 셀 그룹의 TDD UL-DL 구성(또는 DL 기준 UL-DL 구성)에 따를 수 있다. 예를 들어, TDD PUCCH 셀 그룹이 TDD UL-DL 구성 #5인 경우에는 T-DAI 필드가 사용되고, 그 외 다른 TDD UL-DL 구성인 경우에는 T-DAI 필드 대신 종래 DAI 필드가 사용될 수 있다.
또 다른 예로서, Option 3의 경우, TDD PUCCH 셀 그룹인 경우에 UL T-DAI 필드가 사용되지 않고, 단말은 종래 DAI 필드를 재활용하여 HARQ-ACK 코드북의 크기를 결정할 수도 있다. 이는 T-DAI 필드가 사용되는 FDD PUCCH 셀 그룹의 경우와는 다르다.
또 다른 예로서, Option 4의 경우, FDD PUCCH 셀 그룹에 관한 상향링크 그랜트는 어떠한 DAI 필드도 포함하지 않고, TDD PUCCH 셀 그룹에 관한 상향링크 그랜트는 종래 DAI 필드 또는 UL T-DAI 필드를 선택적으로 포함할 수 있다. 일례로서, 어느 필드가 포함될지 선택하는 기준은 TDD PUCCH 셀 그룹의 TDD UL-DL 구성(또는 DL 기준 UL-DL 구성)에 따를 수 있다. 다른 예로서, DCI 포맷내 DAI 구성에 대한 1비트의 지시 필드를 추가함으로써 해당 DAI 필드가 UL T-DAI 필드인지 종래 DAI 필드인지를 단말에게 지시할 수 있다.
(제4 실시예) PUSCH 전송이 (E)PDCCH(DCI 포맷 0/4)에 의해서 지시되지 않는 경우, 단말은 Alt 1~3의 방법들을 기반으로 전체 HARQ-ACK 코드북의 크기를 결정하고, HARQ-ACK 전송을 수행할 수 있다. Alt 1~3은 특히 단말이 하향링크 그랜트와 상향링크 그랜트 모두에서 T-DAI 필드를 수신하지 못한 경우에 HARQ-ACK 코드북의 크기를 결정하는 방법이다.
일례로서, Alt 1의 경우, BDL=# of configured CCs*2에 의해 T-DAI가 결정된다. 이는 각 서빙셀에 관하여 설정된 전송 모드와는 무관하게 서빙셀별 PDSCH에는 모두 2TB가 전송되는 것을 가정하는 것이다. 이러한 가정은 PUSCH 전송이 상향링크 그랜트에 의해서 지시되는 경우에 TB(CW)의 수를 기준으로 T-DAI를 카운트하는 경우에 부합한다.
다른 예로서, Alt 2의 경우, BDL=# of configured CCs에 의해 T-DAI가 결정된다. 각 서빙셀에 관하여 설정된 전송 모드와는 무관하게 서빙셀별 PDSCH에는 항상 1TB가 전송되는 것을 가정하는 것이다. 이러한 가정은 PUSCH 전송이 상향링크 그랜트에 의해서 지시되는 경우에 CC의 수를 기준으로 T-DAI를 카운트하는 경우에 부합한다.
또 다른 예로서, Alt 3의 경우, 단말은 하향링크 그랜트에 포함된 정보를 기반으로 카운트되는 DAI 값(매 스케줄링 시 CC 영역 상에서 누적되는 값)과, PUSCH 상의 HARQ-ACK 코드북의 크기를 바탕으로 BDL을 결정한다. 여기서 HARQ-ACK 코드북의 크기에 대한 추가 정보는 DAI 필드를 가지는 DL 할당의 유실 문제를 해결하기 위해서 기지국에 의해서 단말에게 혹은 단말이 기지국에게 제공할 수 있는 정보이다. 예를 들어, 가장 낮은 인덱스에 해당하는 DAI 필드가 지시하는 값은 T-DAI이다. 따라서 추가적인 T-DAI 필드가 (E)PDCCH 내에 요구되지 않는다.
도 5는 본 발명의 일례에 따른 단말에 의해 HARQ-ACK을 전송하는 방법을 도시한 순서도이다. 이는 Case 1에 따라 하향링크 그랜트에만 T-DAI 필드가 포함되는 경우이다.
도 5를 참조하면, 단말은 A-DAI 필드와 T-DAI 필드를 포함하는 하향링크 그랜트를 PDCCH상에서 기지국으로부터 수신한다(S500). 단계 S500에 앞서, 단말은 반정적 HARQ-ACK 코드북 또는 동적 HARQ-ACK 코드북의 구성을 지시하는 정보를 기지국으로부터 수신할 수 있다. 반정적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하는 제1 모드이다. 반면, 동적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하지 않는 제2 모드이다. 제2 모드에서 단말은 A-DAI 필드와 T-DAI 필드에 기반하여 T-DAI 및 HARQ-ACK 코드북의 크기를 결정할 수 있다.
단말은 상기 PDCCH에 의해 지시되는 PDSCH를 기지국으로부터 수신한다(S505). PDSCH는 주어진 번들링 윈도우 내의 주파수(적어도 하나의 서빙셀 또는 CC) 또는 시간 축(적어도 하나의 서브프레임) 상에서 T-DAI에 해당하는 수만큼 전송될 수 있다.
단말은 PUSCH의 전송을 지시하는 상향링크 그랜트를 (E)PDCCH상에서 기지국으로부터 수신한다(S510). 단계 S500에서의 하향링크 그랜트와, 단계 S510에서의 상향링크 그랜트는 동일한 서브프레임 n에서 수신될 수 있다. 또한 상기 PUSCH는 상기 PDSCH를 지시하는 PDCCH에 대한 HARQ-ACK 정보와 함께 다음 서브프레임(e.g. subframe n+4 in FDD PUCCH 셀, subframe n+k in TDD PUCCH 셀)에서 전송될 수 있다. 또는 상기 PUSCH는 상기 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH에 대한 HARQ-ACK 정보와 함께 전송될 수도 있다.
T-DAI 필드는 T-DAI 집합에 대응될 수 있는데, 예를 들어 T-DAI 필드가 2비트의 경우에는 표 2를 따르고, T-DAI 필드가 3비트의 경우에는 표 3을 따를 수 있다. 단말은 T-DAI 집합 내에서 실제 단말에게 할당된 T-DAI를 결정한다(S515). 이러한 결정에 A-DAI 필드 및 T-DAI 필드가 사용될 수 있다. 단계 S515에서 실제 단말에게 할당된 T-DAI의 결정 방법은 Case 1에서 소개된 T-DAI의 결정 방법들을 포함한다.
단말은 HARQ-ACK 코드북의 크기를 결정한다(S520). 단계 S520에서 단말이 HARQ-ACK 코드북의 크기를 계산하는 방법은 Case 1에서 소개된 HARQ-ACK 코드북의 크기 계산방법들을 포함한다.
단말은 T-DAI에 해당하는 PDSCH/DL SPS 릴리즈를 지시하는 (E)PDCCH 들의 디코딩 성공여부에 따라, HARQ-ACK을 생성한다(S525). T-DAI에 해당하는 PDSCH/DL SPS 릴리즈를 지시하는 (E)PDCCH들 각각에 대한 ACK 또는 NACK들이 연관된(associated) 하나의 PUSCH상에서 전송될 때, 단말은 T-DAI에 해당하는 PDSCH/DL SPS 릴리즈를 지시하는 (E)PDCCH 에 대한 ACK 또는 NACK의 조합을 상기 계산된 크기의 HARQ-ACK 코드북에 포함된 하나의 코드에 대응시킴으로써, HARQ-ACK을 생성할 수 있다. 여기서, 단말은 놓친 (E)PDCCH 또는 PDSCH에 관하여는 NACK을 생성할 수 있으며, 이에 관한 구체적인 동작은 Case 1 및 Case 2에서의 놓친 PDCCH 또는 PDSCH에 관한 HARQ-ACK 생성방법을 포함한다.
단말은 상기 생성된 HARQ-ACK을 다음 서브프레임(e.g. subframe n+4 in FDD PUCCH 셀 그룹, subframe n+k in TDD PUCCH 셀 그룹)의 PUSCH상에서 기지국으로 전송한다(S530).
도 6은 본 발명의 다른 예에 따른 단말에 의해 HARQ-ACK을 전송하는 방법을 도시한 순서도이다. 이는 Case 2에 따라 하향링크 그랜트와 상향링크 그랜트에 모두 T-DAI 필드가 포함되는 경우이다.
도 6을 참조하면, 단말은 A-DAI 필드와 DL T-DAI 필드를 포함하는 하향링크 그랜트 및 UL T-DAI 필드를 포함하는 상향링크 그랜트를 서로 다른 (E)PDCCH상에서 기지국으로부터 수신한다(S600). Case 2에 따를 때, Option에 따라 상기 상향링크 그랜트는 UL T-DAI 필드 대신 레가시 DAI 필드를 포함할 수도 있다(표 5 참조).
단계 S600에 앞서, 단말은 반정적 HARQ-ACK 코드북 또는 동적 HARQ-ACK 코드북의 구성을 지시하는 정보를 기지국으로부터 수신할 수 있다. 반정적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하는 제1 모드이다. 반면, 동적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하지 않는 제2 모드이다. 제2 모드에서 단말은 A-DAI 필드, DL T-DAI 필드 및 UL T-DAI 필드에 기반하여 최종 T-DAI 및 HARQ-ACK 코드북의 크기를 결정할 수 있다.
단말은 상기 PDCCH에 의해 지시되는 PDSCH를 기지국으로부터 수신한다(S605). PDSCH는 주어진 번들링 윈도우 내의 주파수(적어도 하나의 서빙셀 또는 CC) 또는 시간 축(적어도 하나의 서브프레임) 상에서 최종 T-DAI에 해당하는 수만큼 전송될 수 있다.
단말은 PUSCH의 전송을 지시하는 상향링크 그랜트를 PDCCH상에서 기지국으로부터 수신한다(S610). 단계 S600에서의 상향링크 그랜트와, 단계 S610에서의 상향링크 그랜트는 동일할 수도 있고, 다를 수도 있다. 전자의 경우 단계 S600에서의 하향링크 그랜트와, 단계 S610에서의 상향링크 그랜트는 동일한 서브프레임 n에서 수신될 수 있다. 또한 상기 PUSCH는 상기 PDSCH를 지시하는 PDCCH에 대한 HARQ-ACK 정보와 함께 다음 서브프레임(e.g. subframe n+4 in FDD PUCCH 셀 그룹, subframe n+k in TDD PUCCH 셀 그룹)에서 전송될 수 있다. 또는 상기 PUSCH는 상기 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH에 대한 HARQ-ACK 정보와 함께 전송될 수도 있다.
T-DAI 필드는 T-DAI 집합에 대응될 수 있으며, 예를 들어 T-DAI 필드가 2비트의 경우에는 표 2를 따르고, T-DAI 필드가 3비트의 경우에는 표 3을 따를 수 있다. 단말은 DL T-DAI 필드에 기반하여 DL T-DAI를 결정하고, UL T-DAI 필드에 기반하여 UL T-DAI를 결정한다(S615). 단계 S615에서 DL T-DAI와 UL T-DAI의 결정 방법은 Case 1에서 소개된 T-DAI의 결정 방법들을 포함한다.
단말은 최종 T-DAI에 기반하여 HARQ-ACK 코드북의 크기를 결정한다(S620). 단계 S620은 단말이 DL T-DAI와 UL T-DAI를 비교하는 단계, 상기 비교결과에 기반하여 최종 T-DAI를 결정하는 단계, 및 A-DAI와 최종 T-DAI에 기반하여 HARQ-ACK 코드북의 크기를 계산하는 단계를 포함한다. 한편, 단계 S620은 Case 2에서 소개된 HARQ-ACK 코드북의 크기 계산방법들을 포함할 수 있다. 또는 단말은 Case 2의 Alt 1~3의 방법들을 기반으로 전체 HARQ-ACK 코드북의 크기를 결정하고, HARQ-ACK 전송을 수행할 수 있다.
단말은 최종 T-DAI에 해당하는 PDSCH들의 디코딩 성공여부에 따라, HARQ-ACK을 생성한다(S625). 최종 T-DAI에 해당하는 PDSCH들 각각에 대한 ACK 또는 NACK들이 연관된(associated) 하나의 PUSCH상에서 전송될 때, 단말은 최종 T-DAI에 해당하는 PDSCH에 대한 ACK 또는 NACK의 조합을 상기 계산된 크기의 HARQ-ACK 코드북에 포함된 하나의 코드에 대응시킴으로써, HARQ-ACK을 생성할 수 있다. 여기서, 단말은 놓친 PDCCH 또는 PDSCH에 관하여는 NACK을 생성할 수 있으며, 이에 관한 구체적인 동작은 Case 1 및 Case 2에서의 놓친 PDCCH 또는 PDSCH에 관한 HARQ-ACK 생성방법을 포함한다.
단말은 상기 생성된 HARQ-ACK을 다음 서브프레임(e.g. subframe n+4 in FDD, subframe n+k in TDD)의 PUSCH상에서 기지국으로 전송한다(S630).
도 7은 본 발명의 일례에 따른 기지국에 의해 HARQ-ACK을 수신하는 방법을 도시한 순서도이다. 이는 Case 1에 따라 하향링크 그랜트에만 T-DAI 필드가 포함되는 경우이다.
도 7을 참조하면, 기지국은 A-DAI 및 T-DAI를 설정하고, 설정된 A-DAI를 지시하는 A-DAI 필드 및 설정된 T-DAI를 지시하는 T-DAI 필드를 포함하는 하향링크 그랜트를 PDCCH상에서 단말로 전송한다(S700). 단계 S700에 앞서, 기지국은 반정적 HARQ-ACK 코드북 또는 동적 HARQ-ACK 코드북의 구성을 지시하는 정보를 단말로 전송할 수 있다. 반정적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하는 제1 모드이다. 반면, 동적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하지 않는 제2 모드이다. 제2 모드에서 단말은 A-DAI 필드와 T-DAI 필드에 기반하여 T-DAI 및 HARQ-ACK 코드북의 크기를 결정할 수 있다.
기지국은 상기 PDCCH에 의해 지시되는 PDSCH를 단말로 전송한다(S705). PDSCH는 주어진 번들링 윈도우 내의 주파수(적어도 하나의 서빙셀 또는 CC) 또는 시간 축(적어도 하나의 서브프레임) 상에서 T-DAI에 해당하는 수만큼 전송될 수 있다.
기지국은 PUSCH의 전송을 지시하는 상향링크 그랜트를 PDCCH상에서 단말로 전송한다(S710). 단계 S700에서의 하향링크 그랜트와, 단계 S710에서의 상향링크 그랜트는 동일한 서브프레임 n에서 전송될 수 있다. 또한 상기 PUSCH는 상기 PDSCH를 지시하는 PDCCH에 대한 HARQ-ACK 정보와 함께 다음 서브프레임(e.g. subframe n+4 in FDD PUCCH 셀 그룹, subframe n+k in TDD PUCCH 셀 그룹)에서 전송될 수 있다. 또는 상기 PUSCH는 상기 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH에 대한 HARQ-ACK 정보와 함께 전송될 수도 있다.
T-DAI 필드는 T-DAI 집합에 대응될 수 있으며, 예를 들어 T-DAI 필드가 2비트의 경우에는 표 2를 따르고, T-DAI 필드가 3비트의 경우에는 표 3을 따를 수 있다.
기지국은 HARQ-ACK을 다음 서브프레임(e.g. subframe n+4 in FDD PUCCH 셀 그룹, subframe n+k in TDD PUCCH 셀 그룹)의 PUSCH상에서 단말로부터 수신한다(S715).
도 8은 본 발명의 다른 예에 따른 기지국에 의해 HARQ-ACK을 수신하는 방법을 도시한 순서도이다. 이는 Case 2에 따라 하향링크 그랜트와 상향링크 그랜트에 모두 T-DAI 필드가 포함되는 경우이다.
도 8을 참조하면, 기지국은 A-DAI, DL T-DAI, 및 UL T-DAI를 설정하고, A-DAI를 지시하는 A-DAI 필드와 DL T-DAI를 지시하는 DL T-DAI 필드를 포함하는 하향링크 그랜트 및 UL T-DAI를 지시하는 UL T-DAI 필드를 포함하는 상향링크 그랜트를 서로 다른 또는 동일한 PDCCH상에서 단말로 전송한다(S800). Case 2에 따를 때, Option에 따라 상기 상향링크 그랜트는 UL T-DAI 필드 대신 레가시 DAI 필드를 포함할 수도 있다(표 5 참조).
단계 S800에 앞서, 기지국은 반정적 HARQ-ACK 코드북 또는 동적 HARQ-ACK 코드북의 구성을 지시하는 정보를 단말로 전송할 수 있다. 반정적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하는 제1 모드이다. 반면, 동적 HARQ-ACK 코드북 구성은, 기지국이 HARQ-ACK 코드북의 크기에 대한 상위계층 시그널을 단말에게 전송하지 않는 제2 모드이다. 제2 모드에서 단말은 A-DAI 필드, DL T-DAI 필드 및 UL T-DAI 필드에 기반하여 최종 T-DAI 및 HARQ-ACK 코드북의 크기를 결정할 수 있다.
기지국은 상기 PDCCH에 의해 지시되는 PDSCH를 단말로 전송한다(S805). PDSCH는 주어진 번들링 윈도우 내의 주파수(적어도 하나의 서빙셀 또는 CC) 또는 시간 축(적어도 하나의 서브프레임) 상에서 최종 T-DAI에 해당하는 수만큼 전송될 수 있다.
기지국은 PUSCH의 전송을 지시하는 상향링크 그랜트를 PDCCH상에서 단말로 전송한다(S810). 단계 S800에서의 상향링크 그랜트와, 단계 S810에서의 상향링크 그랜트는 동일할 수도 있고, 다를 수도 있다. 전자의 경우 단계 S800에서의 하향링크 그랜트와, 단계 S810에서의 상향링크 그랜트는 동일한 서브프레임 n에서 수신될 수 있다. 또한 상기 PUSCH는 상기 PDSCH를 지시하는 PDCCH에 대한 HARQ-ACK 정보와 함께 다음 서브프레임(e.g. subframe n+4 in FDD, subframe n+k in TDD)에서 전송될 수 있다. 또는 상기 PUSCH는 상기 PDSCH 및 SPS 릴리즈를 지시하는 (E)PDCCH에 대한 HARQ-ACK 정보와 함께 전송될 수도 있다.
T-DAI 필드는 T-DAI 집합에 대응될 수 있으며, 예를 들어 T-DAI 필드가 2비트의 경우에는 표 2를 따르고, T-DAI 필드가 3비트의 경우에는 표 3을 따를 수 있다.
기지국은 HARQ-ACK을 다음 서브프레임(e.g. subframe n+4 in FDD, subframe n+k in TDD)의 PUSCH상에서 단말로부터 수신한다(S815).
도 9는 본 발명의 일례에 따른 단말과 기지국을 도시한 블록도이다.
도 9를 참조하면, 단말(900)은 본 명세서에서 게시된 Case 1 및 Case 2에 따라 RQ-ACK 코드북의 크기를 계산하고, HARQ-ACK을 생성하며, HARQ-ACK을 전송하는 동작을 수행한다. 또한 기지국(9950)은 본 명세서에서 게시된 Case 1 및 Case 2에 따른 단말(900)의 동작에 상응하는 동작을 수행한다.
단말(900)은 프로세서(910), RF부(920) 및 메모리(925)를 포함한다.
프로세서(910)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현한다. 구체적으로 프로세서(910)는 본 명세서에서 게시된 도 1 내지 도 6의 실시예에서 설명된 단말의 모든 동작을 구현하며, HARQ-ACK 코드북 크기의 결정방법을 수행한다. 메모리(925)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(920)는 프로세서(910)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 예를 들어, RF부(920)는 기지국(950)으로 HARQ ACK을 전송하거나, 기지국(950)으로부터 A-DAI 필드와 T-DAI 필드를 포함하는 하향링크 그랜트, 또는 T-DAI 필드를 포함하는 상향링크 그랜트, 또는 PDSCH, PDCCH, 상위계층 시그널 등을 수신할 수 있다.
보다 상세하게는 프로세서(900)는 RF부(920)에서 수신한 하향링크 그랜트, 상향링크 그랜트, PDCCH, PDSCH, 상위계층 시그널 등을 복호하고 해석하며, 그에 따른 HARQ-ACK 생성 및 전송 동작을 수행한다.
기지국(950)은 메모리(955), 프로세서(960) 및 RF부(965)를 포함한다.
프로세서(960)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현한다. 구체적으로 프로세서(960)는 본 명세서에서 게시된 도 1 내지 도 6에서 단말의 동작에 대응하는 모든 동작을 구현하며, 도 7 및 도 8에서의 기지국의 모든 동작을 구현한다. 메모리(955)는 프로세서(960)와 연결되어, 프로세서(960)를 구동하기 위한 다양한 정보를 저장한다. RF부(965)는 프로세서(960)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 예를 들어, RF부(965)는 단말(900)로부터 HARQ ACK을 수신하거나, 단말(900)로 A-DAI 필드, T-DAI 필드, DL T-DAI 필드, UL T-DAI 필드, 하향링크 그랜트, 상향링크 그랜트, PDSCH, PDCCH, 상위계층 시그널 등을 전송할 수 있다.
보다 상세하게는 프로세서(960)는 RF부(965)를 통해 전송될 A-DAI 필드, T-DAI 필드, DL T-DAI 필드, UL T-DAI 필드, 하향링크 그랜트, 상향링크 그랜트, PDSCH, PDCCH, 상위계층 시그널을 생성한다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 반송파 집성을 지원하는 무선통신 시스템에서 단말에 의한 HARQ(hybrid automatic repeat request)의 수행방법으로서,
    적어도 하나의 서빙셀을 기준으로 상기 단말의 HARQ-ACK 보고와 관련된 번들링 윈도우(bundling window) 내에서 현재 서브프레임까지 누적된 PDSCH(physical downlink shared channel)의 수 및 SPS(semi persistent scheduling) 릴리즈(release)를 지시하는 PDCCH(physical downlink control channel)의 수의 합을 지시하는 누적 하향링크 할당 지시자(accumulated downlink assignment indicator: A-DAI) 필드와, 상기 단말의 HARQ-ACK 보고와 연관되어 스케줄링된 모든 PDSCH의 수 및 SPS 릴리즈를 지시하는 PDCCH의 수의 합을 지시하는 전체 DAI(total DAI: T-DAI) 필드를 포함하는 하향링크 그랜트를 제1 PDCCH상에서 기지국으로부터 수신하는 단계;
    상기 제1 PDCCH에 의해 지시되는 제1 PDSCH를 상기 기지국으로부터 수신하는 단계;
    PUSCH(physical uplink shared channel)의 전송을 지시하는 상향링크 그랜트를 제2 PDCCH상에서 상기 기지국으로부터 수신하는 단계;
    상기 제1 PDSCH에 관한 HARQ-ACK이 맵핑될 HARQ-ACK 코드북의 크기를 상기 A-DAI 및 상기 T-DAI에 기반하여 결정하는 단계; 및
    상기 제1 PDSCH에 관한 HARQ-ACK을 상기 PUSCH상에서 상기 기지국으로 전송하는 단계를 포함하는 방법.
  2. 제 1 항에 있어서,
    상기 T-DAI 필드는 2비트 또는 3비트인 것을 특징으로 하는, 방법.
  3. 제 1 항에 있어서,
    상기 스케줄링된 모든 PDSCH 및 상기 SPS 릴리즈를 지시하는 PDCCH는, 상기 번들링 윈도우 내의 모든 서브프레임에서 카운트된 것임을 특징으로 하는, 방법.
  4. 제 1 항에 있어서,
    상기 스케줄링된 모든 PDSCH 및 상기 SPS 릴리즈를 지시하는 PDCCH는, 상기 번들링 윈도우 내에서 현재 서브프레임까지 카운트된 것임을 특징으로 하는, 방법.
  5. 제 1 항에 있어서,
    상기 제1 PDSCH가 수신되는 서빙셀이 MIMO 전송모드로 설정된 경우,
    상기 HARQ-ACK 코드북의 크기는 상기 제1 PDSCH에 대응하는 HARQ-ACK가 1비트 및 2비트 중 어느 하나로 고정됨을 전제로 결정됨을 특징으로 하는, 방법.
  6. 반송파 집성을 지원하는 무선통신 시스템에서 HARQ(hybrid automatic repeat request)를 수행하는 단말로서,
    적어도 하나의 서빙셀을 기준으로 상기 단말의 HARQ-ACK 보고와 관련된 번들링 윈도우(bundling window) 내에서 현재 서브프레임까지 누적된 PDSCH(physical downlink shared channel)의 수 및 SPS(semi persistent scheduling) 릴리즈(release)를 지시하는 PDCCH(physical downlink control channel)의 수의 합을 지시하는 누적 하향링크 할당 지시자(accumulated downlink assignment indicator: A-DAI) 필드와, 상기 단말의 HARQ-ACK 보고와 연관되어 스케줄링된 모든 PDSCH의 수 및 SPS 릴리즈를 지시하는 PDCCH의 수의 합을 지시하는 전체 DAI(total DAI: T-DAI) 필드를 포함하는 하향링크 그랜트를 제1 PDCCH상에서 기지국으로부터 수신하고, 상기 제1 PDCCH에 의해 지시되는 제1 PDSCH를 상기 기지국으로부터 수신하며, PUSCH(physical uplink shared channel)의 전송을 지시하는 상향링크 그랜트를 제2 PDCCH상에서 상기 기지국으로부터 수신하는 RF부; 및
    상기 제1 PDSCH에 관한 HARQ-ACK이 맵핑될 HARQ-ACK 코드북의 크기를 상기 A-DAI 및 상기 T-DAI에 기반하여 결정하고, 상기 제1 PDSCH에 관한 HARQ-ACK을 생성하는 프로세서를 포함하되,
    상기 RF부는 상기 제1 PDSCH에 관한 HARQ-ACK을 상기 PUSCH상에서 상기 기지국으로 전송하는 것을 특징으로 하는 단말.
  7. 제 6 항에 있어서,
    상기 T-DAI 필드는 2비트 또는 3비트인 것을 특징으로 하는, 단말.
  8. 제 6 항에 있어서,
    상기 스케줄링된 모든 PDSCH 및 상기 SPS 릴리즈를 지시하는 PDCCH는, 상기 번들링 윈도우 내의 모든 서브프레임에서 카운트된 것임을 특징으로 하는 단말.
  9. 제 6 항에 있어서,
    상기 스케줄링된 모든 PDSCH 및 상기 SPS 릴리즈를 지시하는 PDCCH는, 상기 번들링 윈도우 내에서 현재 서브프레임까지 카운트된 것임을 특징으로 하는, 단말.
  10. 제 6 항에 있어서,
    상기 제1 PDSCH가 수신되는 서빙셀이 MIMO 전송모드로 설정된 경우,
    상기 HARQ-ACK 코드북의 크기는 상기 제1 PDSCH에 대응하는 HARQ-ACK가 1비트 및 2비트 중 어느 하나로 고정됨을 전제로 결정됨을 특징으로 하는, 단말.
PCT/KR2016/012642 2015-11-06 2016-11-04 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법 WO2017078454A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150156038A KR102511925B1 (ko) 2015-11-06 2015-11-06 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법
KR10-2015-0156038 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017078454A1 true WO2017078454A1 (ko) 2017-05-11

Family

ID=58662293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012642 WO2017078454A1 (ko) 2015-11-06 2016-11-04 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법

Country Status (3)

Country Link
US (3) US10404438B2 (ko)
KR (2) KR102511925B1 (ko)
WO (1) WO2017078454A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028890A1 (zh) * 2017-08-11 2019-02-14 Oppo广东移动通信有限公司 半静态调度的处理方法、通信设备及存储介质
WO2019095314A1 (en) * 2017-11-17 2019-05-23 Zte Corporation Codebook feedback for data retransmissions
WO2019184595A1 (zh) * 2018-03-30 2019-10-03 电信科学技术研究院有限公司 数据传输方法、终端设备及网络设备
CN110830174A (zh) * 2018-08-10 2020-02-21 北京展讯高科通信技术有限公司 半静态harq-ack码本的生成方法、用户终端、可读存储介质
WO2020057566A1 (zh) * 2018-09-21 2020-03-26 电信科学技术研究院有限公司 一种harq-ack的传输方法、终端设备及网络设备
WO2020139050A1 (en) * 2018-12-28 2020-07-02 Samsung Electronics Co., Ltd. Method and device for grant-free data transmission in wireless communication system
US20200344737A1 (en) * 2018-01-19 2020-10-29 Ntt Docomo, Inc. User terminal and radio communication method
CN112219420A (zh) * 2018-04-04 2021-01-12 株式会社Ntt都科摩 用户终端以及无线基站
WO2021036916A1 (en) * 2019-08-26 2021-03-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of hybrid automatic repeat request option configuration of same
WO2021248452A1 (en) * 2020-06-12 2021-12-16 Lenovo (Beijing) Limited Dynamic dai counting and harq-ack codebook generation for enhanced pdcch transmission
WO2022031103A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948430B2 (en) * 2015-03-17 2018-04-17 Huawei Technologies Co., Ltd. Method and apparatus for combining data and retransmission data in layer domain
KR102511925B1 (ko) * 2015-11-06 2023-03-20 주식회사 아이티엘 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법
WO2017161541A1 (zh) * 2016-03-24 2017-09-28 华为技术有限公司 下行数据的混合式自动重传请求反馈方法以及装置
US10541785B2 (en) * 2016-07-18 2020-01-21 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
CN108289015B (zh) * 2017-01-09 2023-04-07 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
KR102321226B1 (ko) * 2017-06-02 2021-11-03 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 피드백 시그널링에 대한 크기 지시
KR102439542B1 (ko) 2017-06-23 2022-09-02 삼성전자 주식회사 무선 통신 시스템에서 상향링크 제어 채널 송수신 방법 및 장치
WO2019013548A1 (ko) * 2017-07-12 2019-01-17 엘지전자 주식회사 Harq ack/nack 정보를 전송하기 위한 방법 및 사용자 장치
WO2019028775A1 (zh) * 2017-08-10 2019-02-14 富士通株式会社 反馈信息的发送和接收方法、装置及通信系统
US11539479B2 (en) * 2017-08-11 2022-12-27 Lenovo (Beijing) Limited HARQ-ACK for a plurality of carrier groups of a downlink slot set
WO2019050443A1 (en) * 2017-09-08 2019-03-14 Telefonaktiebolaget Lm Ericsson (Publ) RECEIVE ACCUSED SIGNALING IN A RADIO ACCESS NETWORK
CN109474371B (zh) * 2017-09-08 2024-01-19 北京三星通信技术研究有限公司 一种harq-ack信息反馈方法和设备
EP3480995B1 (en) * 2017-09-08 2023-03-29 LG Electronics Inc. Method and apparatus for transmitting and receiving wireless signals in wireless communication system
US20210152292A1 (en) * 2017-09-08 2021-05-20 Samsung Electronics Co., Ltd. Method, user equipment and base station for transmitting harq-ack information
CN109586856B (zh) * 2017-09-29 2024-03-29 北京三星通信技术研究有限公司 传输、配置harq-ack反馈信息的方法及相应的用户设备、基站
US10673573B2 (en) 2017-09-29 2020-06-02 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
CN109586877B (zh) 2017-09-29 2023-09-19 北京三星通信技术研究有限公司 上行传输方法和相应设备
BR112020007041A2 (pt) * 2017-10-10 2020-10-13 Telefonaktiebolaget Lm Ericsson (Publ) modo de fallback de canal de controle de enlace ascendente físico
CN109451798B (zh) * 2017-11-17 2022-04-08 北京小米移动软件有限公司 混合自动重传请求反馈指示、反馈方法及装置和基站
CN109842477B (zh) * 2017-11-29 2022-08-02 中兴通讯股份有限公司 信息解码、码本处理方法及装置、存储介质、处理器
WO2019130497A1 (ja) * 2017-12-27 2019-07-04 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108401483B (zh) 2017-12-29 2021-09-07 北京小米移动软件有限公司 混合自动重传请求反馈配置方法及装置和数据接收设备
WO2019139908A1 (en) * 2018-01-11 2019-07-18 Sharp Laboratories Of America, Inc. Codebook determination of harq-ack multiplexing with fallback downlink control information (dci) and code block group (cbg) configurations
US11476980B2 (en) 2018-01-12 2022-10-18 Lenovo (Beijing) Limited Method and apparatus for determining a HARQ-ACK codebook for carrier aggregation
CN110034901B (zh) * 2018-01-12 2020-07-17 北京紫光展锐通信技术有限公司 混合式自动重传请求码本的生成方法、用户设备、介质
US11032051B2 (en) * 2018-01-12 2021-06-08 Mediatek Singapore Pte. Ltd. Method and apparatus for reducing uplink overhead in mobile communications
CN110086583B (zh) * 2018-01-26 2021-05-07 电信科学技术研究院有限公司 一种dai的指示方法、用户终端和网络侧设备
CN110138514B (zh) * 2018-02-08 2020-10-20 电信科学技术研究院有限公司 一种进行混合自动重传请求反馈的方法和终端
CN110166206B (zh) * 2018-02-12 2021-01-08 维沃移动通信有限公司 一种harq-ack码本的确定方法和终端
CN110149172B (zh) * 2018-02-13 2022-03-11 中兴通讯股份有限公司 一种信息处理方法及装置
CN111971920B (zh) * 2018-02-15 2023-07-28 瑞典爱立信有限公司 基于码块组的动态harq-ack码本的sps释放处理方法和装置
US11039464B2 (en) * 2018-02-15 2021-06-15 Apple Inc. Simultaneous HARQ-ACK feedback and uplink transmission without dynamic grant
EP3754875B1 (en) * 2018-02-15 2023-07-19 Ntt Docomo, Inc. User terminal and wireless communication method
JP7313699B2 (ja) 2018-02-17 2023-07-25 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド ワイヤレス通信システムにおけるアップリンク制御情報を送信するための方法、およびそれを使用する装置
US11246155B2 (en) 2018-03-27 2022-02-08 Qualcomm Incorporated Acknowledgement feedback in unlicensed new radio
US11303419B2 (en) * 2018-04-06 2022-04-12 Qualcomm Incorporated Semi-static HARQ-ACK codebook with multiple PDSCH transmissions per slot
CN112154619B (zh) * 2018-05-10 2023-11-03 瑞典爱立信有限公司 用于混合自动重复请求(harq)的方法和装置
CN112106316A (zh) 2018-05-11 2020-12-18 韦勒斯标准与技术协会公司 在无线通信系统中多路复用上行链路控制信息的方法和使用该方法的装置
WO2019216740A1 (ko) * 2018-05-11 2019-11-14 엘지전자 주식회사 무선 통신 시스템에서 상향 링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
EP4221029A1 (en) * 2018-05-11 2023-08-02 Telefonaktiebolaget LM Ericsson (publ) Harq codebook for radio access networks
US11546092B2 (en) * 2018-05-11 2023-01-03 Lenovo (Beijing) Limited Method and apparatus for HARQ-ACK feedback for carrier aggregation
US11444727B2 (en) * 2018-05-18 2022-09-13 Lenovo (Beijing) Limited Method and apparatus for HARQ-ACK payload reduction for semi-static HARQ-ACK codebook determination
CN112737738A (zh) * 2018-05-21 2021-04-30 华为技术有限公司 上行控制信息的传输方法及设备
CN112042142A (zh) 2018-06-28 2020-12-04 Oppo广东移动通信有限公司 传输反馈信息的方法和计算机可读存储介质
US11026226B2 (en) 2018-07-06 2021-06-01 Qualcomm Incorporated Feedback design for multi-transmission reception point transmission
EP3827627A4 (en) * 2018-07-26 2022-04-27 Sharp Kabushiki Kaisha BASE STATIONS AND RELATED METHODS
US11296827B2 (en) * 2018-07-27 2022-04-05 Qualcomm Incorporated Feedback mode indication for coordinated transmission
WO2020026297A1 (ja) * 2018-07-30 2020-02-06 株式会社Nttドコモ 基地局及び無線通信方法
JP7216100B2 (ja) * 2018-07-30 2023-01-31 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN110830151B (zh) 2018-08-07 2021-06-15 华为技术有限公司 反馈信息的传输方法和装置
WO2020032583A1 (ko) * 2018-08-08 2020-02-13 엘지전자 주식회사 비순차적 스케줄링에 기반하여 상향링크 물리 채널을 송수신하는 방법 및 이를 위한 장치
MX2021002005A (es) * 2018-08-21 2021-04-28 Ntt Docomo Inc Terminal de usuario y metodo de comunicacion por radio.
CN109565839B (zh) * 2018-09-19 2021-05-04 Oppo广东移动通信有限公司 一种信息传输方法及装置、终端
CN110943806B (zh) * 2018-09-21 2021-10-26 大唐移动通信设备有限公司 一种混合自动重传请求确认码本的传输方法和设备
JP2020072330A (ja) * 2018-10-30 2020-05-07 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN113330774A (zh) * 2018-11-28 2021-08-31 株式会社Ntt都科摩 用户终端以及无线通信方法
KR20200083217A (ko) * 2018-12-28 2020-07-08 삼성전자주식회사 무선 통신 시스템에서 비승인 데이터 전송 방법 및 장치
JP7448242B2 (ja) * 2019-01-10 2024-03-12 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド 無線通信システムにおいて上りリンク共有チャネルの送信方法及びこれを用いる装置
CN111436153B (zh) * 2019-01-11 2021-10-26 华为技术有限公司 一种信息处理方法、终端设备及网络设备
US10868595B2 (en) * 2019-01-11 2020-12-15 Qualcomm Incorporated Enhanced feedback with a dynamic codebook
CN114157400B (zh) * 2019-02-15 2024-04-16 华为技术有限公司 一种码本的处理方法及装置
CN113455082A (zh) * 2019-02-25 2021-09-28 高通股份有限公司 使用上行链路共享信道的反馈传输
US20220159692A1 (en) * 2019-03-30 2022-05-19 Lg Electronics Inc. Method for transmitting harq-ack codebook, user equipment, device and storage medium, method for receiving harq-ack codebook, and base station
CN113765642B (zh) * 2019-04-30 2023-12-26 Oppo广东移动通信有限公司 Harq码本确定方法、终端设备和网络设备
CN116743322A (zh) * 2019-05-02 2023-09-12 韦勒斯标准与技术协会公司 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
WO2020227863A1 (en) * 2019-05-10 2020-11-19 Lenovo (Beijing) Limited Method and apparatus for harq-ack retransmission
CN111953447B (zh) * 2019-05-15 2021-10-29 大唐移动通信设备有限公司 一种动态harq-ack码本确定方法及设备
US20220217756A1 (en) * 2019-05-17 2022-07-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a wireless communication system
US11632196B2 (en) * 2019-07-18 2023-04-18 Samsung Electronics Co., Ltd System and method for providing dynamic hybrid automatic repeat request (HARQ) codebook with multiple valid unicast downlink control information (DCI) per monitoring occasion index per serving cell
CN112398607B (zh) * 2019-08-14 2022-06-21 大唐移动通信设备有限公司 混合自动重传请求应答的传输指示方法及设备
US20220330297A1 (en) * 2019-08-23 2022-10-13 Lenovo (Beijing) Limited Method and Apparatus for Determining HARQ-ACK Codebook
CN112583532B (zh) * 2019-09-27 2022-04-22 华为技术有限公司 一种harq信息传输方法及设备
JP7036780B2 (ja) * 2019-09-30 2022-03-15 シャープ株式会社 端末装置、基地局装置、および、通信方法
EP4057537A4 (en) * 2019-11-06 2022-12-07 LG Electronics Inc. METHOD AND DEVICE FOR TRANSMITTING OR RECEIVING A SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
CN112787765B (zh) * 2019-11-08 2021-11-12 大唐移动通信设备有限公司 一种harq反馈方法、终端、基站和存储介质
US11848781B2 (en) * 2020-01-06 2023-12-19 Qualcomm Incorporated Hybrid automatic repeat request acknowledgement codebook determination with different downlink assignment indicator bitwidth
CN114946245A (zh) * 2020-02-10 2022-08-26 中兴通讯股份有限公司 跟踪半静态调度传输
CN114982168A (zh) * 2020-02-12 2022-08-30 华为技术有限公司 通信方法及装置
EP4089944A4 (en) * 2020-02-14 2023-01-18 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR FEEDBACK HARQ-ACK IN A WIRELESS COMMUNICATION SYSTEM
CN111884770A (zh) * 2020-04-10 2020-11-03 中兴通讯股份有限公司 Harq-ack码本产生方法
US11843466B2 (en) * 2020-06-05 2023-12-12 Qualcomm Incorporated Turbo-HARQ uplink control information feedback compression
US20220030583A1 (en) * 2020-07-27 2022-01-27 Samsung Electronics Co., Ltd. Systems, methods, and apparatus for multiplexing control information on a physical channel
CN114070505B (zh) * 2020-07-31 2023-04-07 展讯通信(上海)有限公司 Harq码本的确定方法及装置、harq码本的配置方法及装置、存储介质、终端、基站
CN115918011A (zh) * 2020-08-26 2023-04-04 华为技术有限公司 生成混合自动重复请求harq码本的方法和装置
US20220303065A1 (en) * 2021-03-19 2022-09-22 Samsung Electronics Co., Ltd. Wireless transmissions with hybrid automatic repeat request (harq) feedback disabled
US20230139269A1 (en) * 2021-10-12 2023-05-04 Samsung Electronics Co., Ltd. Acknowledgement information reporting for multi-cell scheduling
WO2023153854A1 (ko) * 2022-02-11 2023-08-17 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039280A1 (en) * 2010-08-16 2012-02-16 Qualcomm Incorporated Ack/nack transmission for multi-carrier operation with downlink assignment index
US20130279441A1 (en) * 2010-11-11 2013-10-24 Lg Electronics Inc. Uplink control information transmitting/receiving method and device in a wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US20150236824A1 (en) * 2012-09-28 2015-08-20 Nokia Corporation Uplink downlink assignment indicator ambiguity handling for inter-band time division duplex carrier aggregation
KR102511925B1 (ko) * 2015-11-06 2023-03-20 주식회사 아이티엘 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039280A1 (en) * 2010-08-16 2012-02-16 Qualcomm Incorporated Ack/nack transmission for multi-carrier operation with downlink assignment index
US20130279441A1 (en) * 2010-11-11 2013-10-24 Lg Electronics Inc. Uplink control information transmitting/receiving method and device in a wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Review of Proposals for HARQ-ACK Godebook Determination", R1-155153, 3GPP TSG RAN WG1 MEETING #82BIS, 25 September 2015 (2015-09-25), Malmo, Sweden, XP051002133 *
HUAWEI ET AL.: "HARQ-ACK Codebook Determination for Carrier Aggregation Enhancement beyond 5 Carriers", R1-153771, 3GPP TSG RAN WG1 MEETING #82, 15 August 2015 (2015-08-15), Beijing, China, XP050993335 *
LG ELECTRONICS: "HARQ-ACK Payload Adaptation for Rel-13 CA", R1-155376,3GPP TSG RAN WG1 MEETING #82BIS, 25 September 2015 (2015-09-25), Malmo, Sweden, XP051002283 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028890A1 (zh) * 2017-08-11 2019-02-14 Oppo广东移动通信有限公司 半静态调度的处理方法、通信设备及存储介质
WO2019095314A1 (en) * 2017-11-17 2019-05-23 Zte Corporation Codebook feedback for data retransmissions
US11496247B2 (en) 2017-11-17 2022-11-08 Zte Corporation Codebook feedback for data retransmissions
US11528696B2 (en) * 2018-01-19 2022-12-13 Ntt Docomo, Inc. User terminal and radio communication method
US20200344737A1 (en) * 2018-01-19 2020-10-29 Ntt Docomo, Inc. User terminal and radio communication method
CN110324126B (zh) * 2018-03-30 2020-12-04 电信科学技术研究院有限公司 一种数据传输方法、终端设备及网络设备
WO2019184595A1 (zh) * 2018-03-30 2019-10-03 电信科学技术研究院有限公司 数据传输方法、终端设备及网络设备
CN110324126A (zh) * 2018-03-30 2019-10-11 电信科学技术研究院有限公司 一种数据传输方法、终端设备及网络设备
TWI706644B (zh) * 2018-03-30 2020-10-01 大陸商電信科學技術研究院有限公司 資料傳輸方法、終端設備及網路設備
US11757577B2 (en) 2018-03-30 2023-09-12 Datang Mobile Communications Equipment Co., Ltd. Data transmission method, terminal device, and network device
CN112219420B (zh) * 2018-04-04 2024-03-26 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统
CN112219420A (zh) * 2018-04-04 2021-01-12 株式会社Ntt都科摩 用户终端以及无线基站
CN110830174B (zh) * 2018-08-10 2020-11-27 北京紫光展锐通信技术有限公司 半静态harq-ack码本的生成方法、用户终端、可读存储介质
CN110830174A (zh) * 2018-08-10 2020-02-21 北京展讯高科通信技术有限公司 半静态harq-ack码本的生成方法、用户终端、可读存储介质
WO2020057566A1 (zh) * 2018-09-21 2020-03-26 电信科学技术研究院有限公司 一种harq-ack的传输方法、终端设备及网络设备
US11290217B2 (en) 2018-09-21 2022-03-29 Datang Mobile Communications Equipment Co., Ltd. HARQ-ACK transmission method, terminal device and network device
US11405907B2 (en) 2018-12-28 2022-08-02 Samsung Electronics Co., Ltd. Method and device for grant-free data transmission in wireless communication system
WO2020139050A1 (en) * 2018-12-28 2020-07-02 Samsung Electronics Co., Ltd. Method and device for grant-free data transmission in wireless communication system
WO2021036916A1 (en) * 2019-08-26 2021-03-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of hybrid automatic repeat request option configuration of same
WO2021248452A1 (en) * 2020-06-12 2021-12-16 Lenovo (Beijing) Limited Dynamic dai counting and harq-ack codebook generation for enhanced pdcch transmission
WO2022031103A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Also Published As

Publication number Publication date
US11050542B2 (en) 2021-06-29
US20170134140A1 (en) 2017-05-11
US10404438B2 (en) 2019-09-03
KR20170053470A (ko) 2017-05-16
US20210281379A1 (en) 2021-09-09
US11902211B2 (en) 2024-02-13
KR102511925B1 (ko) 2023-03-20
KR20230038694A (ko) 2023-03-21
US20190356456A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2017078454A1 (ko) 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법
WO2018084670A1 (en) Method and apparatus for data transmission of terminal in wireless communication system
WO2017171516A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 전송 또는 수신 방법 및 이를 위한 장치
WO2018038525A1 (ko) 무선 통신 시스템에서 단말의 pscch 및 pssch 송수신 방법 및 장치
WO2013191360A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2012112008A2 (en) Mobile communication system and channel transmission/reception method thereof
WO2015065000A1 (en) Method and apparatus of transmitting control information considering tdd-fdd ca
WO2015115818A1 (ko) Harq ack/nack 전송방법 및 장치
WO2018088857A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2014046457A1 (en) Method and apparatus for performing uplink transmission in a wireless communication system
WO2013141582A1 (ko) Harq 수행 방법 및 무선기기
WO2016021983A1 (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 무선 통신 방법 및 장치
WO2016209056A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 신호 송수신 방법 및 장치
WO2015065111A1 (en) Method and apparatus for simultaneous transmission of downlink harq-ack and sr
WO2014025228A1 (en) Method and apparatus for supporting burst transmission in a wireless communication system
WO2010110607A2 (ko) 다중 반송파 시스템에서 harq 수행 장치 및 방법
WO2011031059A2 (en) Method and apparatus for controlling transmit power in wireless communication system
WO2015142125A1 (ko) Tdd-fdd 집성을 고려한 tpc 명령 타이밍 제어 방법 및 그 장치
WO2016108657A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
EP3476072A1 (en) Method and apparatus for managing hybrid automatic repeat request process in mobile communication system
WO2019031812A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2016182260A1 (ko) 스케줄링 요청을 전송하는 방법 및 lc 기기
WO2014116071A1 (en) Method and apparatus for transmitting control channel in intra-cell carrier aggregation system
WO2015020501A1 (ko) 셀룰러 이동 통신 시스템에서 스케쥴링 요청 방법 및 장치
WO2018070757A1 (en) Method and apparatus for transmitting and receiving multiple timing transmission schemes in wireless cellular communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862470

Country of ref document: EP

Kind code of ref document: A1