WO2017078390A1 - 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터 - Google Patents

탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터 Download PDF

Info

Publication number
WO2017078390A1
WO2017078390A1 PCT/KR2016/012502 KR2016012502W WO2017078390A1 WO 2017078390 A1 WO2017078390 A1 WO 2017078390A1 KR 2016012502 W KR2016012502 W KR 2016012502W WO 2017078390 A1 WO2017078390 A1 WO 2017078390A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
semiconductor layer
polymer
organic semiconductor
walled carbon
Prior art date
Application number
PCT/KR2016/012502
Other languages
English (en)
French (fr)
Inventor
노용영
정승현
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2017078390A1 publication Critical patent/WO2017078390A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to an organic semiconductor layer containing carbon nanotubes, a method of manufacturing the same, and a thin film transistor using the same, and more particularly, to a thin film transistor including carbon nanotubes in an organic semiconductor layer to improve performance of an electronic device. It is about.
  • OTFTs organic thin film transistors
  • the conjugated molecules used as the active layer in OTFT can be dissolved in a general organic solvent, it is possible to manufacture the device through the printing or solution process. It also has the ability to control the desired electrical properties by changing the chemical structure at the design stage of the material.
  • Carbon nanotubes have been actively studied for the last 25 years as they have unique optical, mechanical, and electrical properties and can be applied to various fields. In particular, the excellent electrical properties are expected to be applicable to a variety of electronic devices.
  • sc-SWCNT has the highest charge mobility.
  • the charge mobility of a well-aligned strand of sc-SWCNTs is much higher than crystalline Si, with a theoretical limit of 10,000 cm 2 / Vs.
  • sc-SWCNTs have very good charge mobility compared to silicon devices, making it possible to produce next-generation ultrafast transistors.
  • an object of the present invention is to provide a thin film transistor which can reduce the trap of the semiconductor layer and improve the performance of the device by aligning the wrapped single-walled carbon nanotubes.
  • Another object of the present invention is to provide a thin film transistor with improved uniformity by allowing single-walled carbon nanotubes to be well dispersed in the organic semiconductor layer.
  • the present invention is an organic semiconductor layer including carbon nanotubes, fluorene or thiophene polymer wrapped single-wall carbon nanotubes and DPP (diketopyrrolopyrrole) series, BDP (benzodipyrrolidone) series, Benzopyrazine series and NDI Organic layer containing carbon nanotubes, characterized in that the fluorene or thiophene polymer selectively wraps only single-walled carbon nanotubes having semiconducting properties.
  • DPP diiketopyrrolopyrrole
  • BDP benzodipyrrolidone
  • Benzopyrazine series NDI Organic layer containing carbon nanotubes, characterized in that the fluorene or thiophene polymer selectively wraps only single-walled carbon nanotubes having semiconducting properties.
  • a semiconductor layer is provided.
  • the single-walled carbon nanotubes wrapped with the fluorene or thiophene polymers of the present invention include the organic semiconductor layer containing carbon nanotubes, wherein the single-walled carbon nanotubes contain 0.0001 to 0.015 mg / ml. to provide.
  • the present invention also provides a method for producing an organic semiconductor layer containing carbon nanotubes, comprising: mixing a fluorene or thiophene polymer and a single-wall carbon nanotube in a solvent; An ultrasonic treatment step of sonicating the mixed solution; Separation step to separate the centrifuge to take a floating solution; And forming an organic semiconductor layer by mixing the floating solution with any one of DPP, BDP, Benzopyrazine and NDI polymers, wherein the fluorene or thiophene polymer is semiconducting single-walled carbon nano. It provides a method for producing an organic semiconductor layer containing carbon nanotubes, characterized in that for selectively wrapping only the tube.
  • the mixing step of the present invention includes a conjugated polymer 4 ⁇ 6mg and single-wall carbon nanotubes 1.5 ⁇ 3.0mg per 1ml solvent, the mixing ratio of fluorene or thiophene polymer and single-wall carbon nanotubes 3: 3 It provides a method for producing an organic semiconductor layer containing carbon nanotubes, characterized in that ⁇ 3: 1.
  • the floating solution of the present invention provides a method for producing an organic semiconductor layer containing carbon nanotubes, characterized in that the single-walled carbon nanotubes contained 0.0001 ⁇ 0.015 mg / ml.
  • the present invention is a substrate; Source / drain electrodes positioned on the substrate to be spaced apart from each other; An organic semiconductor layer including carbon nanotubes positioned over the entire surface of the substrate including the source / drain electrodes; A gate insulating film disposed on an entire surface of the organic semiconductor layer; A gate electrode on the gate insulating film;
  • the organic semiconductor layer including carbon nanotubes may include single-walled carbon nanotubes and DPP (diketopyrrolopyrrole) -based, BDP (benzodipyrrolidone) -based, Benzopyrazine-based, and naphthalene diimide (NDI) wrapped with fluorene or thiophene polymers.
  • DPP diiketopyrrolopyrrole
  • BDP benzodipyrrolidone
  • NDI naphthalene diimide
  • the layer comprising any one organic material of the series, the fluorene or thiophene polymer provides a thin film transistor,
  • the present invention provides a thin-film transistor, characterized in that the single-walled carbon nanotubes wrapped with the fluorene or thiophene polymers contain 0.0001 to 0.015 mg / ml of the single-walled carbon nanotubes.
  • the gate insulating film of the present invention is made of an organic translation film or an inorganic insulating film
  • the organic insulating film is a polymethacrylate (PMMA, polymethylmethacrylate), polystyrene (PS, polystyrene), phenolic polymer, acrylic polymer, such as polyimide
  • PMMA polymethacrylate
  • PS polystyrene
  • phenolic polymer acrylic polymer, such as polyimide
  • imide polymer aryl ether polymer, amide polymer, fluorine polymer, p-xylene polymer, vinyl alcohol polymer, parylene
  • the inorganic insulating film is silicon
  • An oxide film, a silicon nitride film, Al 2 O 3 , Ta 2 O 5 , barium strontium titanate (BST), or lead zirconate titanate (PZT) is provided.
  • the gate electrode of the present invention is aluminum (Al), aluminum alloy (Al-alloy), molybdenum (Mo), molybdenum alloy (Mo-alloy), silver nanowire (silver nanowire), gallium indium eutectic ), PEDOT: PSS (poly (3,4-ethylenedioxythiophene): polystyrene sulfonate) provides a thin film transistor, characterized in that using any one.
  • the thin film transistor according to the present invention has the effect of reducing the trap of the semiconductor layer, and uniformly wrapped single-walled carbon nanotubes to improve the performance and uniformity of the device.
  • the thin film transistor according to the present invention is any one of single-walled carbon nanotube and DPP (diketopyrrolopyrrole), BDP (benzodipyrrolidone), Benzopyrazine and NDI (naphthalene diimide)
  • DPP diiketopyrrolopyrrole
  • BDP benzodipyrrolidone
  • Benzopyrazine Benzopyrazine
  • NDI naphthalene diimide
  • FIG. 1 shows a manufacturing process chart of a thin film transistor according to an embodiment of the present invention.
  • Figure 2 shows a manufacturing process of the organic semiconductor layer containing carbon nanotubes according to an embodiment of the present invention.
  • Figure 3 shows a schematic shape of the wrapped carbon nanotubes according to an embodiment of the present invention.
  • Figure 4 shows the Uv-vis spectra of carbon nanotubes dispersed in a floating solution.
  • FIG. 5 schematically shows the structure of a thin film transistor according to an embodiment of the present invention.
  • Figure 6 shows the FE-SEM picture of the carbon nanotubes wrapped in the organic semiconductor layer in Example 1.
  • the thin film transistor of the present invention has been described in a top gate bottom contact (TGC) structure, the thin film transistor is not limited thereto and may be applied to a bottom gate top contact (BGTC) structure.
  • TGC top gate bottom contact
  • BGTC bottom gate top contact
  • FIG. 1 shows a manufacturing process chart of a thin film transistor according to an embodiment of the present invention.
  • An organic thin film transistor having a top gate type provides a substrate, forms source / drain electrodes spaced apart from each other on the substrate, and then forms an organic semiconductor layer including carbon nanotubes to cover the source / drain electrodes. Forming a gate insulating film on the organic semiconductor layer, and forming a gate electrode on a portion of the gate insulating film.
  • a substrate is provided, and source / drain electrodes spaced apart from each other are formed on the substrate.
  • the substrate may be an n-type or p-type doped silicon wafer, glass substrate, polyethersulphone, polyacrylate, polyetherimide, polyimide, polyethylene terephthalate (polyethyeleneterepthalate), a plastic film selected from the group consisting of polyethylene naphthalate, and a glass substrate and a plastic film coated with indium tin oxide, but are not limited thereto.
  • the source / drain electrode may be formed of a single layer selected from Au, Al, Ag, Mg, Ca, Yb, Cs-ITO, or an alloy thereof, and may be Ti, Cr, or Ni to improve adhesion to the substrate. It may be formed in a multi-layer further comprising an adhesive metal layer, such as.
  • an adhesive metal layer such as.
  • the source / drain electrodes may be manufactured using a printing process such as inkjet printing or spraying. Through the printing process, the source / drain electrodes can be formed and the vacuum process can be excluded, thereby reducing the manufacturing cost.
  • An organic semiconductor layer including carbon nanotubes may be formed over the entire surface of the substrate including the source / drain electrodes.
  • the carbon nanotubes may be formed by wrapping fluorene or thiophene polymers. More specifically, the fluorene or thiophene polymer may include 0.0001 to 0.015 mg / ml of single-walled carbon nanotubes.
  • Figure 2 shows a manufacturing process of the organic semiconductor layer containing carbon nanotubes according to an embodiment of the present invention.
  • the method for preparing an organic semiconductor layer including carbon nanotubes includes a mixing step of mixing fluorene or thiophene polymer and single-wall carbon nanotube in a solvent; An ultrasonic treatment step of treating the mixed solution with ultrasonic waves; Separation step to separate the centrifuge to take a floating solution; And forming the organic semiconductor layer by mixing the suspension solution with any one of organic materials of DPP (diketopyrrolopyrrole) series, BDP (benzodipyrrolidone) series, Benzopyrazine series and NDI (naphthalene diimide) series.
  • DPP diiketopyrrolopyrrole
  • BDP benzodipyrrolidone
  • Benzopyrazine series Benzopyrazine series
  • NDI naphthalene diimide
  • the mixing step may be a mixture of fluorene or thiophene polymer and single-wall carbon nanotubes in a solvent.
  • the mixing step includes 4 to 6 mg of fluorene or thiophene polymer and 1.5 to 3.0 mg of single-wall carbon nanotube per 1 ml of solvent, and the mixing ratio of the fluorene or thiophene polymer and single-wall carbon nanotube is 3: It is preferable that it is 2-3.
  • the fluorene or thiophene polymer and the single-walled carbon nanotubes may be well dispersed and mixed in the solvent.
  • chloroform chlorobenzene
  • dichlorobenzene dichlorobenzene
  • trichlorobene xylene and the like
  • the mixed solution is treated with ultrasonic waves, which may be treated with 15 to 50 Hz, and may be treated with an ultrasonic treatment time of about 30 to 60 minutes.
  • Single-walled carbon nanotubes exhibit two properties, semiconducting and metallic.
  • the present invention can selectively utilize only semiconducting single-walled carbon nanotubes.
  • the ultrasonically treated material has a structure in which a fluorene or thiophene polymer is wrapped in a single-walled carbon nanotube, wherein only carbon nanotubes having semiconducting properties among the single-walled carbon nanotubes are combined with the fluorene or thiophene polymer. It will have a wrapped structure.
  • Figure 3 shows a schematic shape of the wrapped carbon nanotubes according to an embodiment of the present invention.
  • Fluorene or thiophene polymer is to surround the single-walled carbon nanotubes, it can be formed by twisting the polymer as shown in FIG.
  • Carbon nanotubes wrapped with fluorene or thiophene polymers have a lower specific gravity than other carbon nanotubes, so that they can be separated, and can be separated through a separation step.
  • the separation step is suspended over the wrapped carbon nanotubes through a centrifugal separator, and the suspended floating solution may be filtered to separate the carbon nanotubes wrapped with fluorene or thiophene polymers.
  • FIG. 4 shows the Uv-vis spectra of the carbon nanotubes dispersed in the suspended solution.
  • Figure 4 (a) using poly (9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) 4B illustrates a case in which a PFO is used.
  • semiconducting single-walled carbon nanotubes are found in the range of 1000-1400 nm, and metallic single-walled carbon nanotubes are found in the 500-600 nm range.
  • Centrifugation is preferably carried out at 8,000 ⁇ 10,000g, it is possible to form an organic semiconductor layer by taking a floating solution to be suspended by the centrifugation and mixed with an organic material.
  • the floating solution is a single-walled carbon nanotube wrapped with fluorene or thiophene polymer and includes organic materials of any one of DPP (diketopyrrolopyrrole), BDP (benzodipyrrolidone), Benzopyrazine and NDI (naphthalene diimide).
  • DPP dipyrrolopyrrole
  • BDP benzodipyrrolidone
  • Benzopyrazine Benzopyrazine
  • NDI naphthalene diimide
  • the present invention is a single-walled carbon nanotube and DPP (diketopyrrolopyrrole), BDP (benzodipyrrolidone), Benzopyrazine and NDI (naphthalene diimide)
  • DPP dipyrrolopyrrole
  • BDP benzodipyrrolidone
  • NDI naphthalene diimide
  • the organic semiconductor layer may be formed on the source / drain electrodes by a method such as spin coating, spray, inkjet, flexography, screen, dip-coating, and gravure.
  • the pattern may be formed on the electrode and the local region of the substrate, and heat treatment or optical exposure may be performed to improve device performance such as semiconductor crystallinity and stability after forming the organic semiconductor layer.
  • a gate insulating film may be formed over the entire surface of the organic semiconductor layer.
  • the gate insulating film may be included as a single film or a multilayer film of an organic insulating film or an inorganic insulating film or an organic-inorganic hybrid film.
  • the organic insulating film may be polymethacrylate (PMMA, polymethylmethacrylate), polystyrene (PS, polystyrene), phenolic polymer, acrylic polymer, imide polymer such as polyimide, arylether polymer, amide polymer, fluorine polymer, p -Use any one or more selected from xyrene-based polymer, vinyl alcohol-based polymer, parylene (parylene).
  • any one or more selected from silicon oxide film, silicon nitride film, Al 2 O 3 , Ta 2 O 5 , barium strontium titanate (BST), and lead zirconate titanate (PZT) is used.
  • a gate electrode may be formed in a portion of the gate insulating layer.
  • the gate electrode is aluminum (Al), aluminum alloy (Al-alloy), molybdenum (Mo), molybdenum alloy (Mo-alloy), silver nanowire (silver nanowire), gallium indium eutectic, PEDOT: It may be formed of any one selected from the PSS.
  • the gate electrode may use the above materials as an ink to manufacture the gate electrode using a printing process such as inkjet printing or spraying. Through such a printing process, a gate electrode can be formed and a vacuum process can be excluded, thereby reducing the manufacturing cost.
  • the thin film transistor according to the embodiment of the present invention can be completed.
  • FIG. 5 schematically shows the structure of a thin film transistor according to an embodiment of the present invention.
  • carbon nanotubes wrapped with fluorene or thiophene polymers are evenly dispersed.
  • Chloroform was prepared as a solvent, and PFO was used as the single-walled carbon nanotube and fluorene polymer.
  • the ultrasonicated material was centrifuged using a centrifuge.
  • the centrifugation was performed at 9,000 g for 5 minutes, and the suspended suspension was suspended to prepare fluorene-wrapped carbon nanotubes.
  • the carbon nanotubes wrapped in the fluorene polymer after the sonication step may be confirmed to be semiconducting.
  • a thin film transistor After forming source / drain electrodes spaced apart from each other on the substrate, an organic semiconductor layer formed to cover the source / drain electrodes is formed, and a gate insulating film is formed on the organic semiconductor layer. In addition, a thin film transistor is formed in which a gate electrode is formed on a portion of the gate insulating layer.
  • the organic semiconductor layer includes carbon nanotubes wrapped with fluorene or thiophene polymers, and an organic semiconductor layer was formed by mixing organic materials of N2200, which is a naphthalene diimide (NDI) series.
  • N2200 which is a naphthalene diimide (NDI) series.
  • a substrate was used as a glass substrate, and a source / drain electrode was formed on the substrate through a printing process.
  • the organic semiconductor layer was spin coated on the source / drain electrodes.
  • the thin film transistor was completed by forming PMMA as the gate insulating film and aluminum as the gate electrode.
  • Figure 6 shows the FE-SEM picture of the carbon nanotubes wrapped in the organic semiconductor layer in Example 1.
  • the thin film transistor manufactured as in Example 1 aligns uniformly wrapped single-walled carbon nanotubes to improve device performance and uniformity, and single-walled carbon nanotubes and DPPs wrapped with fluorene or thiophene polymers ( By using organic materials of any one of diketopyrrolopyrrole), BDP (benzodipyrrolidone), Benzopyrazine and NDI (naphthalene diimide), organic materials exist between the strands and strands of wrapped single-walled carbon nanotubes to lower the barrier. In addition, as the single-walled carbon nanotubes are uniformly aligned due to the organic material, the current flow is improved, thereby increasing the device performance.

Landscapes

  • Thin Film Transistor (AREA)

Abstract

본 발명은 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터에 관한 것으로 보다 상세하게는 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 포함하는 층으로, 상기 플루오렌 또는 티오펜 고분자는 반도체성질을 갖는 단일벽 탄소나노튜브만을 선택적으로 랩핑하는 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터를 제공한다.

Description

탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터
본 발명은 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터에 관한 것으로써, 보다 상세하게는 유기반도체층에 탄소나노튜브가 포함되어 전자소자의 성능을 향상시킨 박막트랜지스터에 관한 것이다.
최근 들어 휠 수 있는 디스플레이(flexible display)가 많은 관심을 받고 있다. 사람들은 어디서나 가지고 다닐 수 있으면서도 좀 더 큰 화면을 원하기 때문에 접거나 구부리거나, 말수 있는 디스플레이의 개발이 요구되고 있다. 또한 용액공정 및 롤투롤(Roll to Roll) 공정이 가능해지면 이러한 유연 디스플레이를 보다 낮은 제조 원가로 생산이 가능하게 된다. 하지만 이를 위해서는 플라스틱이나 스테인리스 스틸과 같이 휠 수 있는 기판을 사용해야 하는데 이를 위해서는 공정온도를 300℃ 이하의 온도로 낮추어줄 필요가 있다. 이러한 낮은 온도에서 제작이 가능한 구동회로용 트랜지스터로 최근 유기박막트랜지스터 (Organic Thin Film Transistor, OTFT)가 활발히 연구되고 있다. 특히 OTFT에서 활성 층으로 사용되는 공액분자는 대체적으로 일반적인 유기용매에 용해가 가능하여 인쇄나 용액공정을 통해서 소자의 제작이 가능하다. 또한 화학적인 구조를 물질의 설계단계에서 변경하여 원하는 전기적 특성을 제어할 수 있는 능력을 지니고 있다.
한편, 탄소나노튜브는 독특한 광학적, 기계적, 전기적 특성을 지녀서 다양한 분야로의 적용이 가능함에 따라 지난 25년간 활발히 연구되어 왔다. 특히 뛰어난 전기적 특성으로 인해 다양한 전자소자에 응용이 가능할 것으로 기대된다. 현재의 기술수준으로 보고된 용액공정이 가능한 반도체성 잉크 중에서 sc-SWCNT는 가장 높은 전하 이동도를 보인다. 잘 정렬된 한 가닥의 sc-SWCNT의 전하이동도는 이론적인 한계가 10,000cm2/Vs 으로 결정성 Si보다 훨씬 높다. 이와 같이 sc-SWCNT는 실리콘 소자에 비해 매우 우수한 전하이동도를 보유하기 때문에 차세대 초고속 트랜지스터를 만드는 것이 가능하다.
이러한 탄소나노튜브를 이용하여 박막트랜지스터를 제조함에 있어서 전자이동도 등이 좋아져 전자소자의 성능이 향상된 박막트랜지스터의 개발이 요구되었다.
선행문헌 : 한국공개특허 제2009-0108459호, 한국공개특허 제2011-0080776호
상기 문제점을 해결하기 위해 본 발명의 목적은 반도체 층의 트랩이 줄어들고, 랩핑된 단일벽 탄소나토튜브를 정렬하여 소자의 성능을 향상시킬 수 있는 박막트랜지스터를 제공하는데 있다.
본 발명의 다른 목적은 유기반도체층에는 단일벽 탄소나노튜브가 잘 분산시킬 수 있도록 하여 균일성이 향상된 박막트랜지스터를 제공하는데 있다.
상기 목적을 달성하기 위해 본 발명은 탄소나노튜브를 포함한 유기반도체층으로, 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 포함하는 층으로, 상기 플루오렌 또는 티오펜 고분자는 반도체성질을 갖는 단일벽 탄소나노튜브만을 선택적으로 랩핑하는 것을 특징으로 하는 탄소나노튜브가 포함된유기반도체층을 제공한다.
또한 본 발명의 상기 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브는 상기 단일벽 탄소나노튜브가 0.0001 ~ 0.015 mg/㎖가 포함된 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층을 제공한다.
또한 본 발명은 탄소나노튜브가 포함된 유기반도체층을 제조하는 방법에 있어서, 용매에 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브를 혼합하는 혼합단계; 혼합된 용액을 초음파 처리하는 초음파처리단계; 원심분리기로 분리하여 부유용액을 취하는 분리단계; 및 상기 부유용액을 DPP계열, BDP계열, Benzopyrazine계열 및 NDI계열 중 어느 하나의 고분자와 혼합하여 유기반도체층을 형성하는 형성단계를 포함하되, 상기 플루오렌 또는 티오펜 고분자가 반도체성의 단일벽 탄소나노튜브만을 선택적으로 랩핑하는 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층 제조방법을 제공한다.
또한 본 발명의 상기 혼합단계는 용매 1㎖ 당 공액고분자 4~6mg 및 단일벽 탄소나노튜브 1.5~3.0mg이 포함되며, 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브의 혼합비율은 3:2~3:1인 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층 제조방법을 제공한다.
또한 본 발명의 상기 부유용액은 상기 단일벽 탄소나노튜브가 0.0001 ~ 0.015 mg/㎖가 포함된 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층 제조방법을 제공한다.
또한, 본 발명은 기판; 상기 기판 상에 위치한 서로 이격되어 위치하는 소스/드레인 전극; 상기 소스/드레인 전극을 포함하는 기판 전면에 걸쳐 위치한 탄소나노튜브가 포함된 유기반도체층; 상기 유기반도체층 상의 전면에 위치하는 게이트 절연막; 및 상기 게이트 절연막 상에 위치한 게이트 전극; 을 포함하되, 상기 탄소나노튜브가 포함된 유기반도체층은 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 포함하는 층으로, 상기 플루오렌 또는 티오펜 고분자는 반도체성질을 갖는 단일벽 탄소나노튜브만을 선택적으로 랩핑하는 것을 특징으로 하는 박막트랜지스터를 제공한다.
또한 본 발명은 상기 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브는 상기 단일벽 탄소나노튜브가 0.0001 ~ 0.015 mg/㎖가 포함된 것을 특징으로 하는 박막트랜지스터를 제공한다.
또한 본 발명의 상기 게이트 절연막은 유기절역막 또는 무기절연막으로 이루어지되, 상기 유기절연막은 폴리메타아크릴레이트 (PMMA, polymethylmethacrylate), 폴리스타이렌(PS, polystyrene), 페놀계 고분자, 아크릴계 고분자, 폴리이미드와 같은 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계 고분자, p-자이리렌계 고분자, 비닐알콜계 고분자, 파릴렌(parylene) 중에서 선택되는 어느 하나 또는 다수개를 사용하며, 상기 무기절연막은 실리콘 산화막, 실리콘 질화막, Al2O3, Ta2O5, BST(barium strontium titanate), PZT(lead zirconate titanate) 중에서 선택되는 어느 하나 또는 다수개를 사용하는 것을 특징으로 하는 박막트랜지스터를 제공한다.
또한 본 발명의 상기 게이트 전극은 알루미늄(Al), 알루미늄 합금(Al-alloy), 몰리브덴(Mo), 몰리브덴 합금(Mo-alloy), 실버나노와이어(silver nanowire), 갈륨인듐유태틱(gallium indium eutectic), PEDOT:PSS(poly(3,4-ethylenedioxythiophene):polystyrene sulfonate) 중에서 선택되는 어느 하나를 사용하는 것을 특징으로 하는 박막트랜지스터를 제공한다.
본 발명에 따른 박막트랜지스터는 반도체 층의 트랩이 줄어들고, 균일하게 랩핑된 단일벽 탄소나토튜브를 정렬하여 소자의 성능향상과 균일성을 향상시킬 수 있는 효과가 있다.
본 발명에 따른 박막트랜지스터는 유기반도체층으로 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 사용함으로써 랩핑된 단일벽 탄소나노튜브의 가닥과 가닥 사이에 유기물질이 존재하여 장벽을 낮춰줄 뿐만 아니라, 유기물질로 인해 랩핑된 단일벽 탄소나노튜브가 일정하게 정렬됨에 따라 전류의 흐름이 좋아져 소자 성능이 증가하며, 균일성 또한 향상되는 효과가 있다.
또한 본 발명에 따른 유기반도체층에는 단일벽 탄소나노튜브가 잘 분산되어 있음을 확인할 수 있다.
도 1은 본 발명의 일실시예에 따른 박막트랜지스터를 제조 공정도를 나타낸 것이다.
도 2는 본 발명의 일실시예에 따른 탄소나노튜브가 포함된 유기반도체층의 제조공정도를 나타낸 것이다.
도 3은 본 발명의 일실시예에 따른 랩핑된 탄소나노튜브의 개략적인 형상을 나타낸 것이다.
도 4는 부유용액에 분산된 탄소나노튜브의 Uv-vis spectra를 나타낸 것이다.
도 5는 본 발명의 일실시예에 따른 박막트랜지스터의 구조를 개략적으로 나타낸 것이다.
도 6은 실시예 1에서 유기반도체층에 랩핑된 탄소나노튜브의 FE-SEM 사진을 나타낸 것이다.
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 발명의 박막트랜지스터는 TGBC(Top Gate Bottom Contact)구조에 설명하고 있지만, 이에 한정되는 것은 아니며 BGTC(Bottom Gate Top Contact)구조 등에서도 적용될 수 있다.
도 1는 본 발명의 일실시예에 따른 박막트랜지스터를 제조 공정도를 나타낸 것이다.
탑게이트 형태의 유기박막트랜지스터는 기판을 제공하고, 상기 기판 상에 서로 이격되게 소스/드레인 전극을 형성시킨 후, 상기 소스/드레인 전극을 덮도록 탄소나노튜브가 포함된 유기반도체층을 형성하고, 상기 유기반도체층 위에 게이트 절연막을 형성하고, 그리고 상기 게이트 절연막 상의 일부 영역에 게이트 전극을 형성하는 단계로 구성된다.
도 1을 참조하면, 기판을 제공하고, 상기 기판 상에 서로 이격되어 있는 소스/드레인 전극을 형성한다.
상기 기판은 n-형이나 p-형으로 도핑된 실리콘 웨이퍼, 유리기판, 폴리에테르술폰(polyethersulphone), 폴리아크릴레이트(polyacrylate), 폴리에테르 이미드 (polyetherimide), 폴리이미드(polyimide), 폴리에틸렌 테레프탈레이드 (polyethyeleneterepthalate), 폴리에틸렌 나프탈렌 (polyethylene naphthalate) 로 이루어진 그룹으로부터 선택되는 플라스틱 필름과 인듐틴옥사이드 (indium tin oxide) 가 코팅된 유리기판 및 플라스틱 필름을 포함하나, 이에 한정되지 않는다.
상기 소스/드레인 전극은 Au, Al, Ag, Mg, Ca, Yb, Cs-ITO 또는 이들의 합금 중에서 선택되는 단일층으로 형성될 수 있으며, 기판과의 접착성을 향상시키기 위하여 Ti, Cr 또는 Ni과 같은 접착 금속층을 더욱 포함하여 다중층으로 형성될 수 있다. 또한 그라핀(graphene), 카본나노튜브(CNT), PEDOT:PSS 전도성 고분자 실버나노와이어(silver nanowire) 등을 이용하여 기존의 금속보다 탄성에 더욱 유연한 소자를 제조할 수 있으며 위 물질들을 잉크로 사용하여 잉크젯 프린팅 또는 스프레이 등의 인쇄공정을 이용하여 소스/드레인 전극을 제조할 수 있다. 이러한 인쇄공정을 통해서 소스/드레인 전극을 형성하며 진공공정을 배제할 수 있어서 제조비용의 절감효과를 기대할 수 있다.
상기 소스/드레인 전극을 포함하는 기판 전면에 걸쳐 탄소나노튜브가 포함된 유기반도체층을 형성할 수 있다.
상기 탄소나노튜브는 플루오렌 또는 티오펜 고분자가 랩핑되어 형성될 수 있다. 보다 구체적으로 상기 플루오렌 또는 티오펜 고분자에 단일벽 탄소나노튜브가 0.0001 ~ 0.015 mg/㎖가 포함될 수 있다.
도 2는 본 발명의 일실시예에 따른 탄소나노튜브가 포함된 유기반도체층의 제조공정도를 나타낸 것이다.
탄소나노튜브가 포함된 유기반도체층의 제조방법은 용매에 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브를 혼합하는 혼합단계; 혼합된 용액을 초음파로 처리하는 초음파처리단계; 원심분리기로 분리하여 부유용액을 취하는 분리단계; 및 상기 부유용액을 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질과 혼합하여 유기반도체층을 형성하는 형성단계로 이루어질 수 있다.
먼저 혼합단계는 용매에 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브를 혼합할 수 있다. 상기 혼합단계는 용매 1㎖ 당 플루오렌 또는 티오펜 고분자 4~6mg 및 단일벽 탄소나노튜브 1.5~3.0mg이 포함시키며, 상기 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브의 혼합비율은 3:2~3:1인 것이 바람직하다.
상기 범위로 혼합할 경우 용매에 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브가 잘 분산되어 혼합될 수 있다.
상기 용매의 종류로는 클로로포름, 클로로벤젠, 다이클로로벤젠, 트리클로로벤제, 자일렌 등을 이용할 수 있다.
혼합된 용액은 초음파로 처리를 하는 데, 초음파 처리는 15 내지 50Hz로 처리할 수 있으며, 초음파 처리 시간으로는 30 ~ 60분정도 처리할 수 있다.
혼합된 용액을 초음파처리하게 되면 반도체성의 단일벽 탄소나노튜브에 플루오렌 또는 티오펜 고분자가 랩핑된 구조로 이루어진다.
단일벽 탄소나노튜브는 두 가지 성질을 나타내는 데, 반도체성 및 금속성의 성질을 갖는다. 본 발명은 반도체성의 단일벽 탄소나노튜브만을 선택적으로 골라내어 이를 활용할 수 있다. 초음파로 처리된 물질은 단일벽 탄소나노튜브에 플루오렌 또는 티오펜 고분자가 랩핑된 구조로 이루어지는 데, 이때 단일벽 탄소나노튜브 중 반도체성 성질을 갖는 탄소나노튜브만이 플루오렌 또는 티오펜 고분자와 랩핑된 구조를 띄게 된다.
도 3은 본 발명의 일실시예에 따른 랩핑된 탄소나노튜브의 개략적인 형상을 나타낸 것이다.
플루오렌 또는 티오펜 고분자가 단일벽 탄소나노튜브를 감싸게 되는 데, 도 3과 같이 고분자가 꼬여서 형성될 수 있다.
플루오렌 또는 티오펜 고분자가 랩핑된 탄소나노튜브는 다른 탄소나노튜브에 비해 비중이 낮아져서 이를 분리해 낼 수 있는 데, 분리단계를 통해 분리해 낼 수 있다.
분리단계는 원심분리기를 통해 랩핑된 탄소나노튜브 위로 부유하게 되는 데, 부유하게 된 부유용액을 걸러내어 플루오렌 또는 티오펜 고분자가 랩핑된 탄소나노튜브를 분리할 수 있다.
부유용액에 분산되어 있는 단일벽 탄소나노튜브는 반도체성의 탄소나노튜브가 랩핑된 것임을 확인할 수 있는 데, 도 4는 부유용액에 분산된 탄소나노튜브의 Uv-vis spectra를 나타낸 것이다.
부유용액에 분산되어 있는 단일벽 탄소나노튜브를 살펴보면 반도체성의 단일벽 탄소나노튜브임을 확인할 수 있는 데, 도 4의 (a)는 poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)를 사용한 경우이고, 도 4의 (b)는 PFO를 사용한 경우이다.
Uv-vis spectra에서 반도체성의 단일벽 탄소나노튜브는 1000~1400 nm 범위에서 발견되고, 금속성의 단일벽 탄소나노튜브는 500~600 nm 범위에서 발견된다.
도 4를 참조하면, Uv-vis spectra에서 500~600nm 범위의 peak는 보이지 않고 1000~1400 nm범위의 peak가 발견되기 때문에 부유용액내에 반도체성의 단일벽 탄소나노튜브가 포함되어 있는 것을 확인할 수 있다.
원심분리는 8,000 ~ 10,000g로 실시하는 것이 바람직하며, 상기 원심분리를 통해 부유하게 되는 부유용액을 취하여 유기물질과 혼합하여 유기반도체층을 형성할 수 있다.
이 때 부유용액은 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브이며 여기에 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 혼합함으로써 유기반도체층을 물질을 제조할 수 있다.
즉 본 발명은 유기반도체층으로 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 사용함으로써 탄소나노튜브의 가닥과 가닥 사이에 유기물질이 존재하여 장벽을 낮춰줄 뿐만 아니라, 유기물질로 인해 랩핑된 단일벽 탄소나노튜브가 일정하게 분산 정렬됨에 따라 전류의 흐름이 좋아져 소자 성능이 증가하며, 균일성 또한 향상될 수 있다. 만일, 고분자를 랩핑한 단일벽 탄소나노튜브만을 반도체 층으로 형성하게 되면, 단일벽 탄소나노튜브가 랜덤하게 형성되고, 이를 통해 전류가 흐르게 되는데 소자마다 형성된 랩핑된 탄소나노튜브가 일정하지 않고, 랩핑된 단일벽 탄소나노튜브 가닥과 가닥 사이의 장벽으로 인해 전류의 흐름이 원활하지 못하고 소자 특성이 불균일하게 되는 문제점이 발생할 수 있다.
상기 유기반도체층은 스핀코팅, 스프레이(Spray), 잉크젯(Inkjet), 플렉소그라피(Flexography), 스크린(Screen), Dip-Coating 및 Gravure 등의 방법을 통해 소스/드레인 전극위에 형성될 수 있다. 이는 전극 상 및 기판의 국부적인 영역에 패턴을 형성할 수 있으며, 유기반도체층 형성 후 반도체 결정성 및 안정성 등의 소자 성능을 향상시키기 위해 열처리나 광학적 노출(exposure) 등을 시행할 수 있다.
상기 유기반도체층의 상부에는 전면에 걸쳐서 게이트 절연막을 형성할 수 있다.
상기 게이트 절연막은 유기절연막 또는 무기절연막의 단일막 또는 다층막으로 포함되거나 유-무기 하이브리드 막으로 포함된다. 상기 유기절연막으로는 폴리메타아크릴레이트 (PMMA, polymethylmethacrylate), 폴리스타이렌(PS, polystyrene), 페놀계 고분자, 아크릴계 고분자, 폴리이미드와 같은 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계 고분자, p-자이리렌계 고분자, 비닐알콜계 고분자, 파릴렌(parylene) 중에서 선택되는 어느 하나 또는 다수개를 사용한다. 상기 무기절연막으로는 실리콘 산화막, 실리콘 질화막, Al2O3, Ta2O5, BST(barium strontium titanate), PZT(lead zirconate titanate) 중에서 선택되는 어느 하나 또는 다수개를 사용한다.
상기 게이트 절연막상 일부영역에는 게이트 전극을 형성할 수 있다. 상기 게이트 전극은 알루미늄(Al), 알루미늄 합금(Al-alloy), 몰리브덴(Mo), 몰리브덴 합금(Mo-alloy), 실버나노와이어(silver nanowire), 갈륨인듐유태틱(gallium indium eutectic), PEDOT:PSS 중에서 선택되는 어느 하나로 형성할 수 있다. 상기 게이트 전극은 위 물질들을 잉크로 사용하여 잉크젯 프린팅 또는 스프레이 등의 인쇄공정을 이용하여 게이트 전극을 제조할 수 있다. 이러한 인쇄공정을 통해서 게이트 전극을 형성하며 진공공정을 배제할 수 있어서 제조비용의 절감효과를 기대할 수 있다.
이로써 본 발명의 일실시예에 따른 박막트랜지스터를 완성될 수 있다.
도 5는 본 발명의 일실시예에 따른 박막트랜지스터의 구조를 개략적으로 나타낸 것이다.
유기반도체층 내에 플루오렌 또는 티오펜 고분자가 랩핑된 탄소나노튜브가 골고루 분산되어 포함되어 있다.
이와 같이 유기반도체층에 플루오렌 또는 티오펜 고분자가 랩핑된 탄소나노튜브를 포함시키게 되면 트랩이 줄어들게 되어 전하이동도가 좋게 된다. 결국 전자소자의 성능이 향상되는 효과가 있다.
이하 본 발명의 실시예에 대하여 자세히 설명한다.
실시예 1
플루오렌 또는 티오펜 고분자가 랩핑된 탄소나노튜브 제조
용매로 클로로포름을 준비하고, 단일벽 탄소나노튜브 및 플루오렌 고분자로 PFO를 이용하였다.
클로로포름 1㎖ 당 PFO 4mg, 단일벽 탄소나노튜브 2mg을 혼합하였다. 이때 단일벽 탄소나노튜브는 금속성 및 반도체성의 성질이 골고루 섞여 있는 탄소나노튜브를 이용하였다.(혼합단계) 혼합된 용액을 초음파 처리하는 데 먼저 ultrasonication bath에서 20Hz로 30분간 실시한 후 Tip sonicator로 15분간 초음파 처리한다.(초음파처리단계)
초음파 처리된 물질을 원심분리기를 이용하여 원심분리하는 데, 원심분리는 9,000 g로 하여 5분간 실시하고 부유된 부유용액을 취하여 플루오렌이 랩핑된 탄소나노튜브를 제조하였다.
이 경우 초음파 처리단계 이후에 플루오렌 고분자에 랩핑된 탄소나노튜브는 모두 반도체성인 것을 확인할 수 있다.
박막트랜지스터 제조
박막트랜지스터를 제조하는 데 있어, 상기 기판 상에 서로 이격되게 소스/드레인 전극을 형성시킨 후, 상기 소스/드레인 전극을 덮도록 형성된 유기반도체층을 형성하고, 상기 유기반도체층 위에 게이트 절연막을 형성하고, 그리고 상기 게이트 절연막 상의 일부 영역에 게이트 전극을 형성하는 박막트랜지스터를 제조하였다.
상기 유기반도체층은 플루오렌 또는 티오펜 고분자가 랩핑된 탄소나노튜브가 포함되며, 여기에 NDI(naphthalene diimide)계열인 N2200의 유기물질을 혼합하여 유기반도체층을 형성하였다.
또한, 기판은 유리기판을 이용하였으며, 기판 상에 인쇄 공정을 통해서 소스/드레인 전극을 형성하였다. 소스/드레인 전극 상에 유기반도체층 스핀코팅을 통해 형성하였다. 또한, 게이트 절연막으로는 PMMA, 게이트 전극은 알루미늄(Al)으로 형성하여 박막트랜지스터를 완성하였다.
도 6은 실시예 1에서 유기반도체층에 랩핑된 탄소나노튜브의 FE-SEM 사진을 나타낸 것이다.
도 6을 살펴보면, 랩핑된 단일벽 탄소나노튜브가 반도체층의 박막에 잘 분산되어 있는 것을 확인할 수 있다.
실시예 1과 같이 제조된 박막트랜지스터는 균일하게 랩핑된 단일벽 탄소나토튜브를 정렬하여 소자의 성능향상과 균일성을 향상시키며, 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 사용함으로써 랩핑된 단일벽 탄소나노튜브의 가닥과 가닥 사이에 유기물질이 존재하여 장벽을 낮춰줄 뿐만 아니라, 유기물질로 인해 랩핑된 단일벽 탄소나노튜브가 일정하게 정렬됨에 따라 전류의 흐름이 좋아져 소자 성능이 증가하는 효과가 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.

Claims (9)

  1. 탄소나노튜브를 포함한 유기반도체층으로,
    플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 포함하는 층으로,
    상기 플루오렌 또는 티오펜 고분자는 반도체성질을 갖는 단일벽 탄소나노튜브만을 선택적으로 랩핑하는 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층.
  2. 제1항에 있어서,
    상기 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브는 상기 단일벽 탄소나노튜브가 0.0001 ~ 0.015 mg/㎖가 포함된 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층.
  3. 탄소나노튜브가 포함된 유기반도체층을 제조하는 방법에 있어서,
    용매에 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브를 혼합하는 혼합단계;
    혼합된 용액을 초음파 처리하는 초음파처리단계;
    원심분리기로 분리하여 부유용액을 취하는 분리단계; 및
    상기 부유용액을 DPP계열, BDP계열, Benzopyrazine계열 및 NDI계열 중 어느 하나의 고분자와 혼합하여 유기반도체층을 형성하는 형성단계를 포함하되,
    상기 플루오렌 또는 티오펜 고분자가 반도체성의 단일벽 탄소나노튜브만을 선택적으로 랩핑하는 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층 제조방법.
  4. 제3항에 있어서,
    상기 혼합단계는 용매 1㎖ 당 공액고분자 4~6mg 및 단일벽 탄소나노튜브 1.5~3.0mg이 포함되며, 플루오렌 또는 티오펜 고분자와 단일벽 탄소나노튜브의 혼합비율은 3:2~3:1인 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층 제조방법.
  5. 제3항에 있어서,
    상기 부유용액은 상기 단일벽 탄소나노튜브가 0.0001 ~ 0.015 mg/㎖가 포함된 것을 특징으로 하는 탄소나노튜브가 포함된 유기반도체층 제조방법.
  6. 기판;
    상기 기판 상에 위치한 서로 이격되어 위치하는 소스/드레인 전극;
    상기 소스/드레인 전극을 포함하는 기판 전면에 걸쳐 위치한 탄소나노튜브가 포함된 유기반도체층;
    상기 유기반도체층 상의 전면에 위치하는 게이트 절연막; 및
    상기 게이트 절연막 상에 위치한 게이트 전극; 을 포함하되,
    상기 탄소나노튜브가 포함된 유기반도체층은 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브 및 DPP(diketopyrrolopyrrole)계열, BDP(benzodipyrrolidone)계열, Benzopyrazine계열 및 NDI(naphthalene diimide)계열 중 어느 하나의 유기물질을 포함하는 층으로, 상기 플루오렌 또는 티오펜 고분자는 반도체성질을 갖는 단일벽 탄소나노튜브만을 선택적으로 랩핑하는 것을 특징으로 하는 박막트랜지스터.
  7. 제6항에 있어서,
    상기 플루오렌 또는 티오펜 고분자가 랩핑된 단일벽 탄소나노튜브는 상기 단일벽 탄소나노튜브가 0.0001 ~ 0.015 mg/㎖가 포함된 것을 특징으로 하는 박막트랜지스터.
  8. 제6항에 있어서,
    상기 게이트 절연막은 유기절역막 또는 무기절연막으로 이루어지되,
    상기 유기절연막은 폴리메타아크릴레이트 (PMMA, polymethylmethacrylate), 폴리스타이렌(PS, polystyrene), 페놀계 고분자, 아크릴계 고분자, 폴리이미드와 같은 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계 고분자, p-자이리렌계 고분자, 비닐알콜계 고분자, 파릴렌(parylene) 중에서 선택되는 어느 하나 또는 다수개를 사용하며,
    상기 무기절연막은 실리콘 산화막, 실리콘 질화막, Al2O3, Ta2O5, BST(barium strontium titanate), PZT(lead zirconate titanate) 중에서 선택되는 어느 하나 또는 다수개를 사용하는 것을 특징으로 하는 박막트랜지스터.
  9. 제6항에 있어서,
    상기 게이트 전극은 알루미늄(Al), 알루미늄 합금(Al-alloy), 몰리브덴(Mo), 몰리브덴 합금(Mo-alloy), 실버나노와이어(silver nanowire), 갈륨인듐유태틱(gallium indium eutectic), PEDOT:PSS(poly(3,4-ethylenedioxythiophene):polystyrene sulfonate) 중에서 선택되는 어느 하나를 사용하는 것을 특징으로 하는 박막트랜지스터.
PCT/KR2016/012502 2015-11-05 2016-11-02 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터 WO2017078390A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150155311A KR101735207B1 (ko) 2015-11-05 2015-11-05 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터
KR10-2015-0155311 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078390A1 true WO2017078390A1 (ko) 2017-05-11

Family

ID=58662218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012502 WO2017078390A1 (ko) 2015-11-05 2016-11-02 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터

Country Status (2)

Country Link
KR (1) KR101735207B1 (ko)
WO (1) WO2017078390A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074963A (zh) * 2018-03-08 2020-12-11 Clap有限公司 半导体性单壁碳纳米管及包括有机半导体材料的有机场效应晶体管

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319360B1 (ko) 2017-09-28 2021-10-29 주식회사 엘지화학 전기 변색 복합체, 이를 포함하는 전기 변색 소자 및 전기 변색 소자의 제조방법
WO2023146229A1 (ko) * 2022-01-25 2023-08-03 포항공과대학교 산학협력단 반도체성 단일벽 탄소나노튜브를 갖는 감지층을 포함하는 저항형 수소센서 및 그의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015584A (ko) * 2008-05-01 2011-02-16 더 리젠츠 오브 더 유니버시티 오브 미시간 중합체-래핑된 탄소 나노튜브 근적외선 광기전력 디바이스
KR101151096B1 (ko) * 2006-11-30 2012-06-01 삼성전자주식회사 표면 수식된 탄소나노튜브를 이용한 유기박막 트랜지스터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151096B1 (ko) * 2006-11-30 2012-06-01 삼성전자주식회사 표면 수식된 탄소나노튜브를 이용한 유기박막 트랜지스터
KR20110015584A (ko) * 2008-05-01 2011-02-16 더 리젠츠 오브 더 유니버시티 오브 미시간 중합체-래핑된 탄소 나노튜브 근적외선 광기전력 디바이스

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KRONEMEIJER, AUKE J. ET AL.: "Two-Dimensional Carrier Distribution in Top-Gate Polymer Field-Effect Transistors: Correlation between Width of Density of Localized States and Urbach Energy", ADVANCED MATERIALS, vol. 26, 30 October 2013 (2013-10-30), pages 728 - 733, XP055382531 *
LEE, SEUNG-HOON ET AL.: "Simultaneous Improvement of Hole and Electron Injection in Organic Field-effect Transistors by Conjugated Polymer-wrapped Carbon Nanotube Interlayers", SCIENTIFIC REPORTS, vol. 5, 22 May 2015 (2015-05-22), pages 10407, XP055382523 *
LI, YUNING ET AL.: "High Mobility Diketopyrrolopyrrole (DPP)-based Organic Semiconductor Materials for Organic Thin Film Transistors and Photovoltaics", ENERGY AND ENVIRONMENTAL SCIENCE, 17 April 2013 (2013-04-17), pages 1684 - 1710, XP055382527 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074963A (zh) * 2018-03-08 2020-12-11 Clap有限公司 半导体性单壁碳纳米管及包括有机半导体材料的有机场效应晶体管

Also Published As

Publication number Publication date
KR101735207B1 (ko) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2015174749A1 (ko) 탄소나노튜브 층간층, 이의 제조방법 및 이를 이용한 박막트랜지스터
JP2011082517A (ja) 電子デバイス、薄膜トランジスタおよび半導体層を形成させるためのプロセス
WO2010071268A1 (en) Method of manufacturing multilayered thin film through phase separation of blend of organic semiconductor/insulating polymer and organic thin film transistor using the same
KR101887167B1 (ko) 전자 장치
US20070215957A1 (en) Gate dielectric structure and an organic thin film transistor based thereon
WO2016148460A1 (ko) 듀얼게이트 박막트랜지스터
WO2017078390A1 (ko) 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터
JP2009260340A (ja) 薄膜トランジスタ
US8319206B2 (en) Thin film transistors comprising surface modified carbon nanotubes
EP2117059B1 (en) Organic Thin Film Transistors
WO2010071267A1 (en) Method of manufacturing organic semiconductor nanofibrillar network dispersed in insulating polymer using a blend of organic semiconductor/insulating polymer and organic thin film transistor using the same
WO2014027854A1 (ko) iCVD 공정을 이용한 절연막 형성 방법
CN101253609A (zh) 晶体管及其制造方法、以及具有该晶体管的半导体装置
WO2012043912A1 (ko) 스프레이 방식을 이용한 박막트랜지스터 및 전자회로를 제조하는 방법
WO2012169696A1 (ko) 바코팅을 이용한 유기반도체 박막의 제조방법
WO2016010332A1 (ko) 도펀트의 선택적 인쇄에 따른 트랜지스터 제조방법
JP5715664B2 (ja) 有機半導体組成物
WO2017176003A1 (ko) 탄소나노튜브를 포함하는 반도체 잉크 조성물 및 그의 박막트랜지스터 제조 방법
WO2011139006A1 (ko) 전하 주입성을 향상시킨 유기박막트랜지스터 및 이의 제조방법
KR20180110405A (ko) 탄소나노튜브가 포함된 산화물반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터
JP2013058599A (ja) 有機半導体素子用電極及びその製造方法
CN104371206B (zh) 交联聚苯乙烯材料及其制备方法、用途
KR101113166B1 (ko) 유기 광트랜지스터
KR20180048236A (ko) 랩핑된 탄소나노튜브가 포함된 유기반도체층, 이의 제조방법 및 이를 이용한 박막트랜지스터
Dong et al. Enrichment and immobilization of semiconducting single-walled carbon nanotubes by dopamine functionalized conjugated polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862406

Country of ref document: EP

Kind code of ref document: A1