KR101113166B1 - 유기 광트랜지스터 - Google Patents

유기 광트랜지스터 Download PDF

Info

Publication number
KR101113166B1
KR101113166B1 KR1020100053205A KR20100053205A KR101113166B1 KR 101113166 B1 KR101113166 B1 KR 101113166B1 KR 1020100053205 A KR1020100053205 A KR 1020100053205A KR 20100053205 A KR20100053205 A KR 20100053205A KR 101113166 B1 KR101113166 B1 KR 101113166B1
Authority
KR
South Korea
Prior art keywords
poly
bis
organic semiconductor
phototransistor
semiconductor material
Prior art date
Application number
KR1020100053205A
Other languages
English (en)
Other versions
KR20110133686A (ko
Inventor
김영규
황혜민
남성호
김화정
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020100053205A priority Critical patent/KR101113166B1/ko
Publication of KR20110133686A publication Critical patent/KR20110133686A/ko
Application granted granted Critical
Publication of KR101113166B1 publication Critical patent/KR101113166B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/474Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
    • H10K10/476Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure comprising at least one organic layer and at least one inorganic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 유기 광트랜지스터에 관한 것으로서, p형 유기 반도체 물질 및 n형 유기 반도체 물질을 포함하는 유기 반도체 박막층을 포함함으로써, 낮은 강도의 광에도 민감하게 반응할 수 있고, 나아가 소스-드레인 전압 및 게이트 전압에 따라 빛의 센싱을 용이하게 제어할 수 있다.

Description

유기 광트랜지스터{ORGAINC PHOTOTRANSISTOR}
본 발명은 낮은 강도의 광 (光)에도 민감하게 반응하는 유기 광트랜지스터에 관한 것이다.
일반적으로 광트랜지스터는 외부에서 입력되는 광이 전류로 변환되어 (광기전력효과) 증폭되는 특성으로 출력 전류를 얻을 수 있다. 광트랜지스터는 광이 입력되면 전류가 발생하는 소자 중 하나인 포토 다이오드 (2극 소자)에 비해 응답속도는 떨어지지만, 3극 소자이기 때문에 입력된 광이 전류로 변환 증폭되어 출력으로 나타나기 때문에 감도가 좋아 광 센서로 이용될 수 있다.
이러한 광트랜지스터는 통상적으로 기판, 게이트 전극, 절연층, 반도체층, 소스 전극 및 드레인 전극을 포함하며, 소스 전극과 드레인 전극이 반도체층 윗부분에 형성되는 Top contact 구조와 소스 전극과 드레인 전극이 반도체층 아랫부분에 형성되는 Bottom contact 구조로 나눌 수 있다.
여기서, 광감지층 (photosensitive layer)으로 작용하는 반도체층은 일반적으로 비정질 실리콘 (a-Si:H)과 같은 무기 반도체 물질을 사용하여 형성되어 왔다. 그러나, 최근 디스플레이의 대면적화, 저가격화 및 유연화에 따라 고가격이면서 고온 진공 프로세스를 필요로 하는 무기계 반도체 물질에서 유기계 반도체 물질로 변화되고 있다. 이에, 다양한 유기계 반도체 물질을 개발하여 광트랜지스터 소자의 특성, 예컨대 증폭률 (전류이득), 누설전류, 응답속도, 항복전압 등을 개선시킴으로써, 광트랜지스터의 응용분야를 확대하려는 시도가 있다.
본 발명자들은 p형 유기 반도체 물질과 n형 유기 반도체 물질이 혼합된 블렌드 용액을 이용하여 유기 반도체 박막층을 형성함으로써, 낮은 강도의 광에도 민감하여 반응하는 고효율의 유기 광트랜지스터를 제공하고자 한다.
본 발명은 기판, 게이트 전극, 게이트 절연층, 유기 반도체 박막층 및 소스-드레인 전극을 포함하는 유기 광트랜지스터 (organic phototransistor)에 있어서, 상기 유기 반도체 박막층은 p형 유기 반도체 물질 및 n형 유기 반도체 물질을 포함하는 것이 특징인 유기 광트랜지스터를 제공한다.
본 발명의 유기 광트랜지스터는 p형 유기 반도체 물질 및 n형 유기 반도체 물질을 포함하는 유기 반도체 박막층을 포함함으로써, 낮은 강도의 광에도 민감하게 반응할 수 있고, 나아가 소스-드레인 전압 및 게이트 전압에 따라 빛의 센싱을 용이하게 제어할 수 있다.
도 1은 본 발명의 일례에 따른 유기 광트랜지스터의 개략적인 단면도이다.
도 2는 본 발명의 일례에 따른 유기 광트랜지스터의 빛의 강도가 일정 (9.4nW/cm2, 470nm)할 때의 출력 곡선 (Output Curve)이다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명은 유기 광트랜지스터의 구성 요소로서, p형 유기 반도체 물질 및 n형 유기 반도체 물질이 포함된 블렌드로 형성된 유기 반도체 박막층을 사용하는 것을 특징으로 한다. 기존의 유기광다이오드나 유기태양전지의 경우 p형 유기고분자 반도체와 n형 단분자 C60 유도체의 혼합으로 이루지고 있었다. 그러나, 본 발명은 p형, n형 고분자 반도체를 바탕으로 하여, p형 과 n 형 반도체의 접합 표면적이 넓어지기 때문에 빛을 받아서 생기는 여기자 (exciton)이 효율적으로 분리 (separation)될 확률이 높아지게 될 수 있다.
본 발명에서 사용 가능한 p형 유기 반도체 물질은 정공의 이동도 (hole mobility)가 높은 고분자 물질이면 특별히 제한하지 않는다. 이러한 p형 유기 반도체 물질의 비제한적인 예로는 고분자물질로서 폴리(3-헥실티오펜)[poly(3-hexylthiophene), P3HT], 폴리(9,9-디옥틸플루오렌)[poly(9,9-dioctyl fluorene), F8], 폴리(9,9-디옥틸플루오렌-알트-바이싸이오펜)[poly(9,9-dioctylfluorene-alt-bithiophene),F8T2], 폴리(9.9-디옥틸플루오렌-알트-벤조티아디아졸)[poly(9,9-dioctylfluorene- alt-benzothiadiazole),F8BT], 폴리(2-메톡시-5-(3,7-디메틸옥토시-p-페닐렌비닐렌)[poly(2-methoxy-5-(3,7-dimethyloctoxy)-p-phenylenevinylene), OC1C10-PPV], 폴리(2-메톡시-5-(2-에틸헥옥시)-1,4-페닐렌비닐렌) [poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene), MEH-PPV], 폴리(3-헥실티오펜)[poly(3-hexylthiophene)], 및 폴리(3,3’’’-다이도데실쿼터싸이오펜[poly(3,3’’’-didodecylquaterthiophene), PQT-12], 단분자 물질로서 비스(트리이소필실릴에티닐)펜타신[bis(triisopropylsilylethynyl) pentacene (TIPS-PEN)], 비스(트리에틸실릴에티닐)-안트라디티오펜[bis(triethylsilylethynyl)-anthradithiophene(TES-ADT)], 펜타신 (pentacene), 테트라센 (tetracene), 루브렌 (rubrene), 및 5-클로로테트라 센 (5-chlorotetracene)등이 있다.
상기 p형 유기 반도체 물질의 수평균 분자량은 약 5,000 내지 50,000인 것이 적절하다.
또한, 본 발명에서 사용 가능한 n형 유기 반도체 물질은 전자의 이동도 (electron mobility)가 높은 고분자이면 특별히 제한되지 않는다. 이러한 n형 유기 반도체 물질의 비제한적인 예로는 고분자로서 폴리(9,9-디옥틸플루오렌-co-벤즈티아디아졸)[poly(9,9-dioctyfluorene-co-benzthiadiazole), F8BT], 폴리(비스벤즈미다조벤조페난트롤린[poly(bisbenzimidazobenzophenanthroline), BBB], 단분자로서 페르플루오르카퍼프탈로시아닌 [perfluorocopperphthalocyanine (FPcCu)], 3’,4’-디부틸- 5,5’’-비스(디시 아노 메틸렌)-5,5’’-디하이드로-2,2’:5’,-2’’-테티오펜[3’,4’-dibutyl-5,5’’-bis(dicyanomethylene)-5,5’’-dihydro-2,2’:5’,-2’’-terthiophene, QM3T], 디펄플루오르헥실올리고티오펜 [diperfluorohexyloligothiophene, DFH-nT], 2,7-[비스(5-펄플루오르헥실카보닐-티엔-2-일)]-4H-시클로펜타-[2,1-b:3,4-b’]-디티오펜-4-one{2,7-[bis(5-perfluorohexylcarbonyl-thien-2-yl)] -4H-cyclopenta-[2,1-b:3,4-b’]-dithiophen-4-one, DFHCO-4TCO}, 폴리(비스벤즈미다조벤조페난트롤린[poly(bisbenzimidazobenzophenanthroline), BBB], 디시아노페닐렌-비스[디카복시마이드] [dicyanoperylene-bis [dicarboximide], DPI-CN], 및 나프탈렌 테트라카르복시산 다이이미드 [naphthalene tetracarboxylic diimide, NTCDI] 등이 있다.
상기 n형 유기 반도체 물질의 수평균 분자량은 약 5,000 내지 50,000인 것이 적절하다.
상기 p형 유기 반도체 물질(a)과 n형 유기 반도체 물질(b)의 혼합 비율은 p형 유기 반도체 물질(a)과 n형 유기 반도체 물질(b)마다 다르나, a : b = 5 ~ 95 : 95 ~ 5 중량 비율로 혼합하는 것이 바람직하다.
또한 본 발명은 상기 유기 반도체 박막층이 전술한 p형 유기 반도체 물질과 n형 유기 반도체 물질 이외에 유기 광트랜지스터의 전하 이동도를 높여 광특성을 높이기 위한 부가물질을 첨가할 수 있다.
부가물질로서는 유기물로는 p형 유기 반도체 물질과 n형 유기 반도체 물질 이외 서로 다른 p형 고분자 또는 n형 고분자, 단분자, 무기물 등이 있다.
상기 부가물질은 부가물질마다 중량비를 달리하여야 하나, p형 유기 반도체 물질과 n형 유기 반도체 물질의 혼합물 100 중량부를 기준으로 5~95 중량부 범위로 첨가되는 것이 바람직하다.
상기 단분자로는 이에 제한되지 않으나, 비스(트리이소필실릴에티닐)펜타신[bis(triisopropylsilylethynyl) pentacene (TIPS-PEN)], 비스(트리에틸실릴에티닐)-안트라디티오펜[bis(triethylsilylethynyl)-anthradithiophene(TES-ADT)], 펜타신( pentacene), 테트라센(tetracene), 루브렌(rubrene), 및 5-클로로테트라 센(5-chlorotetracene),페르플루오르카퍼프탈로시아닌 [perfluorocopperphthalocyanine (FPcCu)], 3’,4’-디부틸- 5,5’’-비스(디시 아노 메틸렌)-5,5’’-디하이드로-2,2’:5’,-2’’-테티오펜[3’,4’-dibutyl-5,5’’-bis(dicyanomethylene)-5,5’’-dihydro-2,2’:5’,-2’’-terthiophene, QM3T], 디펄플루오르헥실올리고티오펜 [diperfluorohexyloligothiophene, DFH-nT], 2,7-[비스(5-펄플루오르헥실카보닐-티엔-2-일)]-4H-시클로펜타-[2,1-b:3,4-b’]-디티오펜-4-one{2,7-[bis(5-perfluorohexylcarbonyl-thien-2-yl)] -4H-cyclopenta-[2,1-b:3,4-b’]-dithiophen-4-one, DFHCO-4TCO}, 폴리(비스벤즈미다조벤조페난트롤린[poly(bisbenzimidazobenzophenanthroline), BBB], 디시아노페닐렌-비스[디카복시마이드] [dicyanoperylene-bis [dicarboximide], DPI-CN], 및 나프탈렌 테트라카르복시산 다이이미드 [naphthalene tetracarboxylic diimide, NTCDI] 등을 예로들 수 있다.
상기 무기물로는 이에 제한되지 않으나, 나노파티클 (nanoparticle), 나노로드 (nanorod), 나노와이어 (nanowire)등이 있고, 보다 구체적으로 Si Nanoparticle, Si Nanowire, ZnO Nanoparticle, ZnO Nanowire, TiO2 Nanowire, TiO2 Nanoparticle 등을 예로 들 수 있다.
전술한 본 발명의 유기 반도체 박막층은 용액 도포법, 스크린 인쇄법, 프린팅법, 스핀코팅법, 딥핑법, 잉크분사법 등과 같이 다양한 방법에 의해서 제조될 수 있다. 예를 들어, p형 유기 반도체 물질과 n형 유기 반도체 물질을 용매에 용해시켜 준비된 고분자 블렌드 용액을 게이트 절연막 위에 소정의 두께로 도포한 후, 용매를 증발시켜 유기 반도체 박막층을 형성할 수 있다.
본 발명에서 사용 가능한 용매는 클로로포름, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 톨루엔, 다이메틸포름아마이드 등이 있는데, 이에 제한되지 않는다.
p형 유기 반도체 물질과 n형 유기 반도체 물질이 용매에 대한 용해도가 좋고, 고분자 물질이기 때문에 서로 얽혀 분리가 잘 일어나지 않아 층 분리가 일어나지 않게 된다.
상기 유기 반도체 박막층의 두께는 10 내지 300 nm 범위인 것이 적절하다.
한편, 본 발명은 전술한 유기 반도체 박막층과 더불어, 기판, 게이트 전극, 게이트 절연막층 및 소스-드레인 전극을 포함하는 유기 광트랜지스터를 제공한다.
구체적으로, 본 발명에 따른 유기 광트랜지터는 다음과 같은 구조를 가질 수 있는데, 이에 제한되지 않는다.
본 발명의 일례에 따른 유기 광트랜지스터는 도 1에 도시된 바와 같이, 기판(16); 상기 기판 상에 형성된 게이트 전극(15); 상기 게이트 전극을 감싸고, 상기 기판 상에 형성된 게이트 절연막층(14); 상기 게이트 절연막층 상에 형성된 유기 반도체 박막층(13); 상기 유기 반도체 박막층 상에 상호 이격되어 형성된 소스 전극(11)과 드레인 전극(12); 및 채널(17)을 포함하는 Top contact 형 구조일 수 있다.
또, 본 발명의 다른 일례에 따른 유기 광트랜지스터는 기판; 상기 기판 상에 형성된 게이트 전극; 상기 게이트 전극을 감싸고, 상기 기판 상에 형성된 게이트 절연막층; 상기 게이트 절연막층 상에 상호 이격되어 형성된 소스 전극과 드레인 전극; 및 상기 소스-드레인 전극 및 소스-드레인 전극 사이에 노출된 게이트 절연막층 부위 위에 형성된 유기 반도체 박막층을 포함하는 Bottom contact형 구조 (도시 되지 않음)일 수 있다.
본 발명의 기판은 유리기판 등과 같은 무기물 기판뿐만 아니라, 폴리 에틸렌 테레프탈레이트 (poly ethylene terephthalate, PET), 폴리 에틸렌 나프탈레이 트 (poly ethylene naphthalate, PEN), 폴리카보네이트 (polycarbonate), 폴리비닐알코올 (polyvinylalcohol),폴리아크릴레이트 (polyacrylate), 폴리이미드 (polyimide), 폴리노르보넨 (polynornornene) 등과 같은 가요성 (flexible) 플라스틱 기판도 사용할 수 있다.
또한, 본 발명에서 사용 가능한 게이트 절연막은 통상적으로 사용되는 유전율이 큰 절연체를 사용할 수 있으며, 이때 사용되는 기판의 종류를 고려하여 적절하게 선택하여 사용하는 것이 바람직하다. 예를 들어, 게이트 절연막의 재료로서 Al2O3,HfO2또는 BZT (Barium Zirconate Titanate) 등과 같은 고유전율 물질이나 SiO2,Si3N4와 같은 무기물 절연막을 사용할 수 있으며, 또한 폴리이미드 (polyimide), 벤조사이클로부탄 (benzocyclobutane, BCB), 파릴렌 (Parylene), 폴리비닐알코올 (polyvinylalcohol), 폴리비닐페놀 (polyvinylphenol) 등과 같은 고분자 물질을 사용할 수 있는데, 이에 제한되지 않는다.
또한, 상기 게이트 전극, 소스 전극 및 드레인 전극은 각각 독립적으로 금 (Au), 은 (Ag), 알루미늄 (Al), 니켈 (Ni), 구리 (Cu), 티타늄 (Ti), 인듐 티타늄 산화물(ITO) 등에 의해 형성될 수 있는데, 이에 제한되지 않는다.
상기 게이트 전극, 소스 전극 및 드레인 전극은 당 업계에 알려진 제조방법에 의해 제조될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 한정하는 것은 아니다.
< 실시예 1>
1-1. 고분자 블렌드 용액 제조
클로로벤젠에 p형 유기 반도체 물질로서 폴리(3-헥실티오펜) [poly(3-hexylthiophene), P3HT] 과 n형 유기 반도체 물질로서 폴리 (9,9-디옥실플루오렌-코-벤즈티아디아졸 [poly(9,9-dioctylfluorene-co-benzthiadiazole), F8BT] 을 60:40 중량 비율로 용해시켜 고분자 블렌드 용액을 제조하였다.
1-2. 유기 광트랜지스터 제조
유리 기판 위에 스퍼터링법에 의해 Indium Tin Oxide (ITO) 막을 ~150nm의 두께로 증착한 후, 포토레지스트리법에 의해 패터닝을 하여 게이트 전극을 형성하였다. 이후, 상기 게이트 전극을 감싸면서, 상기 유리 기판의 상부에 스핀코팅 및 딥 코팅 및 잉크젯 프린팅에서 이용하여 폴리비닐알콜 (polyvinylalchol), 폴리비닐페놀 (polyvinylphenol), 폴리이미드 (polyimide), 등을 약 100nm ~ 1㎛의 두께로 증착하여 게이트 절연막층을 형성하였다. 이어서, 상기 게이트 절연막층 위에, 상기 실시예 1-1에서 제조된 고분자 블렌드 용액을 약 50 ㎚의 두께로 도포하였다. 이후, 약 50 ℃의 온도에서 약 15분 동안 상기 도포된 고분자 블렌드 용액을 건조하여 용매를 제거하여 유기 반도체 박막층을 형성하였다. 이후, 10-6Torr이하의 진공 분위기하에서 상기 유기 반도체 박막층 위에 열증착법을 이용하여 은 (Ag)을 ~70nm의 두께로 증착하고 소스 전극 및 드레인 전극을 형성하여 유기 광트랜지스터를 제조하였다.
< 실험예 >
실시예 1에서 제조된 유기 광트랜지스터에 전압 (Vd) - 5 V 및 - 80 V 인가시 광 강도 (Light Intensity) 변화에 따른 감응성 (Responsivity)을 반도체성능분석장치 (Semiconductor Analyzer, Keithley 4200), 광소스 (Light Source,Spectral Product, ASBN-W High power Tungsten-Halogen Light Source 100W-L), 단색스펙트럼장치 (Monochromator, Spectral Product, CM110) 을 이용하여 측정하였고, 9.4nW/cm2, 470nm 일 때의 출력 곡선 (Output Curve)(도 2 참조)과 빛의 세기에 따른 결과를 하기 표 1에 나타내었다.
Light Intensity
(㎼)
전압(Vd)= 5 V 인가시 Responsivity (A/W) 전압(Vd)= 80 V 인가시 Responsivity (A/W)
0.95 - 0.092 - 0.85
1.5 - 0.14 - 0.95
2.1 - 0.13 - 0.86
3.0 - 0.098 - 0.56
8.7 - 0.071 - 0.45
12.3 - 0.00089 - 0.23
29.3 - 0.0016 - 0.0019
86.2 - 0.00036 - 0.0016
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
11: 소스 전극, 12: 드레인 전극,
13: 유기 반도체 박막층, 14: 게이트 절연막층,
15: 게이트 전극, 16: 기판,
17: 채널

Claims (9)

  1. 기판, 게이트 전극, 게이트 절연막층, 유기 반도체 박막층 및 소스-드레인 전극을 포함하는 유기 광트랜지스터(organic phototransistor)에 있어서,
    상기 유기 반도체 박막층은 p형 유기 반도체 물질 및 n형 유기 반도체 물질을 5~95 : 95~5의 중량비로 혼합한 고분자 블렌드 용액을 게이트 절연막층 위에 도포하여 형성된 것을 특징으로 하는 유기 광트랜지스터.
  2. 제1항에 있어서,
    상기 p형 유기 반도체 물질과 n형 유기 반도체 물질 사이의 계면에서는 p-n 접합이 형성되어 있는 것을 특징으로 하는 유기 광트랜지스터.
  3. 제1항에 있어서,
    상기 p형 유기 반도체 물질은 고분자물질로서 폴리(3-헥실티오펜)[poly(3-hexylthiophene), P3HT], 폴리(9,9-디옥틸플루오렌)[poly(9,9-dioctyl fluorene), F8], 폴리(9,9-디옥틸플루오렌-알트-바이싸이오펜)[poly(9,9-dioctylfluorene-alt-bithiophene),F8T2], 폴리(9.9-디옥틸플루오렌-알트-벤조티아디아졸)[poly(9,9-dioctylfluorene- alt-benzothiadiazole),F8BT], 폴리(2-메톡시-5-(3,7-디메틸옥토시-p-페닐렌비닐렌)[poly(2-methoxy-5-(3,7-dimethyloctoxy)-p-phenylenevinylene), OC1C10-PPV], 폴리(2-메톡시-5-(2-에틸헥옥시)-1,4-페닐렌비닐렌) [poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene), MEH-PPV], 폴리(3-헥실티오펜)[poly(3-hexylthiophene)], 및 폴리(3,3’’’-다이도데실쿼터싸이오펜[poly(3,3’’’-didodecylquaterthiophene), PQT-12], 단분자 물질로서 비스(트리이소필실릴에티닐)펜타신[bis(triisopropylsilylethynyl) pentacene (TIPS-PEN)], 비스(트리에틸실릴에티닐)-안트라디티오펜[bis(triethylsilylethynyl)-anthradithiophene(TES-ADT)], 펜타신 (pentacene), 테트라센 (tetracene), 루브렌 (rubrene), 및 5-클로로테트라 센 (5-chlorotetracene)으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 유기 광트랜지스터.
  4. 제1항에 있어서,
    상기 n형 유기 반도체 물질은 고분자로서 폴리(9,9-디옥틸플루오렌-co-벤즈티아디아졸)[poly(9,9-dioctyfluorene-co-benzthiadiazole), F8BT], 폴리(비스벤즈미다조벤조페난트롤린[poly(bisbenzimidazobenzophenanthroline), BBB], 단분자로서 페르플루오르카퍼프탈로시아닌 [perfluorocopperphthalocyanine (FPcCu)], 3’,4’-디부틸- 5,5’’-비스(디시 아노 메틸렌)-5,5’’-디하이드로-2,2’:5’,-2’’-테티오펜[3’,4’-dibutyl-5,5’’-bis(dicyanomethylene)-5,5’’-dihydro-2,2’:5’,-2’’-terthiophene, QM3T], 디펄플루오르헥실올리고티오펜 [diperfluorohexyloligothiophene, DFH-nT], 2,7-[비스(5-펄플루오르헥실카보닐-티엔-2-일)]-4H-시클로펜타-[2,1-b:3,4-b’]-디티오펜-4-one{2,7-[bis(5-perfluorohexylcarbonyl-thien-2-yl)] -4H-cyclopenta-[2,1-b:3,4-b’]-dithiophen-4-one, DFHCO-4TCO}, 폴리(비스벤즈미다조벤조페난트롤린[poly(bisbenzimidazobenzophenanthroline), BBB], 디시아노페닐렌-비스[디카복시마이드] [dicyanoperylene-bis [dicarboximide], DPI-CN], 및 나프탈렌 테트라카르복시산 다이이미드 [naphthalene tetracarboxylic diimide, NTCDI]으로 이루어지는 군으로부터 선택되는 것을 특징으로하는 유기 광트랜지스터.
  5. 제1항에 있어서,
    상기 유기 반도체 박막층의 두께는 10nm 내지 300 ㎚ 범위인 것을 특징으로 하는 유기 광트랜지스터.
  6. 제1항에 있어서,
    상기 유기 반도체 박막층은 단분자, 무기물 또는 유기물 중에서 선택된 부가 물질을 더 포함하는 것을 특징으로 하는 유기 광트랜지스터.
  7. 제 6항에 있어서,
    상기 단분자는 비스(트리이소필실릴에티닐)펜타신[bis(triisopropylsilylethynyl) pentacene (TIPS-PEN)], 비스(트리에틸실릴에티닐)-안트라디티오펜[bis(triethylsilylethynyl)-anthradithiophene(TES-ADT)], 펜타신 (pentacene), 테트라센 (tetracene), 루브렌 (rubrene), 및 5-클로로테트라 센 (5-chlorotetracene),페르플루오르카퍼프탈로시아닌 [perfluorocopperphthalocyanine (FPcCu)], 3’,4’-디부틸- 5,5’’-비스(디시 아노 메틸렌)-5,5’’-디하이드로-2,2’:5’,-2’’-테티오펜[3’,4’-dibutyl-5,5’’-bis(dicyanomethylene)-5,5’’-dihydro-2,2’:5’,-2’’-terthiophene, QM3T], 디펄플루오르헥실올리고티오펜 [diperfluorohexyloligothiophene, DFH-nT], 2,7-[비스(5-펄플루오르헥실카보닐-티엔-2-일)]-4H-시클로펜타-[2,1-b:3,4-b’]-디티오펜-4-one{2,7-[bis(5-perfluorohexylcarbonyl-thien-2-yl)] -4H-cyclopenta-[2,1-b:3,4-b’]-dithiophen-4-one, DFHCO-4TCO}, 폴리(비스벤즈미다조벤조페난트롤린[poly(bisbenzimidazobenzophenanthroline), BBB], 디시아노페닐렌-비스[디카복시마이드] [dicyanoperylene-bis [dicarboximide], DPI-CN], 및 나프탈렌 테트라카르복시산 다이이미드 [naphthalene tetracarboxylic diimide, NTCDI]으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 유기 광트랜지스터.
  8. 제 6항에 있어서,
    상기 무기물은 나노파티클 (nanoparticle), 나노로드 (nanorod), 또는 나노와이어 (nanowire)인 것을 특징으로 하는 유기 광트랜지스터.
  9. 제 6항에 있어서,
    상기 유기물은 다른 p형 또는 n형 유기 반도체 물질인 것을 특징으로 하는 유기 광트랜지스터.
KR1020100053205A 2010-06-07 2010-06-07 유기 광트랜지스터 KR101113166B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100053205A KR101113166B1 (ko) 2010-06-07 2010-06-07 유기 광트랜지스터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100053205A KR101113166B1 (ko) 2010-06-07 2010-06-07 유기 광트랜지스터

Publications (2)

Publication Number Publication Date
KR20110133686A KR20110133686A (ko) 2011-12-14
KR101113166B1 true KR101113166B1 (ko) 2012-02-13

Family

ID=45501208

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100053205A KR101113166B1 (ko) 2010-06-07 2010-06-07 유기 광트랜지스터

Country Status (1)

Country Link
KR (1) KR101113166B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283023B2 (en) 2017-06-08 2022-03-22 Corning Incorporated Doping of other polymers into organic semi-conducting polymers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751364B2 (ja) * 2017-03-27 2020-09-02 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、及びこれらに用いるポリマー
KR102539120B1 (ko) * 2021-04-09 2023-06-02 한국과학기술연구원 박막태양전지 모듈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060082552A (ko) * 2005-01-13 2006-07-19 광주과학기술원 유기 박막 포토트랜지스터
JP2007035966A (ja) * 2005-07-27 2007-02-08 Nitto Denko Corp 有機光電変換素子とその製造方法
JP2007200921A (ja) 2006-01-23 2007-08-09 Nitto Denko Corp 有機光電変換素子
KR20090123540A (ko) * 2008-05-28 2009-12-02 삼성전자주식회사 유기 광전 변환막, 이를 구비하는 광전 변환 소자 및이미지 센서

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060082552A (ko) * 2005-01-13 2006-07-19 광주과학기술원 유기 박막 포토트랜지스터
JP2007035966A (ja) * 2005-07-27 2007-02-08 Nitto Denko Corp 有機光電変換素子とその製造方法
JP2007200921A (ja) 2006-01-23 2007-08-09 Nitto Denko Corp 有機光電変換素子
KR20090123540A (ko) * 2008-05-28 2009-12-02 삼성전자주식회사 유기 광전 변환막, 이를 구비하는 광전 변환 소자 및이미지 센서

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283023B2 (en) 2017-06-08 2022-03-22 Corning Incorporated Doping of other polymers into organic semi-conducting polymers

Also Published As

Publication number Publication date
KR20110133686A (ko) 2011-12-14

Similar Documents

Publication Publication Date Title
JP6608922B2 (ja) 光パターン化可能な組成物、パターン化高k薄膜誘電体及び関連デバイス
Szendrei et al. Ambipolar all-polymer bulk heterojunction field-effect transistors
Baeg et al. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits
KR101787121B1 (ko) 유기 반도체
KR102010113B1 (ko) 양극성 수직 전계 효과 트랜지스터
KR101532759B1 (ko) 유기 박막 트랜지스터
EP1852923A2 (en) Photosensing transistors
US7652339B2 (en) Ambipolar transistor design
US20140353647A1 (en) Organic Thin Film Transistors And Method of Making Them
US20170141319A1 (en) Carbon nanotube interlayer, manufacturing method thereof, and thin film transistor using the same
Bharti et al. Photo-response of low voltage flexible TIPS-pentacene organic field-effect transistors
Singh et al. Fabrication, modelling and characterization of green light photosensitive p-channel-Poly [2, 5-bis (3-tetradecylthiophen-2-yl) thieno [3, 2-b] thiophene] organic semiconductor based phototransistors
Bharti et al. Effect of UV irradiation on solution processed low voltage flexible organic field-effect transistors
US20100140596A1 (en) Organic thin film transistor and method of manufacturing the same
US8981358B2 (en) Organic insulating layer composition, method of forming organic insulating layer, and organic thin film transistor including the organic insulating layer
KR101113166B1 (ko) 유기 광트랜지스터
Kim et al. Polymeric p–n heterointerface for solution‐processed integrated organic optoelectronic systems
Tozlu et al. Photoresponsive n-channel organic field effect transistor based on naphthalene bis-benzimidazole with divinyltetramethyl disiloxane-bis (benzo-cyclobutene) gate insulator
US7928181B2 (en) Semiconducting polymers
US9997709B2 (en) Method for manufacturing transistor according to selective printing of dopant
US20130234116A1 (en) Organic microelectronic device and fabrication method therefor
US7309876B2 (en) Organic semiconductor having polymeric and nonpolymeric constituents
KR100670407B1 (ko) 유기 박막 트랜지스터, 이의 제조방법 및 이를 구비한 평판디스플레이 장치
WO2014086778A1 (en) Carbon nanotube material, devices and methods
KR100730157B1 (ko) 유기 박막 트랜지스터 및 이를 구비한 유기 발광디스플레이 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141211

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171208

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 9