WO2017078174A1 - 両ねじ体製造方法、両ねじ体製造プログラム - Google Patents

両ねじ体製造方法、両ねじ体製造プログラム Download PDF

Info

Publication number
WO2017078174A1
WO2017078174A1 PCT/JP2016/082921 JP2016082921W WO2017078174A1 WO 2017078174 A1 WO2017078174 A1 WO 2017078174A1 JP 2016082921 W JP2016082921 W JP 2016082921W WO 2017078174 A1 WO2017078174 A1 WO 2017078174A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread groove
forming step
screw
manufacturing
screw body
Prior art date
Application number
PCT/JP2016/082921
Other languages
English (en)
French (fr)
Inventor
裕 道脇
Original Assignee
株式会社NejiLaw
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社NejiLaw filed Critical 株式会社NejiLaw
Priority to JP2017549144A priority Critical patent/JP6858407B2/ja
Priority to US15/773,712 priority patent/US20180318948A1/en
Priority to KR1020187012558A priority patent/KR102644898B1/ko
Priority to CN201680064628.5A priority patent/CN108349030A/zh
Priority to EP16862231.4A priority patent/EP3372332A4/en
Publication of WO2017078174A1 publication Critical patent/WO2017078174A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/02Thread cutting; Automatic machines specially designed therefor on an external or internal cylindrical or conical surface, e.g. on recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/32Thread cutting; Automatic machines specially designed therefor by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/44Equipment or accessories specially designed for machines or devices for thread cutting
    • B23G1/48Equipment or accessories specially designed for machines or devices for thread cutting for guiding the threading tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G3/00Arrangements or accessories for enabling machine tools not specially designed only for thread cutting to be used for this purpose, e.g. arrangements for reversing the working spindle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening
    • F16B39/28Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
    • F16B39/30Locking exclusively by special shape of the screw-thread
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • G05B19/186Generation of screw- or gearlike surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2210/00Details of threads produced
    • B23G2210/08External threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2210/00Details of threads produced
    • B23G2210/24Threads having a variable pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2210/00Details of threads produced
    • B23G2210/48Threads having a special form or profile not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms
    • F16B2033/025Shape of thread; Special thread-forms with left-hand thread
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49196Screw

Definitions

  • the present invention relates to a method for manufacturing both screw bodies.
  • the fastening structures there is one using a so-called male screw body such as a bolt and a so-called female screw body such as a nut.
  • a so-called male screw body such as a bolt
  • a so-called female screw body such as a nut.
  • two types of spiral grooves (for example, a right male screw portion and a left male screw portion) having different lead angles and / or lead directions are formed on one male screw body, and the two types of spirals are formed.
  • Some types of female screw bodies (for example, a right female screw body and a left female screw body) are screwed into the groove separately like a double nut.
  • the present invention has been made by the inventor's diligent research in view of the above-described problems, and a male screw body or a female screw body having two types of male screw structures with different lead angles and / or lead directions are subjected to a cutting process.
  • the purpose is to enable high-precision, high-quality and short-time processing using the, and to enable mass production.
  • the present invention that achieves the above object provides a double screw body manufacturing method for manufacturing a double screw body having a first screw groove and a second screw groove having a lead angle and / or lead direction different from those of the first screw groove.
  • a cutting tool acting on a workpiece to be machined rotating with a predetermined axis as a rotation axis is fed by a first cutting path obtained by feeding a first feed amount in a feed direction substantially parallel to the rotation axis.
  • a first screw groove forming step for forming at least a part of the first screw groove, and a cutting tool acting on the workpiece is different from the first feed amount in a feed direction substantially parallel to the rotation axis.
  • the present invention that achieves the above object provides a double screw body manufacturing method for manufacturing a double screw body having a first screw groove and a second screw groove having a lead angle and / or lead direction different from those of the first screw groove.
  • a first cutting obtained by feeding a cutting tool acting on a workpiece to be machined rotating in a first direction with a predetermined axis as a rotation axis in a first feed direction substantially parallel to the rotation axis.
  • a first thread groove forming step for forming at least a part of the first thread groove by a path, and a cutting tool acting on the workpiece rotating in a direction opposite to the first direction in the first feed direction.
  • the present invention that achieves the above object provides a double screw body manufacturing method for manufacturing a double screw body having a first screw groove and a second screw groove having a lead angle and / or lead direction different from those of the first screw groove.
  • a first cutting obtained by feeding a cutting tool acting on a workpiece to be machined rotating in a first direction with a predetermined axis as a rotation axis in a first feed direction substantially parallel to the rotation axis.
  • a first screw groove forming step for forming at least a part of the first screw groove by a path, and a cutting tool acting on the workpiece rotating in the same direction as the first direction, And a second thread groove forming step of forming at least a part of the second thread groove by a second cutting pass obtained by feeding in the opposite direction.
  • the present invention is characterized in that a circular groove forming step is provided in which a groove is formed in a circular shape in a direction orthogonal to the axis at a processing start position of the workpiece in the second screw groove forming step.
  • At least one of the first screw groove forming step and the second screw groove forming step is performed a plurality of times.
  • the second thread groove forming step is performed during any of the plurality of times of the first thread groove forming step.
  • the first thread groove forming step is performed during any of the plurality of times of the second thread groove forming step.
  • a plurality of continuous first screw groove forming steps are defined as a first step group, and a plurality of continuous second screw groove forming steps are defined as a second step group.
  • the plurality of first step groups and the plurality of second step groups are alternately executed.
  • the first thread groove forming step and the second thread groove forming step are alternately performed.
  • the cutting cross-sectional area cut by the first screw groove forming step in the cross section including the rotation axis of the first screw groove is a plurality of times of the first screw groove.
  • the cutting cross-sectional area that decreases gradually or stepwise and is cut by the second screw groove forming step in the cross section including the rotation axis of the second screw groove is a plurality of times.
  • the second thread groove forming step is reduced gradually or stepwise.
  • the present invention for achieving the above object is applied to a manufacturing apparatus for manufacturing a screw body having a first screw groove and a second screw groove having a lead angle and / or a lead direction different from those of the first screw groove.
  • a two-threaded body manufacturing program in which a cutting tool acting on a workpiece to be processed that rotates with a predetermined axis as a rotation axis is applied to the manufacturing apparatus in a feed direction substantially parallel to the rotation axis.
  • a first thread groove forming step for forming at least a part of the first thread groove by a first cutting path obtained by feeding the feed amount and a cutting tool acting on the workpiece are substantially parallel to the rotation axis.
  • a two-threaded body manufacturing program comprising: a cutting tool acting on a workpiece to be processed that rotates in a first direction with a predetermined axis as a rotation axis with respect to the manufacturing apparatus; A first thread groove forming step for forming at least a part of the first thread groove by a first cutting path obtained by feeding in one feed direction, and the workpiece rotating in a direction opposite to the first direction. And a second thread groove forming step of forming at least a part of the second thread groove by a second cutting path obtained by feeding an acting cutting tool in the first feeding direction. Double screw body It is a concrete program.
  • the present invention for achieving the above object is applied to a manufacturing apparatus for manufacturing a screw body having a first screw groove and a second screw groove having a lead angle and / or a lead direction different from those of the first screw groove.
  • a cutting tool that acts on a workpiece to be processed that rotates in a first rotation direction with a predetermined axis as a rotation axis, and is substantially parallel to the rotation axis.
  • a male screw body or a female screw body having two types of male screw structures having different lead angles and / or lead directions can be produced in high quality and in large quantities without depending on the screw size.
  • FIG. 6A shows a male screw body 60 having a double screw structure.
  • This male screw body 60 is formed with two types of spiral grooves (a right male screw portion and a left male screw portion) having different lead directions with respect to the shaft portion.
  • the male screw body 60 is provided with a male screw portion 53 in which a male screw spiral structure is formed from the base side toward the shaft end.
  • a first male screw spiral structure 54 serving as a right screw configured to be able to be screwed with a female thread-like spiral strip serving as a corresponding right screw
  • a female screw-shaped serving as a corresponding left screw
  • Two types of male screw spiral structures, the second male screw spiral structure 55 serving as a left-hand thread that can be screwed into the spiral strip, are formed on the same region. As shown in FIG.
  • the male screw portion 53 has a substantially crescent-shaped thread 53 a extending in the circumferential direction in a plane direction perpendicular to the axis (screw shaft) C, on one side of the male screw portion 53 ( They are provided alternately on the left side of the figure and the other side (right side of the figure).
  • screw thread 53a By configuring the screw thread 53a in this way, two types of spiral grooves, a spiral structure that turns clockwise and a spiral structure that turns counterclockwise, can be formed between the screw threads 53a.
  • first and second helical structures 54 and 55 are single-threaded screws, and the lead angle is the same as that of the first male screw helical structure 54 as a right-hand thread and the second male screw spiral structure 55 as a left-hand thread. Only the direction is different.
  • the male screw body 60 can be screwed with any of the right and left screw female screw bodies.
  • Japanese Patent No. 4666313 relating to the inventors of the present application.
  • FIGS. 7A to 7D are views showing the relative operations of the first female screw body 120 and the second female screw body 130 that are screwed into the male screw body 60.
  • the first female screw body 120 and the second female screw body 130 are in a reverse screw relationship.
  • FIGS. 4A and 4B when both are rotated in the same direction with respect to the male screw body 110 (or when the male screw body 60 is rotated), the axis C is aligned. They will move in opposite directions.
  • the rotation directions of the first female screw body 120 and the second female screw body 130 relative to the male screw body 110 are viewed from the second female screw body 130 side (upper side in the figure).
  • the first female screw body 120 and the second female screw body 130 will move in directions close to each other along the axis C direction.
  • FIG. 5B when the rotation direction of the first female screw body 120 and the second female screw body 130 is clockwise when viewed from the second female screw body 130 side (the upper side in the figure).
  • the first female screw body 120 and the second female screw body 130 move in the direction away from each other along the direction of the axis C.
  • both the first female screw body 120 and the second female screw body 130 are male screw bodies 60. Can be prevented from rotating in the same direction. That is, the relative positions of the first female screw body 120 and the second female screw body 130 in the male screw portion 53 of the male screw body 60 are held, and screw fastening under a predetermined condition can be held. It should be noted that since the first female screw body 120 and the second female screw body 130 cannot contact each other if they are in contact with each other, the first female screw body 120 and the second female screw body 130 are actually separated from each other.
  • first female screw body 120 and the second female screw body 130 have the male screw portion while maintaining the relative positional relationship in the direction of the axis C as shown in FIG. The position on 53 will be changed.
  • the male screw body is a double screw body.
  • two types of spiral grooves having different lead angles and / or lead directions are formed, and two types of male screw bodies (for example, a right male screw body and a left male screw body) are separately screwed into the two types of spiral grooves.
  • FIG. 8A shows a female screw body 140 having a double screw structure in which two kinds of spiral grooves (for example, a right female screw groove and a left female screw groove) having the same lead angle and different lead directions are formed.
  • FIG. 8B is an end view when the screw bodies are cut along a virtual plane A shown in FIG.
  • the female screw body 140 is provided with a female screw portion 150 in which a female screw spiral structure is formed toward both ends.
  • two types of female screw helical structures a first female screw helical structure 151 that is a right-hand thread and a second female screw helical structure 152 that is a left-hand thread, are formed on the same region in the same thread region 150.
  • the first female screw spiral structure 151 can be screwed with a corresponding male screw-like spiral thread having a right-hand thread.
  • the second female screw spiral structure 152 is configured to be capable of screwing a male thread-like spiral strip as a corresponding left-hand thread.
  • the manufacturing method of the both screw body of this invention is applicable also to such an internal thread body.
  • manufacturing method a manufacturing method (hereinafter referred to as manufacturing method) and a manufacturing program for both screw bodies according to the first embodiment will be described.
  • FIG. 1 (A) shows a double screw processing facility 1 to which the manufacturing method according to the first embodiment of the present invention is applied.
  • the both-screw processing facility 1 is built in the spindle mechanism 7 for supporting the workpiece 3 to be processed on a spindle 8 (not shown, described later) and a rotation driving device (rotating spindle 7 for rotating the spindle 8). (Not shown), a headstock 7 for fixing them, a feed base 5 for fixing and moving the cutting tool, a feed screw shaft 6 for driving it, and a control device 300 for controlling them.
  • the both-screw processing facility 1 has a tailstock 4 for preventing a shake of a processing target when processing a long object.
  • the threading process by cutting is performed on a cylindrical workpiece 3 that rotates about the axis R as a rotation axis.
  • the workpiece 3 is processed by the cutting tool 9 (bite) acting on the workpiece 3.
  • the cutting tool 9 bite
  • the male screw portion 53 is formed in the workpiece 3.
  • the control device 300 includes a CPU (central processing unit), a storage device (memory), and the like, and a screw thread manufacturing program stored in the storage device is executed by the CPU, so that both screw processing It controls so that the manufacturing method mentioned later may be implement
  • the work 3 is a cylindrical member, is supported by a rotating part having a predetermined rotation axis, and rotates with the axis R as the rotation axis.
  • the rotation axis of the main shaft 8 corresponds to the axis R that the workpiece 3 uses as the rotation axis. That is, the workpiece 3 is supported by the chuck mechanism 2 in a state of being concentrically arranged with respect to the main shaft 8, and is rotated in a certain direction with the axis R as the rotation axis by the rotation of the main shaft 8.
  • the rotation direction can be arbitrarily changed and set, and the rotation speed can also be changed.
  • the processing equipment may be a so-called NC lathe that can be automatically cut by a program.
  • FIG. 1 (B) is a top view of the main part of the double screw processing facility 1.
  • the workpiece 3 is supported by the chuck mechanism 2 while being concentrically arranged with respect to the main shaft 8.
  • the feed mechanism 10 includes a feed base 5 and a feed screw shaft 6.
  • the cutting tool 9 is fixed to the cutting tool tightening table 14, and the cutting tool tightening table 14 is fixedly supported by the feed table 5.
  • the feed screw shaft 6 is rotated by a servo motor 12, and the feed base 5 is linearly moved in the longitudinal direction of the feed screw shaft 6 through a nut portion 11 fixed to the feed base 5.
  • the workpiece 3 is cut in a spiral shape to form a male screw portion 53.
  • the spindle 8 rotates counterclockwise when viewed from the tailstock 4 toward the spindle base 7, and the work 3 also rotates in the same direction.
  • the cutting tool 9 is attached to the left side of the work 3 and the rake face vertically upward as viewed from the tailstock 4 toward the headstock 7.
  • the cutting tool 9 moves the cutting tool 9 in a direction perpendicular to the spindle rotation direction (that is, inward in the radial direction of the workpiece 3) by cutting an appropriate amount of cutting with respect to the outer peripheral surface of the workpiece 3.
  • the tip of the cutting tool 9 interferes with the work 3 by moving from the tailstock 4 toward the headstock 7, and a spiral groove is formed by cutting.
  • FIG. 2 is a development view showing a cutting path through which the cutting tool 9 passes the surface of the workpiece 3 in the manufacturing method according to the first embodiment.
  • FIG. 2 illustrates a cutting pass when forming two types of spiral grooves (for example, a right male screw groove and a left male screw groove) having the same lead angle and different lead directions.
  • the first cutting path 16 obtained by feeding the cutting tool 9 acting on the workpiece 3 in a first feeding direction in a first feeding direction substantially parallel to the rotation axis, and the workpiece 3
  • the second cutting path 18 is obtained by feeding the cutting tool 9 acting on the first feed amount in the direction opposite to the first feed direction.
  • a first thread groove is formed by the first cutting pass 16.
  • a second thread groove is formed by the second cutting path 18.
  • the first cutting path 16 and the second cutting path 16 only need to have different lead angles and / or lead directions. Here, the lead angles coincide with each other and the lead directions are opposite.
  • a first screw thread having a solid line 15 at the top is formed at the boundary of the plurality of first cutting paths 16, and a solid line 17 is at the top at the boundary of the plurality of second cutting paths 18.
  • a first thread is formed.
  • the cutting tool 9 is moved relative to the first and second cutting paths 16 and 18 to perform cutting.
  • the thread portions 15 and 17 that intersect with each other try to remain, but since these thread portions intersect in the middle, the result remains as the thread portions of both screw bodies in FIG. It becomes a substantially diamond-shaped region A.
  • the substantially rhombus-shaped region A is viewed from the axial direction, it protrudes into a substantially trapezoidal shape. At this time, if the shape of the approximately rhombus-shaped region A is not accurately formed, rattling may occur or the fastening may not be possible when the male screw body and the female screw body are fastened.
  • the ridgeline E extending in the circumferential direction formed in the approximately rhombus-shaped region A can be formed as a single line having no width or a narrow width. Therefore, in order to form the ridgeline E with high accuracy, It must be machined more accurately than when threaded and left-handed threads are manufactured. Therefore, the production method of the present invention described later is suitable.
  • the shape of the approximately rhombus-shaped region A does not require a top portion whose apex is a portion where the thread portions 15 and 17 intersecting each other intersect, and the radius from the axis of the male screw body is not necessarily
  • the first thread groove (right male thread spiral groove structure) is cut and formed by the first cutting path 16.
  • the second thread groove forming step of FIG. 3B the second thread groove (left male thread spiral structure) is cut and formed by the second cutting path 18.
  • cutting is performed using the first cutting path 16 from the end side of the work 3 on the tailstock 4 side toward the headstock 7 side.
  • the workpiece 3 rotates counterclockwise (rotation direction A1) when viewed from the tailstock 4 to the headstock 7 side, during which the feed base 5 moves from the tailstock 4 side to the headstock 7 in the direction of arrow B1.
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face upward.
  • the state shifts to the state shown in FIG.
  • the rake face of the cutting tool 9 may be vertically downward. In any case, the rake face of the cutting tool 9 may be disposed so as to face the rotation direction of the workpiece 3.
  • cutting is performed using the second cutting path 18 from the headstock 7 side of the work 3 toward the tailstock 4 side.
  • WORK 3 rotates counterclockwise (rotation direction A1) when viewed from the tailstock 4 toward the headstock 7 side. That is, the rotation of the workpiece 3 in the first thread groove forming step is continued as it is.
  • the feed base 5 is moved in the direction of the arrow B2 from the headstock 7 side toward the tailstock 4.
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face upward.
  • the mounting posture of the cutting tool 9 is also the same as the first thread groove forming step in FIG.
  • the workpiece 3 is repeatedly cut by alternately repeating the first thread groove forming step of FIG. 3A and the second thread groove forming step of FIG.
  • the male screw part 53 is completed.
  • the cutting tool 9 since the cutting tool 9 only needs to reciprocate in the longitudinal direction of the workpiece 3, the error in the feed amount can be reduced and the cutting accuracy can be improved.
  • the cutting amount (cutting speed) of the first thread groove (right male thread spiral groove structure) and the second thread groove (left male thread spiral groove structure) can be approximated to each other,
  • the ridgeline of the mountain 53a substantially diamond-shaped region A in the developed view of FIG. 2) can be accurately formed.
  • the cutting is performed gradually while changing the direction of the path alternately every certain number of times, the cutting amount can be controlled in a minimum state in which the cutting drop at the intersection of the path is below a certain level. It is possible to cut without causing burrs.
  • the screw portion 53 may be completed by one reciprocation, or the screw portion 53 may be completed by a plurality of reciprocations. In order to extend the life of the cutting tool 9, it is desirable to form a screw groove little by little by a plurality of reciprocations.
  • the second thread groove forming step in FIG. 3 (B) may be executed while the first thread groove forming step in FIG. 3 (A) is being repeated a plurality of times.
  • the first thread groove forming step in FIG. 3 (A) may be executed while the second thread groove forming step in FIG. 3 (B) is being repeated a plurality of times.
  • the shape accuracy of the thread 53a can be improved by including a process in which the first thread groove forming step and the second thread groove forming step are alternately performed in at least a part.
  • first step group that the first thread groove forming step in FIG. 3A is continuously executed a plurality of times
  • second thread groove forming step in FIG. When performing is defined as a second step group, a single second thread groove forming step or a second step group may be interposed between the first step group and a plurality of times. Similarly, a single first thread groove forming step or a first step group may be interposed during the execution of the second step group a plurality of times. Furthermore, the first step group and the second step group may be alternately repeated.
  • the feed base 5 is fed. Since it is only reciprocated in the longitudinal direction of the screw shaft 6, manufacturing efficiency can be increased. In the case of an NC lathe, it is easy to create a program, and it is possible to accurately form the spiral grooves of both screw bodies.
  • 9A as shown in FIG. 9A, this corresponds to the length L of the threaded portion from the tip of the workpiece 3 toward the other end side (base end side) chucked by the chuck mechanism 2. It is possible to set a circular groove forming step for performing groove processing to rotate in the direction orthogonal to the axis at the axial position of the workpiece 3, or a peripheral position including this part, or a starting position on the base end side of the second screw groove. I can do it.
  • the circumferential groove portion D can be formed on the work 3 prior to the first screw groove forming step and the second screw groove forming step.
  • the depth of the bottom of the circumferential groove D formed by this circumferential groove forming step is preferably formed to a depth equal to or greater than the root diameter of the threaded portion. That is, the bottom portion D1 of the circumferential groove portion D is equal to or located radially inward of the valley bottom diameter line P of the screw portion.
  • the cross-sectional shape of the circumferential groove portion D is a cross-sectional shape having a width equal to or greater than the V-shaped cross-sectional shape formed by the cross-sectional shape of the valley portion of the thread portion, for example, a U-shaped cross-sectional shape, a rectangular cross-sectional shape, a trapezoidal cross-sectional shape It is preferable to form so that.
  • the shape of the valley bottom of the circular groove portion D can be a substantially arc-shaped cross section having a radius larger than a necessary and sufficient size. The tensile strength and fatigue strength in the circumferential groove D of the screw body can be improved.
  • the cutting start position by the second thread groove forming step can be set in the circumferential groove portion D. It becomes. It is possible to suppress chipping and cracking of the cutting edge of the cutting tool, which is a cutting tool, and to significantly improve the tool life.
  • the circumferential groove forming step is executed in advance before the first thread groove forming step and the second thread groove forming step is illustrated, but the present invention is not limited to this, for example, the first thread groove forming step.
  • the circular groove forming step is continuously performed to form the circular groove portion D at the start position of the second screw groove forming step.
  • a second thread groove forming step may be performed. That is, the execution timing of the circumferential groove forming step may be set as appropriate according to the purpose.
  • This manufacturing method uses the double screw processing facility 1 shown in FIG. 1 for processing, and includes a first screw groove forming step shown in FIG. 3 (C) and a second screw shown in FIG. 3 (D). A groove forming step.
  • the right male screw spiral groove structure is cut and formed, and in the first thread groove forming step of FIG. 3 (D), the left male screw spiral structure is formed by cutting.
  • first thread groove forming step cutting is performed using the first cutting path 16 from the end side of the work 3 on the tailstock 4 side toward the headstock 7 side.
  • the work 3 rotates counterclockwise (rotation direction A1) when viewed from the tailstock 4 to the headstock 7 side, and during that time, the feed base 5 moves from the tailstock 4 side to the headstock 7 with an arrow B1.
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face upward. When the cutting tool 9 reaches the terminal for forming the screw, the state shifts to the state shown in FIG.
  • the second cutting pass is performed from the end side on the tailstock 4 side of the work 3 toward the headstock 7 side, as in the first thread groove forming step. 18 is used for cutting.
  • WORK 3 rotates clockwise (rotation direction A2) when viewed from the tailstock 4 toward the headstock 7 side. That is, the second thread groove forming step is reverse rotation with respect to the rotation of the workpiece 3 in the first thread groove forming step. Thereby, the moving direction of the cutting tool 9 is set to the same direction (arrow B1) as the first thread groove forming step.
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face upward. This is also the same as the first thread groove forming step in FIG.
  • both the first screw groove forming step and the second screw groove forming step can start cutting from the end portion of the work 3 on the tailstock 4 side, In this case, it is easy to adjust the cut amount.
  • the male threaded portion 53 may be completed in one step for each of the first thread groove forming step and the second thread groove forming step.
  • the male threaded portion 53 may be completed through this process.
  • the second thread groove forming step of FIG. 3D may be executed while the first thread groove forming step of FIG. 3C is repeated a plurality of times.
  • the first thread groove forming step of FIG. 3C may be executed while the second thread groove forming step of FIG.
  • the cutting amount of the first thread groove (right male thread spiral groove structure) and the cutting amount (cutting speed) of the second thread groove (left male thread spiral groove structure) are advanced while approximating each other. Therefore, the ridgeline of the thread 53a (substantially diamond-shaped region A in the developed view of FIG. 2) can be accurately formed.
  • first step group that the first screw groove forming step of FIG. 3C is continuously executed a plurality of times
  • second screw groove forming step of FIG. When performing is defined as a second step group, a single second thread groove forming step or a second step group may be interposed between the first step group and a plurality of times. Similarly, a single first thread groove forming step or a first step group may be interposed during the execution of the second step group a plurality of times. Furthermore, the first step group and the second step group may be alternately repeated.
  • this manufacturing method is performed by using the double screw processing facility 1 shown in FIG. 1, and the second screw groove forming step shown in FIG. 4 (A) and FIG. 4 (B).
  • cutting is performed using the second cutting path 18 from the end side of the work 3 on the tailstock 4 side toward the headstock 7 side.
  • the work 3 rotates clockwise (rotation direction A2) when viewed from the tailstock 4 to the headstock 7 side, and during that time, the feed base 5 moves from the tailstock 4 side to the headstock 7 in the direction of arrow B1.
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face vertically downward. When the cutting tool 9 reaches the terminal for forming the screw, the state shifts to the state shown in FIG.
  • first thread groove forming step of FIG. 4B cutting is performed using the first cutting path 16 from the headstock 7 side of the work 3 toward the tailstock 4 side.
  • the work 3 rotates clockwise (rotation direction A2) when viewed from the tailstock 4 toward the headstock 7 side. That is, the rotation of the work 3 in the second thread groove forming step is continued as it is.
  • the feed base 5 moves in the direction of arrow B2 from the headstock 7 side toward the tailstock 4.
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face vertically downward. This is the same as the second thread groove forming step in FIG.
  • Both screw bodies are formed by alternately repeating the second thread groove forming step of FIG. 4 (A) and the first thread groove forming step of FIG. 4 (B).
  • FIGS. 4A and 4B may be appropriately determined depending on the material of the work 3, the lead angle of the both screw bodies to be formed, and the lead direction.
  • the second thread groove forming step in FIG. 4 (A) may be executed while the first thread groove forming step in FIG. 4 (B) is being repeated a plurality of times.
  • the first thread groove forming step of FIG. 4B may be executed while the second thread groove forming step of FIG. 4A is being repeated a plurality of times.
  • first step group that the first thread groove forming step of FIG. 4B is continuously performed a plurality of times
  • second thread groove forming step of FIG. When performing is defined as a second step group, a single second thread groove forming step or a second step group may be interposed between the first step group and a plurality of times. Similarly, a single first thread groove forming step or a first step group may be interposed during the execution of the second step group a plurality of times. Furthermore, the first step group and the second step group may be alternately repeated.
  • the feed amount of the cutting tool 9 in the first screw groove forming step and the second screw groove forming step (the amount of movement in the axial direction per one rotation of the work 3 and the lead angle)
  • the present invention is not limited to this, and the feed amount is different between the first screw groove forming step and the second screw groove forming step. May be.
  • the first screw groove forming step shown in FIG. 4 (B) and the second screw groove forming step shown in FIG. 3 (B) are combined.
  • the method can also be adopted.
  • the two screw bodies that can be manufactured exemplify a case where the lead angle is the same, and two types of spiral grooves (for example, a right female screw groove and a left female screw groove) having different lead directions are used.
  • the type of both screw bodies is not limited to this.
  • two types of spiral grooves for example, the first right male screw groove and the second right male screw groove, which have different lead angles and coincide in the lead direction,
  • the first left male screw groove and the second left male screw groove may be provided.
  • a manufacturing method having a first thread groove forming step shown in FIG. 4C and a second thread groove forming step shown in FIG.
  • first thread groove forming step of FIG. 4C the first right male thread spiral groove structure is cut and formed, and in the second thread groove forming step of FIG. 4D, the first right male thread spiral groove structure and the lead are formed.
  • a second right male screw spiral structure having the same direction and different lead angles is formed by cutting.
  • first thread groove forming step cutting is performed using the first cutting path 16 from the end side of the work 3 on the tailstock 4 side toward the headstock 7 side.
  • the work 3 rotates counterclockwise (rotation direction A1) when viewed from the tailstock 4 to the headstock 7 side, and during that time, the feed base 5 moves from the tailstock 4 side to the headstock 7 It moves in the direction of arrow B1a, which is one feed amount.
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face upward. When the cutting tool 9 reaches the end of forming the screw, the cutting tool is returned to the original position, and the state shifts to the state shown in FIG.
  • the lead direction is the same from the end side on the tailstock 4 side of the workpiece 3 toward the headstock 7 side, as in the first thread groove forming step. Cutting is performed using the second cutting path 18 having different lead amounts.
  • WORK 3 rotates counterclockwise (rotation direction A1) when viewed from the tailstock 4 toward the headstock 7 side. That is, the rotation of the work 3 in the first thread groove forming step may be continued.
  • the moving direction of the cutting tool 9 is the same as the first thread groove forming step, but the feed amount is set to be different from the first thread groove forming step (arrow B1b).
  • the cutting tool 9 is mounted on the left side when viewed from the tailstock 4 toward the headstock 7 and with the cutting tool 9 having a rake face upward. This is also the same as the first thread groove forming step in FIG.
  • both the first screw groove forming step and the second screw groove forming step can start cutting from the end portion of the work 3 on the tailstock 4 side, in any case, the adjustment of the cut amount Is easy.
  • various screw bodies can be freely manufactured by appropriately adjusting only the feed amount of each step.
  • FIG. 5A is a so-called radial infeed cutting method, which coincides with the center position C of the thread groove to be formed when the cutting edge portion 40 of the cutting tool 9 is applied to the outer peripheral surface 50 of the workpiece 3.
  • the cutting edge portion 40 is fixed at the position where the cutting is performed, and cutting is performed perpendicular to the outer peripheral surface of the workpiece 3.
  • the cutting blade portion 40 is advanced stepwise inward in the radial direction while being aligned with the center position C of the screw groove. This completes the thread groove.
  • This so-called radial infeed is advantageous in that uniform wear occurs on the left and right sides of the cutting edge portion 40. However, if the cutting amount is increased once, the cutting resistance increases.
  • FIG. 5B shows a cutting method called so-called alternate infeed (staggered cutting).
  • alternate infeed staggered cutting
  • the tip of the cutting blade portion 40 is attached to the workpiece 3.
  • This is a method of proceeding in a zigzag shape (zigzag shape) toward the inside in the radial direction.
  • cutting can be performed by alternately using one of the left and right surfaces of the cutting blade portion 40.
  • From the radial infeed Can also reduce the cutting resistance. Further, the flank wear of the left and right blades of the cutting blade 40 can be made uniform.
  • FIG. 5C shows a cutting method called so-called flank infeed, which is a method of cutting along one side of a thread groove to be formed when the cutting edge portion 40 is applied to the outer peripheral surface 50 of the workpiece 3.
  • flank infeed a cutting method of cutting along one side of a thread groove to be formed when the cutting edge portion 40 is applied to the outer peripheral surface 50 of the workpiece 3.
  • a cutting cross-sectional area in a cross section including a rotation axis (cutting surface in the axial direction of the workpiece 3) in the thread groove repeats the thread groove forming step a plurality of times. It is preferable to decrease gradually or gradually.
  • the first cutting cross-sectional area a1, the second cutting cross-sectional area a2, the third cutting cross-sectional area a3, and the fourth cutting cross-sectional area a4 are: It is preferable that a1 ⁇ a2 ⁇ a3 ⁇ a4.
  • processing is performed so that a1 ⁇ a2 ⁇ a3 ⁇ a4 ⁇ a5 ⁇ a6 ⁇ a7.
  • processing is performed so that a1 ⁇ a2 ⁇ a3 ⁇ a4 ⁇ a5 ⁇ a6.
  • the flank-in feed of FIG. 5C processing is performed so that a1 ⁇ a2 ⁇ a3 ⁇ a4 ⁇ a5 ⁇ a6.
  • the machining allowance for each thread groove forming step is not limited to a gradual or stepwise decrease.
  • a so-called internal thread cutting tool is used as the cutting tool 9, and the rotational direction and feed of the feed base 5 are used.
  • the direction and the like are appropriately adjusted as in the first to third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)
  • Milling Processes (AREA)

Abstract

第一のねじ溝と、第一のねじ溝とリード角またはリード方向が異なる第二のねじ溝を有する両ねじ体の製造方法であって、回転する加工対象であるワークに対して、ワークに作用する切削工具を第一の送り量送り出して第一のねじ溝の少なくとも一部を形成する。また、ワークに作用する切削工具を、第一の送り量と異なる第二の送り量送り出して第二のねじ溝の少なくとも一部を形成する。これらのステップにより、ワークに両ねじ部を形成する。これにより、リード角及び/又はリード方向が相異なる二種類のねじ構造を有する両ねじ体を、高品質且つ大量生産できるようにする。

Description

両ねじ体製造方法、両ねじ体製造プログラム
 本発明は両ねじ体の製造方法等に関するものである。
 締結構造の一つとして、ボルト等の所謂雄ねじ体と、ナット等の所謂雌ねじ体を用いるものが存在する。このねじ体による締結構造に関して、一つの雄ねじ体に対して、リード角及び/又はリード方向が相異なる二種類の螺旋溝(例えば右雄ねじ部と左雄ねじ部)を形成し、この二種類の螺旋溝に対して、ダブルナットの如く、二種類の雌ねじ体(例えば右雌ねじ体と左雌ねじ体)を別々に螺合させるものがある。何らかの係合手段により、二種類の雌ねじ体の相対回転を抑止すれば、リード角及び/又はリード方向が相異なることによる軸方向干渉作用又は軸方向離反作用により、雄ねじとの間で機械的な緩み止め効果を提供できる(特許第5406168号公報参照)。
 リード角及び/又はリード方向が相異なる二種類の雄ねじ条を有する雄ねじ体、即ち両ねじ体が普及することにより、今後、更なる大量生産が求められる。多くの需要に応えるためには、低コスト且つ大量生産を実現しつつも、雌ねじ体に対して二種類の雄 ねじ条を常に高精度に形成することが要求される。リード角及び/又はリード方向が相異なる二種類のめねじ条を有する雌ねじ体についても同様である。転造や圧造によりねじ条を形成することも考えられるが、ねじのサイズが大きい場合や、形状が特殊な場合、硬度の高い素材や靱性が低い素材を用いる場合、或いは、必要数量が一定数量に満たない場合等は転造、圧造には向かない。
 また、従来、切削加工手法を用いてねじ締結体を製作する場合には、専ら旋盤を用いるが、両ねじ体を切削加工する上で旋盤を用いると、ねじ部において激しく所謂バリが出るため、バリ取り工程が必須となる上、ねじ山に損傷が生じると共に、精度が著しく低下し且つ、刃物の寿命が著しく低下する。これらの事実から、旋盤では実用レベルでの加工は不可能とされていた。他方、マシニングセンタを用いた切削加工によれば、両ねじ体を高精度に製作することが出来ることは、本発明者によって詳しく検証されているものの、加工時間がかかり過ぎ、極めて高コストになってしまうという問題が有った。
 本発明は、上記問題点に鑑みて本発明者の鋭意研究により成されたものであり、リード角及び/又はリード方向が相異なる二種類の雄ねじ構造を有する雄ねじ体又は雌ねじ体を、切削工程を利用して高精度、高品質且つ短時間加工を可能とし、大量生産できるようにすることを目的とする。
 上記目的を達成する本発明は、第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する両ねじ体製造方法であって、所定の軸線を回転軸線として回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に第一の送り量を送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、上記ワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に上記第一の送り量と異なる第二の送り量を送り出して得られる第二の切削パスによって、第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、を有することを特徴とする両ねじ体製造方法である。
 上記目的を達成する本発明は、第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する両ねじ体製造方法であって、所定の軸線を回転軸線として第一の方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、上記第一の方向と逆方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向に送り出して得られる第二の切削パスによって第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、を有することを特徴とする両ねじ体製造方法である。
 上記目的を達成する本発明は、第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する両ねじ体製造方法であって、所定の軸線を回転軸線として第一の方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、上記第一の方向と同方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向と逆方向に送り出して得られる第二の切削パスによって、第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、を有することを特徴とする両ねじ体製造方法である。
 上記両ねじ体製造方法に関連して、前記ワークにおける前記第二ねじ溝形成ステップによる加工開始位置に、軸直交方向に周回する溝加工を施す周回溝形成ステップを有することを特徴とする。
 上記両ねじ体製造方法に関連して、前記第一ねじ溝形成ステップと前記第二ねじ溝形成ステップのうち少なくとも一つのステップを複数回行うことを特徴とする。
 上記両ねじ体製造方法に関連して、複数回の前記第一ねじ溝形成ステップの途中のいずれかの間に、前記第二ねじ溝形成ステップが実行されることを特徴とする。
 上記両ねじ体製造方法に関連して、複数回の前記第二ねじ溝形成ステップの途中のいずれかの間に、前記第一ねじ溝形成ステップが実行されることを特徴とする。
 上記両ねじ体製造方法に関連して、連続する複数回の前記第一ねじ溝形成ステップを第一ステップ群、連続する複数回の前記第二ねじ溝形成ステップを第二ステップ群と定義した際に、複数の上記第一ステップ群と複数の上記第二ステップ群が交互に実行されることを特徴とする。
 上記両ねじ体製造方法に関連して、前記第一ねじ溝形成ステップと、前記第二ねじ溝形成ステップと、を交互に行うことを特徴とする。
 上記両ねじ体製造方法に関連して、前記第一のねじ溝の前記回転軸線を含む断面における、前記第一ねじ溝形成ステップにより切削される切削断面積が、複数回の上記第一ねじ溝形成ステップを繰り返す度に徐々にあるいは段階的に減少し、前記第二のねじ溝の前記回転軸線を含む断面における、前記第二ねじ溝形成ステップにより切削される切削断面積が、複数回の上記第二ねじ溝形成ステップを繰り返す度に徐々にあるいは段階的に減少することを特徴とする。
 上記目的を達成する本発明は、第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する製造装置に適用される両ねじ体製造プログラムであって、上記製造装置に対して、所定の軸線を回転軸線として回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に第一の送り量を送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成させる第一ねじ溝形成ステップと、上記ワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に上記第一の送り量と異なる第二の送り量を送り出して得られる第二の切削パスによって、第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、を実行させることを特徴とする両ねじ体製造プログラムである。
 上記目的を達成する本発明は、第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する製造装置に適用される両ねじ体製造プログラムであって、上記製造装置に対して、所定の軸線を回転軸線として第一の方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、上記第一の方向と逆方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向に送り出して得られる第二の切削パスによって第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、を実行させることを特徴とする両ねじ体製造プログラムである。
 上記目的を達成する本発明は、第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する製造装置に適用される両ねじ体製造プログラムであって、上記製造装置に対して、所定の軸線を回転軸線として第一の回転方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、上記第一の方向と同方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向と逆方向に送り出して得られる第二の切削パスによって第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、を実行させることを特徴とする両ねじ体製造プログラムである。
 本発明によれば、リード角及び/又はリード方向が相異なる二種類の雄ねじ構造を有する雄ねじ体又は雌ねじ体を、ねじのサイズに依存することなく、高品質且つ大量生産できるようになる。
[規則91に基づく訂正 14.12.2016] 
本発明の第一実施形態に係る両ねじ体の製造方法が適用される加工設備の構成を示す説明図である。 本発明の第一実施形態に係る両ねじ体の製造方法の切削パスを説明する展開図である。 (A)及び(B)は本発明の第一実施形態に係る両ねじ体の製造方法を示す説明図であり、(C)及び(D)は第二実施形態に係る両ねじ体の製造方法を示す説明図である。 本発明の第三実施形態に係る両ねじ体の製造方法を示す説明図である。 第一乃至第三実施形態に係る両ねじ体の製造法において、ねじ切り加工における切削ステップごとの取り代の配分を示す説明図である。 (A)本発明に係る両ねじ体の製造方法によって製造され得る雄ねじ体の雄ねじ部を拡大して示した側面図であり、(B)は同雄ねじ部を拡大して示した平面図である。 本発明に係る両ねじ体の製造方法によって製造され得る雄ねじ体に対して、リード方向が異なる第一雌ねじ体及び第二雌ねじ体を螺合させた際の相対動作を示す図である。 本発明に係る両ねじ体の製造方法によって製造され得る雌ねじ体の雌ねじ部を拡大して示した側面図である。 (A)は、本発明の第一実施形態に係る両ねじ体の製造方法の切削パスである周回溝形成ステップを示す説明図であり、(B)及び(C)は同周回溝部の形態を示す説明図である。
 以下、本発明の実施の形態を添付図面を参照して説明する。
 まず先に、本実施形態の製造方法で製造され得る雄ねじ体及び雌ねじ体の構造例及び作用例について説明する。
 図6(A)に、両ねじ構造の雄ねじ体60を示す。この雄ねじ体60は、軸部に対して、リード方向が相異なる二種類の螺旋溝(右雄ねじ部と左雄ねじ部)を形成したものである。
 雄ねじ体60は、基部側から軸端に向かって、雄ねじ螺旋構造が形成された雄ねじ部53が設けられる。この例では、この雄ねじ部53に、対応した右ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される右ねじと成る第一雄ねじ螺旋構造54と、対応した左ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される左ねじと成る第二雄ねじ螺旋構造55との二種類の雄ねじ螺旋構造が同一領域上に重複して形成される。雄ねじ部53には、図6(B)に示すように、軸心(ねじ軸)Cに垂直となる面方向において周方向に延びる略三日月状のねじ山53aが、雄ねじ部53の一方側(図の左側)及び他方側(図の右側)に交互に設けられる。ねじ山53aをこのように構成することで、右回りに旋回する螺旋構造及び左回りに旋回する螺旋構造の二種類の螺旋溝を、ねじ山53aの間に形成することが出来る。ここでは、第一及び第二螺旋構造54、55が一条ねじであり、右ねじとして成る第一雄ねじ螺旋構造54と、左ねじとして成る第二雄ねじ螺旋構造55とリード角で同じであり、リード方向のみが異なっている。
 従って、雄ねじ体60は、右ねじ及び左ねじの何れの雌ねじ体とも螺合することが可能となる。なお、二種類の雄ねじ螺旋構造が形成された雄ねじ体60の詳細については、本願の発明者に係る特許第4663813号公報を参照されたい。
 図7(A)~(D)は、雄ねじ体60に螺合する第一雌ねじ体120及び第二雌ねじ体130の相対的な動作を示した図である。第一雌ねじ体120及び第二雌ねじ体130は、互いに逆ねじの関係とする。同図(A)及び(B)に示されるように、雄ねじ体110に対して両者を同一の方向に回転させた場合(又は、雄ねじ体60を回転させた場合)、軸心Cに沿って互いに逆方向に移動することとなる。
 具体的には、同図(A)に示されるように、第一雌ねじ体120及び第二雌ねじ体130の雄ねじ体110に対する回転方向が、第二雌ねじ体130側(図の上側)から見て左回りとなる場合には、第一雌ねじ体120及び第二雌ねじ体130は、軸心C方向に沿って互いに近接する方向に移動することとなる。また、同図(B)に示されるように、第一雌ねじ体120及び第二雌ねじ体130の回転方向が、第二雌ねじ体130側(図の上側)から見て右回りとなる場合には、第一雌ねじ体120及び第二雌ねじ体130は、軸心C方向に沿って互いに離隔する方向に移動することとなる。
 従って、第一雌ねじ体120及び第二雌ねじ体130の軸心C方向における相対的な移動(近接離隔)を規制することにより、第一雌ねじ体120及び第二雌ねじ体130が、共に雄ねじ体60に対して同一方向に回転するのを防止することが出来る。即ち、雄ねじ体60の雄ねじ部53における第一雌ねじ体120及び第二雌ねじ体130の相対位置が保持されることとなり、所定条件下におけるねじ締結を保持することが出来る。なお、第一雌ねじ体120及び第二雌ねじ体130が互いに接触していればそれ以上近接することは出来ないため、実際には、第一雌ねじ体120及び第二雌ねじ体130が互いに離隔するように移動するのを規制すれば足りる。勿論、予め第一雌ねじ体120と第二雌ねじ体130とを離間させた状態で、これらの更なる離間を防止するように、締結保持部材(図示省略)を用いて離間する方向の移動を規制するようにすることも出来る。この場合には、予め設定された所定範囲内の近接離間の相対移動を可能としながらも所定範囲を越える離間を防止することが可能となる。
 また、このように第一雌ねじ体120及び第二雌ねじ体130の軸心C方向における相対的な移動を規制することで、同図(C)に示されるように、第一雌ねじ体120及び第二雌ねじ体130の何れか一方が、他方から離隔するように単独で回転するのを防止することも可能となっている。但し、第一雌ねじ体120及び第二雌ねじ体130の軸心C方向における相対的な移動を規制するだけでは、第一雌ねじ体120及び第二雌ねじ体130が同時に逆方向に回転するのを防止することは出来ず、この場合、第一雌ねじ体120及び第二雌ねじ体130は、同図(D)に示されるように、軸心C方向における相対的な位置関係を維持したまま、雄ねじ部53上の位置を変化させることとなる。
 従って、締結保持部材によって第一雌ねじ体120及び第二雌ねじ体130を保持することで、第一雌ねじ体120及び第二雌ねじ体130の軸心C方向における相対的な移動を規制するだけでなく、第一雌ねじ体120及び第二雌ねじ体130の相対的な回転動作も規制するようにすることにより、確実な緩み止め効果を発揮させることが可能となる。
 また、上記では雄ねじ体が両ねじ体となる場合を紹介したが、一つの雌ねじ体の筒部の内周面に対して、リード角及び/又はリード方向が相異なる二種類の螺旋溝(例えば右雌ねじ溝と左雌ねじ溝)を形成し、この二種類の螺旋溝に対して、二種類の雄ねじ体(例えば右雄ねじ体と左雄ねじ体)を別々に螺合させるものも考えられる。
 図8(A)に、リード角は同じ大きさで、リード方向の相異なる二種類の螺旋溝(例えば右雌ねじ溝と左雌ねじ溝)を形成した両ねじ構造の雌ねじ体140を示す。図8(B)は、この両ねじ体を図8(A)で示した仮想平面Aで切断したときの端面図である。
 雌ねじ体140は、両端に向かって、雌ねじ螺旋構造が形成された雌ねじ部150が設けられる。この例では、この雌ねじ部150に、右ねじと成る第一雌ねじ螺旋構造151と、左ねじと成る第二雌ねじ螺旋構造152との二種類の雌ねじ螺旋構造が同一領域上に重複して形成される。第一雌ねじ螺旋構造151は、対応した右ねじの雄ねじ状の螺旋条を螺合可能となる。第二雌ねじ螺旋構造152は、対応した左ねじとして成る雄ねじ状の螺旋条を螺合可能に構成される。本発明の両ねじ体の製造方法は、勿論、このような雌ねじ体にも適用できる。
 次に、第一実施形態の両ねじ体の製造方法(以下、製造方法)及び両ねじ体の製造プログラムについて説明する。
 図1(A)に、本発明の第一実施形態に係る製造方法が適用される両ねじ加工設備1を示す。両ねじ加工設備1は、加工対象であるワーク3を主軸8(図示省略、後述)に支持するチャック機構2と、主軸8を回転駆動する回転駆動装置(主軸台7内に内蔵されているため図示省略)と、これらを固定する主軸台7と、切削工具を固定し動かす送り台5と、それを駆動するための送りねじ軸6と、これらを制御する制御装置300等を備える。また、両ねじ加工設備1は、長物加工をするときの加工対象のぶれ防止のための心押台4を有する。切削によるねじ切り加工は、軸線Rを回転軸線として回転する円柱状のワーク3を加工対象として行われる。ワーク3の加工は、ワーク3に対して切削工具9(バイト)が作用することにより行われる。ワーク3が切削工具9による加工を受けることにより、ワーク3において雄ねじ部53が形成される。なお、制御装置300は、CPU(中央演算装置)、記憶装置(メモリ)等を有しており、記憶装置に保存される両ねじ体の製造プログラムがCPUで実行されることで、両ねじ加工設備1の各種機器に対して、後述する製造方法を実現するように制御する。
 ワーク3は円柱状の部材であり、所定の回転軸線を有する回転部に対して支持されて、軸線Rを回転軸線として回転する。主軸8が有する回転軸線は、ワーク3が回転軸線とする軸線Rに対応する。すなわち、ワーク3は主軸8に対して同心配置された状態でチャック機構2により支持され、主軸8の回転によって軸線Rを回転軸線として一定の方向に回転される。回転方向は任意に変更設定することが可能であり、回転速度も変更することが可能である。なお加工設備は、プログラムにより自動的に切削可能な所謂NC旋盤等であって良い。
 図1(B)は、両ねじ加工設備1の要部上面図である。ワーク3はチャック機構2によって主軸8に対して同心配置された状態で支持される。送り機構10は、送り台5と送りねじ軸6等で構成される。切削工具9は切削工具締め付け台14に固定され、切削工具締め付け台14は送り台5に固定支持される。送りねじ軸6はサーボモーター12により回転し、送り台5は送り台5に固定されたナット部11を通じて、送りねじ軸6長手方向に直線移動される。切削工具9が送り台5に従って移動することで、ワーク3は螺旋状に切削され、雄ねじ部53を形成する。図1(B)では主軸8が、心押台4から主軸台7方向に視て、反時計回りに回転しており、それに伴いワーク3も同方向に回転する。
 このとき切削工具9は、心押台4から主軸台7方向に視て、ワーク3の左側、且つ、すくい面が鉛直上向きに取り付けられている。切削工具9は、ワーク3の外周面に対して、適切な切り込み量分を切り込めるだけ、切削工具9を主軸回転方向と垂直方向(即ち、ワーク3の半径方向内側)に移動させる。ワーク3を回転させた状態で、心押台4から主軸台7向きに移動することで、切削工具9の先端がワーク3と干渉して、螺旋溝が切削形成される。
 図2は、本第一実施形態に係る製造方法において、切削工具9がワーク3の表面を通過する切削パスを示す展開図である。なお、図2では、リード角は同じ大きさで、リード方向の相異なる二種類の螺旋溝(例えば右雄ねじ溝と左雄ねじ溝)を形成する際の切削パスを説明する。
 具体的に本製造方法では、ワーク3に作用する切削工具9を、回転軸線にほぼ平行な第一の送り方向に第一の送り量送り出すことで得られる第一の切削パス16と、ワーク3に作用する切削工具9を第一の送り方向と逆の方向に、第一の送り量と同じ送り量を送り出すことで得られる第二の切削パス18を有する。第一の切削パス16によって、第一のねじ溝が形成される。第二の切削パス18によって、第二のねじ溝が形成される。なお、第一の切削パス16と第二の切削パス16は、リード角及び/又はリード方向が異なっていれば良く、ここでは、リード角が互いに一致し、リード方向が反対となっている。
 換言すると、複数の第一の切削パス16の境界には、実線15を頂部とする第一のねじ山が形成され、複数の第二の切削パス18の境界には、実線17を頂部とする第一のねじ山が形成される。
 このようにして、ワーク3を回転させて切削工具9により螺旋溝を形成する為に、第一及び第二の切削パス16、18に沿って切削工具9を相対移動させて切削して行く。切削が終了すると、互いに交差するねじ山部15、17が残ろうとするが、このねじ山部は途中で交差することから、結果として両ねじ体のねじ山部として残るのは、図2における、略菱型形状領域Aとなる。なお、特に図示しないが、略菱型形状領域Aを軸方向から視ると略台形形状に突出する。このとき略菱型形状領域Aの形状が正確に形成されないと、雄ねじ体と雌ねじ体を締結する際に、がたつきが生じたり、或いは締結不能となったりする。特に、略菱型形状領域Aに形成される周方向に延びる稜線Eが、無幅乃至細幅の一本線として形成され得るので、この稜線Eを高精度に形成するためには、通常の右ねじ体や左ねじ体をねじ切り加工して製造する場合よりも、一層正確に加工しなければならない。そこで、後述する本発明の製造方法が好適となる。なお、図示省略するが、略菱形状領域Aの形状は、互いに交差するねじ山部15、17とが交差した部位を頂点とする頂部が必要な訳ではなく、雄ねじ体の軸からの半径が等しくなるような同一円筒面(展開図では、扁平面)上の略菱形状を成す小菱形状領域を設けてもよい。
 次に、第一実施形態の製造方法が有する第一ねじ溝形成ステップと、第二ねじ溝形成ステップを、図3(A)及び(B)を参照して説明する。
 図3(A)の第一ねじ溝形成ステップでは、第一の切削パス16によって、第一のねじ溝(右雄ねじ螺旋溝造)を切削形成する。図3(B)の第二ねじ溝形成ステップは、第二の切削パス18によって、第二のねじ溝(左雄ねじ螺旋構造)を切削形成する。 第一ねじ溝形成ステップでは、ワーク3の心押台4側の端部側から主軸台7側に向かって、第一の切削パス16を利用して切削を行う。なお、ワーク3の端面側から切削を開始すると、切り込み量の調整が容易となるので好ましい。
 ワーク3は、心押台4から主軸台7側に視て反時計回り(回転方向A1)に回転し、その間に、送り台5が、心押台4側から主軸台7へ矢印B1の向きに移動する。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直上向きにして取り付けられる。ねじを形成する終端まで切削工具9が到達したら、図3(B)の状態に移行する。勿論、切削工具9が、心押台4から主軸台7側に視て右側に位置する場合は、切削工具9のすくい面を鉛直下向きにすれば良い。いずれにしろ、切削工具9のすくい面は、ワーク3の回転方向と対向するように配置すれば良い。
 図3(B)の第二ねじ溝形成ステップでは、ワーク3の主軸台7側から心押台4側に向かって、第二の切削パス18を利用して切削を行う。
 ワーク3は、心押台4から主軸台7側に視て反時計回り(回転方向A1)に回転する。即ち、第一ねじ溝形成ステップにおけるワーク3の回転がそのまま継続される。同時に、主軸台7側から心押台4に向かう矢印B2の向きに送り台5を移動する。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直上向きにして取り付けられる。切削工具9の取り付け姿勢も、図3(A)の第一ねじ溝形成ステップと同様である。
 以上の図3(A)の第一ねじ溝形成ステップと、図3(B)の第二ねじ溝形成ステップを交互に複数回繰り返すことで、ワーク3が繰り返し切削され、結果、雄ねじ体60の雄ねじ部53が完成する。このようにすると、切削工具9がワーク3の長手方向に往復移動するだけで良いので、送り量の誤差を小さくすることができ、切削精度を向上させることができる。また、第一ねじ溝(右雄ねじ螺旋溝造)の切削量と第二ねじ溝(左雄ねじ螺旋溝造)の切削量(切削速度)を、互いに近似させながら進めていくことができるので、ねじ山53a(図2の展開図における略菱型形状領域A)の稜線を、正確に形成することができる。更に、一定回数毎に交互にパスの向きを入れ換えながら徐々に削り込んで行くため、パスの交差部の削り込み落差が、一定以下となる最小の状態で切削量を制御することができ、従って、バリを生じさせずに切削加工することを可能としている。
 なお、ねじ溝の深さにもよるが、一往復でねじ部53を完成させても良く、また、複数回の往復を経て、ねじ部53を完成させても良い。切削工具9の寿命を延ばすためには、複数回の往復によって、少しずつ、ねじ溝を形成していくことが望ましい。
 なお、図3(A)および図3(B)の手順をどのように組み合わせるかは、ワーク3の材質や、形成したい両ねじ体のリード角、リード方向により適宜決定して良い。例えば、図3(A)の第一ねじ溝形成ステップを複数回繰り返している途中に、図3(B)の第二ねじ溝形成ステップを実行しも良い。同様に、図3(B)の第二ねじ溝形成ステップを複数回繰り返している途中に、図3(A)の第一ねじ溝形成ステップを実行しも良い。いずれにしろ、少なくとも一部において、第一ねじ溝形成ステップと第二ねじ溝形成ステップが交互に行われる工程を含めることにより、ねじ山53aの形状精度を高めることができる。
 更に、図3(A)の第一ねじ溝形成ステップを連続して複数回実行することを第一ステップ群と定義し、図3(B)の第二ねじ溝形成ステップを連続して複数回実行することを第二ステップ群と定義した場合に、第一ステップ群を複数回実行する間に、単一の第二ねじ溝形成ステップ又は第二ステップ群を介在させても良い。同様に、第二ステップ群を複数回実行する間に、単一の第一ねじ溝形成ステップ又は第一ステップ群を介在させても良い。更にまた、第一ステップ群と第二ステップ群を、交互に繰り返しても良い。
 また更に、本第一実施形態の製造方法は、切削工具9を取り外す必要が無く、また第一ねじ溝形成ステップと第二ねじ溝形成ステップを交互に繰り返し行う場合には、送り台5を送りねじ軸6長手方向に往復させるだけなので、製造効率を高めることができる。また、NC旋盤の場合プログラムを作成することも容易であり、正確に両ねじ体の螺旋溝を形成することが可能である。
 なお、ワーク先端側から刃物をワークに干渉させて切削しながら移動させる第一ねじ溝形成ステップと、この第一ねじ溝形成ステップに対して逆の向きに切削移動させる第二ねじ溝形成ステップと、を経る事前に、図9(A)に示すように、ワーク3の先端からチャック機構2によってチャックされている他端側(基端部側)に向かってねじ部の長さLに相当するワーク3の軸方向部位、又はこの部位を含む周辺位置、或いは、第二ねじ溝の基端部側の開始位置において、軸直交方向に周回する溝加工を施す周回溝形成ステップを設定することが出来る。結果、ワーク3に対して、第一ねじ溝形成ステップと第二ねじ溝形成ステップに先立って周回溝部Dを形成しておくことが出来る。図9(B)に示すように、この周回溝形成ステップによって形成される周回溝部Dの底の深さは、ねじ部の谷底径同等以上の深さで形成されることが好ましい。即ち、周回溝部Dの底部D1は、ねじ部の谷底径ラインPと同等又はそれよりも径方向内側に位置する。また、周回溝部Dの断面形状は、ねじ部の山間の谷部の断面形状の成すV字形断面形状同等以上の広さの断面形状、例えば、U字形断面形状、矩形断面形状、台形断面形状等を成すように形成することが好ましい。また、図9(C)に示すように、周回溝部Dの谷底の形状としては、必要十分な大きさ以上の半径の断面略円弧状の形状とすることができ、その場合、完成後の両ねじ体の周回溝部Dにおける引張強度や疲労強度を向上させることができる。
 こうして、第一ねじ溝形成ステップと第二ねじ溝形成ステップに先立って周回溝部Dを形成しておけば、第二ねじ溝形成ステップによる切削開始位置を、周回溝部D内に設定することが可能となる。切削工具である刃物の刃先の欠けや割れを抑制でき、刃物寿命を著しく改善することができる。
 なお、ここでは、第一ねじ溝形成ステップ及び第二ねじ溝形成ステップを経る事前に、周回溝形成ステップを実行する場合を例示したが、本発明はこれに限定されず、例えば、第一の切削パスに沿った一回目の第一ねじ溝形成ステップの後に連続して周回溝形成ステップを実行して、第二ねじ溝形成ステップの開始位置に周回溝部Dを形成してから、一回目の第二ねじ溝形成ステップを実行しても良い。即ち、周回溝形成ステップの実行タイミングは、目的に応じて適宜設定すればよい。
 次に、本発明の第二実施形態に係る製造方法及び製造プログラムについて説明する。この製造方法は、図1で示した両ねじ加工設備1を利用して加工するものであり、図3(C)に示す第一ねじ溝形成ステップと、図3(D)に示す第二ねじ溝形成ステップを有する。
 図3(C)の第一ねじ溝形成ステップでは、右雄ねじ螺旋溝構造を切削形成し、図3(D)の第一ねじ溝形成ステップでは、左雄ねじ螺旋構造を切削形成する。
 第一ねじ溝形成ステップでは、ワーク3の心押台4側の端部側から主軸台7側に向かって、第一の切削パス16を利用して切削を行う。この間、ワーク3は、心押台4から主軸台7側に視て反時計回り(回転方向A1)に回転し、その間に、送り台5が、心押台4側から主軸台7へ矢印B1の向きに移動する。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直上向きにして取り付けられる。ねじを形成する終端まで切削工具9が到達したら、図3(D)の状態に移行する。
 図3(D)の第二ねじ溝形成ステップでは、第一ねじ溝形成ステップと同様に、ワーク3の心押台4側の端部側から主軸台7側に向かって、第二の切削パス18を利用して切削を行う。
 ワーク3は、心押台4から主軸台7側に視て時計回り(回転方向A2)に回転する。即ち、第一ねじ溝形成ステップにおけるワーク3の回転に対して、第二ねじ溝形成ステップは逆回転となる。これにより、切削工具9の移動方向は、第一ねじ溝形成ステップを同じ方向(矢印B1)に設定される。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直上向きにして取り付けられる。これも、図3(C)の第一ねじ溝形成ステップと同様である。
 この第二実施形態に係る製造方法では、第一ねじ溝形成ステップ及び第二ねじ溝形成ステップの双方ともに、ワーク3の心押台4側の端部から切削を始めることができるので、いずれの場合も切り込み量の調整が容易である。
 なお、本第二実施形態においても、第一実施形態と同様に、第一ねじ溝形成ステップ及び第二ねじ溝形成ステップを各一工程で雄ねじ部53を完成させても良く、また、複数回の工程を経て、雄ねじ部53を完成させても良い。切削工具9の寿命を延ばすためには、複数回の切削工程によって、少しずつ、ねじ溝を形成していくことが望ましい。
 なお、図3(C)および図3(D)の手順をどのように組み合わせるかは、ワーク3の材質や、形成したい両ねじ体のリード角、リード方向により適宜決定して良い。例えば、図3(C)の第一ねじ溝形成ステップを複数回繰り返している途中に、図3(D)の第二ねじ溝形成ステップを実行しも良い。同様に、図3(D)の第二ねじ溝形成ステップを複数回繰り返している途中に、図3(C)の第一ねじ溝形成ステップを実行しも良い。このように交互に加工すると、第一ねじ溝(右雄ねじ螺旋溝造)の切削量と第二ねじ溝(左雄ねじ螺旋溝造)の切削量(切削速度)を、互いに近似させながら進めていくことができるので、ねじ山53a(図2の展開図における略菱型形状領域A)の稜線を、正確に形成することができる。
 更に、図3(C)の第一ねじ溝形成ステップを連続して複数回実行することを第一ステップ群と定義し、図3(D)の第二ねじ溝形成ステップを連続して複数回実行することを第二ステップ群と定義した場合に、第一ステップ群を複数回実行する間に、単一の第二ねじ溝形成ステップ又は第二ステップ群を介在させても良い。同様に、第二ステップ群を複数回実行する間に、単一の第一ねじ溝形成ステップ又は第一ステップ群を介在させても良い。更にまた、第一ステップ群と第二ステップ群を、交互に繰り返しても良い。
 次に、本発明の第三実施形態の製造方法及び製造プログラムについて説明する。この製造方法は、この製造方法は、図1で示した両ねじ加工設備1を利用して加工するものであり、図4(A)に示す第二ねじ溝形成ステップと、図4(B)に示す第一ねじ溝形成ステップを有する。
 図4(A)の第二ねじ溝形成ステップでは、左雄ねじ螺旋溝構造を切削形成し、図4(B)の第一ねじ溝形成ステップでは、右雄ねじ螺旋構造を切削形成する。
 第二ねじ溝形成ステップでは、ワーク3の心押台4側の端部側から主軸台7側に向かって、第二の切削パス18を利用して切削を行う。ワーク3は、心押台4から主軸台7側に視て時計回り(回転方向A2)に回転し、その間に、送り台5が、心押台4側から主軸台7へ矢印B1の向きに移動する。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直下向きにして取り付けられる。ねじを形成する終端まで切削工具9が到達したら、図4(B)の状態に移行する。
 図4(B)の第一ねじ溝形成ステップでは、ワーク3の主軸台7側から心押台4側に向かって、第一の切削パス16を利用して切削を行う。ワーク3は、心押台4から主軸台7側に視て時計回り(回転方向A2)に回転する。即ち、第二ねじ溝形成ステップにおけるワーク3の回転がそのまま継続される。この間に、主軸台7側から心押台4に向かう矢印B2の向きに送り台5が移動する。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直下向きにして取り付けられる。これは、図4(A)の第二ねじ溝形成ステップと同様である。
 以上の図4(A)の第二ねじ溝形成ステップと図4(B)の第一ねじ溝形成ステップを、交互に繰り返し行うことで両ねじ体を形成する。切削工具9を、すくい面が鉛直下向きに取り付けると切り粉が下に落ちるため、切り粉の処理が容易であり、また切削抵抗が下に向くため、主軸が浮き上がることが無いので、精度の良い安定した加工が可能である。
 なお、図4(A)および図4(B)の手順をどのように組み合わせるかは、ワーク3の材質や、形成したい両ねじ体のリード角、リード方向により適宜決定して良い。例えば、図4(B)の第一ねじ溝形成ステップを複数回繰り返している途中に、図4(A)の第二ねじ溝形成ステップを実行しも良い。同様に、図4(A)の第二ねじ溝形成ステップを複数回繰り返している途中に、図4(B)の第一ねじ溝形成ステップを実行しも良い。
 更に、図4(B)の第一ねじ溝形成ステップを連続して複数回実行することを第一ステップ群と定義し、図4(A)の第二ねじ溝形成ステップを連続して複数回実行することを第二ステップ群と定義した場合に、第一ステップ群を複数回実行する間に、単一の第二ねじ溝形成ステップ又は第二ステップ群を介在させても良い。同様に、第二ステップ群を複数回実行する間に、単一の第一ねじ溝形成ステップ又は第一ステップ群を介在させても良い。更にまた、第一ステップ群と第二ステップ群を、交互に繰り返しても良い。
 なお、第一乃至第三実施形態では、第一ねじ溝形成ステップと第二ねじ溝形成ステップの切削工具9の送り量(ワーク3の一回転あたりの軸方向移動量であって、リード角で定義することもできる)を、互いに一致させる場合を例示したが、本発明はこれに限定されず、第一ねじ溝形成ステップと第二ねじ溝形成ステップの間で、送り量を異ならせるようにしても良い。
 また、第一乃至第三実施形態の応用として、特に図示しないが、図4(B)で示す第一ねじ溝形成ステップと、図3(B)で示す第二ねじ溝形成ステップを組み合わせた製造方法を採用することもできる。
 なお、上記実施形態では、製造され得る両ねじ体は、互いにリード角は同じ大きさで、リード方向の相異なる二種類の螺旋溝(例えば右雌ねじ溝と左雌ねじ溝)を有する場合を例示したが、両ねじ体の種類としてはこれに限定されず、例えば、互いにリード角が異なり、かつ、リード方向の相一致する二種類の螺旋溝(例えば第一右雄ねじ溝と第二右雄ねじ溝、又は、第一左雄ねじ溝と第二左雄ねじ溝等)を有するようにしても良い。
 この場合、図4(C)に示す第一ねじ溝形成ステップと、図4(D)に示す第二ねじ溝形成ステップを有する製造方法を採用すればよい。
 図4(C)の第一ねじ溝形成ステップでは、第一右雄ねじ螺旋溝構造を切削形成し、図4(D)の、第二ねじ溝形成ステップでは、第一右雄ねじ螺旋溝構造とリード方向が同じで、リード角が異なる第二右雄ねじ螺旋構造を切削形成する。
 第一ねじ溝形成ステップでは、ワーク3の心押台4側の端部側から主軸台7側に向かって、第一の切削パス16を利用して切削を行う。この間、ワーク3は、心押台4から主軸台7側に視て反時計回り(回転方向A1)に回転し、その間に、送り台5が、心押台4側から主軸台7へ、第一の送り量となる矢印B1aの向きに移動する。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直上向きにして取り付けられる。ねじを形成する終端まで切削工具9が到達したら、切削工具を元の場所に戻して、図4(D)の状態に移行する。
 図4(D)の第二ねじ溝形成ステップでは、第一ねじ溝形成ステップと同様に、ワーク3の心押台4側の端部側から主軸台7側に向かって、リード方向が同じでリード量が異なる第二の切削パス18を利用して切削を行う。
 ワーク3は、心押台4から主軸台7側に視て反時計回り(回転方向A1)に回転する。即ち、第一ねじ溝形成ステップにおけるワーク3の回転を継続すればよい。切削工具9の移動方向は、第一ねじ溝形成ステップと同じ方向となるが、その送り量は、第一ねじ溝形成ステップと異なるように設定される(矢印B1b)。なお、切削工具9は、心押台4から主軸台7側に視て左側、且つ、切削工具9がすくい面を鉛直上向きにして取り付けられる。これも、図4(C)の第一ねじ溝形成ステップと同様である。
 この製造方法では、第一ねじ溝形成ステップ及び第二ねじ溝形成ステップの双方ともに、ワーク3の心押台4側の端部から切削を始めることができるので、いずれの場合も切り込み量の調整が容易である。また、互いステップの送り量のみを適宜調整することで、様々な両ねじ体を自在に製造することができる。
 次に、図5を参照して、上記第一乃至第三実施形態等で行われるねじ切り加工において、第一ねじ溝形成ステップと第二ねじ溝形成ステップのそれぞれの切削ステップの切削取り代(切削量)の配分について説明する。図5(A)は、所謂ラジアルインフィードと呼ばれる切削方法であり、ワーク3の外周面50に、切削工具9の切り刃部40を作用させる際、形成予定のねじ溝の中心位置Cと一致する場所に、切り刃部40の刃先を固定し、ワーク3の外周面に対して垂直に切削していく。複数回の第一ねじ溝形成ステップ及び第二ねじ溝形成ステップの各ステップ毎に、切り刃部40を、ねじ溝の中心位置Cに一致させたまま、半径方向内側に段階的に進めていくことで、ねじ溝が完成する。
 この所謂ラジアルインフィードでは、切り刃部40の左右で均一の摩耗を生じる点で有利だが、一回の切り込み量を大きくすると、切削抵抗が大きくなる。
 図5(B)は、所謂アルタネートインフィード(千鳥切込み)と呼ばれる切削方法であり、ワーク3の外周面50に切り刃部40を作用させる際、切り刃部40の先端を、ワーク3の半径方向内側に向かって、千鳥状(ジグザグ状)に進める方法である。このようにすると、(第一回目の切削を除いた)二回目以降の切削工程において、切り刃部40左右の面の一方を交互に利用して切削していくことができ、ラジアルインフィードよりも切削抵抗を低減することができる。また、切り刃部40の左右両刃の逃げ面摩耗が均一にできる。
 図5(C)は、所謂フランクインフィードと呼ばれる切削方法であり、ワーク3の外周面50に切り刃部40を作用させる際、形成予定のねじ溝の片面に沿って切削する方法である。切り粉の処理が容易で、切削抵抗は小さいが、切り刃部40において片側の刃の摩耗が激しいというデメリットもある。ちなみに、本発明の実施形態の製造方法においては、どのインフィードを採用しても良い。
 更に、各ねじ溝形成ステップごとの取り代(加工代)としては、ねじ溝における回転軸線(ワーク3の軸線方向切断面)を含む断面における切削断面積が、複数回のねじ溝形成ステップを繰り返す度に、徐々にあるいは段階的に減少させることが好ましい。例えば、図5(A)のラジアルインフィードにおいて、第一回目の切削断面積a1、第2回目の切削断面積a2、第3回目の切削断面積a3、第4回目の切削断面積a4が、a1≧a2≧a3≧a4となることが好ましい。このように、最初は切削断面積を大きく取り、切削加工の終盤に向けて切削断面積を小さくしていくことで、加工精度をあげることが可能である。図5(B)のアルタネートインフィードでは、a1≧a2≧a3≧a4≧a5≧a6≧a7となるように加工する。図5(C)のフランクインフィードでは、a1≧a2≧a3≧a4≧a5≧a6となるように加工する。勿論、各ねじ溝形成ステップ毎の取り代は徐々に、或いは、段階的に減少させることに限定されるものではない。
 なお、本発明の実施形態に係る両ねじ体製造方法、両ねじ体製造プログラムは、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 例えばリード角及び/又はリード方向が相異なる二種類の雌ねじ構造を有する単一の雌ねじ体を形成する場合には、切削工具9として所謂雌ねじ切りバイトを使用し、回転方向、送り台5の送り方向等は、上記第一乃至第三実施形態と同様に、適宜調節することとなる。
 1  両ねじ加工設備
 2  チャック機構
 3  ワーク
 4  心押台
 5  送り台
 6  送りねじ軸
 7  主軸台
 8  主軸
 9  切削工具
 10  送り機構
 11  ナット部
 12  サーボモーター
 14  切削工具締め付け台
 40  切り刃部
 50  ワーク外周面
 53  雄ねじ部
 53a ねじ山
 54  第一雄ねじ螺旋構造
 55  第二雄ねじ螺旋構造
 60  雄ねじ体
 111  ボルト頭部
 113  雄ねじ部
 120  第一雌ねじ体
 130  第二雌ねじ体
 140  雌ねじ体
 150  雌ねじ部
 151  第一雌ねじ螺旋構造
 152  第二雌ねじ螺旋構造
 D  周回溝部

Claims (13)

  1.  第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する両ねじ体製造方法であって、
     所定の軸線を回転軸線として回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に第一の送り量を送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、
     上記ワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に上記第一の送り量と異なる第二の送り量を送り出して得られる第二の切削パスによって、第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、
     を有することを特徴とする両ねじ体製造方法。
  2.  第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する両ねじ体製造方法であって、
     所定の軸線を回転軸線として第一の方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、
     上記第一の方向と逆方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向に送り出して得られる第二の切削パスによって第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、
     を有することを特徴とする両ねじ体製造方法。
  3.  第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する両ねじ体製造方法であって、
     所定の軸線を回転軸線として第一の方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、
     上記第一の方向と同方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向と逆方向に送り出して得られる第二の切削パスによって、第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、
     を有することを特徴とする両ねじ体製造方法。
  4.  前記ワークにおける前記第二ねじ溝形成ステップによる加工開始位置に、軸直交方向に周回する溝加工を施す周回溝形成ステップを有することを特徴とする請求の範囲3に記載の両ねじ体製造方法。
  5.  前記第一ねじ溝形成ステップと前記第二ねじ溝形成ステップのうち少なくとも一つのステップを複数回行うことを特徴とする請求の範囲1から請求の範囲4のいずれか一の請求の範囲に記載の両ねじ体製造方法。
  6.  複数回の前記第一ねじ溝形成ステップの途中のいずれかの間に、前記第二ねじ溝形成ステップが実行されることを特徴とする請求の範囲1から請求の範囲4のいずれか一の請求の範囲に記載の両ねじ体製造方法。
  7.  複数回の前記第二ねじ溝形成ステップの途中のいずれかの間に、前記第一ねじ溝形成ステップが実行されることを特徴とする請求の範囲1から請求の範囲4のいずれか一の請求の範囲に記載の両ねじ体製造方法。
  8.  連続する複数回の前記第一ねじ溝形成ステップを第一ステップ群、連続する複数回の前記第二ねじ溝形成ステップを第二ステップ群と定義した際に、複数の上記第一ステップ群と複数の上記第二ステップ群が交互に実行されることを特徴とする請求の範囲1から請求の範囲4のいずれか一の請求の範囲に記載の両ねじ体製造方法。
  9.  前記第一ねじ溝形成ステップと、前記第二ねじ溝形成ステップと、を交互に行うことを特徴とする請求の範囲1から請求の範囲4のいずれか一の請求の範囲に記載の両ねじ体製造方法。
  10.  前記第一のねじ溝の前記回転軸線を含む断面における、前記第一ねじ溝形成ステップにより切削される切削断面積が、複数回の上記第一ねじ溝形成ステップを繰り返す度に徐々にあるいは段階的に減少し、
     前記第二のねじ溝の前記回転軸線を含む断面における、前記第二ねじ溝形成ステップにより切削される切削断面積が、複数回の上記第二ねじ溝形成ステップを繰り返す度に徐々にあるいは段階的に減少することを特徴とする請求の範囲1から請求の範囲9のいずれか一の請求の範囲に記載の両ねじ体製造方法。
  11.  第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する製造装置に適用される両ねじ体製造プログラムであって、
     上記製造装置に対して、
     所定の軸線を回転軸線として回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に第一の送り量を送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成させる第一ねじ溝形成ステップと、
     上記ワークに作用する切削工具を、上記回転軸線にほぼ平行な送り方向に上記第一の送り量と異なる第二の送り量を送り出して得られる第二の切削パスによって、第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、
     を実行させることを特徴とする両ねじ体製造プログラム。
  12.  第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する製造装置に適用される両ねじ体製造プログラムであって、
     上記製造装置に対して、
     所定の軸線を回転軸線として第一の方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって、第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、
     上記第一の方向と逆方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向に送り出して得られる第二の切削パスによって第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、
     を実行させることを特徴とする両ねじ体製造プログラム。
  13.  第一のねじ溝と、上記第一のねじ溝とリード角及び/又はリード方向が異なる第二のねじ溝を有する両ねじ体を製造する製造装置に適用される両ねじ体製造プログラムであって、
     上記製造装置に対して、
     所定の軸線を回転軸線として第一の回転方向に回転する加工対象のワークに作用する切削工具を、上記回転軸線にほぼ平行な第一の送り方向に送り出して得られる第一の切削パスによって第一のねじ溝の少なくとも一部を形成する第一ねじ溝形成ステップと、
     上記第一の方向と同方向に回転する上記ワークに作用する切削工具を、上記第一の送り方向と逆方向に送り出して得られる第二の切削パスによって第二のねじ溝の少なくとも一部を形成する第二ねじ溝形成ステップと、
     を実行させることを特徴とする両ねじ体製造プログラム。
PCT/JP2016/082921 2015-11-05 2016-11-07 両ねじ体製造方法、両ねじ体製造プログラム WO2017078174A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017549144A JP6858407B2 (ja) 2015-11-05 2016-11-07 両ねじ体製造方法、両ねじ体製造プログラム
US15/773,712 US20180318948A1 (en) 2015-11-05 2016-11-07 Manufacturing method for compound screw and manufacturing program for compound screw
KR1020187012558A KR102644898B1 (ko) 2015-11-05 2016-11-07 양나사체 제조 방법, 양나사체 제조 프로그램
CN201680064628.5A CN108349030A (zh) 2015-11-05 2016-11-07 双螺丝钉制造方法和双螺丝钉制造程序
EP16862231.4A EP3372332A4 (en) 2015-11-05 2016-11-07 MANUFACTURING METHOD FOR SCREW NON-CONTRASTING SCREW AND MANUFACTURING PROGRAM FOR SCREW NON-CONTRARY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015217360 2015-11-05
JP2015-217360 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078174A1 true WO2017078174A1 (ja) 2017-05-11

Family

ID=58662106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082921 WO2017078174A1 (ja) 2015-11-05 2016-11-07 両ねじ体製造方法、両ねじ体製造プログラム

Country Status (6)

Country Link
US (1) US20180318948A1 (ja)
EP (1) EP3372332A4 (ja)
JP (1) JP6858407B2 (ja)
KR (1) KR102644898B1 (ja)
CN (1) CN108349030A (ja)
WO (1) WO2017078174A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3653326A4 (en) * 2017-07-13 2021-04-14 Citizen Watch Co., Ltd. THREAD TURNING DEVICE AND TAPPING METHOD
JP6702931B2 (ja) * 2017-12-26 2020-06-03 ファナック株式会社 数値制御装置
JP7195110B2 (ja) * 2018-10-26 2022-12-23 シチズン時計株式会社 工作機械及び制御装置
EP3715033A1 (en) * 2019-03-26 2020-09-30 VARGUS Ltd. Method of determining milling parameters, method of milling threads, and use of a thread milling cutter
JP7214568B2 (ja) * 2019-05-29 2023-01-30 シチズン時計株式会社 工作機械及びこの工作機械の制御装置
CN114799849B (zh) * 2022-06-27 2022-09-02 深圳市中弘凯科技有限公司 一种基于机器视觉的螺丝机作业操作参数采集分析系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122995A (en) * 1977-04-01 1978-10-26 Senzai Kikai Seisakushiyo Kk Device for automatically turning lease screws
JPS63278716A (ja) * 1987-05-07 1988-11-16 Kenjiro Jinbo 緩み止め弾性ねじ部品のねじ切り装置
JPH0655342A (ja) * 1992-06-12 1994-03-01 Tsugami Corp 特殊ウォームネジのネジ溝切削方法及び装置と特殊ウォームネジ
JP2008272925A (ja) * 2007-04-05 2008-11-13 Toshiba Mach Co Ltd ロール表面加工方法および装置
JP2014087888A (ja) * 2012-10-30 2014-05-15 Okuma Corp 工作機械

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189056A (ja) * 2003-08-12 2006-07-20 Art Screw:Kk 左右ねじおよびその転造用ダイス
CN1295444C (zh) * 2004-01-16 2007-01-17 何人东 具有复数螺旋角螺纹的螺丝及制作该种螺丝的模具
CN103089781B (zh) * 2012-12-04 2015-07-15 安徽六方重联机械股份有限公司 高强度双头螺栓加工方法
CN203197411U (zh) * 2013-03-14 2013-09-18 浙江专风船用机械有限公司 加工往复螺杆的专用机构及机床
CN103394773B (zh) * 2013-08-19 2016-01-20 重庆工具厂有限责任公司 双头螺纹的快速车削方法
JP5894719B2 (ja) * 2013-09-25 2016-03-30 株式会社大新工業製作所 ねじ構造、ねじ部品、ねじ切りタップ、打込み鋲、ねじ構造の製造方法および転造ダイス
CN103600135A (zh) * 2013-11-28 2014-02-26 吴冬梅 一种双头螺纹的加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122995A (en) * 1977-04-01 1978-10-26 Senzai Kikai Seisakushiyo Kk Device for automatically turning lease screws
JPS63278716A (ja) * 1987-05-07 1988-11-16 Kenjiro Jinbo 緩み止め弾性ねじ部品のねじ切り装置
JPH0655342A (ja) * 1992-06-12 1994-03-01 Tsugami Corp 特殊ウォームネジのネジ溝切削方法及び装置と特殊ウォームネジ
JP2008272925A (ja) * 2007-04-05 2008-11-13 Toshiba Mach Co Ltd ロール表面加工方法および装置
JP2014087888A (ja) * 2012-10-30 2014-05-15 Okuma Corp 工作機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3372332A4 *

Also Published As

Publication number Publication date
JPWO2017078174A1 (ja) 2018-09-20
EP3372332A4 (en) 2019-06-26
CN108349030A (zh) 2018-07-31
EP3372332A1 (en) 2018-09-12
JP6858407B2 (ja) 2021-04-14
US20180318948A1 (en) 2018-11-08
KR102644898B1 (ko) 2024-03-08
KR20180078250A (ko) 2018-07-09

Similar Documents

Publication Publication Date Title
WO2017078174A1 (ja) 両ねじ体製造方法、両ねじ体製造プログラム
CA3009266C (en) Device and method for producing a chamfer on a toothed workpiece wheel
KR101786771B1 (ko) 공구를 이용하여 톱니 기어휠의 플랭크를 가공하는 방법
US20180354047A1 (en) Gear machining method and gear machining device
US10295039B2 (en) Convex gear tooth edge break
JP5362854B2 (ja) 内径仕上げ刃付き盛上げタップ
WO2021117526A1 (ja) 加工装置、加工方法および切削工具
CN110614407B (zh) 拓扑展成磨削齿轮工件的方法和相应的磨削机
WO2020241524A1 (ja) 工作機械及びこの工作機械の制御装置
TWI750395B (zh) 螺紋切削加工裝置和螺紋切削加工方法
US20170087647A1 (en) Rotary cutting tool
US20110200404A1 (en) Spiral tap
JP6977494B2 (ja) 歯切り工具、歯車加工装置、歯切り工具の再研磨方法及び歯切り工具の設計方法
JP5031874B2 (ja) ロータリドレッサ
JP6565399B2 (ja) 歯車加工装置
WO2010101512A2 (en) Method of thread milling, thread, and insert and tool for thread milling
WO2021172065A1 (ja) 加工方法、加工装置、加工プログラムおよびエンドミル
JP4632859B2 (ja) ねじれ溝タップのねじ研削方法
JP2023520719A (ja) 金属スレッドを切削するための方法
JP5311901B2 (ja) 螺子転造ダイス
US9764401B2 (en) Zero lead generative cutting tool
JP2588353B2 (ja) 歯車加工装置
CN107931976A (zh) 多头蜗杆的加工方法
KR20240011689A (ko) 피가공물 치형 배열체의 치형 플랭크 영역을 기계가공하기 위한 방법, 챔퍼링 공구, 이 방법을 수행하기 위한 제어 명령어를 갖는 제어 프로그램, 및 기어 절삭기
JP6471504B2 (ja) クラウンギヤの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549144

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187012558

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15773712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016862231

Country of ref document: EP