WO2017078137A1 - 微生物変換によるアシルグルクロン酸抱合体の製造方法及びその変換活性を有する微生物 - Google Patents

微生物変換によるアシルグルクロン酸抱合体の製造方法及びその変換活性を有する微生物 Download PDF

Info

Publication number
WO2017078137A1
WO2017078137A1 PCT/JP2016/082800 JP2016082800W WO2017078137A1 WO 2017078137 A1 WO2017078137 A1 WO 2017078137A1 JP 2016082800 W JP2016082800 W JP 2016082800W WO 2017078137 A1 WO2017078137 A1 WO 2017078137A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
culture
glucuronic acid
compound
sank
Prior art date
Application number
PCT/JP2016/082800
Other languages
English (en)
French (fr)
Inventor
貴史 大貫
大介 福田
賢善 水野
政彦 江尻
木塚 正明
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Publication of WO2017078137A1 publication Critical patent/WO2017078137A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • the present invention relates to a method for producing an acyl glucuronic acid conjugate of a target compound having a carboxyl group by utilizing microbial conversion, and a microorganism having acyl glucuronic acid conjugate converting activity.
  • Non-patent Document 1 In recent metabolite evaluation in drug development, the safety risk of acyl glucuronic acid conjugates of compounds having a carboxyl group is regarded as a problem (Non-patent Document 1). From the viewpoint of safety assessment, there are cases where a certain amount of acylglucuronide conjugate is required to allow animal experiments, but chemical synthesis that requires protection / deprotection steps is generally stable. It is difficult to obtain an acyl glucuronic acid conjugate (Non-patent Document 2).
  • Non-Patent Document 4 a method of reacting and condensing with an active esterified carboxylic acid without protecting the hydroxyl group of glucuronic acid (Non-Patent Document 4) or a halogenated halogen at the 1-position of glucuronic acid
  • a production method is known in which activated glucuronic acid is reacted with an active esterified carboxylic acid derivative (Non-patent Document 5).
  • Patent Document 2 This is a method of producing an acyl glucuronic acid conjugate by deprotection after obtaining a protected acyl glucuronic acid conjugate by reacting the compound having an active ester and reacting it.
  • Patent Document 2 There are problems in the steric control, yield, etc. of the acid 1 position, and report examples are also limited.
  • glucuronic acid derivatives in which the 2-position, 3-position and 4-position of the 1-position halogenated glucuronic acid are protected with an acetyl group which is an ester-based protecting group and the carboxyl group is a methyl ester are present together with a compound having a carboxyl group and a condensation agent
  • a method for producing a glucuronic acid derivative by deprotecting these ester-based protecting groups under mild conditions using a hydrolase such as lipase or carboxylase after condensation under the above has also been reported ( Non-patent document 6).
  • a hydrolase such as lipase or carboxylase after condensation under the above
  • UDP-glucuronic acid is used as a glucuronic acid donor
  • UDP-glucuronic acid transferase is used as an enzyme
  • a condensation reaction is performed with a compound having a carboxyl group under mild enzyme reaction conditions.
  • UGT produced by liver microsomes or a heterologous expression system can be used, but it is not suitable for mass synthesis (Patent Document 3).
  • a microorganism having a heterologous expression system in which UDP-glucuronic acid is supplied and UGT is produced in one microbial cell is prepared, and a compound having a carboxyl group is externally added to the culture medium of the microorganism.
  • a technique for synthesizing acylglucuronic acid conjugates in microbial cells has also been reported (Patent Documents 4 and 5). In this production method, expensive glucuronic acid donors and enzymes are shared by microorganisms, and in addition, large-scale synthesis is possible by using a culture container with an appropriate capacity.
  • Microbial transformation is an efficient method for producing glucuronide conjugates of externally added compounds by producing glucuronide donors and glucuronyltransferases in microbial cells while having high selectivity for enzymatic reactions.
  • glucuronide donors and glucuronyltransferases are known.
  • the production of expensive glucuronic acid donors and enzymes is carried out by the microorganisms themselves, so that the cost is low and mass culture is easy.
  • the inventors of the present invention have made extensive studies on the production of acylglucuronic acid conjugates, found a plurality of strains having act of converting acylglucuronic acid conjugates among actinomycetes, and compounds having various structures having carboxyl groups by the microorganisms. Was converted to an acylglucuronic acid conjugate and the present invention was completed by further research.
  • the present invention provides the following production method and microorganism.
  • a method for producing an acyl glucuronic acid conjugate of a target compound having a carboxyl group comprising the following steps A and B: Step A: culturing a microorganism having acylglucuronide conjugate conversion activity in a culture solution containing a target compound having a carboxyl group, and Process B: The process of acquiring the acyl glucuronic acid conjugate of a target compound from the culture of Process A.
  • the target compound is 0.1 or more (preferably 0.3 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and even more preferably 1.5 or more. And (1) most preferably 2.0 or more).
  • the culture conditions in step A are a temperature of 20 to 37 ° C. and the pH of the medium is 3.0 to 10.0 (preferably 5.0 to 8.0). Method.
  • the pH of the medium is such that the LogD value of the target compound is 0.1 or more (preferably 0.3 or more, more preferably 0.5 or more, and still more preferably 1.
  • the production method according to (3), wherein the pH condition is 0 or more, even more preferably 1.5 or more, and most preferably 2.0 or more.
  • microorganism having acylglucuronic acid conjugate conversion activity is an actinomycete belonging to the genus Streptomyces.
  • the microorganism having acylglucuronic acid conjugate conversion activity belongs to the genus Streptomyces, SANK60895 strain, SANK61210 strain, SANK61108 strain, SANK61010 strain, SANK61110 strain, or SANK60310 strain.
  • Actinomycetes belonging to the genus Streptomyces having acylglucuronic acid conjugate conversion activity (8) The actinomycetes of (7), which are SANK60895 strain, SANK61210 strain, SANK61108 strain, SANK61010 strain, SANK61110 strain, or SANK60310 strain.
  • acylglucuronic acid conjugates of various compounds having a carboxyl group By using the microorganism and the production method of the present invention, it is possible to stably produce acylglucuronic acid conjugates of various compounds having a carboxyl group. This facilitates research on metabolites of compounds having a carboxyl group, and is expected to lead to the creation of safer pharmaceuticals.
  • FIG. 1a O-glucuronic acid conjugate
  • FIG. 1b acylglucuronic acid conjugate
  • SANK 60895 strain culture medium 2, pH 6, 72 hours culture
  • the graph which shows the time-dependent change of each compound amount in the conversion culture
  • Compound (1)
  • Compound (1)
  • Compound (1) -O-glucuronic acid conjugate
  • Compound (1) -acyl glucuronic acid conjugate.
  • the horizontal axis represents time, and the vertical axis represents the content (%) of each compound when the amount of compound (1) added is 100%.
  • Each plot number is a compound number, ⁇ indicates an acyl type, ⁇ indicates an O-type, and ⁇ indicates an N-type glucuronic acid conjugate product.
  • Conversion rate of each compound (1) into each glucuronide conjugate by PH during culture ( ⁇ : acylglucuronide conjugate, ⁇ : O-glucuronide conjugate) and LogD value of compound (1) ( ⁇ Is a graph showing the correlation.
  • the horizontal axis indicates the pH of the culture solution during conversion culture.
  • the left vertical axis represents the conversion rate (%) to each glucuronic acid conjugate.
  • the right vertical axis indicates the LogD value of compound (1).
  • the present invention includes the following steps A and B; Step A: culturing actinomycetes having glucuronide conjugate converting activity in a culture solution containing the target compound having a carboxyl group, and step B: acylglucuronic acid conjugate of the target compound from the culture of Step A
  • the step of purifying A method for producing an acyl glucuronic acid conjugate of a target compound having a carboxyl group, comprising:
  • an “acyl glucuronide” is a compound having a carboxyl group represented by the following formula (I), wherein glucuronic acid is added to the carboxyl group as represented by the following formula (II).
  • a compound having a bonded structure is a compound having a bonded structure.
  • the glucuronic acid conjugate of the compound is important as a metabolite of the compound administered to the animal.
  • an O-glucuronic acid conjugate in which glucuronic acid is bonded to the hydroxyl group of the compound the amino acid of the compound N-glucuronic acid conjugates in which glucuronic acid is bonded to the group are known.
  • the compound of the formula (I) converted to an acylglucuronic acid conjugate (sometimes referred to as “target compound”) has a carboxyl group as a substituent and has a molecular weight (carboxyl group) of a certain level or more.
  • R may be a straight chain or branched A C4-C29 alkyl group having a linear or branched C4-C29 alkenyl group optionally having a substituent, a linear or branched C4-C29 alkynyl group optionally having a substituent, a substituent A monocyclic or polycyclic C3-C10 cycloalkyl group which may have a monocyclic or polycyclic 4- to 10-membered heterocycloalkyl group which may have a substituent, a substituent Or a compound that represents a monocyclic or polycyclic aromatic heterocyclic group that may have a substituent, and more preferably, R has a substituent.
  • R 1 , R 2 , and R 3 may be the same or different and each has a hydrogen atom, a linear or branched alkyl group that may have a substituent, or a substituent.
  • a monocyclic or polycyclic heterocycloalkyl group which may have a monocyclic or polycyclic aromatic hydrocarbon ring group which may have a substituent, or a monocyclic or polycyclic aromatic which may have a substituent Represents a group heterocyclic group, wherein at least two of R 1 , R 2 , and R 3 are functional groups other than hydrogen atoms.
  • the LogP value is an octanol / water partition coefficient, and this coefficient can be obtained by an experimental method such as a flask shaking method or an HPLC method, but can also be calculated by computational chemistry based on the chemical structure.
  • Various software and algorithms used for such computational scientific calculations are known. For example, Advanced Chemistry Development (ACD) company-made software ACD / PhysChem Database version 11.01 etc. may be used. it can.
  • a compound having a LogP value of any value can be used, but it is preferably 0.1 or more, more preferably 0.3 or more, and more preferably 0.5 or more. More preferably, it is 1.0 or more, More preferably, it is 1.5 or more, Most preferably, it is 2.0 or more.
  • Preferred compounds for use in the method of the present invention are compounds that are ingested by the human body, such as pharmaceuticals and food additives, and have a carboxyl group.
  • Representative examples of such compounds include, for example, mycophenolic acid, meclofenamate, mefenamic acid, naproxen, gemfibrozil, furosemide.
  • Zidovudine Zidovudine, flufenamic acid, levofloxacin, montelukast, telmisartan, repaglinide, diclofenac, ibuprofen (Ibuprofen), ibuprofen (Ibuprofen) Probenecid), tolmetin, Benoxaprofen, Fenclofenac, Ibufenac and the like.
  • acylglucuronic acid conjugate which is the object of the present invention, shows a molecular weight that is 176.003208 ppm higher than the original target compound as a theoretical value, by detecting the peak of the corresponding molecular weight by mass spectrometry, The presence of the target product in the reaction solution can be confirmed.
  • some glucuronic acid conjugates of pharmaceutical compounds are commercially available as reagents. By purchasing such reagents and making them standard products of interest, comparing the analysis results of the reaction solution and standard products Further, the object can be detected and identified with higher accuracy.
  • a mass spectrometer used for such analysis one equipped with an ESI ion source can be used.
  • LC / TOF-MS LC / MSD SL (all manufactured by Agilent Technologies), Amazon X (manufactured by Bruker Daltonics) and the like can be mentioned.
  • an HPLC apparatus used for analysis an HPLC apparatus equipped with a photodiode array detector can be used, and specific examples include HP1100 (manufactured by Agilent Technologies), Ultimate 3000 (manufactured by Nippon Dionex). be able to.
  • the following analysis conditions 1 and 2 can be illustrated as typical examples of analysis conditions using these instruments.
  • the converting bacterium used in the method of the present invention is cultured in a culture solution containing a target compound having a carboxyl group, thereby producing an activity to produce the desired acyl glucuronic acid conjugate in the culture solution (hereinafter referred to as “this conversion”).
  • This conversion A microorganism having "activity”).
  • the conversion bacterium used is not particularly limited as long as it is a microorganism having this conversion activity, and various ones can be adopted, but generally are filamentous fungi, bacteria, or actinomycetes, preferably , Actinomycetes, more preferably actinomycetes belonging to the genus Streptomyces, more preferably Streptomyces sp., More preferably Streptomyces sp. And SANK 60895 strain, SANK 61108 strain, SANK 60310 strain, SANK 61010 strain, SANK 61110 strain, and SANK 61210 strain.
  • actinomycetes are susceptible to mutation in nature or by artificial manipulation (for example, ultraviolet irradiation, radiation irradiation, chemical treatment such as nitrosoguanidine, etc.).
  • the SANK 60895 strain, the SANK 61108 strain, the SANK 60310 strain, the SANK 61010 strain, the SANK 61110 strain, and the SANK 61210 strain encompass all of these mutant strains.
  • These mutant strains also include those obtained by cell fusion or genetic methods such as recombination, transduction, transformation and the like.
  • bacteria such as Escherichia coli and yeast may be used as the expression strain of the recombinant strain, and these recombinant strains are included in the mutant strain as long as they have this conversion activity.
  • SANK 60895 strain, SANK 61108 strain, SANK 60310 strain, SANK 61010 strain, SANK 61110 strain, or SANK 61210 strain, mutants thereof and strains not clearly distinguished from them are all included in the converted strain. It is.
  • SANK 60895 shares The SANK 60895 strain was isolated from a plant sample in Ibaraki Prefecture. 1. Morphological features ISP (International Streptomyces Project) After culturing at 28 ° C. for 14 days on a prescribed agar medium, the basic mycelium of SANK 60895 strain is elongated and branched well under microscopic observation However, no hyphal breakage or zigzag elongation is observed. Air hyphae are simply branched. Ten to fifty or more spore chains were formed at the tip of the aerial hyphae, and the morphology of the spore chains showed a loose spiral.
  • ISP International Streptomyces Project
  • axle branching of the aerial hyphae, mycorrhizal spore, and spore are not observed.
  • it grows vigorously in Yeast extract-Malt extract Agar (ISP-2) and Inorganic salts-Starch Agar (ISP-4), and grows light olive to light olive gray spores.
  • ISP-2 Yeast extract-Malt extract Agar
  • ISP-4 Inorganic salts-Starch Agar
  • the back side is dull yellow to dull yellowish brown.
  • Physiological properties Table 2 shows the assimilation of the carbon source of the SANK 60895 strain observed after culturing at 28 ° C. for 14 days using the Prideham Gotley agar medium (ISP-9).
  • 16S rDNA base sequence analysis The partial base sequence (1494 bp) of 16S rDNA of SANK 60895 strain is shown in SEQ ID NO: 1 in the sequence listing. As a result of comparing this sequence with data of various reference strains of bacteria registered in the DNA database, the homology was highest with Streptomyces scopuliridis NRRL B-24574, and the homology value was 99.32%. . In addition, as a result of phylogenetic analysis by the neighbor combination method (Saito N. and M.
  • SANK 61108 shares The SANK 61108 strain was isolated from a Hokkaido soil sample. 1. Morphological features ISP (International Streptomyces Project) After culturing at 28 ° C for 14 days on the prescribed agar medium, the basic mycelium grows and branches well, and mycelial breakage and zigzag elongation are observed. Not. Air hyphae are simply branched. Ten to fifty or more spore chains were formed at the tip of the aerial hyphae, and the form of the spore chains showed a loose spiral. In addition, the axle branching of the aerial hyphae, mycorrhizal spore, and spore are not observed. It grows vigorously in Yeast extract-Malt extract Agar (ISP-2) and Inorganic salts-Starch Agar (ISP-4), and grows yellowish gray to light olive gray spores. The reverse side is light olive gray to yellowish brown.
  • ISP-2 Yeast extract-Malt extract Agar
  • Table 3 shows the properties after 14 days of culture on various culture media of SANK 61108 strain at 28 ° C.
  • the color display indicates the color chip number of the “Standard Color Chart” of the Japan Color Research Institute version using the Munsell method.
  • Physiological properties Table 4 shows the assimilation ability of the carbon source of the SANK 61108 strain observed after culturing at 28 ° C. for 14 days using the Prideham Gotley agar medium (ISP-9).
  • 16S rDNA base sequence analysis The partial base sequence (1491 bp) of 16S rDNA of SANK 61108 strain is shown in SEQ ID NO: 2 in the sequence listing. As a result of comparison of this sequence with data of various reference strains of bacteria registered in the DNA database, the homology was highest with Streptomyces scopuliridis NRRL B-24574, and the homology value was 99.32%. It was. In addition, as a result of phylogenetic analysis by Saito and Nei et al. Neighbor joining method (Saito N. and M. Nei, Molecular Biology and Evolution, 4, p406-425 (1987)), SANK 61108 strain and members of the genus Streptomyces are A single cluster formed in the phylogenetic tree (data not shown).
  • SANK 60310 shares SANK 60310 strain was isolated from a plant sample in Okinawa Prefecture. 1. Morphological features ISP (International Streptomyces Project) After culturing at 28 ° C for 14 days on the prescribed agar medium, the basic hyphae grow and branch well, and no hyphal breakage or zigzag elongation is observed . Air hyphae are simply branched. Ten to fifty or more spore chains were formed at the tip of the aerial hyphae, and the spore chain was linear or wavy, and rarely hooked. In addition, the axle branching of the aerial hyphae, mycorrhizal spore, and spore are not observed.
  • ISP International Streptomyces Project
  • Physiological properties Table 6 shows the assimilation of the carbon source of the SANK 60310 strain observed after culturing at 28 ° C. for 14 days using the Prideham Gotley agar medium (ISP-9).
  • 16S rDNA base sequence analysis The partial base sequence (1496 bp) of 16S rDNA of SANK 60310 strain is shown in SEQ ID NO: 3 in the sequence listing. As a result of comparing this sequence with data of various reference strains of bacteria registered in the DNA database, it was found to have the highest homology with Streptomyces missionens NBRC 13063 and the homology value was 98.7%. Furthermore, as a result of phylogenetic analysis by Saito and Nei et al. Neighbor joining method (Saito N. and M. Nei, Molecular Biology and Evolution, 4, p406-425 (1987)), SANK 60310 strain and members of the genus Streptomyces are A single cluster formed in the phylogenetic tree (data not shown).
  • SANK 61010 shares The SANK 61010 strain was isolated from a soil sample in Tokyo. 1. Morphological features ISP (International Streptomyces Project) After culturing at 28 ° C for 14 days on the prescribed agar medium, the basic hyphae grow and branch well, and no hyphal breakage or zigzag elongation is observed . Air hyphae are simply branched. Ten to fifty or more spore chains were formed at the tip of the aerial hyphae, and the spore chain was linear or wavy, and rarely hooked. In addition, the axle branching of the aerial hyphae, mycorrhizal spore, and spore are not observed.
  • ISP International Streptomyces Project
  • Table 7 shows the properties after 14 days of culture on various culture media of SANK 61010 strain at 28 ° C.
  • the color display indicates the color chip number of the “Standard Color Chart” of the Japan Color Research Institute version using the Munsell method.
  • Physiological properties Table 8 shows the assimilation of the carbon source of the SANK 61010 strain observed after culturing at 28 ° C. for 14 days using the Prideham Gotley agar medium (ISP-9).
  • 16S rDNA base sequence analysis The partial base sequence (1478 bp) of 16S rDNA of SANK 61010 strain is shown in SEQ ID NO: 4 in the sequence listing. As a result of comparing this sequence with data of various reference strains of bacteria registered in the DNA database, it was found to have the highest homology with Streptomyces cinerochromogens NBRC 13822, and the homology value was 99.93%. Furthermore, as a result of a phylogenetic analysis by the neighbor combination method (Saito N. and M.
  • SANK 61110 shares SANK 61110 strain was isolated from a soil sample in Gunma Prefecture. 1. Morphological features ISP (International Streptomyces Project) After culturing at 28 ° C for 14 days on the prescribed agar medium, the basic hyphae grow and branch well, and no hyphal breakage or zigzag elongation is observed . Air hyphae are simply branched. Ten to fifty or more spore chains were formed at the tip of the aerial hyphae, and the spore chain was linear or wavy, and rarely hooked. In addition, the axle branching of the aerial hyphae, mycorrhizal spore, and spore are not observed.
  • ISP International Streptomyces Project
  • Table 9 shows the properties after 14 days of culture on various culture media of SANK 61110 strain at 28 ° C.
  • the color display indicates the color chip number of the “Standard Color Chart” of the Japan Color Research Institute version using the Munsell method.
  • Physiological properties Table 10 shows the assimilation of the carbon source of the SANK 61110 strain observed after culturing at 28 ° C. for 14 days using the Prideham Gotley agar medium (ISP-9).
  • 16S rDNA base sequence analysis The partial base sequence (1389 bp) of 16S rDNA of SANK 61110 strain is shown in SEQ ID NO: 5 of the sequence listing. As a result of comparison of this sequence with data of various reference strains of bacteria registered in the DNA database, it was found to have the highest homology with Streptomyces fulvisismus DSM 40593, Streptomyces microflavus NBRC 13062, and the like. 77%. Furthermore, as a result of phylogenetic analysis by Saito and Ney et al. Neighbor joining method (Saito N. and M. Nei, Molecular Biology and Evolution, 4, p406-425 (1987)), SANK 61110 strain and members of the genus Streptomyces are A single cluster formed in the phylogenetic tree (data not shown).
  • SANK 61210 shares The SANK 61210 strain was isolated from a plant sample in Tokyo. 1. Morphological features ISP (International Streptomyces Project) After culturing at 28 ° C for 14 days on the prescribed agar medium, the basic hyphae grow and branch well, and no hyphal breakage or zigzag elongation is observed . Air hyphae are simply branched. Ten to fifty or more spore chains were formed at the tip of the aerial hyphae, and the spore chain was linear or wavy, and rarely hooked. In addition, the axle branching of the aerial hyphae, mycorrhizal spore, and spore are not observed.
  • ISP International Streptomyces Project
  • ISP-2 Yeast -extract-Malt AgarISP
  • ISP-3 Oatmeal Agar
  • ISP-4 Inorganic salts-Starch Agar
  • Table 12 shows the assimilation ability of the carbon source of the SANK 61210 strain observed after culturing at 28 ° C for 14 days using the Prideham Gotley agar medium (ISP-9).
  • 16S rDNA base sequence analysis The partial base sequence (1512 bp) of 16S rDNA of SANK 61210 strain is shown in SEQ ID NO: 6 in the sequence listing. As a result of comparing this sequence with data of various reference strains of bacteria registered in the DNA database, it was found to have the highest homology with Streptomyces missionensis NBRC 13063 and the homology value was 98.7%. Furthermore, as a result of phylogenetic analysis by the neighbor combination method of Saito and Ney et al. (Saitou N. and M. Nei, Molecular Biology and Evolution, 4, p406-425 (1987)), SANK 61210 strain and members of the genus Streptomyces are A single cluster formed in the phylogenetic tree (data not shown).
  • the method of the present invention is characterized in that the target compound is converted into the desired acyl glucuronic acid conjugate by contacting with the bacterial cell of the converted bacterium having the present conversion activity or a treated product of the bacterial cell.
  • one kind or two or more kinds of the above microorganisms are used as the microbial cells, the treated microbial cells and / or the culture solution.
  • the microbial cells obtained by culturing the above-mentioned converted bacterium or the culture solution thereof are used as they are, or the microbial cells obtained by culturing are treated by a known method, that is, treated with acetone.
  • a treated product of cells such as a product, a product obtained by air drying or freeze-drying, or a product obtained by physically, chemically or enzymatically disrupting a cell can be used.
  • an enzyme fraction having the ability to act on the carboxyl group in the target compound of formula (I) and convert it to the glucuronic acid conjugate of formula (II) is obtained as a crude product or purified. It is also possible to take it out as a product.
  • the cells obtained in this manner, the treated cells, the enzyme fraction, etc. are used by using a general immobilization technique, that is, those immobilized on a carrier such as polyacrylamide or carrageenan gel. It is also possible. Therefore, in the present specification, the term “bacteria and / or treated product thereof” is used as a concept containing all of the above-mentioned cells, treated product, enzyme fraction, and their immobilized products.
  • a medium used for culturing or converting the transformed bacteria of the present invention a medium selected appropriately from carbon sources, nitrogen sources, inorganic ions, organic nutrient sources and the like can be used as long as it is a synthetic or natural medium. Either can be used.
  • the nutrient source known carbon sources, nitrogen sources, and inorganic salts that can be assimilated by microorganisms, which are conventionally used for culturing fungal and actinomycetes strains, can be used.
  • carbon sources include glucose, fructose, maltose, sucrose, mannitol, glycerol, dextrin, oats, rye, corn starch, potato, corn flour, soy flour, cottonseed oil, starch syrup, molasses, soybean oil, citrus Acid, tartaric acid, etc. can be used singly or in combination. In general, the amount is changed by 1 to 10% by weight of the medium amount, but is not limited to this range.
  • a substance containing a protein or a hydrolyzate thereof can be generally used.
  • suitable nitrogen sources include, for example, soy flour, bran, peanut flour, cottonseed flour, skim milk, casein hydrolyzate, pharmamine, fish meal, corn steep liquor, peptone, meat extract, fresh yeast, dry yeast, yeast extract, Malt extract, potato, ammonium sulfate, ammonium nitrate, sodium nitrate and the like can be used.
  • the nitrogen source is preferably used alone or in combination in a range of 0.2 to 6% by weight of the medium amount.
  • nutrient inorganic salt ordinary salts capable of obtaining ions such as sodium, ammonium, calcium, phosphate, sulfate, chloride, carbonate and the like can be used. Trace amounts of metals such as potassium, calcium, cobalt, manganese, iron and magnesium can also be used. In liquid culture, silicone oil, vegetable oil, surfactant, etc. can be used as an antifoaming agent.
  • the culture method aerobic culture such as shaking culture and aeration stirring culture is suitable.
  • the culture temperature varies depending on the microorganism used and the culture method, but is usually 10 to 50 ° C., preferably 15 to 30 ° C., and particularly preferably 20 to 28 ° C.
  • the pH of the medium for cultivating the transformed bacteria varies depending on the microorganism used and the culture method, but is usually 3.0 to 10.0, preferably 5.0 to 8.0.
  • the culture time varies depending on the microorganism to be used, the culture method, and the culture temperature, but is usually 0 to 7 days after the start of shaking culture and before the addition of the compound having the formula (I), preferably 2 to 5 days. It is. After the compound (I) is added, it is usually 0.5 to 7 days, preferably 1 to 5 days.
  • the glucuronic acid conjugate is obtained by aerobically cultivating the converted bacterium, and as such culture and conversion culture method, a conventionally used aerobic culture method such as a solid culture method, a shaking culture method, etc. Alternatively, an aeration and agitation culture method can be used.
  • Cultivation begins with a 1-2 stage seed development process in baffles (water flow control walls) or in regular Erlenmeyer flasks. A carbon source and a nitrogen source can be used in combination in the medium at the seed development stage. Shake the seed flask in a constant temperature incubator at 19-28 ° C. for 3 days or until fully grown. The grown seed is used to inoculate a second seed medium or production medium. If an intermediate growth process is used, it is grown in essentially the same manner and a portion thereof is inoculated into the production medium. The inoculated flask is cultured with shaking at a constant temperature for several days, and after completion of the culture, the culture in the flask is centrifuged or filtered.
  • the culture is preferably carried out in a jar fermenter or tank equipped with a stirrer and a ventilator.
  • the nutrient medium is first heated to 121-130 ° C. to be sterilized and cooled, and then the sterilized medium is inoculated with seeds that have been previously grown by the method described above. Subsequent culture is performed at 19 to 28 ° C. with aeration and agitation. This method is suitable for obtaining large amounts of compounds.
  • a buffer that does not inhibit the growth of bacteria for example, phosphate buffer or Tris buffer.
  • a phosphate buffer is added to the culture solution to which compound (I) is added, or the cultured cells are suspended in a phosphate buffer or a tris buffer, and then compound (I) is added. It is also effective.
  • the preferred pH means that the log D value of the compound is 0.1 or more, preferably 0.3 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and even more preferably 1.5 or more.
  • the most preferable condition is 2.0 or more.
  • the LogD value is the ratio of the composition of compounds in both solvents when the compound is dissolved in a water / octanol solvent mixture and the compound is in neutral form and ion It refers to the partition coefficient of water / octanol into both solvents at a certain pH when it is a mixture with form.
  • the LogD value can be obtained experimentally, and examples include a calculation method using computational chemistry.
  • Various softwares and algorithms used for such computational scientific calculations are known, and for example, Advanced® Chemistry® Development (ACD) ACD / Perceptta, etc., software manufactured by SMC Co., Ltd. can be used.
  • freeze-dried cells can be obtained by adding acetone cooled with dry ice to the cells obtained by culturing and performing freeze-drying treatment. You can get a body.
  • a method of suspending the lyophilized microbial cells in a phosphate buffer and adding the compound (I) is used. It is done.
  • a culture solution In the production method of the present invention, a culture solution, a culture solution supernatant, a microbial cell, a partially digested microbial cell, a lyophilized microbial cell, a cell-free extract, or a solution containing the enzyme produced therein or immobilization thereof
  • the pH of the carrier or the like is 3.0 to 10.0, preferably 5.0 to 9.0.
  • an appropriate pH of the reaction culture solution can be selected in order to improve the conversion rate to the glucuronic acid conjugate and maintain the stability of the target glucuronic acid conjugate.
  • an acid, an alkali, a buffer, or the like is added to the culture tank as appropriate using the value of a pH electrode or the like that can monitor the culture state in the culture tank as an index.
  • a pH electrode or the like that can monitor the culture state in the culture tank as an index.
  • a container such as an Erlenmeyer flask
  • it can be adjusted to a pH suitable for the conversion reaction by adding an appropriate pH buffer, acid, alkali or the like to the culture medium in which the converted bacteria are grown.
  • the amount of the target compound added is 10 to 1000 ⁇ g per ml of the medium, and preferably 50 to 500 ⁇ g per ml of the medium.
  • the method for preparing the cell-free extract used in the present invention is not particularly limited.
  • the cells obtained by culturing are suspended in an aqueous medium such as a phosphate buffer or a Tris buffer, and the physical and chemical
  • it can be obtained as a cell lysate by grinding, sonication or the like, or as a cell lysate by organic solvent, surfactant, enzyme treatment or the like.
  • a method of directly adding the compound (I) to the cell-free extract is used.
  • acylglucuronic acid conjugate ⁇ Purification of acyl glucuronic acid conjugate>
  • the obtained culture supernatant is subjected to a normal separation operation such as column chromatography, and the target acylglucuronic acid conjugate is monitored by LC-MS analysis and the fraction in which the target product is detected is recovered.
  • acylglucuronic acid conjugates are unstable in an alkaline solution having a pH of 7 or higher due to their structural characteristics, and intramolecular acyl rearrangement and ester bond hydrolysis occur. Therefore, in the purification step, it is possible to stably purify under acidic conditions of pH 7 or less, preferably pH 3.0 to 5.0.
  • the glucuronic acid conjugate is collected from the reaction mixture according to a conventional method.
  • the compound of interest in the conversion broth is biologically active, such as solvent extraction with a suitable solvent or mixture of solvents, chromatography, or recrystallization from a suitable solvent or mixture of solvents. It is isolated by subjecting it to various procedures commonly used for the recovery and purification of materials.
  • acylglucuronic acid conjugates converted from the target compound are generally found both in the cultured cells and in the culture supernatant.
  • the acyl glucuronic acid conjugate is extracted by extraction of the entire culture with acetone or a suitable organic solvent such as methanol, ethanol, acetonitrile, or a mixture of these solvents.
  • the acylglucuronic acid conjugate is used as an adsorbent, for example, activated carbon or an adsorbing resin such as Amberlite XAD-2, XAD-4 (Rohm and Haas), Diaion HP-10, HP-20, CHP. It can be purified by using a column using -20P, HP-50, HP-2MG, Sepabeads SP-70, SP-207, SP-825, SP-850, SP-700 (Mitsubishi Chemical Corporation), etc. .
  • an adsorbent for example, activated carbon or an adsorbing resin such as Amberlite XAD-2, XAD-4 (Rohm and Haas), Diaion HP-10, HP-20, CHP. It can be purified by using a column using -20P, HP-50, HP-2MG, Sepabeads SP-70, SP-207, SP-825, SP-850, SP-700 (Mitsubishi Chemical Corporation), etc. .
  • the acylglucuronic acid conjugate is removed by passing through the adsorbent layer as described above to adsorb impurities, or after adsorbing the acylglucuronic acid conjugate, methanol water, acetone water, acetonitrile water, tetrahydrofuran water. It can elute using.
  • Examples of ion exchange chromatography include DEAE-cellulose (Brown), DEAE-Sephadex, DEAE-Sepharose, QAE-Sephadex (above GE Healthcare Biosciences) as anion exchange carriers.
  • DEAE-Toyopearl C manufactured by Tosoh Corporation
  • Duolite A-2 manufactured by Sumika Chemtex
  • Amberlite IRA-68 manufactured by Organo
  • Dowex 1 ⁇ 4, 21K, SBR-P Dowex 1 ⁇ 4, 21K, SBR-P (Dow Chemical Co.).
  • CM-cellulose (Brown), CM-Sephadex, CM-Sepharose (GE Healthcare Bioscience), CM-Toyopearl C (Tosoh Corporation), Duolite A-2 (manufactured by Sumika Chemtex Co., Ltd.), Amberlite IRC-50 (manufactured by Organo Corporation), Dowex CCR, CS-101 (manufactured by Dow Chemical Co., Ltd.), and the like.
  • Purification of the acyl glucuronic acid conjugate using an ion exchange column is performed by bringing the above-described extract containing the acyl glucuronic acid conjugate into contact with an anion exchange carrier or a cation exchange carrier to adsorb the acyl glucuronic acid conjugate to the carrier. After removing impurities, the acyl glucuronic acid conjugate is eluted by changing the ionic strength, pH, etc. of the solvent system, or the above extract containing the acyl glucuronic acid conjugate is removed from the anion exchange carrier or cation. Pass the exchange carrier, adsorb the impurities on the carrier, and collect the passing solution containing the acylglucuronic acid conjugate.
  • the acylglucuronic acid conjugate thus obtained is further subjected to adsorption column chromatography using a carrier such as silica gel and Florisil, partition chromatography using Sephadex LH-20 (Pharmacia), and the like. It can be purified by high performance liquid chromatography using a phase or reverse phase column.
  • Table 13 shows the target compounds used in the conversion reaction to glucuronic acid conjugates and the glucuronic acid conjugates obtained.
  • a commercial product was used as a standard product of the glucuronic acid conjugates of compounds (1) to (8).
  • Table 14 shows media used for the synthesis of glucuronic acid conjugates by microorganisms. After adjusting the culture medium of these compositions, what was autoclaved at 121 degreeC for 20 minutes was used for culture
  • the two types of LC-MS analysis conditions analysis condition 1 and analysis condition 2 described in the above-mentioned section “Detection of glucuronic acid conjugate” are used in a timely manner. Conditions suitable for the target compound were selected and used.
  • Example 1 Confirmation of effect of temperature and pH during conversion culture on glucuronic acid conjugate synthesis
  • the microbial conversion of the compound (1) to the glucuronic acid conjugate was examined as follows.
  • One platinum loop from each slant of SANK 60895 strain and SANK 61108 strain was inoculated into a 100 ml flask containing medium 1 (20 ml) previously sterilized, and precultured at 28 ° C. and 210 rpm for 2 days.
  • the obtained preculture was inoculated into a 500 ml flask containing 2.5% of preliminarily sterilized medium 2 (80 ml), and this was subjected to main culture at 28 ° C. and 210 rpm for 3 days.
  • 500 ⁇ l of the obtained main culture solution was dispensed into a 10 ml 24-well plate manufactured by Whatman, and 500 ⁇ l of 100 mM sodium phosphate buffer of pH 6, 7, 8 previously sterilized was added thereto. To this was added 10 ⁇ l of a 10 mg / ml dimethyl sulfoxide solution of compound (1).
  • the 24-well plate was covered with an air-permeable filter, and conversion culture was performed at 23 and 28 ° C. at a rotation speed of 160 rpm.
  • the LC-MS chromatogram compared with the standard product is shown in FIG.
  • the conversion rate to glucuronic acid conjugate was calculated by creating a calibration curve from the peak area values of the standard product of acyl glucuronic acid conjugate and O-glucuronic acid conjugate of compound (1) detected at 230 nm UV.
  • the concentration of the converter was calculated from the concentration of the compound (1) used in the conversion reaction.
  • Table 15 In both strains, the conversion rate increased as the pH increased with respect to the production of the O-glucuronic acid conjugate, but the acyl glucuronic acid conjugate desirably had a pH of 6 and the temperature during the conversion reaction was 28 ° C. in the SANK 60895 strain. The conversion rate improved.
  • Example 2 Effect of carbon source in medium on glucuronic acid conjugate synthesis
  • One platinum loop from a slant of SANK 60895 strain was inoculated into a 100 ml flask containing medium 1 (20 ml) sterilized in advance, Pre-culture was performed at 210 rpm for 2 days.
  • the obtained preculture solution 2.5% was inoculated in a 100 ml flask containing 20 ml of medium 2 sterilized in advance and four kinds of mediums (mediums 3, 4, 5, 6) with different carbon sources.
  • the main culture was performed at 28 ° C.
  • Example 3 Conversion culture using 10 L jar fermenter A slant of SANK 60895 strain was homogenized with sterilized water, and this was inoculated into a 500 ml flask containing medium 1 (80 ml) sterilized in advance. This was precultured at 28 ° C. and 210 rpm for 2 days, and 2% of the obtained preculture was inoculated into previously sterilized medium 5 (5 L). Incubation was performed with a jar fermenter at a temperature of 28 ° C., a pH set value of 7.0, and a dissolved oxygen cascade of 5 ppm.
  • the conversion rate of the O-glucuronic acid conjugate reached a maximum at 60%
  • the conversion rate of the acyl glucuronic acid conjugate reached a maximum at 25%.
  • the acylglucuronic acid conjugate tended to decrease after 25 hours from the start of the reaction.
  • Example 4 Examination of glucuronide conjugate conversion activity of various converted bacteria Using four strains of the converted bacteria SANK 60895, SANK 61110, SANK 60310, and SANK 61010, glucuronic acid conjugate conversion reaction to the compound (1) was performed. went. The preculture medium and the conversion rate are calculated according to the procedure shown in Example 1, preculture (medium 1, 2 days) and main culture (medium 2, 3 days). Conversion culture is performed at 28 ° C. went. As a result, as shown in Table 17, the formation of two glucuronic acid conjugates of O- and acyl of compound (1) was confirmed in SANK 61110, SANK 60310, and SANK 61010 as well as SANK 60895.
  • the conditions shown in Table 18 were applied to each compound for the preculture medium, the main culture medium, the preculture days, the main culture days, the conversion days, and the analysis conditions.
  • the conversion rate of the glucuronide conjugate was calculated using a calibration curve prepared from the peak area in LC-MS of the standard glucuronide conjugate in the same manner as in Example 1.
  • the standard product of the glucuronic acid conjugate used for preparing the calibration curve was purchased from Toronto Research Chemicals. The results are shown in Table 18.
  • Example 6 Purification of Acyl Glucuronic Acid Conjugate of Compound (4)
  • One platinum loop from SANK 60895 slant was inoculated into a 100 ml flask containing pre-sterilized medium 5 (20 ml), and at 28 ° C. and 210 rpm for 2 days. Pre-culture was performed. The obtained preculture was inoculated into three 500 ml flasks containing 2.5% of pre-sterilized medium 5 (80 ml), and this was subjected to main culture at 28 ° C. and 210 rpm for 3 days.
  • FIG. 3 shows the results of LC-MS analysis under analysis condition 1 in which sampling was performed over time from the start of the conversion reaction.
  • SP207 pre-washed Sepa beads SP207 (manufactured by Mitsubishi Chemical Corporation) was added to 500 ml of this acetone extract, and then this was concentrated under reduced pressure using a rotary evaporator, and acetone was distilled off. SP207 was recovered, filled in a polypropylene cartridge, washed with water, and eluted with methanol (500 ml). This was concentrated under reduced pressure with a rotary evaporator to obtain a crude product (1.47 g).
  • N-glucuronic acid conjugate standard product of compounds 9 to 13 was obtained by a metabolic reaction using liver microsomes by the following method.
  • reaction solution A 48 ⁇ l (final concentration; 2 mM uridine 5′-diphospho-glycuronic acid, UDPGA)
  • reaction solution B 120 ⁇ l (Tris-HCl pH 7.5 final concentration; 50 mM, final concentration; 8 mM MgCl 2, 25 ⁇ g / ml Alameticin) and 15 ⁇ L of human liver microsome (final concentration; 0.5 mg protein / mL) were added to prepare a reaction mixture.
  • reaction solution After the reaction solution is heated at 37 ° C. for 5 minutes, 6 ⁇ l (final concentration; 10 ⁇ M) of an acetonitrile solution of the test substance is added to start the reaction. After incubation at 37 ° C. for 120 minutes, 600 ⁇ l of acetonitrile is added to the reaction solution to stop the reaction. After stirring, the mixture was centrifuged at 2,400 g for 12 minutes at 4 ° C., and the supernatant was used as a standard sample of N-glucuronide conjugate of the compound for the following measurements.
  • 6 ⁇ l (final concentration; 10 ⁇ M) of an acetonitrile solution of the test substance After incubation at 37 ° C. for 120 minutes, 600 ⁇ l of acetonitrile is added to the reaction solution to stop the reaction. After stirring, the mixture was centrifuged at 2,400 g for 12 minutes at 4 ° C., and the supernatant was used as a standard sample of N-glucuronide conjugate of
  • the target glucuronic acid conjugate was identified by comparing the molecular weight, the UV spectrum, and the peak corresponding to the molecular weight of the glucuronic acid conjugate in the liver microsome reaction solution obtained in Example 2. The results are shown in Table 19.
  • each glucuronic acid was compared with the data of a nonpatent literature (Drug Metab Dispos. 2006, 34, 5, 748-55). Conjugates were estimated. The conversion rate was calculated from the ratio of the peak area of the drug substance detected at 230 nm UV to the area ratio of the glucuronic acid conjugate. Although the conversion rate of each compound was different depending on the bacterium to be converted, glucuronic acid conjugates were detected in all the compounds except the compound (12).
  • FIG. 5 shows the relationship between the conversion rate to the glucuronide conjugate and the LogP value of each compound calculated by calculation chemistry when used in the conditions.
  • ACD / PhysChem Database version 11.01 which is a software manufactured by Advanced Chemistry Development (ACD) was used.
  • the horizontal axis of FIG. 5 shows the LogP calculation value, and the vertical axis shows the conversion rate (%).
  • the numerical values in the plot are the compound numbers shown in Table 13, and the plot shape represents the product of acyl-type, O-type, and N-type glucuronic acid conjugates.
  • the acyl P, O-type, and N-type each desirably have a LogP value of 2 or more, and the compound 7 has a LogP value close to 0. , 12, the conversion rate is remarkably low. Therefore, in order to obtain a glucuronic acid conjugate by this production method, it is preferable to set the LogP value of the compound to a state greater than 0. To obtain a higher efficiency, the LogP value is large (optimally 2 or more). It is desirable that In this production method, when the target compound is ionic, the conversion rate obtained varies depending on the pH of the phosphate buffer added during the conversion reaction.
  • the LogP value shown above is a calculated value in a state where ions are not deviated
  • the correlation between the LogD value, which is an octanol / water partition coefficient reflecting the pH-dependent deviated state, and the conversion rate is shown in FIG. Show.
  • the conversion rate when the conversion bacterium SANK 60895 strain for the compound 1 in Example 4 was subjected to conversion culture at 28 ° C. and the LogD value calculated using the same calculation software ACD as above were plotted.
  • the compound (1) has a carboxylic acid and a phenolic hydroxyl group, and as shown in FIG. 6, its LogD value is high at an acidic pH, decreases as the pH becomes alkaline, and is 0 or less at a pH of 10.
  • the conversion rate of the compound (1) to the acyl glucuronic acid converter shows a tendency that is consistent with the tendency of LogD.
  • the maximum is at pH 6, and the Log D is decreased to pH 7, 8 As it becomes, the conversion rate decreases.
  • the O-glucuronic acid conjugate showed the opposite tendency to the acyl glucuronic acid conjugate. That is, as the pH increased, the conversion rate tended to increase.
  • the conversion rate in this production method is higher for the O-glucuronic acid conjugate than for the other acyl glucuronic acid and N-glucuronic acid conjugates, and as shown in Example 8.
  • Glucuronic acid conjugation to a phenolic hydroxyl group such as compound (14) is almost unaffected by pH. From these facts, the reaction conditions for the glucuronic acid conjugation reaction to the ionic functional group in this production method to suppress the detachment of the target functional group and have a LogD value of 0 or more, desirably 2 are preferable. It was found that the glucuronic acid conjugation reaction to a functional group that does not easily deviate in the pH range under general microbial culture conditions such as phenolic hydroxyl group is less dependent on pH.
  • Patent microorganism deposit center receipt number NITE BP-02128 NITE BP-02129 NITE BP-02130 NITE BP-02133 NITE BP-02302 NITE BP-02303

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、工程A:カルボキシル基を有する対象化合物を含む培養液中で、アシルグルクロン酸抱合体変換活性を有する微生物を培養する工程、及び、工程B:工程Aの培養物から、対象化合物のアシルグルクロン酸抱合体を取得する工程、を含むことを特徴とするカルボキシル基を有する対象化合物のアシルグルクロン酸抱合体の製造方法、当該変換活性を有する微生物などを提供する。

Description

微生物変換によるアシルグルクロン酸抱合体の製造方法及びその変換活性を有する微生物
 本発明は、微生物変換を利用して、カルボキシル基を有する対象化合物のアシルグルクロン酸抱合体を製造する方法、及び、アシルグルクロン酸抱合体変換活性を有する微生物に関する。
近年の医薬品開発における代謝物評価において、カルボキシル基を有する化合物のアシルグルクロン酸抱合体の安全性リスクが問題視されている(非特許文献1)。安全性評価の観点から、動物実験が可能な程度の、一定量のアシルグルクロン酸抱合体が必要となるケースがあるが、保護・脱保護工程が必要な化学合成では、一般的に安定的にアシルグルクロン酸抱合体を得ることが困難である(非特許文献2)。
 このような代謝物合成においては、微生物変換が非常に有効な手段であるが、化合物をグルクロン酸抱合体に変換する微生物としては、O-グルクロン酸抱合体(特許文献1)やN-グルクロン酸抱合体(非特許文献3)の変換菌の報告はあるものの、カルボキシル基を有する化合物をアシルグルクロン酸抱合体へ変換する微生物についての報告は無かった。
 アシルグルクロン酸抱合体の合成法には1)化学合成的手法、2)化学合成的手法と酵素を用いる方法が報告されている。
 化学合成的手法においては、アシルグルクロン酸抱合体中のエステル結合におけるグルクロン酸1位の立体制御が困難であることに加え、酸性あるいはアルカリ性条件下で不安定であることから、合成及び精製の工程では限定された条件下で行う必要があり、高純度且つ高収率で製造することは困難であるとされていた。アシルグルクロン酸抱合体の製造方法として、グルクロン酸の水酸基を無保護にて、活性エステル化したカルボン酸とを反応させ縮合する方法(非特許文献4)やグルクロン酸の1位をハロゲン化したハロゲン化グルクロン酸と活性エステル化したカルボン酸誘導体を反応させる製造法が知られている(非特許文献5)。
 一方、グルクロン酸の水酸基をあらかじめ適当な保護基にて保護し、これをカルボン酸と反応させることで保護アシルグルクロン酸を得た後、脱保護反応にて保護基を除去することにより、アシルグルクロン酸抱合体を得る製造法の報告もある。具体的には、グルクロン酸の二位、三位および四位の水酸基をアリルオキシカルボニル基(Alloc基)で保護し、またグルクロン酸のカルボキシル基をアリル基で保護したグルクロン酸誘導体とカルボキシル基を有する化合物を活性エステル化した後、反応させることで保護アシルグルクロン酸抱合体を得た後、脱保護反応を行うことでアシルグルクロン酸抱合体を製造する方法であるが(特許文献2)、グルクロン酸1位の立体制御や収率等に課題があり、報告例も限定されている。
 また1位ハロゲン化グルクロン酸の二位、三位および四位をエステル系保護基であるアセチル基で保護し、カルボキシル基をメチルエステルとしたグルクロン酸誘導体を、カルボキシル基を有する化合物と縮合剤存在下で縮合した後、これらのエステル系保護基をリパーゼやカルボキシラーゼ等の加水分解酵素を用いて温和な条件下で脱保護を行うことで、グルクロン酸誘導体を製造法する方法も報告されている(非特許文献6)。しかしながら、これらの化学合成的手法ではグルクロン酸とカルボキシル基を有する化合物とを縮合させることで形成される1位の立体の厳密な制御が困難であり、単一の立体のアシルグルクロン酸抱合体を得るにはクロマトグラフィー等の精製が必須である。
 一方、単一の立体のアシルグルクロン酸を製造する方法として、酵素を用いた製造方法の報告がある。一般的にはグルクロン酸の供与体としてUDP-グルクロン酸を用い、酵素としてUDP-グルクロン酸転移酵素(UGT)を、カルボキシル基を有する化合物と温和な酵素反応条件下で縮合反応を行うが、グルクロン酸供与体、および酵素源としては肝ミクロソームや、あるいは異種発現系等で製造されるUGTを用いることが出来るが大量合成には適していない(特許文献3)。
 また、UDP-グルクロン酸の供給とUGTの生産をひとつの微生物細胞中で行う異種発現系を有する微生物を作成し、この微生物の培養液中に、カルボキシル基を有する化合物を外部から添加することで、微生物細胞中でアシルグルクロン酸抱合体を合成する手法も報告されている(特許文献4,5)。この製造方法においては高価なグルクロン酸供与体や酵素の共有は微生物が行い、加えて適切な容量の培養容器を用いることで大量合成も可能となる。しかしながら複雑な異種発現系の構築が必要であることと、多様なカルボキシルを有する化合物に対応するためには、複数の遺伝子多型のあるUGTについてすべて個別に異種発現系を構築することが必要となり、一般的な製造方法としては適当ではない。
 酵素反応の高い選択性を有しつつ、微生物細胞にてグルクロン酸供与体とグルクロン酸転移酵素の生産を行うことで外部添加の化合物のグルクロン酸抱合体を製造する効率的な手法として微生物変換が知られている。微生物変換においては上述の異種発現系微生物を用いた場合と同様に、高価なグルクロン酸供与体や酵素の生成は微生物自身が行うため安価となり、また大量培養等も容易である。
米国特許公報US5563054号 国際特許公開第WO2013/157267号 米国特許公報 US4443608号 日本特許公開公報 特開2011-193875号 日本特許公開公報 特開2012-130357号
Sawamura R. et al., Drug Metabolism and Disposition (2010), vol. 38, No. 10, p. 1857-1864 Skonberg C. et al., Expert Opin. Drug Metab. Toxicol. (2008) vol. 4, No. 4, p. 425-438. Chen T. S. et al., J.Antibiot (Tokyo). (1993), vol. 46, No. 1, p. 131-134. Engstrom K. M. et al., Tetrahedron, 63, 32, p. 7596- 7605 (2007) Gauthier C. et al., Tetrahedron Letters, 50, 9, p. 988-991 (2009) Baba A. et al., J.Org.Chem. 72, 25, p. 9541-9549 (200
 カルボキシル基を有する化合物の医薬品開発における安全性評価のために必要なアシルグルクロン酸抱合体を、安定的に製造すること。
 本発明者らは、アシルグルクロン酸抱合体の製造に関して鋭意研究を進め、放線菌の中にアシルグルクロン酸抱合体変換活性を有する株を複数見出し、当該微生物によりカルボキシル基を有する多様な構造の化合物が、アシルグルクロン酸抱合体へ変換されることを確認し、さらに研究を進めることで本発明を完成するに至った。
 すなわち、本発明は以下の製造方法及び微生物を提供する。
(1) 以下の工程A及びBを含むことを特徴とする、カルボキシル基を有する対象化合物のアシルグルクロン酸抱合体の製造方法、
工程A:カルボキシル基を有する対象化合物を含む培養液中で、アシルグルクロン酸抱合体変換活性を有する微生物を培養する工程、及び、
工程B:工程Aの培養物から、対象化合物のアシルグルクロン酸抱合体を取得する工程。
(2) 対象化合物が、0.1以上(好ましくは0.3以上であり、より好ましくは0.5以上であり、更に好ましくは1.0以上であり、更により好ましくは1.5以上であり、最も好ましくは2.0以上)のLogP値を示す化合物であることを特徴とする、(1)の製造方法。
(3) 工程Aの培養条件が温度20~37℃、培地のpHが3.0~10.0(好ましくは5.0~8.0)、であることを特徴とする(1)の製造方法。
(4)工程Aの培養条件において、培地のpHが、対象化合物のLogD値が0.1以上(好ましくは0.3以上であり、より好ましくは0.5以上であり、更に好ましくは1.0以上であり、更により好ましくは1.5以上であり、最も好ましくは2.0以上)となるpH条件であることを特徴とする(3)の製造方法。
(5) アシルグルクロン酸抱合体変換活性を有する微生物が、ストレプトマイセス属に属する放線菌である(1)の方法。
(6) アシルグルクロン酸抱合体変換活性を有する微生物が、ストレプトマイセス属に属する、SANK60895株、SANK61210株、SANK61108株、SANK61010株、SANK61110株、又は、SANK60310株、である(1)の方法。
(7) アシルグルクロン酸抱合体変換活性を有する、ストレプトマイセス属に属する放線菌。
(8) SANK60895株、SANK61210株、SANK61108株、SANK61010株、SANK61110株、又は、SANK60310株である、(7)の放線菌。
 本発明の微生物及び製造方法を用いることで、カルボキシル基を有する多様な化合物のアシルグルクロン酸抱合体を安定的に製造することが可能となった。これにより、カルボキシル基を有する化合物の代謝物に関する研究が容易になり、より安全性の高い医薬品の創出につながることが期待される。
化合物(1)のグルクロン酸抱合体標準品(図1a:O-グルクロン酸抱合体、図1b:アシルグルクロン酸抱合体)及びSANK 60895株による変換培養液(培地2、pH6、72時間培養)のLC-MSクロマトグラム。 SANK 60895株による化合物(1)の10Lジャーファーメンターでの変換培養における、各化合物量の経時変化を示すグラフ。△:化合物(1)、◇:化合物(1)-O-グルクロン酸抱合体、□:化合物(1)-アシルグルクロン酸抱合体。横軸は時間を示し、縦軸は化合物(1)の添加量を100%とした場合の、各化合物の含有率(%)を示す。 SANK 60895株による化合物(4)の変換培養における、18時間後(図3a)、24時間後(図3b)及び48時間後(図3c)の培養液のLC-MSクロマトグラム。 SANK 60895株による化合物(4)の変換培養液から精製された化合物(4)-アシルグルクロン酸抱合体のHPLCチャート。 各化合物の、pH7条件におけるSANK 60895によるグルクロン酸抱合体変換率(縦軸)と化合物のLogP値(横軸)の相関を示すプロット図である。各プロットの番号は化合物番号であり、◇はアシル型、□はO-型、△はN-型のグルクロン酸抱合体の生成物を、それぞれ示す。 化合物(1)の変換培養時のPHによる、各グルクロン酸抱合体への変換率(◇:アシルグルクロン酸抱合体、□:O-グルクロン酸抱合体、)及び化合物(1)のLogD値(△)の相関関係を示すグラフである。横軸は、変換培養時の培養液のPHを示す。左の縦軸は、各グルクロン酸抱合体への変換率(%)を示す。右の縦軸は、化合物(1)のLogD値を示す。
 本発明について、以下に詳細に説明する。
 本発明は、以下の工程A及びB;
工程A:カルボキシル基を有する対象化合物を含む培養液中で、グルクロン酸抱合体変換活性を有する放線菌を培養する工程、及び
工程B:工程Aの培養物から、対象化合物のアシルグルクロン酸抱合体を精製する工程;
を含むことを特徴とする、カルボキシル基を有する対象化合物のアシルグルクロン酸抱合体の製造方法を提供する。
 <対象化合物・アシルグルクロン酸抱合体>
 本発明において、「アシルグルクロン酸抱合体」(Acyl glucuronide)とは、下記の式(I)で示されるカルボキシル基を有する化合物において、下記式(II)に示すように当該カルボキシル基にグルクロン酸が結合した構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001
(I)
Figure JPOXMLDOC01-appb-C000002
(II)
 化合物のグルクロン酸抱合体は、動物へ投与された化合物の代謝物として重要であり、アシルグルクロン酸抱合体の他に、化合物の水酸基にグルクロン酸が結合したO-グルクロン酸抱合体、化合物のアミノ基にグルクロン酸が結合したN-グルクロン酸抱合体が知られている。
 本発明において、アシルグルクロン酸抱合体へ変換される式(I)の化合物(「対象化合物」と呼ばれることもある)は、置換基としてカルボキシル基を有し、且つ、一定以上の分子量(カルボキシル基以外の構造において4つ以上の炭素原子又は窒素原子を有する)を有する化合物であれば特に限定されないが、好ましくは、式(I)において、Rが置換基を有してもよい直鎖または分岐を有するC4-C29アルキル基、置換基を有しても良い直鎖または分岐を有するC4-C29アルケニル基、置換基を有しても良い直鎖または分岐を有するC4-C29アルキニル基、置換基を有してもよい単環あるいは多環のC3-C10シクロアルキル基、置換基を有しても良い単環あるいは多環の4-10員環ヘテロシクロアルキル基、置換基を有しても良い芳香族炭化水素環基、または置換基を有しても良い単環あるいは多環の芳香族ヘテロ環基を表す化合物であり、より好ましくは、Rが、置換基を有しても良い直鎖または分岐を有するC6-C29アルケニル基、置換基を有してもよい単環あるいは多環のC5-C10シクロアルキル基、置換基を有しても良い単環あるいは多環の芳香族ヘテロ環基、又は、下記式(III)で表される構造を表す化合物である。
Figure JPOXMLDOC01-appb-C000003
(III)
 式(III)中、R、R、およびRは、同一でもそれぞれ異なっていても良く、水素原子、置換基を有してもよい直鎖または分岐を有するアルキル基、置換基を有してもよい直鎖または分岐を有するアルケニル基、置換基を有してもよい直鎖または分岐を有するアルキニル基、置換基を有してもよい単環あるいは多環シクロアルキル基、置換基を有してもよい単環あるいは多環ヘテロシクロアルキル基、置換基を有しても良い単環あるいは多環芳香族炭化水素環基、または置換基を有しても良い単環あるいは多環芳香族ヘテロ環基を表し、ここでR、R、およびRのうち少なくとも2つは水素原子以外の官能基である。
 また、本発明に用いられる対象化合物のLogP値と微生物変換率には相関関係があると考えられ、LogP値が0又はそれより低い化合物では変換率が低い傾向が見出されている。LogP値とは、オクタノール/水分配係数であり、本係数はフラスコ振盪法やHPLC法等の実験的な手法で求めることができるが、化学構造に基づき計算化学による算出も可能である。このような計算科学的算出に用いられるソフトウェア、アルゴリズムとしては様々なものが公知であるが、例えば、Advanced Chemistry Development( ACD) 社 製ソフトウェアであるACD/PhysChem Database verion 11.01 等を用いることができる。本発明に用いられる化合物としては、LogP値がどの値の化合物でも用いることができるが、好ましくは0.1以上であり、より好ましくは、0.3以上であり、より好ましくは0.5以上であり、より好ましくは1.0以上であり、より好ましくは1.5以上であり、最も好ましくは2.0以上である。
 本発明の方法に用いる対象化合物として好ましいものは、医薬品や食品添加物などの人体に摂取される化合物であって、カルボキシル基を有する化合物である。そのような化合物の代表例としては、例えば、ミコフェノール酸(Mycophenolic acid)、メクロフェナメート(Meclofenamate)、メフェナム酸(Mefenamic acid)、ナプロキセン(Naproxen)、ジェンフィブロジル(Gemfibrozil)、フロセミド(Furosemide)、ジドブジン(Zidovudine)、フルフェナム酸(Flufenamic acid)、レボフロキサシン(Levofloxacin)、モンテルカスト(Montelukast)、テルミサルタン(Telmisartan)、レパグリナイド(Repaglinide)、ジクロフェナク(Diclofenac)、イブプロフェン(Ibuprofen)、インドメタシン(Indomethacin)プロベネシド(Probenecid)、トルメチン(Tolmetin)、ベノキサプロフェン(Benoxaprofen)、フェンクロフェナク(Fenclofenac)イブフェナク(Ibufenac)などを挙げることができる。
<アシルグルクロン酸抱合体の検出>
 本発明の目的物であるアシルグルクロン酸抱合体は、元となる対象化合物よりも、理論値として176.03208 ppmだけ大きい分子量を示すため、質量分析により該当する分子量のピークを検出することによって、反応液中の目的物の存在を確認することができる。また、医薬品化合物のグルクロン酸抱合体には、試薬として市販されているものもあり、このような試薬を購入して目的物の標準品とし、反応液と標準品の分析結果を比較することで、更に高い精度により、目的物を検出、同定することができる。このような分析に用いる質量分析機器としては、ESIイオン源を備えたものを用いることができ、具体的には、LC/TOF-MS、LC/MSD SL(いずれもアジレントテクノロジー社製)、アマゾンX(ブルカーダルトニクス社製)などを挙げることができる。また、分析に用いるHPLC装置としては、フォトダイオードアレイ検出器を装備したHPLC装置を用いることができ、具体例としては、HP1100(アジレントテクノロジー社製)、アルティメイト3000(日本ダイオネクス社製)などを挙げることができる。これらの機器を用いた分析条件の代表例として、以下の分析条件1及び2を例示することができる。
[分析条件1]
質量分析機:LC/MSD SL(アジレントテクノロジー社製)
HPLC装置:HP1100(アジレントテクノロジー社製)
HPLC分析カラム:Unison UK-C8 (3.0 x 50mm:インタクト株式会社製)
分析温度、流速:40℃、0.7ml/分
移動相:0.01%蟻酸含有10mM ギ酸アンモニウム(A液)、0.01%ギ酸含有アセトニトリル(B液)、A液:B液=1:9より9:1となるように7分間のリニアグラジエントで通液
分析対象サンプルのインジェクション量:7μl。
[分析条件2]
質量分析機:アマゾンX(ブルカーダルトニクス社製)
HPLC装置:アルティメイト3000(日本ダイオネクス社製)
HPLC分析カラム:Acquity BEH C18 (1.7μm、2.1x50mm、日本ウォーターズ社製)
分析温度、流速:40℃、0.45ml/分
移動相:0.1%ギ酸(A液)、0.01%ギ酸含有アセトニトリル(B液)、A液:B液=98:2を0.5分維持した後、A液:B液=10:90まで6.5分間のリニアグラジエントで通液
分析対象サンプルのインジェクション量 1.5μl。
<変換菌>
 本発明の方法に用いられる変換菌は、カルボキシル基を有する対象化合物を含む培養液中で培養することによって、培養液中に目的物のアシルグルクロン酸抱合体を産生する活性(以下、「本変換活性」という)を有する微生物である。用いられる変換菌としては、本変換活性を有する微生物である限り特に限定されず、様々なものを採用することができるが、一般的には糸状菌、細菌、あるいは放線菌であり、好適には、放線菌であり、より好適には、ストレプトマイセス(Streptomyces)属に属する放線菌、さらに好適にはストレプトマイセス・エスピー(Streptomyces sp.)であり、さらに好適には、ストレプトマイセス・エスピーに属するSANK60895株、SANK 61108株、SANK 60310株、SANK 61010株、SANK 61110株、及び、SANK 61210株、などを挙げることができる。
 周知の通り、放線菌は自然界において、または人工的な操作(例えば、紫外線照射、放射線照射、ニトロソグアニジンのような化学薬品処理等)により、変異を起こし易く、本発明の変換菌株もこの点は同じである。本発明にいうSANK 60895株、SANK 61108株、SANK 60310株、SANK 61010株、SANK 61110株、及び、SANK 61210株はそれらのすべての変異株を包含する。また、これらの変異株の中には、細胞融合若しくは遺伝学的方法、例えば組み換え、形質導入、形質転換等により得られたものも包含される。また、組換え株の発現株としては、もとの菌株の他、大腸菌等のバクテリアや酵母などを用いてもよく、これらの組換え株も本変換活性を有する限り、上記変異株に含まれる。即ち、SANK 60895株、SANK 61108株、SANK 60310株、SANK 61010株、SANK 61110株、又は、SANK 61210株、その変異株並びにそれらと明確に区別されない菌株は、すべて当該変換菌株に包含されるものである。
[SANK 60895株]
 SANK 60895株は、茨城県の植物試料から分離された。
1.形態学的特徴
 ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕規定の寒天培地上28℃、14日間培養後、顕微鏡下観察では、SANK 60895株の基生菌糸は良好に伸長、分岐し、菌糸断裂やジグザグ伸長は観察されない。気菌糸は単純分岐である。気菌糸の先端に10ないし50個またはそれ以上の胞子連鎖を形成し、胞子連鎖の形態は、ゆるい螺旋状を示した。また、気菌糸の車軸分岐、菌核や胞子のうなどは観察されない。特にYeast extract-Malt extract Agar (ISP-2)やInorganic salts-Starch Agar (ISP-4)において旺盛に生育し、明オリーブ色~明オリーブ灰色の胞子を着生する。裏面は鈍黄色~鈍黄味茶色を呈する。
2.各種培養基上の諸性質
 SANK 60895株の各種培養基上で28℃、14日培養後の性状は表1に示したとおりである。色調の表示はマンセル方式による日本色彩研究所版「標準色票」のカラーチップ・ナンバーをあらわす。
Figure JPOXMLDOC01-appb-T000004
*1 G:生育、AM:気菌糸、R:裏面、SP:可溶性色素
*2 性状の欄の( )内はマンセル方式による色調表示。
3.生理学的性質
プリドハム・ゴトリーブ寒天培地(ISP-9)を使用して、28℃、14日間培養後に観察したSANK 60895株の炭素源の資化性は表2に示すとおりである。
Figure JPOXMLDOC01-appb-T000005
*)+:利用する、 ±:弱く利用する、-:利用しない。
4.16S rDNA塩基配列解析
 SANK 60895株の16S rDNAの部分塩基配列(1494 bp)を配列表の配列番号1に示す。この配列をDNAデ-タベ-スに登録されている細菌の各種の基準株のデータと比較した結果、Streptomyces scopuliridis NRRL B-24574と相同性が最も高く、相同値は99.32%であった。さらに、サイトウおよびネイらの近隣結合法(Saitou N.and M.Nei, Molecular Biology and Evolution, 4, p406-425(1987))により系統解析を行った結果、SANK 60895株とStreptomyces属のメンバーは系統樹において単一のクラスターを形成した(データは示さない)。
 以上の結果を基に、ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕基準、ワックスマン著、ジ・アクチノミセテス(S. A. Waksman、The Actinomycetes)第2巻、バージーズ・マニュアル(Bergey's Manual of Systematic Bacteriology)第5巻(2012年)、およびストレプトマイセス(Streptomyces)属放線菌に関する最近の文献によって同定を行い、本菌株が放線菌の中でもストレプトマイセス(Streptomyces)属に属すると判断した。そこで、本菌株をストレプトマイセス・エスピー(Streptomyces sp.)SANK 60895株と命名した。なお、本菌株は2015年10月2日に独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に国際寄託され、受領番号NITE BP-02129を付与された。
[SANK 61108株]
 SANK 61108株は、北海道の土壌試料から分離された。
1.形態学的特徴
 ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕規定の寒天培地上28℃、14日間培養後、基生菌糸は良好に伸長、分岐し、菌糸断裂やジグザグ伸長は観察されない。気菌糸は単純分岐である。気菌糸の先端に10ないし50個または それ以上の胞子連鎖を形成し、胞子連鎖の形態は、ゆるい螺旋状を示した。また、気菌糸の車軸分岐、菌核や胞子のうなどは観察されない。特にYeast extract-Malt extract Agar (ISP-2)やInorganic salts-Starch Agar (ISP-4)において旺盛に生育し、黄味灰色~明オリーブ灰色の胞子を着生する。裏面は明オリーブ灰色~黄味茶色を呈する。
2.各種培養基上の諸性質
 SANK 61108株の各種培養基上で28℃、14日培養後の性状は表3に示したとおりである。色調の表示はマンセル方式による日本色彩研究所版「標準色票」のカラーチップ・ナンバーをあらわす。
Figure JPOXMLDOC01-appb-T000006
*1 G:生育、AM:気菌糸、R:裏面、SP:可溶性色素
*2 性状の欄の( )内はマンセル方式による色調表示。
3.生理学的性質
プリドハム・ゴトリーブ寒天培地(ISP-9)を使用して、28℃、14日間培養後に観察したSANK 61108株の炭素源の資化性は表4に示すとおりである。
Figure JPOXMLDOC01-appb-T000007
*)+:利用する、 ±:弱く利用する、-:利用しない。
4.16S rDNA塩基配列解析
 SANK 61108株の16S rDNAの部分塩基配列(1491 bp)を配列表の配列番号2に示す。この配列をDNAデ-タベ-スに登録されている細菌の各種の基準株のデー タと比較した結果、Streptomyces scopuliridis NRRL B-24574と相同性が最も高く、相同値は99.32%であった。さらに、サイトウおよびネイらの近隣結合法(Saitou N.and M.Nei, Molecular Biology and Evolution, 4, p406-425(1987))により系統解析を行った結果、SANK 61108株とStreptomyces属のメンバーは系統樹において単一のクラスターを形成した(データは示さない)。
 以上の結果を基に、ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕基準、ワックスマン著、ジ・アクチノミセテス(S. A. Waksman、The Actinomycetes)第2巻、バージーズ・マニュアル(Bergey's Manual of Systematic Bacteriology)第5巻(2012年)、およびストレプトマイセス(Streptomyces)属放線菌に関する最近の文献によって同定を行い、本菌株が放線菌の中でもストレプトマイセス(Streptomyces)属に属すると判断した。そこで、本菌株をストレプトマイセス・エスピー(Streptomyces sp.)SANK 61108株と命名した。なお、本菌株は2016年7月26日に独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に国際寄託され、受領番号NITE BP-02302を付与された。
[SANK 60310株]
 SANK 60310株は、沖縄県の植物試料から分離された。
1.形態的特徴
 ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕規定の寒天培地上28℃、14日間培養後、基生菌糸は良好に伸長、分岐し、菌糸断裂やジグザグ伸長は観察されない。気菌糸は単純分岐である。気菌糸の先端に10ないし50個または それ以上の胞子連鎖を形成し、胞子連鎖の形態は、直鎖状ないし波状、まれにフック状を示した。また、気菌糸の車軸分岐、菌核や胞子のうなどは観察されない。特に、Yeast extract-Malt extract Agar (ISP-2)やOatmeal Agar (ISP-3)において旺盛に生育し、薄黄色~薄赤味橙色~茶味灰色の胞子を着生する。裏面は明黄味橙色~鈍黄味橙色を呈する。黄色~赤味黄色~鈍黄味橙色の色素が認められる。
2.各種培養基上の諸性質
 SANK 60310株の各種培養基上で28℃、14日培養後の性状は表5に示したとおりである。色調の表示はマンセル方式による日本色彩研究所版「標準色票」のカラーチップ・ナンバーをあらわす。
Figure JPOXMLDOC01-appb-T000008
*1 G:生育、AM:気菌糸、R:裏面、SP:可溶性色素
*2 性状の欄の( )内はマンセル方式による色調表示。
3.生理学的性質
プリドハム・ゴトリーブ寒天培地(ISP-9)を使用して、28℃、14日間培養後に観察したSANK 60310株の炭素源の資化性は表6に示すとおりである。
Figure JPOXMLDOC01-appb-T000009
*)+:利用する、 ±:弱く利用する、-:利用しない。
4.16S rDNA塩基配列解析
 SANK 60310株の16S rDNAの部分塩基配列(1496 bp)を配列表の配列番号3に示す。この配列をDNAデ-タベ-スに登録されている細菌の各種の基準株のデー タと比較した結果、Streptomyces misionensis NBRC 13063 と相同性が最も高く、相同値は98.7%であった。さらに、サイトウおよびネイらの近隣結合法(Saitou N.and M.Nei, Molecular Biology and Evolution, 4, p406-425(1987))により系統解析を行った結果、SANK 60310株とStreptomyces属のメンバーは系統樹において単一のクラスターを形成した(データは示さない)。
 以上の結果を基に、ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕基準、ワックスマン著、ジ・アクチノミセテス(S. A. Waksman、The Actinomycetes)第2巻、バージーズ・マニュアル(Bergey's Manual of Systematic Bacteriology)第5巻(2012年)、およびストレプトマイセス(Streptomyces)属放線菌に関する最近の文献によって同定を行い、本菌株が放線菌の中でもストレプトマイセス(Streptomyces)属に属すると判断した。そこで、本菌株をストレプトマイセス・エスピー(Streptomyces sp.)SANK 60310株と命名した。なお、本菌株は2015年10月2日に独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に国際寄託され、受領番号NITE BP-02128を付与された。
 [SANK 61010株]
 SANK 61010株は、東京都の土壌試料から分離された。
1.形態的特徴
 ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕規定の寒天培地上28℃、14日間培養後、基生菌糸は良好に伸長、分岐し、菌糸断裂やジグザグ伸長は観察されない。気菌糸は単純分岐である。気菌糸の先端に10ないし50個または それ以上の胞子連鎖を形成し、胞子連鎖の形態は、直線状ないし波状、まれにフック状を示した。また、気菌糸の車軸分岐、菌核や胞子のうなどは観察されない。
 特に、Yeast extract-Malt extract Agar (ISP-2)やOatmeal Agar (ISP-3)において旺盛に生育し、明緑味灰色~茶味灰色の胞子を着生する。裏面は薄黄味茶色~鈍黄色を呈する。Oatmeal Agar (ISP-3)で暗茶色、ISP-6、ISP-7培地で黄味茶色~暗茶色の色素が認められる。
2.各種培養基上の諸性質
 SANK 61010株の各種培養基上で28℃、14日培養後の性状は表7に示したとおりである。色調の表示はマンセル方式による日本色彩研究所版「標準色票」のカラーチップ・ナンバーをあらわす。
Figure JPOXMLDOC01-appb-T000010
*1 G:生育、AM:気菌糸、R:裏面、SP:可溶性色素
*2 性状の欄の( )内はマンセル方式による色調表示
3.生理学的性質
プリドハム・ゴトリーブ寒天培地(ISP-9)を使用して、28℃、14日間培養後に観察したSANK 61010株の炭素源の資化性は表8に示すとおりである。
Figure JPOXMLDOC01-appb-T000011
*)+:利用する、 ±:弱く利用する、-:利用しない。
4.16S rDNA塩基配列解析
 SANK 61010株の16S rDNAの部分塩基配列(1478 bp)を配列表の配列番号4に示す。この配列をDNAデ-タベ-スに登録されている細菌の各種の基準株のデー タと比較した結果、Streptomyces cinerochromogenes NBRC 13822と相同性が最も高く、相同値は99.93%であった。さらに、サイトウおよびネイらの近隣結合法(Saitou N.and M.Nei, Molecular Biology and Evolution, 4, p406-425(1987))により系統解析を行った結果、SANK 61010株とStreptomyces属のメンバーは系統樹において単一のクラスターを形成した(データは示さない)。
 以上の結果を基に、ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕基準、ワックスマン著、ジ・アクチノミセテス(S. A. Waksman、The Actinomycetes)第2巻、バージーズ・マニュアル(Bergey's Manual of Systematic Bacteriology)第5巻(2012年)、およびストレプトマイセス(Streptomyces)属放線菌に関する最近の文献によって同定を行い、本菌株が放線菌の中でもストレプトマイセス(Streptomyces)属に属すると判断した。そこで、本菌株をストレプトマイセス・エスピー(Streptomyces sp.)SANK 61010株と命名した。なお、本菌株は2015年10月2日に独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に国際寄託され、受領番号NITE BP-02130を付与された。
[SANK 61110株]
 SANK 61110株は、群馬県の土壌試料から分離された。
1.形態的特徴
 ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕規定の寒天培地上28℃、14日間培養後、基生菌糸は良好に伸長、分岐し、菌糸断裂やジグザグ伸長は観察されない。気菌糸は単純分岐である。気菌糸の先端に10ないし50個または それ以上の胞子連鎖を形成し、胞子連鎖の形態は、直鎖状ないし波状、まれにフック状を示した。また、気菌糸の車軸分岐、菌核や胞子のうなどは観察されない。
Yeast extract-Malt extract Agar (ISP-2)やOatmeal Agar (ISP-3)において旺盛に生育し、薄黄色~薄オリーブ色~黄味灰色の胞子を着生する。裏面は黄味茶色などを呈する。Oatmeal Agar (ISP-3)などで黄味茶色の色素が認められる。
2.各種培養基上の諸性質
 SANK 61110株の各種培養基上で28℃、14日培養後の性状は表9に示したとおりである。色調の表示はマンセル方式による日本色彩研究所版「標準色票」のカラーチップ・ナンバーをあらわす。
Figure JPOXMLDOC01-appb-T000012
*1 G:生育、AM:気菌糸、R:裏面、SP:可溶性色素
*2 性状の欄の( )内はマンセル方式による色調表示。
3.生理学的性質
 プリドハム・ゴトリーブ寒天培地(ISP-9)を使用して、28℃、14日間培養後に観察したSANK 61110株の炭素源の資化性は表10に示すとおりである。
Figure JPOXMLDOC01-appb-T000013
*)+:利用する、 ±:弱く利用する、-:利用しない。
4.16S rDNA塩基配列解析
 SANK 61110株の16S rDNAの部分塩基配列(1389 bp)を配列表の配列番号5に示す。この配列をDNAデ-タベ-スに登録されている細菌の各種の基準株のデー タと比較した結果、Streptomyces fulvissimus DSM 40593やStreptomyces microflavus NBRC 13062などと相同性が最も高く、相同値は98.77%であった。さらに、サイトウおよびネイらの近隣結合法(Saitou N.and M.Nei, Molecular Biology and Evolution, 4, p406-425(1987))により系統解析を行った結果、SANK 61110株とStreptomyces属のメンバーは系統樹において単一のクラスターを形成した(データは示さない)。
 以上の結果を基に、ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕基準、ワックスマン著、ジ・アクチノミセテス(S. A. Waksman、The Actinomycetes)第2巻、バージーズ・マニュアル(Bergey's Manual of Systematic Bacteriology)第5巻(2012年)、およびストレプトマイセス(Streptomyces)属放線菌に関する最近の文献によって同定を行い、本菌株が放線菌の中でもストレプトマイセス(Streptomyces)属に属すると判断した。そこで、本菌株をストレプトマイセス・エスピー(Streptomyces sp.)SANK 61110株と命名した。なお、本菌株は2016年7月26日に独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に国際寄託され、受領番号NITE BP-02303を付与された。
[SANK 61210株]
 SANK 61210株は、東京都の植物試料から分離された。
1.形態的特徴
 ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕規定の寒天培地上28℃、14日間培養後、基生菌糸は良好に伸長、分岐し、菌糸断裂やジグザグ伸長は観察されない。気菌糸は単純分岐である。気菌糸の先端に10ないし50個または それ以上の胞子連鎖を形成し、胞子連鎖の形態は、直線ないし波状、まれにフック状を示した。また、気菌糸の車軸分岐、菌核や胞子のうなどは観察されない。
 Yeast extract-Malt extract Agar (ISP-2), Oatmeal Agar (ISP-3)やInorganic salts-Starch Agar (ISP-4)において旺盛に生育し、薄赤味茶色~茶味灰色の胞子を着生する。裏面は黄橙、黄味茶色~茶色を呈する。赤味黄色の色素が認められる。
2.各種培養基上の諸性質
 SANK 61210株の各種培養基上で28℃、14日培養後の性状は表11に示したとおりである。色調の表示はマンセル方式による日本色彩研究所版「標準色票」のカラーチップ・ナンバーをあらわす。
Figure JPOXMLDOC01-appb-T000014
*1 G:生育、AM:気菌糸、R:裏面、SP:可溶性色素
*2 性状の欄の( )内はマンセル方式による色調表示。
3.生理学的性質
 プリドハム・ゴトリーブ寒天培地(ISP-9)を使用して、28℃、14日間培養後に観察したSANK 61210株の炭素源の資化性は表12に示すとおりである。
Figure JPOXMLDOC01-appb-T000015
*)+:利用する、 ±:弱く利用する、-:利用しない。
4.16S rDNA塩基配列解析
 SANK 61210株の16S rDNAの部分塩基配列(1512 bp)を配列表の配列番号6に示す。この配列をDNAデ-タベ-スに登録されている細菌の各種の基準株のデー タと比較した結果、Streptomyces misionensis NBRC 13063と相同性が最も高く、相同値は98.7%であった。さらに、サイトウおよびネイらの近隣結合法(Saitou N.and M.Nei, Molecular Biology and Evolution, 4, p406-425(1987))により系統解析を行った結果、SANK 61210株とStreptomyces属のメンバーは系統樹において単一のクラスターを形成した(データは示さない)。
 以上の結果を基に、ISP〔インターナショナル・ストレプトマイセス・プロジェクト(International Streptomyces Project)〕基準、ワックスマン著、ジ・アクチノミセテス(S. A. Waksman、The Actinomycetes)第2巻、バージーズ・マニュアル(Bergey's Manual of Systematic Bacteriology)第5巻(2012年)、およびストレプトマイセス(Streptomyces)属放線菌に関する最近の文献によって同定を行い、本菌株が放線菌の中でもストレプトマイセス(Streptomyces)属に属すると判断した。そこで、本菌株をストレプトマイセス・エスピー(Streptomyces sp.)SANK 61210株と命名した。なお、本菌株は2015年10月2日に独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に国際寄託され、受領番号NITE BP-02133を付与された。
<微生物変換>
 本発明の方法では、対象化合物を、本変換活性を有する変換菌の菌体又は菌体処理物と接触させることで、目的とするアシルグルクロン酸抱合体へと変換させることを特徴とする。本発明の製造方法においては、上記微生物の1種あるいは2種以上が菌体、菌体処理物及び/又は培養液として用いられる。具体的には、上記変換菌を培養して得られた菌体又はその培養液をそのまま用いることや、あるいは培養して得られた菌体を公知の手法で処理したもの、即ち、アセトン処理したもの、風乾または凍結乾燥処理したもの、菌体を物理的、化学的または酵素的に破砕したもの等の菌体処理物を用いることができる。
 また、これらの菌体または菌体処理物から、式(I)の対象化合物中のカルボキシル基に作用し式(II)のグルクロン酸抱合体に変換する能力を有する酵素画分を粗製物あるいは精製物として取り出して用いることも可能である。さらには、このようにして得られた菌体、菌体処理物、酵素画分等を通常の固定化技術を用いて、すなわち、ポリアクリルアミド、カラギーナンゲル等の担体に固定化したもの等を用いることも可能である。そこで本明細書において、「菌体及び/または該菌体処理物」の用語は、上述の菌体、菌体処理物、酵素画分、及びそれらの固定化物全てを含有する概念として用いられる。
 本発明の変換菌を培養、あるいは変換培養するに際し使用される培地としては炭素源、窒素源、無機イオンおよび有機栄養源等より選択されたものを適宜含有する培地であれば合成または天然培地の何れでも使用可能である。該栄養源としては、従来真菌類や放線菌類の菌株の培養に利用されている公知の、微生物が資化できる炭素源、窒素源および無機塩が使用できる。
 具体的には、炭素源としてはグルコース、フルクトース、マルトース、シュクロース、マンニトール、グリセロール、デキストリン、オート麦、ライ麦、トウモロコシ澱粉、ジャガイモ、トウモロコシ粉、大豆粉、綿実油、水飴、糖蜜、大豆油、クエン酸、酒石酸などを単一に、あるいは併用して使用できる。一般には、培地量の 1乃至10重量%で変量するが、この範囲に限定されない。
 また、窒素源としては、一般に蛋白質またはその水解物を含有する物質を用いることができる。好適な窒素源としては、例えば大豆粉、フスマ、落花生粉、綿実粉、スキムミルク、カゼイン加水分解物、ファーマミン、魚粉、コーンスチープリカー、ペプトン、肉エキス、生イースト、乾燥イースト、イーストエキス、マルトエキス、ジャガイモ、硫酸アンモニウム、硝酸アンモニウム、硝酸ナトリウム等を使用し得る。該窒素源は、単一または併用して培地量の0.2~6重量%の範囲で用いられることが好ましい。
 さらに栄養無機塩としては、ナトリウム、アンモニウム、カルシウム、フォスフェート、サルフェート、クロライド、カーボネート等のイオンを得ることのできる通常の塩類を使用し得る。また、カリウム、カルシウム、コバルト、マンガン、鉄、マグネシウム等の微量の金属も使用され得る。なお、液体培養に際しては、消泡剤としてシリコン油、植物油、界面活性剤等を使用することができる。
 培養方法は、振盪培養、通気撹拌培養などの好気培養が適している。培養温度は使用する微生物、培養方法により異なるが、通常10乃至50℃であり、好適には15乃至30℃であり、特に好適には20乃至28℃である。
 変換菌を培養するための培地のpHは使用する微生物、培養方法により異なるが、通常3.0乃至10.0であり好適には5.0乃至8.0である。培養時間は、使用する微生物、培養方法、培養温度により異なるが、振盪培養開始後、式(I)を有する化合物の添加前までは、通常0乃至7日間であり、好適には2乃至5日間である。化合物(I)の添加後は、通常0.5乃至7日間であり、好適には1乃至5日間である。
 グルクロン酸抱合体は該変換菌を好気的に培養することにより得られるが、そのような培養および変換培養法としては、通常用いられる好気的培養法、例えば固体培養法、振とう培養法、通気攪拌培養法等を用いることができる。
 小規模の培養および変換培養においては、19乃至28℃で数日間振とう培養を行うのが好適である。培養は、バッフル(水流調節壁)のついた、あるいは通常の三角フラスコ中で、1~2段階の種の発育工程により開始する。種発育段階の培地には、炭素源および窒素源を併用できる。種フラスコは定温インキュベーター中で19乃至28℃、3日間振とうするか、または充分に成長するまで振とうする。成長した種は、第二の種培地、または、生産培地に接種するのに用いる。中間の発育工程を用いる場合には、本質的に同様の方法で成長させ、その一部を生産培地に接種する。接種したフラスコを一定の温度で数日間振とう培養し、培養終了後フラスコ内の培養物を遠心分離またはろ過する。
 大量培養および大量の変換培養の場合には、攪拌機、通気装置が付いたジャーファーメンターあるいはタンクで培養するのが好ましい。そのためにはまず栄養培地を121~130℃まで加熱して滅菌し冷却しておき、ついで、該滅菌済培地に前述したような方法によって予め成長させておいた種を接種する。その後の培養は19乃至28℃で通気攪拌して行う。この方法は、多量の化合物を得るのに適している。
 好適pH条件を得るためには、塩、アルカリ、緩衝液で調整することが可能であり、好適には菌の生育を阻害しない緩衝液を加えることが望ましく、例えばリン酸緩衝液もしくはトリス緩衝液を用いることができる。好適pH条件を得るため、化合物(I)を添加した培養液にリン酸緩衝液を添加することや、培養菌体をリン酸緩衝液もしくはトリス緩衝液に懸濁し、化合物(I)を添加することも有効である。なお、ここでの好適pHとは化合物のLogD値が0.1以上、好ましくは0.3以上、より好ましくは0.5以上、更に好ましくは1.0以上、更により好ましくは1.5以上であり、最も好ましくは2.0以上となる条件である。LogD値とは、水/オクタノールとの溶媒混合物に化合物が溶解した際の分配平衡が成立しているときの、両溶媒中の化合物の組成の比等であって、化合物が中性形とイオン形との混合物である場合にあるpHにおける水/オクタノールとの両溶媒への分配係数を言う。LogD値は実験的に求めることもできるが、計算化学による算出方法等をあげることができる。このような計算科学的算出に用いられるソフトウェア、アルゴリズムとしては様々なものが公知であるが、例えば、Advanced Chemistry Development(ACD) 社 製ソフトウェアであるACD/Percepta 等を用いることができる。
 本発明で用いられる凍結乾燥菌体の調製方法は特に限定されないが、例えば、培養により得られた菌体に、ドライアイスなどで冷却したアセトンを添加し、凍結乾燥処理を行うことで凍結乾燥菌体を得ることができる。このようにして得られた凍結乾燥菌体と化合物(I)を接触させるには、例えば、凍結乾燥菌体をリン酸バッファー等に懸濁させ、化合物(I)を添加する等の方法が用いられる。
 本発明の製造方法では、培養液、培養液上清、菌体、菌体の部分消化物、凍結乾燥菌体、無細胞抽出液、またはその産生する酵素を含有する溶液中またはそれらの固定化担体等のpHを3.0乃至10.0、好適には5.0乃至9.0にすることが適している。その際、グルクロン酸抱合体への変換率を向上させ、目的グルクロン酸抱合体の安定性を維持するために適切な反応培養液のpHを選択することができる。
 その方法としてはジャーファーメンターあるいはタンクでの培養においては培養槽内の培養状態をモニターすることができるpH電極等の値を指標に、酸あるいはアルカリ、または緩衝液等を培養槽に適時添加することによって培養液層内のpHを制御できる。
 三角フラスコ等の容器を変換培養に用いる場合は、変換菌を生育させた培養液に適切なpHのバッファーや酸、アルカリ等を添加することで変換反応に適したpHに調整することが出来る。
 変換培養において、対象化合物の添加量は、培地1ml当たり10乃至1000μgであり、好適には培地1ml当たり50乃至500μgである。
 また、本発明で用いられる無細胞抽出液の調製方法は特に限定されないが、例えば、培養により得られた菌体を水性媒体、例えばリン酸緩衝液やトリス緩衝液に懸濁し、物理的、化学的または生化学的手法を適用し、例えば、磨砕、超音波処理等によって菌体破砕物として、または有機溶媒、界面活性剤、酵素処理等によって、菌体溶解液として得ることができる。このようにして得られた無細胞抽出液と化合物(I)を接触させるには、例えば、この無細胞抽出液に直接化合物(I)を添加する等の方法が用いられる。
 <アシルグルクロン酸抱合体の精製>
 得られた培養上清は、カラムクロマトグラフィーなどの通常の分離操作に供し、LC-MS分析により目的とするアシルグルクロン酸抱合体をモニタリングして目的物が検出されたフラクションを回収するなどすることによって、目的とするアシルグルクロン酸抱合体を精製することができる。また、一般にアシルグルクロン酸抱合体はその構造上の特性から pH7以上のアルカリ性溶液中では不安定であり、分子内アシル転位やエステル結合の加水分解等がおきる。したがって精製工程においてはpH7以下の酸性条件下、好適にはpH3.0乃至5.0の条件で安定的に精製が可能である。
 このような化合物の特性を考慮することで、グルクロン酸抱合体は常法に従って反応混合物から採取される。例えば、変換培養液中の対象化合物は、適切な溶媒または数種の溶媒の混合物による溶媒抽出、クロマトグラフィー、または適切な溶媒または数種の溶媒の混合物からの再結晶等の、生物学的活性物質の回収および精製に常用される種々の操作法に付すことによって、単離される。
 例えば、対象化合物から変換されたアシルグルクロン酸抱合体は一般的に培養菌体中および培養液上清中の両方に見出される。したがって、アシルグルクロン酸抱合体は培養液全体のアセトンまたはメタノール、エタノール、アセトニトリル、またはこれらの溶媒の混合物等のような適切な有機溶媒を用いる抽出によって抽出される。
 また、アシルグルクロン酸抱合体は吸着剤として、例えば活性炭または吸着用樹脂であるアンバーライトXAD-2、XAD-4(ローム・アンド・ハース社製)やダイヤイオンHP-10、HP-20、CHP-20P、HP-50、HP-2MG、セパビーズSP-70、SP-207、SP-825、SP-850、SP-700(三菱化学株式会社製)等を使用したカラムを使用することにより精製できる。アシルグルクロン酸抱合体は、上記のごとき吸着剤の層を通過させて不純物を吸着させることによって取り除くか、またはアシルグルクロン酸抱合体を吸着させたあと、メタノール水、アセトン水、アセトニトリル水、テトラヒドロフラン水などを用いて溶出させることができる。
 また、イオン交換クロマトグラフィーとしては例えば、陰イオン交換担体としては、DEAE-セルロース(ブラウン社製)、DEAE-セファデックス、DEAE-セファロース、QAE-セファデックス(以上、GEヘルスケアバイオサイエンス社製)、DEAE-トヨパールC(東ソー(株)製)、デュオライトA-2(住化ケムテックス社製)、アンバーライトIRA-68(オルガノ社製)、ダウエックス1×4、同21K、同SBR-P(ダウ・ケミカル社製)等を挙げることができる。また、陽イオン交換樹脂としては、CM-セルロース(ブラウン社製)、CM-セファデックス、CM-セファロース(以上、GEヘルスケアバイオサイエンス社製)、CM-トヨパールC(東ソー(株)製)、デュオライトA-2(住化ケムテックス社製)、アンバーライトIRC-50(オルガノ社製)、ダウエックスCCR、同CS-101(ダウ・ケミカル社製)等を挙げることができる。イオン交換カラムによるアシルグルクロン酸抱合体の精製は、アシルグルクロン酸抱合体を含む上述の抽出液を陰イオン交換担体、あるいは陽イオン交換担体と接触させアシルグルクロン酸抱合体を該担体に吸着させ、夾雑物を除去した後、溶媒系のイオン強度、pH等を変化させることによりアシルグルクロン酸抱合体を溶出するか、アシルグルクロン酸抱合体を含む上述の抽出液を陰イオン交換担体、あるいは陽イオン交換担体を通過させ、不純物を該担体に吸着させ、アシルグルクロン酸抱合体を含む通過液を回収する
 このようにして得られたアシルグルクロン酸抱合体は、さらにシリカゲル、フロリジルのような担体を用いた吸着カラムクロマトグラフィー、セファデックスLH-20(ファルマシア社製)などを用いた分配クロマトグラフィー、および順相、逆相カラムを用いた高速液体クロマトグラフィー等で精製することができる。
 以下、実施例を挙げ、本発明を詳細に説明する。これらの実施例は本発明の実施態様の一例を示すものであり、本発明はこれらに限定されるものではない。
 以降の実施例において、グルクロン酸抱合体への変換反応に用いた対象化合物と得られるグルクロン酸抱合体を表13に示す。化合物(1)~(8)のグルクロン酸抱合体の標準品は市販品を用いた。また、微生物によるグルクロン酸抱合体合成に用いた培地を表14に示す。これらの組成の培地を調整後、121℃で20分間オートクレーブ滅菌したものを以降の実施例に述べる培養に用いた。また、以降の実施例において、反応物の分析には、上記の“グルクロン酸抱合体の検出“の項に記載した二種類のLC-MS分析条件(分析条件1、分析条件2)を適時、対象化合物に適した条件を選択して用いた。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
<実施例1> グルクロン酸抱合体合成に対する温度と変換培養時pHの影響の確認
 化合物(1)のグルクロン酸抱合体への微生物変換について、以下の通り検討した。
SANK 60895株およびSANK 61108株の各スラントより一白金耳を、あらかじめ滅菌した培地1(20ml)を含む100mlフラスコに接種し、28℃、210rpmで二日間、前培養を行った。得られた前培養液を2.5%、あらかじめ滅菌した培地2(80ml)を含む500mlフラスコに接種し、これを28℃、210rpmにて三日間本培養を行った。得られた本培養液の500μlをワットマン社製10ml容 24穴 プレートに分注し、これにあらかじめ滅菌したpH6, 7, 8の100mMリン酸ナトリウム緩衝液を500μl加えた。これに化合物(1)の10mg/mlジメチルスルホキシド溶液10μlを添加した。通気性のあるフィルターにて24穴プレートにふたをし、23および28℃にて、回転数160rpmで変換培養を行った。変換開始から72時間後にエタノール/アセトニトリル =1/1 溶液(1ml)を反応プレートの各反応培養液に加え攪拌後、遠心管に分注し、これを10,000rpmにて5分間、遠心分離を行った。得られた遠心上清を上記の分析条件1にてLC-MS分析を行った。グルクロン酸抱合体の同定には、LC-MS分析にて標準品の分子量関連イオンおよび保持時間を比較して決定した。化合物(1)の標準品としてO-グルクロン酸抱合体およびアシル-β-D-グルクロン酸抱合体はトロントリサーチケミカルズ社、又は、カルボシシス社から購入した。標準品と比較を行ったLC-MSクロマトグラムを図1に示す。グルクロン酸抱合体への変換率の算出は、UV230nmで検出した化合物(1)のアシルグルクロン酸抱合体およびO-グルクロン酸抱合体の標準品のピークエリア値より検量線を作成して変換反応液中の変換体濃度を算出し、これと変換反応に用いた化合物(1)の濃度より求めた。結果を表15に示す。二株とも、O-グルクロン酸抱合体の生成に対してpHが高いほど変換率が上昇したが、アシルグルクロン酸抱合体はpH6が望ましく、また変換反応時の温度はSANK 60895株においては28℃で変換率が向上した。
Figure JPOXMLDOC01-appb-T000021
<実施例2> グルクロン酸抱合体合成への培地中の炭素源の影響
 SANK 60895株のスラントより一白金耳を、あらかじめ滅菌した培地1(20ml)を含む100ml容フラスコに接種し、28℃、210rpmで二日間、前培養を行った。得られた前培養液2.5%をあらかじめ滅菌した培地2および炭素源を変えた4種類の培地(培地3,4,5,6)、20mlを含む100ml容フラスコにそれぞれ接種した。28℃、210rpmにて三日間本培養を行い、得られた本培養液を24穴 プレートに500μlずつ分注し、これにあらかじめ滅菌したpH7の100mMリン酸ナトリウムバッファーを500μl加えた。これに化合物(1)の10mg/mlジメチルスルホキシド溶液を終濃度 100μg/mlになるように添加した。通気性のあるフィルターにて24穴プレートにふたをし、28℃にて、160rpmで変換培養を行った。変換開始から72時間後にエタノール/アセトニトリル =1/1 溶液 (1ml)を反応プレートの各反応培養液に加えて攪拌後、これを10,000rpmにて5分間、遠心分離を行った。得られた遠心上清を上記の分析条件1にて LC-MS 分析を行い、実施例1と同様の手法により各グルクロン酸抱合体の変換率を算出した。結果を表16に示す。炭素源としてはグリセロール単独の培地5でO-およびアシルグルクロン酸抱合体の変換率が最大となった。
Figure JPOXMLDOC01-appb-T000022
<実施例3> 10Lジャーファーメンターによる変換培養
 SANK 60895株のスラントを滅菌水とともにホモジナイズし、これをあらかじめ滅菌した 培地1(80ml)を含む500ml容フラスコに接種した。これを28℃、210rpmにて二日間、前培養を行い、得られた前培養液2%を、あらかじめ滅菌した培地5(5L)に接種した。ジャーファーメンターにて、温度を28℃、pHの設定値を7.0とし、溶存酸素カスケードを5ppmとして培養をおこなった。本培養72時間後に化合物(1)のジメチルスルホキシド溶液(10mg/ml)を終濃度100μg/mlとなるように添加し、その後三日間、変換培養を行った。変換培養開始から変換培養液のサンプリングを行い、これに等量のエタノール/アセトニトリル=1/1 溶液にて抽出を行い、10,000rpmにて5分間、遠心分離を行った。得られた遠心上清を上記の分析条件1にてLC-MS分析を行い、グルクロン酸抱合体の変換率を算出した。結果を図2に示す。変換反応開始から18時間で終了し、O-グルクロン酸抱合体の変換率は60%、アシルグルクロン酸抱合体の変換率は25%の変換率で最大となった。アシルグルクロン酸抱合体は反応開始から25時間以降で減少する傾向であった。
<実施例4> 各種変換菌のグルクロン酸抱合体変換活性の検討
 変換菌SANK 60895、SANK 61110、SANK 60310、およびSANK 61010の4株を用いて、化合物(1)に対するグルクロン酸抱合体変換反応を行った。前培養培地および変換率の算出は実施例1に示した手法に従い、前培養(培地1、日数二日)、本培養(培地2、日数三日)を行い、変換培養は28℃で行った。その結果、表17に示すようにSANK 60895と同様にSANK 61110、SANK 60310、SANK 61010においても化合物(1)のO-およびアシルの二つのグルクロン酸抱合体の生成を確認した。
Figure JPOXMLDOC01-appb-T000023
<実施例5>  各種化合物に対するSANK 60895のグルクロン酸抱合体変換活性
 SANK 60895を用いて化合物(2)~(8)及び(14)についいてグルクロン酸抱合体への変換培養を実施した。培養方法として、前培養培地、本培養培地、前培養日数、本培養日数、変換日数、分析条件については、各化合物ごとに表18に示した条件を適用した。グルクロン酸抱合体の変換率は、実施例1と同様にグルクロン酸抱合体標準品のLC-MSにおけるピークエリアから作成した検量線を用いて算出した。検量線作成に用いたグルクロン酸抱合体の標準品はトロントリサーチケミカルズから購入した。結果を表18に示す。
カルボキシル基を有する化合物(2)、(3)、(4)、(5)及び(6)の5化合物は目的のアシルグルクロン酸抱合体の生成が確認された。
水酸基を有する化合物(7)、(8)及び(14)においては、化合物(7)の変換率は低かったものの、化合物(8)及び(14)においては非常に高い変換率を示した。なお、化合物(8)においては水酸基の位置により2種類のO-グルクロン酸抱合体(4‘-O-グルクロン酸抱合体、6-O-グルクロン酸抱合体)が生成しうるが、主に4’-O-グルクロン酸抱合体が検出された。
Figure JPOXMLDOC01-appb-T000024
<実施例6> 化合物(4)のアシルグルクロン酸抱合体の精製
 SANK 60895のスラントより一白金耳を、あらかじめ滅菌した培地5(20ml)を含む100mlフラスコに接種し、28℃、210rpmで二日間、前培養を行った。得られた前培養液を2.5%、あらかじめ滅菌した培地5(80ml)を含む500mlフラスコ3本に接種し、これを28℃、210rpmにて三日間本培養を行った。その後、本培養液を回収し、本培養液(40ml)とあらかじめ滅菌したpH7の100mM リン酸ナトリウムバッファー(40ml)を滅菌済みの500ml容フラスコに分注し、これに化合物4の10mg/mlジメチルスルホキシド溶液を終濃度100μg/mlとなるように添加した。同様の変換培養液を他に5本調整し、これらを28℃、210rpmにて三日間、変換培養を行った。図3に変換反応開始から経時的なサンプリングを行った分析条件1のLC-MS分析の結果を示す。
反応開始18時間後では化合物(4)は消費されておらず、分子量が化合物よりも14小さい脱メトキシ体とアシルグルクロン酸抱合体、および脱メトキシ体のグルクロン酸抱合体が微量検出された。変換時間が経過するに従い、化合物(4)が減少し、これらの変換体ピークが増加し、48時間後にはアシルグルクロン酸抱合体および脱メトキシグルクロン酸抱合体の二つの変換体が主生成物となった。
このようにして得られた変換培養液を合併し、等量のアセトンを加え撹拌後、セライト濾過を行い、変換培養液のアセトン抽出液(1L)を得た。このアセトン抽出液のうち500mlにあらかじめ洗浄済みのセパビーズSP207(三菱化学株式会社製)を50ml加え、続いてこれをロータリーエバポレーターにて減圧濃縮を行い、アセトンを留去した。SP207を回収し、ポリプロピレン製カートリッジに充填し、水洗後、メタノール(500ml)で溶出した。これをロータリーエバポレーターにて減圧濃縮し、粗精製物(1.47g)を得た。この粗生成物を逆相ODS(YMC ODS-A、50μm、60ml、株式会社ワイエムシイ製)に供し、0.01%ギ酸水:アセトニトリル=5:95から50:50まで80分のリニアグラジエントにて流速10ml/分で精製を行った。1分ごとに分画を行い、フラクション28から48を合併した。得られた画分にあらかじめ洗浄したSP207(20ml)を加え減圧濃縮後、SP207を回収し、洗浄後、メタノール(100ml)で溶出した。
得られた溶出液をカラムに充填したTOYOPEARL DEAE-650C(酢酸型、東ソー株式会社製)に供し、メタノール:25mMギ酸アンモニウムメタノール溶液=10:0から0:10まで、流速5ml/分にて40分間のリニアグラジエントにて精製した。2分ごとに分画を行い、フラクション5から17を合併し、減圧濃縮を行った。得られた粗精製物を逆相ODS(InertsilODS-4、5μm、20mmx150mm、GLサイエンス株式会社製)をもちいたHPLCにて精製を行った。移動相として0.1%ギ酸水:アセトニトリル=73:27の混合液を流速10ml/分にて通液し、保持時間20.9分のピークを回収した。得られたフラクションを減圧下にて濃縮し、凍結乾燥を行うことで、化合物4のアシルグルクロン酸抱合体(7.6mg)を純度95%以上で得た(図4)。
<実施例7> 変換菌によるN-グルクロン酸抱合体の合成
 化合物(9)~(13)について、N-グルクロン酸抱合体への微生物変換を、以下の方法により確認した。
(1)肝ミクロソーム反応によるN-グルクロン酸抱合体標準品の取得
化合物9~13のN-グルクロン酸抱合体標準品の取得には肝ミクロソームを用いた代謝反応を以下に示す方法で行った。ポリプロピレンチューブに、蒸留水411μl、反応液A:48μl(終濃度; 2 mM uridine 5‘-diphospho-glucuronic acid, UDPGA)、反応液 B 120μL(Tris-HCl pH7.5 終濃度;50mM、終濃度; 8mM MgCl2、25μg/ml Alamethicin)およびヒト肝ミクロソーム15μL(終濃度; 0.5 mg protein/mL)を添加し、反応混合液を調製した。反応液を37℃で5分間加温後、被験物質のアセトニトリル溶液 6μl(終濃度; 10μM)を添加して反応を開始する。37℃で120分間インキュベーションした後、反応液に600μlのアセトニトリルを添加し反応を停止する。攪拌後、4℃、2,400gで12分間遠心分離し、その上清を当該化合物のN-グルクロン酸抱合体標準品サンプルとして、以下の測定に用いた。
 (2)微生物変換によるN-グルクロン酸抱合体の合成
 化合物(9)~(13)について、変換菌SANK 60895、SANK 611081,SANK 61110、SANK 60310、SANK 61010、SANK 61210を用いたN-グルクロン酸抱合体変換を行った。前培養培地には培地7を用い、本培養培地には培地8を用いた。実施例3に従い、前培養を二日、本培養を三日行い、変換培養を24穴プレートにて3日間行った。得られた変換培養液をエタノール/アセトニトリル =1/1 溶液(1ml)にて抽出し、この遠心上清についてLC-MS分析を行った。分子量、UVスペクトル、および実施例2で得られた肝ミクロソーム反応液中のグルクロン酸抱合体の分子量に相当するピークと比較することで、目的のグルクロン酸抱合体を同定した。結果を表19示す。なお、化合物(13)については3つのグルクロン酸抱合体のピークが確認されたが、非特許文献(Drug Metab Dispos. 2006、34、5、748-55)のデータと比較することで各グルクロン酸抱合体を推定した。変換率はUV230nmで検出した原体のピークエリアとグルクロン酸抱合体のエリア比から算出した。変換菌によって化合物ごとの変換率は異なるが、化合物(12)を除くすべての化合物でグルクロン酸抱合体を検出した。
Figure JPOXMLDOC01-appb-T000025
 <実施例8> 微生物変換活性と化合物の性質の解析
 化合物のグルクロン酸抱合体変換活性と化合物の関係性を分析するため、上記の実施例中、変換菌SANK 60895およびpH7リン酸バッファーを変換反応条件に用いた場合のグルクロン酸抱合体への変換率及び計算化学的に算出した各化合物のLogP値の関係を図5に示した。なおLogP値の算出には、Advanced Chemistry Development( ACD) 社 製ソフトウェアであるACD/PhysChem Database verion 11.01 を用いた。図5の横軸はLogP計算値を示し、縦軸は変換率(%)を示す。プロット中の数値は表13に示した化合物番号であり、プロット形状はアシル型、O-型、N-型のグルクロン酸抱合体の生成物を表している。
 図5より明らかなように、変換率20%程度で目的の抱合体を得るにはアシル型、O-型、N-型いずれもLogP値は2以上が望ましく、LogP値が0に近い化合物7、12では変換率は著しく低い。よって、本製造方法によってグルクロン酸抱合体を得るには、化合物のLogP値を0より大きい状態とすることが好ましく、より高効率で得るには、LogP値が大きい値(最適には2以上)であることが望ましい。
また、本製造方法に於いては、対象化合物がイオン性の場合、変換反応時に添加するリン酸緩衝液のpHによって得られる変換率が変動する。上記に示したLogP値はイオンが乖離していない状態での計算値であるため、pHに依存した乖離状態を反映したオクタノール/水分配係数であるLogD値と、変換率の相関を図6に示す。実施例4における化合物1に対する変換菌SANK 60895株を28℃にて変換培養を行った際の変換率と、上記と同様の計算ソフトウェアACDを用いて算出したLogD値をプロットした。化合物(1)はカルボン酸とフェノール性水酸基を有しているが、図6に示すようにそのLogD値は酸性pHでは高く、アルカリ性pHになるに従い小さくなり、pH10では0以下を示す。この際、化合物(1)のアシルグルクロン酸変換体への変換率はこのLogDの傾向と一致した傾向を示しており、LogD値が2付近となるとpH6で最大となり、LogDが小さくなるpH7、8になるに従い変換率の低下を示す。一方、O-グルクロン酸抱合体はアシルグルクロン酸抱合体と逆の傾向を示した。すなわちpHが上昇するにしたがい、変換率も上昇の傾向であった。図5で示すように、本製造方法に於ける変換率はO-グルクロン酸抱合体は変換率が他のアシルグルクロン酸、N-グルクロン酸抱合体よりも高く、また実施例8で示すように化合物(14)のようなフェノール性水酸基に対するグルクロン酸抱合はほぼpHの影響を受けない。これらのことから、本製造方法におけるイオン性官能基へのグルクロン酸抱合反応は、対象官能基の乖離を抑制してLogD値が0以上、望ましくは2付近となる反応条件が好適であり、一方フェノール性水酸基等の一般的な微生物の培養条件でのpH範囲では容易には乖離しない官能基へのグルクロン酸抱合反応はpHに対する依存性は小さいことが明らかとなった。
 特許微生物寄託センター受領番号: NITE BP-02128
                  NITE BP-02129
                  NITE BP-02130
                  NITE BP-02133
                  NITE BP-02302
                  NITE BP-02303 

Claims (8)

  1.  以下の工程A及びBを含むことを特徴とする、カルボキシル基を有する対象化合物のアシルグルクロン酸抱合体の製造方法、
    工程A:カルボキシル基を有する対象化合物を含む培養液中で、アシルグルクロン酸抱合体変換活性を有する微生物を培養する工程、及び、
    工程B:工程Aの培養物から、対象化合物のアシルグルクロン酸抱合体を取得する工程。
  2.  対象化合物が、0.1以上のLogP値を示す化合物であることを特徴とする、請求項1の製造方法。
  3.  工程Aの培養条件が温度20~37℃、培地のpHが3.0~10.0、であることを特徴とする請求項1の製造方法。
  4. 工程Aの培養条件において、培地のpHが、対象化合物のLogD値が0.1以上となるpH条件であることを特徴とする請求項3の製造方法。
  5.  アシルグルクロン酸抱合体変換活性を有する微生物が、ストレプトマイセス属に属する放線菌である請求項1の方法。
  6.  アシルグルクロン酸抱合体変換活性を有する微生物が、ストレプトマイセス属に属する、SANK60895株、SANK61210株、SANK61108株、SANK61010株、SANK61110株、又は、SANK60310株、である請求項1の方法。
  7.  アシルグルクロン酸抱合体変換活性を有する、ストレプロマイセス属に属する放線菌。
  8.  SANK60895株、SANK61210株、SANK61108株、SANK61010株、SANK61110株、又は、SANK60310株である、請求項7の放線菌。
PCT/JP2016/082800 2015-11-06 2016-11-04 微生物変換によるアシルグルクロン酸抱合体の製造方法及びその変換活性を有する微生物 WO2017078137A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218266 2015-11-06
JP2015-218266 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017078137A1 true WO2017078137A1 (ja) 2017-05-11

Family

ID=58662088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082800 WO2017078137A1 (ja) 2015-11-06 2016-11-04 微生物変換によるアシルグルクロン酸抱合体の製造方法及びその変換活性を有する微生物

Country Status (1)

Country Link
WO (1) WO2017078137A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057522A (en) * 1990-07-19 1991-10-15 Merck & Co., Inc. Anti-hypersensitive N2-tetrazole-β-glucuronide analog
JPH08275795A (ja) * 1995-03-31 1996-10-22 Eli Lilly & Co ベンゾ[b]チオフェングルクロニド類の製造方法
WO2010031875A1 (en) * 2008-09-22 2010-03-25 Pombio Tech Gmbh Drug metabolism
WO2011105241A1 (ja) * 2010-02-25 2011-09-01 富山県 出芽酵母を用いたグルクロン酸抱合体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057522A (en) * 1990-07-19 1991-10-15 Merck & Co., Inc. Anti-hypersensitive N2-tetrazole-β-glucuronide analog
JPH08275795A (ja) * 1995-03-31 1996-10-22 Eli Lilly & Co ベンゾ[b]チオフェングルクロニド類の製造方法
WO2010031875A1 (en) * 2008-09-22 2010-03-25 Pombio Tech Gmbh Drug metabolism
WO2011105241A1 (ja) * 2010-02-25 2011-09-01 富山県 出芽酵母を用いたグルクロン酸抱合体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRIGGS, BS. ET AL.: "Microbial process for preparation of glucuronides of raloxifene", JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, vol. 23, 1999, pages 194 - 197, XP000981512 *
CHEN, T. S. ET AL.: "Microbial Hydroxylation and Glucuronidation of the AngiotensinII(AII) Receptor Antagonist MK 954", THE JOURNAL OF ANTIBIOTICS, vol. 46, no. 1, 1992, pages 131 - 134, XP002475572 *

Similar Documents

Publication Publication Date Title
US9822335B2 (en) Amycolatopsis sp. strain and methods of using the same for vanillin production
KR20140048334A (ko) 미오이노시톨 및 미오이노시톨 유도체의 제조 방법
Jayasuriya et al. Isolation and structure elucidation of thiazomycin
JP6181972B2 (ja) 芳香族化合物の製造方法
CN112010924A (zh) 新型诺西肽糖基化衍生物及其制备方法和应用
EP1319666B1 (en) Antibacterial compounds
EP0326173B1 (en) Novel antitumor antibiotic substance and a method for production thereof
CN115819479A (zh) 一种α-红景天苷及其制备方法与应用
WO2017078137A1 (ja) 微生物変換によるアシルグルクロン酸抱合体の製造方法及びその変換活性を有する微生物
JP5283927B2 (ja) 新規化合物アミコラマイシン、その製造方法及びその用途
EP2423319B1 (en) Amycolamicin, method for production thereof, and use thereof
DK143570B (da) Fremgangsmaade til fremstilling af maytansinol maytanacin og eller maytansinolpropionat
KR101801908B1 (ko) 알부틴의 제조방법
CN111635894B (zh) 粉蝶霉素糖基转移酶sGT1及应用
JP6181971B2 (ja) 芳香族化合物の製造方法
WO2003097851A1 (fr) Procede de production de derive d'acide alkylcarboxylique optiquement actif
JPH06234784A (ja) 新規抗生物質sf2768物質及びその製造法
JPH0374677B2 (ja)
JP2008074710A (ja) 新規a−97065類物質
JP2007131552A (ja) 新規抗生物質sf2856物質、その製造法および医薬組成物
JP3673302B2 (ja) 分岐サイクロイソマルトヘプタオース及びその製造法
JPH09143195A (ja) 新規化合物a−74259
KR0161149B1 (ko) 새로운 N-아세틸-β-D-글루코사미니데이스 저해물질 및 그의 제조방법
Nonaka et al. Fermentative production of milbemycin α11 and α14: Appearance of morphological mutants during large-scale fermentation
JP3327982B2 (ja) 新規な抗生物質mi481−42f4−a関連物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP