WO2017077991A1 - 二次電池用亜鉛負極材 - Google Patents

二次電池用亜鉛負極材 Download PDF

Info

Publication number
WO2017077991A1
WO2017077991A1 PCT/JP2016/082375 JP2016082375W WO2017077991A1 WO 2017077991 A1 WO2017077991 A1 WO 2017077991A1 JP 2016082375 W JP2016082375 W JP 2016082375W WO 2017077991 A1 WO2017077991 A1 WO 2017077991A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
coating composition
negative electrode
electrode material
secondary battery
Prior art date
Application number
PCT/JP2016/082375
Other languages
English (en)
French (fr)
Inventor
正樹 小野
中田 明良
創 荒井
小久見 善八
Original Assignee
日産自動車株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 国立大学法人京都大学 filed Critical 日産自動車株式会社
Priority to EP16862051.6A priority Critical patent/EP3373368B1/en
Priority to US15/772,733 priority patent/US10476075B2/en
Priority to CN201680064282.9A priority patent/CN108352520B/zh
Priority to JP2017548760A priority patent/JP6576462B2/ja
Publication of WO2017077991A1 publication Critical patent/WO2017077991A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a zinc negative electrode material for a secondary battery. More specifically, the present invention relates to a zinc negative electrode material for a secondary battery applied to a secondary battery represented by a secondary battery such as an air-zinc secondary battery or a nickel-zinc secondary battery.
  • a secondary battery such as an air-zinc secondary battery or a nickel-zinc secondary battery.
  • the electric vehicle is required to have a cruising distance per charge comparable to that of a gasoline vehicle and a driving performance similar to that of a gasoline vehicle.
  • a lithium ion secondary battery having a high energy density is attracting attention, and is currently being developed rapidly.
  • a metal-air battery using zinc as a negative electrode is attracting attention as a battery that can achieve higher energy density than a lithium ion secondary battery.
  • Zinc (Zn) used for the metal-air battery is an inexpensive material having many resources on the earth and has a high theoretical capacity density.
  • Such secondary batteries using zinc as a negative electrode are expected to be put into practical use as secondary batteries that can significantly increase the energy density at a low cost compared to conventional secondary batteries. ing.
  • a zinc secondary battery using an aqueous electrolyte has a problem that the life of a charge / discharge cycle is very short, which is a big barrier that must be overcome for practical use.
  • the zinc (Zn) generates a zincate anion (Zn (OH) 4 2 ⁇ ) soluble in a strong alkaline electrolyte as a discharge product by a discharge reaction shown in the following reaction formula (1).
  • a battery using a zinc negative electrode usually uses a strong alkaline aqueous solution in which zinc oxide (ZnO) is saturated and dissolved as the electrolytic solution.
  • ZnO zinc oxide
  • the zincate anion dissolves in a supersaturated state and dissolves to a concentration several times higher than the saturation solubility. Therefore, the zincate anion generated by discharge can easily diffuse and move in the electrolyte. it can.
  • the shape change of the zinc electrode proceeds because the deposition and deposition of zinc oxide as described above are repeated at the same location in the negative electrode by repeated charge and discharge.
  • Non-Patent Document 1 discloses that a secondary battery using an active material in which zinc oxide (ZnO) particles are coated with titanium oxide (TiO 2 ) is directly active without covering the zinc oxide (ZnO) particles. It is disclosed that the charge cycle durability is improved as compared with a secondary battery as a substance.
  • Non-Patent Document 1 Characteristics and Electrochemical Performance of the TiO2-Coated ZnO Anode for Ni-Zn Secondary Batteries SH Lee et al. , J. et al. Phys. Chem. C, 115, 2572 (2011)
  • the present invention has been made in view of such problems of the prior art, and an object of the present invention is for a secondary battery capable of improving the charge cycle durability of the secondary battery and suppressing self-discharge.
  • the object is to provide a zinc negative electrode material.
  • the present inventor has found that the above object can be achieved by bringing the coating layer coated with the zinc-containing particles into an appropriate state, and has completed the present invention. .
  • the zinc negative electrode material for secondary batteries of the present invention contains one or more kinds of metal oxides selected from titanium (Ti), zirconium (Zr), magnesium (Mg), tin (Sn), and yttrium (Y). Having zinc-containing particles coated with a coating composition;
  • the surface uneven distribution ratio of the coating composition represented by the following formula (1) is 1.6 to 16.
  • the coating composition surface metal atomic ratio is represented by the following formula (2):
  • the coating composition bulk metal atomic ratio is represented by the following formula (3).
  • the zinc-containing active material is coated in an appropriate state by using a specific coating composition having sufficient chemical and electrochemical stability in the environment inside the battery using zinc as the negative electrode.
  • a zinc negative electrode material for a secondary battery having high charge / discharge cycle durability can be obtained.
  • the zinc negative electrode material for secondary batteries provided with the zinc-containing active material having the coating layer of the present invention will be described in detail. First, the material which comprises the zinc negative electrode material for secondary batteries of this invention is demonstrated. ⁇ Coating composition>
  • the coating composition constituting the coating layer stably exists in the range of the charging and discharging potential of zinc in a strong alkaline electrolyte, and the overvoltage for the hydrogen generation reaction during charging (during zinc metal generation) is zinc and An equivalent or larger one can be used.
  • Examples of the coating composition include metal oxides selected from titanium (Ti), zirconium (Zr), magnesium (Mg), tin (Sn), and yttrium (Y).
  • the elution amount of the metal oxide with respect to the strong alkaline electrolyte was measured, and the chemical stability of the metal oxide was evaluated. Specifically, after immersing the metal oxide powder in an 8M potassium hydroxide (KOH) aqueous solution kept at 60 ° C. for 7 days, the metal components eluted in the aqueous solution were quantitatively analyzed by ICP-AES method. The evaluation results are shown in Table 1.
  • KOH potassium hydroxide
  • the case where the battery is kept in a storage state is simulated, and the chemical stability of the coating composition in the electrolytic solution can be evaluated. From the above metal oxides, the elution amount of the metal component is below the detection limit, and both are very stable, indicating that the metal oxide exhibits sufficient chemical stability as a negative electrode material.
  • the reduction polarization test was done about the said metal oxide. Specifically, a dense oxide film is formed by thermally oxidizing the surface of a pure metal plate, and this is immersed in a strong alkaline electrolyte (4M KOH aqueous solution) as a test electrode, and an open circuit potential at a temperature of 25 ° C. To a potential corresponding to the charging potential of zinc ( ⁇ 1.60 V vs. Hg / HgO) at a constant sweep rate ( ⁇ 1 mV / s) by a linear sweep voltammetry. The appearance change was evaluated. The evaluation results are shown in Table 2.
  • the metal oxide has a value of ⁇ 1.60 V vs.
  • the reduction current density in Hg / HgO is less than 1 mA / cm 2 , and there is no melting damage, deformation, or change in color tone due to the strong alkaline electrolyte, so that it is electrochemically stable and the hydrogen generation reaction rate is sufficiently high It can be seen that it is small, and it can be seen that it can be applied as a coating composition material.
  • the metal oxide has a sufficiently low electronic conductivity and is chemically and electrochemically stable with respect to a strong alkaline electrolyte. Therefore, even if it is reductively polarized, a coating composition containing the metal oxide is involved. Does not occur.
  • ⁇ Zinc-containing active material As a zinc containing active material, what contains either one or both of zinc compounds, such as zinc and zinc oxide, as a negative electrode active material can be used, and it is preferable that it is a particulate zinc containing active material.
  • the zinc negative electrode material for a secondary battery of the present invention is one in which a zinc-containing active material is coated with a coating layer, and the coating composition surface uneven distribution ratio represented by the following formula (1) satisfies 1.6 to 16.
  • the coating composition surface metal atomic ratio is represented by the following formula (2):
  • the coating composition bulk metal atomic ratio is represented by the following formula (3).
  • the zinc negative electrode material for secondary batteries satisfying the coating composition surface uneven distribution ratio represented by the above formula (1) has a coating layer in which the coating composition is not easily detached. Yes, since the shape change and self-discharge of the zinc negative electrode material are suppressed, it has high charge / discharge cycle durability.
  • the coating composition of the present invention not only adheres to the zinc-containing active material and simply covers the surface of the zinc-containing active material, but also is fixed on the surface of the zinc-containing active material and does not easily desorb. Including.
  • the Zn discharge product staying in the vicinity of the generation site is reduced during charging and returns to the vicinity of the generation site, so that it is considered that the occurrence of electrode shape change such as dendrite growth can be suppressed.
  • the diffusion and outflow of zinc species soluble in the electrolyte is greatly suppressed, and the state where the dissolved zinc species concentration on the surface of the zinc-containing active material is high is maintained.
  • the progress of the metal zinc dissolution reaction as shown in the reaction formula (5) can be significantly suppressed, so that the capacity reduction due to the self-discharge reaction is prevented.
  • the coating composition surface uneven distribution ratio is less than 1.6, since the coating composition fixed to the zinc-containing active material is small, the effect of suppressing the diffusion of the discharge product of the zinc discharge product is reduced, and the charge / discharge cycle Not much improvement in lifespan.
  • the proportion of the zinc-containing active material exposed and in direct contact with the electrolyte increases, so that the elution and diffusion of metallic zinc cannot be suppressed and the self-discharge reaction proceeds.
  • the content of the coating composition that does not contribute to the suppression of the diffusion of the discharge product is large and the energy density is lowered.
  • the coating composition surface uneven distribution ratio will be described.
  • the ratio of the coating composition existing on the surface of the zinc negative electrode material for secondary batteries can be known from the ratio of the coating composition metal in the total of the metal and zinc contained in the coating composition on the surface of the zinc negative electrode material.
  • the ratio of the coating composition metal can be measured by X-ray photoelectron spectroscopy (XPS), and the X-ray photoelectron spectroscopy measures the element distribution on the surface (up to several nanometers in depth) of the zinc negative electrode material. It can be done.
  • XPS X-ray photoelectron spectroscopy
  • the non-fixed coating composition that is not fixed to the zinc-containing active material and is simply attached to the zinc-containing active material. Therefore, in the X-ray photoelectron spectroscopy, the non-fixed coating composition that does not contribute to the movement limitation of the discharge product is detected even if it is simply attached.
  • the zinc negative electrode material for a secondary battery includes a coated zinc-containing active material coated with a coating composition fixed on the surface of the zinc-containing active material, and a free non-fixed coating composition that is not fixed to the zinc-containing active material. May be a mixture with.
  • the amount of the non-fixed coating composition only on the surface of the zinc-containing active material is also increased. Therefore, the amount of the coating composition fixed to the zinc-containing active material cannot be determined by the X-ray photoelectron spectroscopy.
  • the amount of the non-fixed coating composition present on the surface of the zinc-containing active material by placing it on the surface of the zinc-containing active material is such that the coating composition fixed on the surface of the zinc-containing active material is Less than the amount unevenly distributed on the surface.
  • the coating composition bulk metal atoms contained in the entire zinc negative electrode material for secondary batteries how much coating composition metal atoms are present on the surface of the zinc-containing active material,
  • the amount of the coating composition fixed to the zinc-containing active material was defined by the coating composition surface uneven distribution ratio.
  • the coating composition surface metal atomic ratio represented by the above formula (2) represents the amount of the coating composition occupying the surface of the zinc negative electrode material for a secondary battery, and the secondary battery by X-ray photoelectron spectroscopy (XPS). It can be measured by measuring the element type, abundance, etc. from the peak present on the surface of the zinc negative electrode material (depth of about several nm) and determining the atomic concentration with analysis software.
  • XPS X-ray photoelectron spectroscopy
  • the coating composition bulk metal atomic ratio represented by the above formula (3) represents the amount of the coating composition in the entire zinc negative electrode material for secondary batteries, and is measured by inductively coupled plasma (ICP) emission spectrometry. it can.
  • ICP inductively coupled plasma
  • argon (Ar) plasma when a zinc negative electrode material for a secondary battery is dissolved in a dilute acid aqueous solution to form a sample solution, the solution is atomized and introduced into argon (Ar) plasma, and the excited element returns to the ground state. Can be measured by spectroscopically analyzing the light emitted from the light source and quantifying it from the wavelength and the qualitative and intensity of the element.
  • the coating composition surface uneven distribution ratio is a ratio between the coating composition contained in the entire zinc negative electrode material for secondary batteries and the coating composition existing on the surface of the zinc-containing active material, and the surface of the zinc-containing active material is the coating composition. It does not represent the coverage that indicates how much is covered by the object. That is, even if the coverage is the same, the coating composition surface uneven distribution ratio tends to increase as the surface area of the zinc-containing active material decreases.
  • the zinc negative electrode material for a secondary battery of the present invention preferably has a coating composition surface metal atomic ratio of 0.087 to 0.90.
  • the surface metal atomic ratio of the coating composition is 0.087 or more, the zinc discharge product generated in a charge / discharge cycle having a high depth, a charge / discharge cycle having a large number of cycles, or a charge / discharge cycle requiring a long time due to a low rate. Since it has a sufficient coverage and can suppress the diffusion of zinc discharge products over a long period of time, it exhibits high charge / discharge cycle durability.
  • the coating composition surface metal atomic ratio is 0.90 or less, the zinc discharge product concentration in the coating layer does not increase extremely, and the charge / discharge efficiency does not decrease. Therefore, an increase in electrochemically inactive zinc that is no longer used for charging / discharging can be suppressed, and the discharge capacity does not decrease for each charging / discharging cycle, and high charge / discharge cycle durability is exhibited.
  • the zinc negative electrode material for a secondary battery of the present invention preferably has a pore volume of 5 nm or less (pore volume of 5 nm or less / total pore volume) of 0.12 or more with respect to the total pore volume. .
  • the coating composition itself that constitutes the coating layer does not necessarily have electron conductivity or ion conductivity, and has pores through which a substance necessary for the electrode reaction can move, thereby transferring the substance necessary for the electrode reaction. Enable. That is, even if the surface of the zinc-containing active material is covered with the coating layer, the coating layer has pores, so that a substance necessary for the electrode reaction can be transferred through the pores.
  • the pores having a pore diameter of 5 nm or less can suppress the diffusion of the zinc discharge product without interfering with the movement of substances necessary for the electrode reaction.
  • the diffusion of the zinc discharge product can be suppressed by being 0.12 or more.
  • the pore volume with a pore diameter of 5 nm or less is less than 0.12
  • the pore volume with a large diameter increases, and the pore with the large diameter reduces the effect of suppressing the diffusion of the zinc discharge product.
  • the charge / discharge cycle improvement effect by the object may be reduced.
  • the upper pore size distribution is measured by the nitrogen adsorption method, and the pore size distribution can be obtained from the result of analysis by the BJH method.
  • the pore diameter at which accurate pore volume can be measured is a pore having a size at least twice the effective diameter of the adsorbent molecule. Accordingly, the pore diameter of 5 nm or less substantially means 0.7 nm to 5 nm.
  • the pore size distribution can be adjusted by the firing conditions described later, the hydrolysis conditions of the metal alkoxide to be the metal oxide constituting the coating composition, and the like.
  • the thickness of the coating layer is preferably 5 to 500 nm.
  • the thickness of the coating layer is less than 5 nm, the effect of suppressing the diffusion of the zinc discharge product cannot be sufficiently obtained, and the charge / discharge cycle durability may not be sufficiently improved.
  • it exceeds 500 nm the transfer distance of substances necessary for electrode reactions such as H 2 O, OH ⁇ , electrons, etc. becomes long, and it tends to be a rate-limiting region of mass transfer in the discharge and charge reactions, so a practical charge rate Or high output may not be obtained.
  • the thickness of the coating composition is measured by observing the negative electrode material precisely with a microtome method, an ion milling method, or the like, and observing it with an electron microscope.
  • the thickness of the coating layer can be adjusted by the metal alkoxide and content to be a metal oxide constituting the coating composition, the addition amount of the linker, and the like.
  • the zinc negative electrode material for a secondary battery is obtained by hydrolyzing a metal alkoxide serving as a metal oxide constituting the coating composition to form a metal oxide precursor, and the above-described metal oxide precursor is applied to the surface of the zinc-containing active material by a linker. It can be produced by firing after fixing.
  • linker a linker charged with a sign different from the charges on the surface of the zinc-containing active material and the metal oxide surface can be used.
  • organic compounds having a plurality of amino groups such as urea, oxamide, ethylenediamine, putrescine, phenylenediamine, and glycinamide
  • dicarboxylic acids examples thereof include an organic compound having a plurality of carboxylic acid groups such as an acid, an organic compound having both an amino group and a carboxylic acid group.
  • the amount of the linker used is preferably equal to or greater than the equivalent amount of the metal oxide precursor.
  • Whether the coating composition is fixed to the zinc-containing active material by a linker can also be confirmed by detecting an element derived from the linker, such as nitrogen (N), by X-ray photoelectron spectroscopy (XPS).
  • an element derived from the linker such as nitrogen (N)
  • XPS X-ray photoelectron spectroscopy
  • Examples of the firing conditions include firing in air or an inert gas such as argon at a temperature of 300 ° C. to 400 ° C. for 1 hour to 10 hours.
  • a zinc secondary battery according to an embodiment of the present invention When used in alkaline secondary batteries such as the above-mentioned zinc negative electrode material air-zinc secondary battery and nickel-zinc secondary battery for secondary batteries, generation of hydrogen gas due to side reactions, dendrite generated during zinc deposition, Zinc shape change can be suppressed. As a result, a long charge / discharge cycle and excellent charge / discharge efficiency can be realized.
  • the zinc secondary battery of this embodiment has a positive electrode, a negative electrode, and an electrolytic solution, and uses the zinc negative electrode material for secondary batteries of the present invention as the negative electrode.
  • the positive electrode includes an air electrode composed of a carbon material, an oxygen reduction catalyst, and a binder, and a nickel electrode composed of a metal hydroxide mainly composed of nickel oxyhydroxide and a current collector such as nickel foam.
  • Etc. can be mentioned as suitable examples.
  • the conventionally well-known material used as a positive electrode of an alkaline secondary battery can be used suitably.
  • Examples of the electrolytic solution include an alkaline electrolytic solution in which an alkali salt is dissolved in water.
  • Preferred examples of the alkali salt include potassium hydroxide (KOH), sodium hydroxide (NaOH) and lithium hydroxide (LiOH). These can be used individually by 1 type or in combination of 2 or more types. In the present invention, for example, it is only necessary to repeatedly perform the redox reaction with the negative electrode, and the present invention is not limited thereto.
  • Example 1 ⁇ Preparation of TiO 2 coated Zn particles> Zn powder was used as the Zn active material, and titanium (IV) tetrabutoxide (TNBT) was used as the Ti source. A predetermined amount of TNBT was dissolved in 1-butanol, and Zn powder was added thereto and stirred well to prepare a Zn particle-dispersed TNBT solution.
  • the Zn powder dispersion was heated to 60 ° C. in a water bath, and then ammonia water having a pH of about 11 was added to hydrolyze TNBT.
  • the powder was collected by filtration from the Zn powder dispersion solution, sufficiently washed with pure water and dried, and then fired at 330 ° C. for 5 hours in air to obtain TiO 2 -coated Zn powder.
  • an inductively coupled plasma manufactured by SII NanoTechnology Co., Ltd. was used in which a predetermined amount of TiO 2 -coated Zn powder was melted with an alkali metal salt, the melt was dissolved in an acid and appropriately diluted with pure water. Quantitative analysis of the metal component was performed using an emission spectroscopic analyzer (SPS-3520). As a result, Ti was 65.2 mol%, Zn was 5.0 mol%, and the coating composition bulk metal atomic ratio was 0.072.
  • a predetermined amount of TiO 2 -coated Zn powder was placed on a sample installation part of an X-ray photoelectron spectrometer (ESCA5800 manufactured by ULVAC-PHI) and measured.
  • the X-ray source was qualitatively and quantitatively determined from a wide scan spectrum obtained using monochromatic AlK ⁇ ray (1486.6 eV) 300 W.
  • the photoelectron extraction angle was 45 ° (measurement depth: about 5 nm), and the measurement area: ⁇ 800 ⁇ m.
  • Ti was 17.6 mol%
  • Zn was 14.1 mol%
  • the coating composition surface metal atomic ratio was 0.56.
  • the TiO 2 -coated Zn powder had a coating composition surface uneven distribution ratio of 7.8, a pore volume ratio of 5 nm or less in pore diameter of 0.53, and a coating layer thickness of 40 nm.
  • the surface nitrogen concentration measured by X-ray photoelectron spectroscopy was 1.4 mol%.
  • the surface nitrogen is derived from urea used as a linker. Urea volatilizes or decomposes in the firing process, so it does not remain in the form of urea, but as a nitrogen compound from the interface between the zinc surface and the coating layer inside the coating layer to the inside of the porous coating layer and the coating layer surface. It is considered to exist.
  • the negative electrode active material layer was formed by coating on the surface of the material (Cu foil), drying and pressing to obtain a TiO 2 -coated Zn negative electrode.
  • ⁇ Charge / discharge cycle test> A charge / discharge cycle test was performed using the produced secondary battery.
  • the charge / discharge cycle test was a 0.5C charge / discharge cycle with a zinc utilization rate of 75%.
  • the cycle test the potential of the negative electrode with respect to the Hg / HgO reference electrode was monitored so that the degree of deterioration of only the negative electrode could be seen.
  • the test was conducted at 25 ° C.
  • Charging / discharging cycle durability is the end point of the charging / discharging cycle test with the number of cycles until the actual discharging capacity value decreases to 90% or less of the capacity value corresponding to the zinc utilization rate of 75%. Negative electrode durability was evaluated.
  • a self-discharge rate evaluation test was performed using a cell having the same configuration as the test cell used in the charge / discharge cycle test. In the self-discharge rate evaluation test, repeated charge / discharge conditioning was performed, and it was confirmed that the charge / discharge characteristics were stable. After the zinc negative electrode was completely discharged, the battery was charged to a charge depth of 75% at a charge rate of 0.5C. After charging, the cell was held in an open circuit state for 12 hours, and then the zinc electrode potential at a rate of 0.5 C—0.90 V vs. It discharged to Hg / HgO and calculated
  • Example 2 TiO 2 -coated Zn particles were prepared by the same preparation method as in Example 1 except that firing was performed in argon. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of the TiO 2 coated Zn powder is 0.065, the coating composition surface uneven distribution ratio is 8.3, the pore volume ratio of the pore diameter of 5 nm or less is 0.48, and the coating layer thickness is 50 nm. Met.
  • the surface nitrogen concentration was 2.3 mol%.
  • Example 3 TiO 2 -coated Zn particles were prepared by the same preparation method as in Example 1 except that the firing time was 2 hours. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • This TiO 2 coated Zn powder has a coating composition bulk metal atomic ratio of 0.072, a coating composition surface uneven distribution ratio of 9.0, a pore volume ratio of pore diameters of 5 nm or less of 0.26, and a coating layer thickness of 55 nm. Met. Further, the surface nitrogen concentration was 0.9 mol%.
  • Example 4 TiO 2 -coated Zn particles were prepared by the same preparation method as in Example 1 except that the amount of Ti source charged was halved. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of this TiO 2 coated Zn powder was 0.043, the coating composition surface uneven distribution ratio was 2.0, the pore volume ratio of pore diameters of 5 nm or less was 0.16, and the coating layer thickness was 5 nm. Met.
  • the surface nitrogen concentration was 0.6 mol%.
  • Example 5 TiO 2 -coated Zn particles were prepared by the same preparation method as in Example 1 except that the amount of Ti source charged was doubled. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were also performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of this TiO 2 coated Zn powder is 0.060, the coating composition surface uneven distribution ratio is 15.0, the pore volume ratio of pore diameter 5 nm or less is 0.12, and the coating layer thickness is 100 nm. Met.
  • the surface nitrogen concentration was 2.5 mol%.
  • Example 6 TiO 2 -coated Zn particles were prepared by the same preparation method as in Example 1 except that the amount of Ti source charged was doubled and calcination was performed at 300 ° C. in argon. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of this TiO 2 coated Zn powder was 0.084, the coating composition surface uneven distribution ratio was 11.0, the pore volume ratio of pore diameters of 5 nm or less was 0.096, and the coating layer thickness was 95 nm. Met.
  • the surface nitrogen concentration was 4.1 mol%.
  • Example 7 TiO 2 -coated Zn was prepared by the same preparation method as in Example 4 except that the stirring temperature after addition of urea was 40 ° C. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • This TiO 2 coated Zn powder has a coating composition bulk metal atomic ratio of 0.025, a coating composition surface uneven distribution ratio of 2.9, a pore volume ratio of pore diameters of 5 nm or less of 0.093, and a coating layer thickness of 8 nm. Met.
  • the surface nitrogen concentration was 2.1 mol%.
  • Example 8 TiO 2 -coated Zn was prepared by the same preparation method as in Example 1, except that the firing atmosphere was argon containing 5% by volume of hydrogen. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the TiO 2 coated Zn powder has a coating composition bulk metal atomic ratio of 0.084, a coating composition surface uneven distribution ratio of 5.8, a pore volume ratio of pore diameters of 5 nm or less of 0.39, and a coating layer thickness of 60 nm. Met.
  • the surface nitrogen concentration was 2.2 mol%.
  • Example 9 TiO 2 -coated Zn was prepared by the same preparation method as in Example 1, except that the amount of Ti source charged was doubled and the firing atmosphere was argon containing 5% by volume of hydrogen. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of the TiO 2 coated Zn powder was 0.068, the coating composition surface uneven distribution ratio was 12, the pore volume ratio of pore diameters of 5 nm or less was 0.13, and the coating layer thickness was 100 nm. It was.
  • the surface nitrogen concentration was 1.9 mol%.
  • Example 10 TiO 2 -coated Zn was prepared by the same preparation method as in Example 1, except that the stirring temperature after addition of urea was 40 ° C. and the firing atmosphere was argon containing 5% by volume of hydrogen. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of this TiO 2 -coated Zn powder was 0.060, the coating composition surface uneven distribution ratio was 8.5, the pore volume ratio of pore diameters of 5 nm or less was 0.33, and the coating layer thickness was 30 nm. Met.
  • the surface nitrogen concentration was 2.6 mol%.
  • Example 11 TiO 2 -coated Zn was prepared by the same preparation method as in Example 1, except that the amount of Ti source charged was doubled and the firing atmosphere was argon containing 5% by volume of hydrogen. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of the TiO 2 coated Zn powder is 0.045, the coating composition surface uneven distribution ratio is 1.6, the pore volume ratio of pore diameters of 5 nm or less is 0.098, and the coating layer thickness is 5 nm. Met.
  • the surface nitrogen concentration was 2.9 mol%.
  • Example 12 TiO 2 -coated Zn was prepared by the same preparation method as in Example 1 except that the amount of Ti source charged was half, the stirring temperature after addition of urea was 40 ° C., and the firing atmosphere was argon containing 5% by volume of hydrogen. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • This TiO 2 coated Zn powder had a coating composition bulk metal atomic ratio of 0.060, a coating composition surface uneven distribution ratio of 16, a pore volume ratio of pore diameters of 5 nm or less of 0.066, and a coating layer thickness of 100 nm. It was. The surface nitrogen concentration was 2.9 mol%.
  • Zn powder was dispersed in ethanol, and TNBT was added thereto. The dispersion was stirred for 6 hours, then heated to 70 ° C. and stirred until gelled. The gelled precursor was sufficiently washed with pure water, dried and then fired in air at 330 ° C. for 5 hours to obtain a TiO 2 coated Zn powder. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of this TiO 2 coated Zn powder is 0.062, the coating composition surface uneven distribution ratio is 1.1, the pore volume ratio of pore diameter 5 nm or less is 0.086, and the coating layer thickness is As a result of observation, formation of a clear TiO 2 coating layer on the surface of zinc particles could not be confirmed, and thus measurement was not possible. Moreover, the surface nitrogen concentration was below the lower limit of detection ( ⁇ 0.1 mol%).
  • Example 2 TiO 2 -coated Zn was produced by the same preparation method as in Example 1 except that the amount of Ti source charged was 1/8. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of this TiO 2 -coated Zn powder was 0.027, the coating composition surface uneven distribution ratio was 1.0, the pore volume ratio of pore diameters of 5 nm or less was 0.10, and the coating layer thickness was 3 nm. Met.
  • the surface nitrogen concentration was 0.5 mol%.
  • the coating composition bulk metal atomic ratio of this TiO 2 coated Zn powder was 0.054, the coating composition surface uneven distribution ratio was 18.0, the pore volume ratio of pore diameter 5 nm or less was 0.051, and the coating layer thickness was 140 nm. Met. Further, the surface nitrogen concentration was 1.1 mol%.
  • Example 4 TiO 2 -coated Zn was prepared by the same preparation method as in Example 1 except that urea was not added. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • the coating composition bulk metal atomic ratio of this TiO 2 coated Zn powder was 0.057, the coating composition surface uneven distribution ratio was 1.3, the pore volume ratio of pore diameters of 5 nm or less was 0.081, and the coating layer thickness was 3 nm. It was the following. Moreover, the surface nitrogen concentration was below the lower limit of detection ( ⁇ 0.1 mol%).
  • Example 5 The same preparation method as in Example 1 except that the amount of Ti source charged was doubled, the stirring temperature after addition of urea was 40 ° C., and calcination was performed in an argon stream containing 5% by volume of hydrogen at 300 ° C. for 2 hours. TiO 2 coated Zn was prepared. Calculation of the coating composition surface uneven distribution ratio, electrode preparation, and charge / discharge cycle test were performed under the same conditions as in Example 1.
  • This TiO 2 coated Zn powder had a coating composition bulk metal atomic ratio of 0.056, a coating composition surface uneven distribution ratio of 17, a pore volume ratio of pore diameters of 5 nm or less of 0.10, and a coating layer thickness of 140 nm. It was. The surface nitrogen concentration was 3.1 mol%.
  • the secondary battery using the zinc negative electrode material for the secondary battery of the example showed a charge / discharge cycle durability twice or more that of the secondary battery of Comparative Example 1.
  • the method for preparing a zinc negative electrode material for a secondary battery in Comparative Example 1 is the step of hydrolyzing titanium alkoxide with water vapor in the atmosphere to form TiO 2 precursor particles in a zinc powder dispersion solution, and then heating to remove the solvent. It is gelled by evaporating ethanol.
  • the zinc negative electrode material for a secondary battery obtained by this method is a simple mixture of TiO 2 and Zn. It is thought that it becomes.
  • both the surface of the zinc particles and the surface of the TiO 2 precursor particles are negatively charged and repel each other, so that the TiO 2 precursor particles are on the surface of the zinc particles. Adhesive coating can be considered very difficult.
  • the zinc negative electrode material for secondary batteries of Comparative Example 1 showed a value of the coating composition surface uneven distribution ratio of about 1, the zinc negative electrode material for secondary batteries obtained by the preparation method of Comparative Example 1 was It is considered to be a simple mixture of TiO 2 and Zn. When such a zinc negative electrode material for secondary batteries was used for the negative electrode, almost no improvement in charge / discharge cycle durability was observed.
  • the zinc negative electrode material for the secondary battery of the example further added urea to coat the zinc surface with the TiO 2 precursor.
  • Urea plays a role of a linker that connects the surface of zinc particles having negative charges and the surface of TiO 2 precursor particles because the amino groups at both ends of the molecule are positively charged in the zinc powder dispersion.
  • the zinc negative electrode material for a secondary battery of the example forms a coating layer in which the TiO 2 precursor particles adhere and are fixed to the surface of the zinc particles by the action of urea.
  • the zinc negative electrode material for secondary batteries of each example had a coating composition surface uneven distribution ratio significantly higher than 1, the coating composition fixed on the surface of the zinc particles had a high coverage ratio. It is thought that it covers the surface.
  • Example 11 having a coating composition surface uneven distribution ratio of 1.6 had a self-discharge rate of 1.4%
  • Comparative Example 4 having a coating composition surface uneven distribution ratio of 1.3 had a self-discharge rate of 4%. Since it is as high as 0.0, it is understood that self-discharge can be suppressed when the coating composition surface uneven distribution ratio is 1.6 or more.
  • Example 12 where the coating composition surface uneven distribution ratio is 16, the number of charge / discharge cycles is 62, and it can be seen that the charge / discharge reaction is not hindered by the coating layer, but the coating composition surface uneven distribution ratio is 17.
  • Example 5 the charge / discharge reaction was hindered, and the number of charge / discharge cycles decreased to 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

二次電池用亜鉛負極材は、チタン(Ti)、ジルコニウム(Zr)、マグネシウム(Mg)、スズ(Sn)、イットリウム(Y)から選ばれる金属の酸化物を1種以上含む被覆組成物で被覆された亜鉛含有粒子を有する。 そして、下記式(1)で表される上記被覆組成物の表面偏在比が、1.6~16ある。 但し、式(1)中、 被覆組成物表面金属原子比は、下記式(2)で表されるものであり、 被覆組成物バルク金属原子比は、下記式(3)で表されるものである。

Description

二次電池用亜鉛負極材
 本発明は、二次電池用亜鉛負極材に関する。さらに詳細には、本発明は、例えば、空気-亜鉛二次電池やニッケル-亜鉛二次電池などの二次電池に代表される二次電池に適用される二次電池用亜鉛負極材に関する。
 近年、大気汚染や地球温暖化に対処するため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)などの導入による二酸化炭素排出量の低減に期待が集まっている。
 特に、上記電気自動車は、1充電当たりの航続距離がガソリン自動車に匹敵すること、およびガソリン自動車並みの走行性能が求められる。これらの実用化の鍵となるモータ駆動用二次電池の開発が盛んに行われている。
 上記モータ駆動用二次電池としては、高いエネルギー密度を有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。しかしながら、従来のリチウムイオン二次電池の技術的改善では、目標到達が非常に難しいことが指摘されている。
 そこで、リチウムイオン二次電池を凌駕するより高いエネルギー密度化を実現し得る電池として、負極に亜鉛を用いた金属空気電池が注目を浴びている。
 上記金属空気電池に用いられる亜鉛(Zn)は、地球上に多くの資源を有する安価な材料であり、理論容量密度が高い。このような亜鉛を負極として用いる二次電池は、従来から実用されている二次電池と比較して、低コストかつ大幅にエネルギー密度を高めることが可能な二次次電池として実用化が期待されている。
 しかしながら、水系電解液を用いた亜鉛二次電池においては、充放電サイクルの寿命が非常に短いという問題点があり、実用化に向けて克服しなければならない大きな障壁となっている。
 つまり、負極活物質に亜鉛を用いた二次電池では、充放電のくり返しにより、亜鉛デンドライト成長、緻密化(Densification)や形状変化(Shape change)などにより、内部短絡の発生や放電容量の低下などの電池性能の劣化が起こる。
 上記亜鉛(Zn)は、下記反応式(1)に示す放電反応により、放電生成物として強アルカリ電解液に可溶なジンケートアニオン(Zn(OH) 2-)を生成する。

放電反応:Zn + 4OH → Zn(OH) 2- + 2e- …反応式(1)
 このようなZn成分の電解液への溶解を抑えるために、亜鉛負極を用いる電池では、通常、酸化亜鉛(ZnO)を飽和溶解させた強アルカリ水溶液を電解液として用いる。
 しかしながら、ZnOを飽和溶解させても、ジンケートアニオンは過飽和溶解し、飽和溶解度に対して数倍の濃度にまで溶解するため、放電によって生じたジンケートアニオンは電解液中を容易に拡散移動することができる。
 負極の充電あるいは放電の過程において、ジンケートアニオン濃度が局所的に過飽和溶解度を超えたような場合、あるいは局所的に電解液のOH濃度が低くなったためにジンケートアニオンに対する過飽和溶解度が低下したような場合、ジンケートアニオンは下記反応式(2)に示す化学的な反応により固体の酸化亜鉛となって析出する。

 Zn(OH) 2- → ZnO + HO + 2OH …反応式(2)
 つまり、充放電の繰返しにより、負極内の同様な箇所で上記のような酸化亜鉛の析出と堆積が繰り返されるため、亜鉛極の形状変化が進行すると考えられる。
 また、亜鉛負極の充電反応は亜鉛酸化種(ZnOまたはZn(OH) 2-)を電気化学的に還元することにより金属亜鉛が生成する。

充電反応1:ZnO + HO + 2e → Zn + 2OH …反応式(3)
充電反応2:Zn(OH) 2- + 2e → Zn + 4OH …反応式(4)
 
 しかし、金属亜鉛は強アルカリ電解液に対して可溶であるため、下記反応式(5)の水素発生型溶解反応が起こり、生成した金属亜鉛を消費する自己放電が進行するため、充電容量に対する亜鉛負極の放電容量が低下してしまう。
 
 Zn + 2OH- + HO → Zn(OH) 2- + H↑ …反応式(5)
 このような水素発生型溶解反応による亜鉛負極の自己放電が進行することを抑制するため、低アルカリ濃度の電解液を使用するなどの対策が試みられてきたが、電解液のイオン導電率の低下や電解液のHO活量が上がることにより亜鉛極充電時の水素発生副反応の増加などが起こるため、電池の充放電過電圧が上昇することによるエネルギーロスの増大や、充放電効率が低下する欠点があるため、低アルカリ濃度の電解液を使用することは困難である。
 非特許文献1には、酸化亜鉛(ZnO)粒子を酸化チタン(TiO)でコートしたとされる活物質を用いた二次電池は、酸化亜鉛(ZnO)粒子を被覆せずに、そのまま活物質とする二次電池よりも充電サイクル耐久性が向上する旨が開示されている。
非特許文献1:Characteristics and Electrochemical Performance of the TiO2-Coated ZnO Anode for Ni-Zn Secondary Batteries
S-H Lee et al., J. Phys. Chem. C, 115, 2572 (2011)
 しかしながら、非特許文献1に記載のものは、酸化亜鉛粒子表面をコートする酸化チタンのコート状態が適切でないため、充放電サイクル数の増加とともに連続的に放電容量が低下し、充放電サイクル耐久性が未だ充分ではない。また、サイクル初期の放電容量も十分でない。
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、二次電池の充電サイクル耐久性を向上でき、なおかつ自己放電を抑制できる二次電池用亜鉛負極材を提供することにある。
 本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、亜鉛含有粒子被覆する被覆層を適切な状態にすることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明の二次電池用亜鉛負極材は、チタン(Ti)、ジルコニウム(Zr)、マグネシウム(Mg)、スズ(Sn)、イットリウム(Y)から選ばれる金属の酸化物を1種以上含む被覆組成物で被覆された亜鉛含有粒子を有する。
 そして、下記式(1)で表される上記被覆組成物の表面偏在比が、1.6~16である。
Figure JPOXMLDOC01-appb-M000004
 但し、式(1)中、
 被覆組成物表面金属原子比は、下記式(2)で表されるものであり、
 被覆組成物バルク金属原子比は、下記式(3)で表されるものである。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 本発明によれば、亜鉛を負極に用いた電池内の環境において、化学的および電気化学的に十分な安定性を有する特定の被覆組成物を用い、亜鉛含有活物質を適切な状態で被覆したため、高い充放電サイクル耐久性を持つ二次電池用亜鉛負極材を得ることができる。
 本発明の被覆層を有する亜鉛含有活物質を備える二次電池用亜鉛負極材について詳細に説明する。
 まず、本発明の二次電池用亜鉛負極材を構成する材料について説明する。
<被覆組成物>
 上記被覆層を構成する被覆組成物は、強アルカリ電解液中で亜鉛の充電および放電電位の範囲において安定に存在し、かつ、充電時(亜鉛金属生成時)に水素発生反応に対する過電圧が亜鉛と同等かそれ以上に大きいものを使用することができる。
 すなわち、充電時の亜鉛金属生成反応(Zn(OH) 2- + 2e-→Zn + 4OH)と、同時に水素発生反応(2HO + 2e→H + 2OH)が起こるものを用いると、亜鉛の充電効率を低下させるため、水素発生反応に対する過電圧が亜鉛以上であるものを用いる。
 上記被覆組成物としては、例えば、チタン(Ti)、ジルコニウム(Zr)、マグネシウム(Mg)、スズ(Sn)、イットリウム(Y)から選ばれる金属の酸化物を挙げることができる。
 上記金属酸化物の強アルカリ電解液に対する溶出量を測定し、金属酸化物の化学的安定性を評価した。
 具体的には、金属酸化物粉末を60℃に保った8M 水酸化カリウム(KOH)水溶液中に7日間浸漬した後、水溶液中に溶出した金属成分をICP-AES法により定量分析を行った。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 上記評価試験では、電池を保存状態にしておいた場合を模擬しており、被覆組成物の電解液中における化学的安定性を評価することができる。上記金属酸化物は金属成分の溶出量は検出限界以下であり、いずれも非常に安定であることから、負極材料として十分な化学的安定性を示すものであることがわかる。
 また、上記金属酸化物について還元分極試験を行った。
 具体的には、純金属板の表面を熱酸化することにより緻密な酸化膜を形成し、これを試験極として強アルカリ電解液中(4M KOH水溶液)に浸漬し、温度25℃で開回路電位から亜鉛の充電電位に相当する電位(-1.60V vs.Hg/HgO)まで一定の掃引速度(-1mV/s)でリニアスウィープボルタンメトリにより還元分極試験を行い、電流密度と試験極の外観変化の有無を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 上記金属酸化物は、-1.60V vs.Hg/HgOにおける還元電流密度が1mA/cm未満であり、なおかつ、強アルカリ電解液によって溶損や変形、色調の変化がないことから電気化学的に安定であり、水素発生反応速度が十分に小さいものであると見ることができ、被覆組成物材として適用可能であることがわかる。
 上記金属酸化物は、電子伝導性が十分に低く、強アルカリ電解液に対して化学的および電気化学的に安定であるため、還元分極しても、上記金属酸化物を含む被覆組成物が関与した反応は起こらない。
 したがって、上記金属酸化物を亜鉛負極の被覆組成物として適用した場合には、充電時に亜鉛の充電反応だけが選択的に進行し、別の副反応を抑制することができるため、上記金属酸化物を含む被覆組成物が存在しても亜鉛を含む負極は高い充電効率を保つことができる。
<亜鉛含有活物質>
 亜鉛含有活物質としては、亜鉛及び酸化亜鉛などの亜鉛化合物のいずれか一方又は双方を負極活物質として含むものを使用でき、粒子状の亜鉛含有活物質であることが好ましい。
 本発明の二次電池用亜鉛負極材は、被覆層によって亜鉛含有活物質が被覆されたものであり、下記式(1)表される被覆組成物表面偏在比が1.6~16を満たす。
Figure JPOXMLDOC01-appb-M000009
 但し、式(1)中、
 被覆組成物表面金属原子比は、下記式(2)で表されるものであり、
 被覆組成物バルク金属原子比は、下記式(3)で表されるものである。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 上記式(1)表される被覆組成物表面偏在比が1.6~16を満たす二次電池用亜鉛負極材は、被覆組成物が容易に脱離することのない被覆層を形成したものであり、亜鉛負極材の形状変化及び自己放電が抑制されるため高い充放電サイクル耐久性を有する。
 つまり、本発明の被覆組成物は亜鉛含有活物質に付着し、単に亜鉛含有活物質の表面を覆っているだけではなく、亜鉛含有活物質の表面に固定されて容易に脱離しないものを多く含む。
 したがって、放電時に生成するZn放電生成物が電解液中を自由に移動することを防止し、Zn放電生成物を生成部位付近に保持することができる。
 そして、生成部位付近に留まった上記Zn放電生成物は充電時には還元されて生成部位付近に戻るため、デンドライトの成長等、電極の形状変化の発生が抑えられるものと考えられる。
 また、被覆層により亜鉛含有活物質が被覆されていると、電解液に可溶な亜鉛種の拡散流出が大幅に抑制されて、亜鉛含有活物質表面の溶解亜鉛種濃度が高い状態が保持されることによって、反応式(5)示したような金属亜鉛の溶解反応の進行を大幅に抑制することができるため、自己放電反応による容量低下が防止される。
 上記被覆組成物表面偏在比が1.6未満であると、亜鉛含有活物質に固定された被覆組成物が少ないため、亜鉛放電生成物の放電生成物の拡散抑制効果が小さくなり、充放電サイクル寿命の改善があまり得られない。また、亜鉛含有活物質が露出して電解液に直接接触する割合が多くなり、金属亜鉛の溶出拡散を抑制できず自己放電反応が進行する。加えて、放電生成物の拡散抑制に寄与しない被覆組成物の含有量が多くエネルギー密度が低下する。
 一方、被覆組成物表面偏在比が16を超えると、亜鉛含有活物質表面に固定された被覆組成物が多すぎるため、電極反応に必要なHOやOHの拡散や亜鉛含有活物質への電子伝導が妨げられて、充放電そのものが困難になり電池性能が低下する。
 上記被覆組成物表面偏在比について説明する。
 二次電池用亜鉛負極材の表面に存在する被覆組成物の比率は、亜鉛負極材表面の被覆組成物に含まれる金属と亜鉛との総和に占める被覆組成物金属の比率により知ることができる。
 上記被覆組成物金属の比率は、X線光電子分光法(XPS)によって測定することができ、上記X線光電子分光法は、亜鉛負極材の表面(深さ数ナノメートルまで)の元素分布を測定できるものである。
 しかし、亜鉛含有活物質の表面には、亜鉛含有活物質に固定されておらず、単に亜鉛含有活物質に付着しているだけの非固定被覆組成物も存在する。したがって、上記X線光電子分光法では、上記単に付着しているだけで、放電生成物の移動制限に寄与しない非固定被覆組成物も検出されてしまう。
 つまり、二次電池用亜鉛負極材は、亜鉛含有活物質表面に固定された被覆組成物によって被覆された被覆亜鉛含有活物質と、亜鉛含有活物質に固定されていないフリーの非固定被覆組成物との混合物である場合がある。
 このような混合物においては、上記被覆亜鉛含有活物質に対して上記非固定被覆組成物の含有量が多くなると、亜鉛含有活物質表面に載っているだけの非固定被覆組成物の量も多くなるため、上記X線光電子分光法では亜鉛含有活物質に固定された被覆組成物の量を知ることができない。
 上記非固定被覆組成物が、亜鉛含有活物質の表面に載ることで該亜鉛含有活物質の表面に存在する量は、亜鉛含有活物質の表面に固定された被覆組成物が亜鉛含有活物質の表面に偏在する量に比して少なくなる。
 そこで、本発明においては、二次電池用亜鉛負極材全体に含まれる被覆組成物バルク金属原子のうち、どの程度の被覆組成物金属原子が亜鉛含有活物質の表面に存在するかを表す、上記被覆組成物表面偏在比によって亜鉛含有活物質に固定された被覆組成物量を規定することとした。
 上記式(2)で表される被覆組成物表面金属原子比は、二次電池用亜鉛負極材の表面に占める被覆組成物量を表すものであり、X線光電子分光法(XPS)によって二次電池用亜鉛負極材の表面(数nm程度の深さ)に存在するピークから元素の種類・存在量等を測定し、解析ソフトにより原子濃度を求めることで測定できる。
 また、上記式(3)で表される被覆組成物バルク金属原子比は、二次電池用亜鉛負極材全体に占める被覆組成物量を表すものであり、誘導結合プラズマ(ICP)発光分析法により測定できる。
 具体的には、二次電池用亜鉛負極材を希酸水溶液に溶解して試料溶液とし、該溶液を霧状にしてアルゴン(Ar)プラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して、波長から元素の定性、強度から定量を行うことで測定できる。
 上記被覆組成物表面偏在比は、二次電池用亜鉛負極材全体に含まれる被覆組成物と亜鉛含有活物質の表面に存在する被覆組成物との比であり、亜鉛含有活物質表面が被覆組成物によってどの程度被覆されているかを示す被覆率を表すものではない。つまり、被覆率が同じであっても、亜鉛含有活物質の表面積が小さくなると被覆組成物表面偏在比の値が大きくなる傾向がある。
 本発明の二次電池用亜鉛負極材は、被覆組成物表面金属原子比が0.087~0.90であることが好ましい。
 被覆組成物表面金属原子比が0.087以上であれば、深度の高い充放電や、サイクル数が多い充放電サイクルや低レートのため長い時間を要する充放電サイクルにおいて、生成する亜鉛放電生成物の量に対して、充分な被覆率を有し、亜鉛放電生成物の拡散を長期に亘り抑制できるため、高い充放電サイクル耐久性を示す。
 また、被覆組成物表面金属原子比が0.90以下であれば、被覆層内で亜鉛放電生成物濃度が極端に上昇することがなく、充放電効率が低下することがない。したがって、充放電に使用されなくなる電気化学的に不活性な亜鉛の増加を抑えることができ、充放電サイクル毎に放電容量が低下することがなく、高い充放電サイクル耐久性を示す。
 本発明の二次電池用亜鉛負極材は、全細孔容量に対する細孔径5nm以下の細孔容量(細孔径5nm以下の細孔容量/全細孔容量)が0.12以上であることが好ましい。
 被覆層を構成する被覆組成物自体は、必ずしも電子伝導性やイオン伝導性を有する必要はなく、電極反応に必要な物質が移動可能な細孔を有することで、電極反応に必要な物質の移動を可能にする。つまり、亜鉛含有活物質の表面が被覆層で覆われていても、被覆層が細孔を有することによって、上記細孔を通じて電極反応に必要な物質の移動が可能である。
 細孔径5nm以下の細孔は、電極反応に必要な物質の移動を妨害することなく、亜鉛放電生成物の拡散を抑制できるものであり、細孔径5nm以下の細孔容量が全細孔容量に対して0.12以上であることで、亜鉛放電生成物の拡散を抑制できる。
 細孔径5nm以下の細孔亜鉛放電生成物の拡散を抑制できる理由は、物理的な篩効果だけでは説明できず、必ずしも明らかにされているわけではないが、直径5nm以下の細孔径は、被覆組成物の細孔内壁と亜鉛放電生成物の相互作用が有効に働き始める径であると考えられる。
 そして、直径5nm以下の細孔では、細孔内に実際に形成される拡散マトリクスや細孔内壁と亜鉛放電生成物の静電的相互作用などにより、亜鉛放電生成物の拡散が効果的にコントロールされていると考えられる。
 細孔径5nm以下の細孔容量が0.12未満であると、大きな径の細孔容量が大きくなり、該大きな径の細孔は、亜鉛放電生成物の拡散抑制効果が小さくなるため、被覆組成物による充放電サイクル改善効果が低下することがある。
 上部細孔径分布は窒素吸着法によって測定され、BJH法によって解析した結果より細孔径分布を求めることができる。
 なお、窒素吸着法では、吸着媒である窒素分子の有効直径(窒素単分子吸着層厚さ:0.354nm)より小さい細孔が存在しても、そのような細孔の内部には窒素分子が入れないことから、0.354nm以下の細孔の容量は測定されない。正確な細孔容量が測定可能な細孔径は少なくとも吸着媒分子の有効直径の2倍以上の大きさの細孔となる。
 したがって、上記細孔径5nm以下は、実質的に0.7nm~5nmを意味する。
 また、上記細孔径の分布は、後述する焼成条件や被覆組成物を構成する金属酸化物となる金属アルコキシドの加水分解条件等により調節することができる。
 さらに、上記被覆層の厚さは5~500nmであることが好ましい。
 被覆層の厚さが5nm未満であると、亜鉛放電生成物の拡散抑制効果が十分に得られず、充放電サイクル耐久性を充分向上できないことがある。また、500nmを超えると、HO、OH、電子等の電極反応に必要な物質の移動距離が長くなり、放電および充電反応における物質移動の律速領域になりやすいため、実用的な充電速度や高出力が得られなくなることがある。
 被覆組成物の厚さは負極材料をミクロトーム法やイオンミリング法などにより精密に断面を形成した上で電子顕微鏡観察することによって測定される。
 また、上記被覆層の厚さは、被覆組成物を構成する金属酸化物となる金属アルコキシドと含有量や、リンカーの添加量等により調節することができる。
 次に、本発明の二次電池用亜鉛負極材の製造方法について説明する。
 二次電池用亜鉛負極材は、被覆組成物を構成する金属酸化物となる金属アルコキシドを加水分解して金属酸化物前駆体とし、リンカーにより亜鉛含有活物質の表面に上記金属酸化物前駆体を固定した後、焼成することで作製できる。
 上記リンカーとしては、亜鉛含有活物質表面及び金属酸化物表面の電荷と異なる符号に帯電するものを使用できる。
 負極材料分散液の液性や被覆組成物を形成する金属酸化物前駆体にもよるが、例えば、尿素、オキサミド、エチレンジアミン、プトレシン、フェニレンジアミン、グリシンアミドなどのアミノ基を複数有する有機化合物、ジカルボン酸などの複数のカルボン酸基を有する有機化合物、アミノ基とカルボン酸基両方を有する有機化合物等を挙げることができる。
 上記リンカーの使用量は金属酸化物前駆体の当量以上であることが好ましい。リンカーを当量以上使用することで、ほぼすべての金属酸化物前駆体を亜鉛含有活物質に固定することができ、放電生成物の移動制限に寄与しない非固定被覆組成物量が減少し、エネルギー密度を向上させることができる。
 被覆組成物がリンカーによって亜鉛含有活物質に固定されているか否かは、リンカー由来の元素、例えば窒素(N)をX線光電子分光法(XPS)で検出することによっても確認できる。
 上記焼成条件としては、例えば、空気中又はアルゴン等の不活性ガス中で300℃~400℃の温度で1時間~10時間焼成することが挙げられる。
<亜鉛二次電池>
 次に、本発明の一実施形態に係る亜鉛二次電池について説明する。
 上記二次電池用亜鉛負極材空気-亜鉛二次電池やニッケル-亜鉛二次電池などのアルカリ二次電池に適用したとき、副反応により生じる水素ガスの発生や、亜鉛の析出時に発生するデンドライト、亜鉛の形状変化を抑制し得る。その結果、長期の充放電サイクル及び優れた充放電効率を実現し得る。
 本実施形態の亜鉛二次電池は、正極と、負極と、電解液とを有するものであり、上記負極として本発明の上記二次電池用亜鉛負極材を用いるものである。
 正極としては、炭素材料と酸素還元触媒と結着剤で構成された空気極や、オキシ水酸化ニッケルを主たる成分とする金属水酸化物と発泡ニッケルなどの集電体とで構成されたニッケル極などを好適例として挙げることができる。しかしながら、これに限定されるものではなく、アルカリ二次電池の正極として用いられる従来公知の材料を適宜用いることができる。
 上記電解液としては、例えば、水にアルカリ塩を溶解させたアルカリ電解液を挙げることができる。アルカリ塩としては、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)水酸化リチウム(LiOH)などを好適例として挙げることができる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 本発明においては、例えば、上記負極と酸化還元反応を繰り返し実施できればよく、これらに限定されるものではない。
 以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。
[実施例1]
<TiO被覆Zn粒子の調製>
 Zn活物質はZn粉末を使用し、Ti源としては、チタン(IV)テトラブトキシド(TNBT)を用いた。
 1-ブタノールに所定量のTNBTを溶解させ、そこにZn粉末を加えてよく撹拌してZn粒子分散TNBT溶液を作製した。
 このZn粉末分散溶液をウォーターバス中で60℃に加熱した後、pH約11のアンモニア水を加えてTNBTを加水分解した。
 上記Zn粉末分散溶液に尿素を加え、60℃で1.5時間撹拌し、TNBTの加水分解によって生成したTiO2前駆体ナノ粒子をZn粉末表面に付着固定させた。
 その後、Zn粉末分散溶液から粉末を濾取し、純水で十分に洗浄して乾燥した後、空気中330℃で5時間焼成することによりTiO被覆Zn粉末を得た。
 調製したTiO被覆Zn粉末の被覆組成物バルク金属原子比を求めるために、ICP-AESにより定量分析を行った。
 具体的には、所定量のTiO被覆Zn粉末をアルカリ金属塩で融解処理し、融成物を酸に溶解し、適宜純水で希釈したものについて、エスアイアイ・ナノテクノロジー社製誘導結合プラズマ発光分光分析装置(SPS-3520)を用いて金属成分の定量分析を行った。
 その結果、Tiは65.2mol%、Znは5.0mol%となり、被覆組成物バルク金属原子比は0.072であった。
 また、調製したTiO被覆Zn粉末の被覆組成物表面金属原子比を求めるために、X線光電子分光法(XPS)により表面金属組成の分析を行った。
 具体的には、所定量のTiO被覆Zn粉末をX線光電子分光分析装置(ULVAC-PHI製 ESCA5800)のサンプル設置部に置き測定を行った。X線源は単色化AlKα線(1486.6eV)300Wを用いて得られるワイドスキャンスペクトルから定性および定量を行った。光電子取り出し角度は45°(測定深さ:約5nm)、測定エリア:はφ800μmとした。
 その結果、Tiは17.6mol%、Znは14.1mol%となり、被覆組成物表面金属原子比は0.56であった。
 このTiO被覆Zn粉末の被覆組成物表面偏在比は7.8、細孔径5nm以下の細孔容量比は0.53、被覆層厚さは40nmであった。
 また、X線光電子分光法で測定される表面窒素濃度は1.4mol%であった。上記表面窒素はリンカーとして用いた尿素に由来するものである。尿素は焼成工程において揮発あるいは分解するため、尿素の形で残っているのではなく、何らかの窒素化合物として被覆層内部の亜鉛表面と被覆層の界面から多孔質被覆層内部および被覆層表面に渡って存在していると考えられる。
<TiO被覆Zn負極の作製>
 TiO被覆Zn粉末92質量部、導電助剤(アセチレンブラック)4質量部、バインダ(ポリフッ化ビニリデン(PVdF)4質量部を混合し、N-メチルピロリドンを加えてスラリー化した。上記スラリーを基材(Cu箔)表面に塗工し、乾燥、プレスすることによって負極活物質層を形成し、TiO被覆Zn負極を得た。
<電池の作製>
 上記TiO被覆Zn負極、セパレータ(ポリオレフィン系不織布セパレータを2枚積層させたもの)、オキシ水酸化ニッケル(NiO(OH))正極を積層し、電解液(ZnO飽和溶解4M KOH水溶液)に浸漬して二次電池を得た。
<充放電サイクル試験>
 作製した二次電池を用いて充放電サイクル試験を行った。
 充放電サイクル試験は亜鉛利用率75%の0.5C充放電サイクルとした。サイクル試験において、負極のみの劣化度合いを見ることができるようにするためにHg/HgO参照電極に対する負極の電位をモニタした。試験は25℃で行った。充放電サイクル耐久性は放電容量が亜鉛利用率75%に相当する容量値に対して、90%以下の値にまで実際の放電容量値が低下するまでのサイクル数を充放電サイクル試験の終点として負極耐久性を評価した。
<自己放電率の測定>
 充放電サイクル試験に用いた試験セルと同じ構成のセルを用いて自己放電率評価試験を行った。自己放電率評価試験は繰り返し充放電によるコンディショニングを行い、充放電特性が安定したことを確認し、亜鉛負極を完全放電させた後、充電レート0.5Cで充電深度75%まで充電した。充電後、セルを開回路状態で12時間保持した後、0.5Cレートで亜鉛極電位 ―0.90V vs.Hg/HgOまで放電し、充電電気量と放電電気量の比較から放電クーロン効率を求めた。自己放電率が高いほど放電クーロン効率が低下する。ここでは、充電時の副反応(水素発生反応など)による金属亜鉛充電ロスはゼロとみなし、自己放電率 = 100(%)-放電効率(%)として自己放電率を測定した。試験はすべて25℃で行った。評価結果を表3に示す。
[実施例2]
 焼成をアルゴン中で行った以外は実施例1と同じ調製法でTiO被覆Zn粒子を作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 上記TiO被覆Zn粉末の被覆組成物バルク金属原子比は0.065、被覆組成物表面偏在比は8.3、細孔径5nm以下の細孔容量比は0.48、被覆層厚さは50nmであった。また、表面窒素濃度は2.3mol%であった。
[実施例3]
 焼成時間を2時間とした以外は実施例1と同じ調製法でTiO被覆Zn粒子を作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.072、被覆組成物表面偏在比は9.0、細孔径5nm以下の細孔容量比は0.26、被覆層厚さは55nmであった。また、表面窒素濃度は0.9mol%であった。
[実施例4]
 Ti源の仕込み量を半量とした以外は実施例1と同じ調製法でTiO被覆Zn粒子を作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.043、被覆組成物表面偏在比は2.0、細孔径5nm以下の細孔容量比は0.16、被覆層厚さは5nmであった。
 また、表面窒素濃度は0.6mol%であった。
[実施例5]
Ti源の仕込み量を2倍量とした以外は実施例1と同じ調製法でTiO被覆Zn粒子を作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験も実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.060、被覆組成物表面偏在比は15.0、細孔径5nm以下の細孔容量比は0.12、被覆層厚さは100nmであった。また、表面窒素濃度は2.5mol%であった。
[実施例6]
 Ti源の仕込み量を2倍量とし、焼成をアルゴン中300℃で行ったこと以外は実施例1と同じ調製法でTiO被覆Zn粒子を作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.084、被覆組成物表面偏在比は11.0、細孔径5nm以下の細孔容量比は0.096、被覆層厚さは95nmであった。また、表面窒素濃度は4.1mol%であった。
[実施例7]
 尿素添加後の撹拌温度を40℃とした以外は実施例4と同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.025、被覆組成物表面偏在比は2.9、細孔径5nm以下の細孔容量比は0.093、被覆層厚さは8nmであった。また、表面窒素濃度は2.1mol%であった。
[実施例8]
 焼成雰囲気を5体積%水素を含んだアルゴンとした以外は実施例1同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.084、被覆組成物表面偏在比は5.8、細孔径5nm以下の細孔容量比は0.39、被覆層厚さは60nmであった。また、表面窒素濃度は2.2mol%であった。
[実施例9]
 Ti源の仕込み量を2倍量とし、焼成雰囲気を5体積%水素を含んだアルゴンとした以外は実施例1同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.068、被覆組成物表面偏在比は12、細孔径5nm以下の細孔容量比は0.13、被覆層厚さは100nmであった。また、表面窒素濃度は1.9mol%であった。
[実施例10]
 尿素添加後の撹拌温度を40℃とし、焼成雰囲気を5体積%水素を含んだアルゴンとした以外は実施例1同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.060、被覆組成物表面偏在比は8.5、細孔径5nm以下の細孔容量比は0.33、被覆層厚さは30nmであった。また、表面窒素濃度は2.6mol%であった。
[実施例11]
 Ti源の仕込み量を2倍量とし、焼成雰囲気を5体積%水素を含んだアルゴンとした以外は実施例1同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.045、被覆組成物表面偏在比は1.6、細孔径5nm以下の細孔容量比は0.098、被覆層厚さは5nmであった。また、表面窒素濃度は2.9mol%であった。
[実施例12]
 Ti源の仕込み量を半量として、尿素添加後の撹拌温度を40℃とし、焼成雰囲気を5体積%水素を含んだアルゴンとした以外は実施例1同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.060、被覆組成物表面偏在比は16、細孔径5nm以下の細孔容量比は0.066、被覆層厚さは100nmであった。また、表面窒素濃度は2.9mol%であった。
[比較例1]
 上記非特許文献1(J. Phys. Chem. C, 115, 2572 (2011))に示された調製法で作製した。
 具体的には、Zn粉末をエタノール中に分散させ、そこにTNBTを加えた。この分散液を6時間撹拌した後、70℃に加熱し、ゲル化するまで撹拌を行った。ゲル化した前駆体を純水で十分に洗浄し、乾燥後空気中330℃で5時間焼成してTiO被覆Zn粉末を得た。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験は実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.062、被覆組成物表面偏在比は1.1、細孔径5nm以下の細孔容量比は0.086、被覆層厚さは、観察の結果、亜鉛粒子表面における明確なTiO被覆層の形成が確認できなかったため、測定できなかった。また、表面窒素濃度は検出下限以下(<0.1mol%)であった。
[比較例2]
 Ti源の仕込み量を1/8量とした以外は実施例1と同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.027、被覆組成物表面偏在比は1.0、細孔径5nm以下の細孔容量比は0.10、被覆層厚さは3nmであった。また、表面窒素濃度は0.5mol%であった。
[比較例3]
 Ti源の仕込み量を3倍量とし、焼成温度を380℃とした以外は実施例1と同じ調製法でTiO被覆Zn粉末を作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.054、被覆組成物表面偏在比は18.0、細孔径5nm以下の細孔容量比は0.051、被覆層厚さは140nmであった。また、表面窒素濃度は1.1mol%であった。
[比較例4]
 尿素を添加しなかったこと以外は実施例1同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.057、被覆組成物表面偏在比は1.3、細孔径5nm以下の細孔容量比は0.081、被覆層厚さは3nm以下であった。また、表面窒素濃度は検出下限以下(<0.1mol%)であった。
[比較例5]
 Ti源の仕込み量を2倍量とし、尿素添加後の撹拌温度を40℃とし、焼成を5体積%水素を含んだアルゴン気流中で300℃2時間とした以外は実施例1同じ調製法でTiO被覆Znを作製した。被覆組成物表面偏在比の算出、電極作製および充放電サイクル試験を実施例1と同じ条件で行った。
 このTiO被覆Zn粉末の被覆組成物バルク金属原子比は0.056、被覆組成物表面偏在比は17、細孔径5nm以下の細孔容量比は0.10、被覆層厚さは140nmであった。また、表面窒素濃度は3.1mol%であった。
Figure JPOXMLDOC01-appb-T000012
 実施例の二次電池用亜鉛負極材を用いた二次電池は、比較例1の二次電池に対して2倍以上の充放電サイクル耐久性を示した。
 比較例1における二次電池用亜鉛負極材の調製法は、大気中の水蒸気によりチタンアルコキシドを加水分解し、TiO前駆体粒子とする工程を亜鉛粉末分散溶液中で行い、その後、加熱により溶媒であるエタノールを蒸発させることによりゲル化させたものである。
 上記亜鉛粉末分散溶液中では、亜鉛粒子とTiO前駆体粒子とは、それぞれ凝集しやすいものであるため、この方法により得られる二次電池用亜鉛負極材は、TiOとZnとの単なる混合物になると考えられる。
 つまり、比較例1の調製法における分散液中では、亜鉛粒子の表面とTiO前駆体粒子の表面とは、共に負電荷を帯び相互に反発するため、亜鉛粒子表面にTiO前駆体粒子が付着被覆することは非常に困難であると考えらえる。
 そして、比較例1の二次電池用亜鉛負極材は、被覆組成物表面偏在比の値がほぼ1を示したことからも、比較例1の調製法により得られる二次電池用亜鉛負極材は、TiOとZnの単なる混合物であると考えられる。
 このような二次電池用亜鉛負極材を負極に用いた場合には充放電サイクル耐久性の改善はほとんど見られなかった。
 これに対し、実施例の二次電池用亜鉛負極材は、亜鉛粉末分散液中でTiO前駆体を形成した後、さらに尿素を添加し亜鉛表面にTiO前駆体を被覆させた。
 上記尿素は、亜鉛粉末分散液中で分子両端のアミノ基が正電荷を帯びるため、負電荷をもつ亜鉛粒子表面とTiO前駆体粒子表面をつなぎ合わせるリンカーの役割を果たす。
 実施例の二次電池用亜鉛負極材は、このような尿素の働きにより、亜鉛粒子表面にTiO前駆体粒子が付着し固定された被覆層を形成する。
 各実施例の二次電池用亜鉛負極材は、被覆組成物表面偏在比が1を大幅に上回る値を示したことからも、亜鉛粒子表面に固定された被覆組成物が、高い被覆率で亜鉛の表面を被覆していると考えられる。
 また、被覆組成物表面偏在比が1.6の実施例11は自己放電率が1.4%であったが、被覆組成物表面偏在比が1.3の比較例4は自己放電率が4.0と高いことから、被覆組成物表面偏在比が1.6以上で自己放電を抑止できることがわかる。
 さらに、被覆組成物表面偏在比が16の実施例12は充放電サイクル数が62であり、被覆層によって充放電反応が妨げられていないことがわかるが、被覆組成物表面偏在比が17の比較例5は充放電反応が妨げられて充放電サイクル数が8に低下した。

Claims (6)

  1.  少なくとも被覆層を有する亜鉛含有活物質を含む二次電池用亜鉛負極材であって、
     上記被覆層を形成する被覆組成物が、チタン(Ti)、ジルコニウム(Zr)、マグネシウム(Mg)、スズ(Sn)、イットリウム(Y)から選ばれる金属の酸化物を1種以上含むものであり、
     下記式(1)で表される上記被覆組成物の表面偏在比が、1.6~16であることを特徴とする二次電池用亜鉛負極材。
    Figure JPOXMLDOC01-appb-M000001
     但し、式(1)中、
     被覆組成物表面金属原子比は、下記式(2)で表されるものであり、
     被覆組成物バルク金属原子比は、下記式(3)で表されるものである。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
  2.  上記被覆組成物表面金属原子比が0.087~0.90であることを特徴とする請求項1に記載の二次電池用亜鉛負極材。
  3.  全細孔容量に対する細孔径5nm以下の細孔容量(細孔径5nm以下の細孔容量/全細孔容量)が0.12以上であることを特徴とする請求項1又は2に記載の二次電池用亜鉛負極材。
  4.  上記被覆層の厚さが5~500nmであることを特徴とする請求項1~3のいずれか1つの項に記載の二次電池用亜鉛負極材。
  5.  基材上に負極材を有し、
     上記負極材が請求項1~4の二次電池用亜鉛負極材であることを特徴とする二次電池用亜鉛負極。
  6.  正極と、負極と、電解液とを備え、
     上記負極が請求項5に記載の二次電池用亜鉛負極であることを特徴とする二次電池。
PCT/JP2016/082375 2015-11-06 2016-11-01 二次電池用亜鉛負極材 WO2017077991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16862051.6A EP3373368B1 (en) 2015-11-06 2016-11-01 Zinc negative electrode material for secondary cell
US15/772,733 US10476075B2 (en) 2015-11-06 2016-11-01 Zinc negative electrode material for secondary cell
CN201680064282.9A CN108352520B (zh) 2015-11-06 2016-11-01 二次电池用锌负极材料
JP2017548760A JP6576462B2 (ja) 2015-11-06 2016-11-01 二次電池用亜鉛負極材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218656 2015-11-06
JP2015-218656 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077991A1 true WO2017077991A1 (ja) 2017-05-11

Family

ID=58661920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082375 WO2017077991A1 (ja) 2015-11-06 2016-11-01 二次電池用亜鉛負極材

Country Status (5)

Country Link
US (1) US10476075B2 (ja)
EP (1) EP3373368B1 (ja)
JP (1) JP6576462B2 (ja)
CN (1) CN108352520B (ja)
WO (1) WO2017077991A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652204B2 (en) 2019-09-12 2023-05-16 The Doshisha Metal negative electrode, method for fabricating the same and secondary battery including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349873B (zh) * 2020-11-05 2021-09-24 中南大学 一种提高水系锌离子电池锌负极循环稳定性的方法及其应用
EP4418355A1 (en) 2021-10-12 2024-08-21 The Doshisha Anode structure for secondary battery and secondary battery provided with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163963A (en) * 1981-04-01 1982-10-08 Yuasa Battery Co Ltd Alkaline zinc secondary battery
JPH03272563A (ja) * 1990-03-20 1991-12-04 Sanyo Electric Co Ltd アルカリ亜鉛蓄電池
JPH05144431A (ja) * 1991-11-15 1993-06-11 Nippon Steel Corp 亜鉛負極活物質
JPH06283157A (ja) * 1992-09-14 1994-10-07 Canon Inc 二次電池
JP2015170390A (ja) * 2014-03-04 2015-09-28 株式会社日本触媒 電池用電極組成物、電池用電極、及び、電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126068A (en) * 1981-01-28 1982-08-05 Yuasa Battery Co Ltd Zinc alkaline secondary battery
CA2110097C (en) 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US6261709B1 (en) * 1998-03-06 2001-07-17 Rayovac Corporation Air depolarized electrochemical cell having mass-control chamber in anode
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
US8501351B2 (en) * 2009-05-18 2013-08-06 Powergenix Systems, Inc. Pasted zinc electrode for rechargeable nickel-zinc batteries
CN102484246A (zh) * 2009-08-07 2012-05-30 鲍尔热尼系统公司 碳纤维锌负电极
JP2013062242A (ja) * 2011-08-24 2013-04-04 Sumitomo Metal Mining Co Ltd 薄膜固体二次電池用の薄膜の製造方法とそれに用いる塗布液、及び薄膜、並びにそれを用いた薄膜固体二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163963A (en) * 1981-04-01 1982-10-08 Yuasa Battery Co Ltd Alkaline zinc secondary battery
JPH03272563A (ja) * 1990-03-20 1991-12-04 Sanyo Electric Co Ltd アルカリ亜鉛蓄電池
JPH05144431A (ja) * 1991-11-15 1993-06-11 Nippon Steel Corp 亜鉛負極活物質
JPH06283157A (ja) * 1992-09-14 1994-10-07 Canon Inc 二次電池
JP2015170390A (ja) * 2014-03-04 2015-09-28 株式会社日本触媒 電池用電極組成物、電池用電極、及び、電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANG-HEON LEE ET AL.: "Characteristics and Electrochemical Performance of the Ti02-Coated ZnO Anode for Ni-Zn Secondary Batteries", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 115, 17 December 2010 (2010-12-17), pages 2572 - 2577, XP055382022 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652204B2 (en) 2019-09-12 2023-05-16 The Doshisha Metal negative electrode, method for fabricating the same and secondary battery including the same

Also Published As

Publication number Publication date
EP3373368A1 (en) 2018-09-12
EP3373368A4 (en) 2018-09-12
CN108352520A (zh) 2018-07-31
JPWO2017077991A1 (ja) 2018-08-09
US20190214636A1 (en) 2019-07-11
JP6576462B2 (ja) 2019-09-18
CN108352520B (zh) 2020-10-27
EP3373368B1 (en) 2019-10-09
US10476075B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
Yoon et al. Polydopamine-assisted carbon nanotubes/Co3O4 composites for rechargeable Li-air batteries
JP6101583B2 (ja) 非水電解質二次電池
CN104025347B (zh) 电极材料、电极板、锂离子电池以及电极材料的制造方法、电极板的制造方法
TWI570994B (zh) 製備用於鋰二次電池之正極材料之方法、用於鋰二次電池之正極材料、及包含該正極材料之鋰二次電池
TWI464942B (zh) 鈷的氧化物及其複合材料,以及鈷的氧化物複合材料的製備方法
Lu et al. Synthesis and characterization of uniformly dispersed Fe 3 O 4/Fe nanocomposite on porous carbon: application for rechargeable Li–O 2 batteries
KR101367577B1 (ko) 폴리도파민을 이용한 카본/촉매 복합체의 제조방법과, 이에 따라 제조되는 카본/촉매 복합체 및 이를 공기극으로 이용한 리튬/공기 이차전지
EP2668688A1 (en) Core-shell structured bifunctional catalysts for metal air battery/fuel cell
US20130183548A1 (en) Compositions, layerings, electrodes and methods for making
JP5023912B2 (ja) 正極活物質の製造方法
US20160344037A1 (en) Catalyst for air electrode for metal-air secondary battery and air electrode
JP6576462B2 (ja) 二次電池用亜鉛負極材
Kim et al. Ketjen black/Co3O4 nanocomposite prepared using polydopamine pre-coating layer as a reaction agent: effective catalyst for air electrodes of Li/air batteries
Kim et al. Buckypaper electrode containing carbon nanofiber/Co3O4 composite for enhanced lithium air batteries
JP2014032777A (ja) 非水電解質二次電池の製造方法
CN110165309B (zh) 一种锌离子电池中原位生成sei膜的方法
CN107978755B (zh) 一种在材料表面均匀掺杂金属离子的方法及其制品和应用
US8715539B2 (en) Positive electrode material for lithium secondary battery and method for manufacturing the same
Huh et al. Enabling uniform zinc deposition by zwitterion additives in aqueous zinc metal anodes
JP5594247B2 (ja) 非水電解液リチウム空気二次電池の正極およびその製造方法
Watanabe et al. Surface coating of a LiNi x Co y Al 1− x− y O 2 (x> 0.85) cathode with Li 3 PO 4 for applying a water-based hybrid polymer binder during Li-ion battery preparation
US9929453B2 (en) Bi-metallic nanoparticles as cathode electrocatalysts
Moulai et al. Electrosynthesis and characterization of nanostructured MnO 2 deposited on stainless steel electrode: a comparative study with commercial EMD
JP2020017351A (ja) 亜鉛イオン電池用正極材料
Shi et al. Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti 3+ as conduction pathways

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016862051

Country of ref document: EP