WO2017077599A1 - Motor control device, vacuum cleaner, and hand dryer - Google Patents

Motor control device, vacuum cleaner, and hand dryer Download PDF

Info

Publication number
WO2017077599A1
WO2017077599A1 PCT/JP2015/081041 JP2015081041W WO2017077599A1 WO 2017077599 A1 WO2017077599 A1 WO 2017077599A1 JP 2015081041 W JP2015081041 W JP 2015081041W WO 2017077599 A1 WO2017077599 A1 WO 2017077599A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
converter
control device
carrier
pwm control
Prior art date
Application number
PCT/JP2015/081041
Other languages
French (fr)
Japanese (ja)
Inventor
崇 山川
裕次 ▲高▼山
啓介 植村
篠本 洋介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017548560A priority Critical patent/JP6516863B2/en
Priority to PCT/JP2015/081041 priority patent/WO2017077599A1/en
Publication of WO2017077599A1 publication Critical patent/WO2017077599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor control device that controls a single-phase inverter that drives a single-phase electric motor (hereinafter referred to as “single-phase motor”), a vacuum cleaner that uses the single-phase motor, and a hand dryer.
  • single-phase motor a single-phase electric motor
  • vacuum cleaner a vacuum cleaner that uses the single-phase motor
  • hand dryer a hand dryer
  • ⁇ Motors used in vacuum cleaners and hand dryers are driven at a high speed of tens of thousands rpm (revolution per minute) or more by an inverter in a high-speed rotation range.
  • an inverter may be driven by one-pulse switching in a high-speed rotation range (see, for example, Patent Document 1 below).
  • a motor control device that performs switching control synchronized with a sensor cycle based on a signal from a position sensor, if one-pulse switching control disclosed in Patent Document 1 is performed, it may be difficult to ensure controllability of the motor.
  • “securing the controllability of the motor” means maintaining a good performance index of the motor such as the rotation speed, noise or torque. Note that as the motor becomes smaller and the inertia of the motor becomes smaller, it becomes more difficult to ensure controllability of the motor, and it becomes difficult to realize stable motor control.
  • inverter frequency the inverter output frequency
  • the carrier frequency is set high in order to ensure controllability, the amount of heat generated by the switching element increases due to an increase in switching loss, and it is necessary to secure a heat dissipation performance structure, resulting in an increase in the size of the apparatus.
  • the present invention has been made in view of the above, and an object thereof is to provide a motor control device capable of realizing stable motor control while suppressing an increase in size of the device.
  • a motor control device PWM-controls the single-phase inverter based on a detected value of a motor current flowing in a single-phase motor driven by a single-phase inverter.
  • a motor control device including a control unit, wherein synchronous PWM control in which a carrier is synchronized with a phase of a voltage command and asynchronous PWM control in which the carrier is not synchronized with a phase of the voltage command are executed, and In response to the increase, the asynchronous PWM control is switched to the synchronous PWM control, and the carrier frequency used for the asynchronous PWM control and the synchronous PWM control is set lower than the upper limit frequency that is the upper limit value of the carrier frequency.
  • FIG. 1 is a block diagram showing a configuration of a motor control system according to a first embodiment.
  • the block diagram which shows the relationship between the input / output signal in the PWM control part of Embodiment 1, and an internal structure part 1 is a block diagram showing a detailed configuration of a PWM control unit according to Embodiment 1 Waveform diagram showing relationship between voltage command and carrier, PWM signal, and motor applied voltage in the first embodiment
  • Block diagram showing an example of the configuration of an AD converter The figure which shows an example of transmission / reception of the signal between a processor and AD converter Timing chart for explaining timing of starting AD converter and reading digital data from AD converter Flow chart for determining the prohibited range Waveform diagram showing an example of variation of combination of carrier and voltage command in synchronous PWM control Waveform diagram showing motor applied voltage in comparison between asynchronous PWM control and synchronous PWM control
  • the time chart which shows an example of the operation pattern which applied the control method which concerns on Embodiment 1 to the vacuum cleaner or the hand dryer
  • the time chart which shows the other example of the operation pattern which applied the control method which concerns on Embodiment 1 to the vacuum cleaner or the hand dryer
  • FIG. 1 is a block diagram illustrating a configuration of a motor control system 1 according to the first embodiment.
  • the motor control system 1 includes a single-phase motor 12, a single-phase inverter 11 that is connected to the single-phase motor 12 and supplies AC power to the single-phase motor 12, and a direct current to the single-phase inverter 11.
  • a current sensor 20 that is a current detection unit that detects a motor current that is a current
  • a voltage sensor 23 that detects a DC applied voltage that is a DC voltage that the power supply 10 applies to the single-phase inverter 11
  • a motor control device 2 that controls a single-phase inverter 11 that drives a single-phase motor 12 based on a DC applied voltage.
  • the single phase motor 12 is a brushless motor. That is, the rotor has a plurality of permanent magnets (not shown) arranged in the circumferential direction. The plurality of permanent magnets are arranged such that the magnetization direction is alternately reversed in the circumferential direction to form a plurality of magnetic poles of the rotor. A winding (not shown) is wound around the stator. The motor current is an alternating current flowing through the winding. In the following, the number of magnetic poles is four, but it may be other than this.
  • the position sensor 21 outputs a position sensor signal that is a digital signal to the motor control device 2.
  • the position sensor signal is a signal for detecting the rotational position of the rotor, and shows a binary value of high and low according to the direction of the magnetic flux from the rotor. Therefore, the edge included in the position sensor signal corresponds to between the magnetic poles.
  • the single-phase inverter 11 that is a power converter includes switching elements 11a1 to 11a4 and diodes 11b1 to 11b4 that are free-wheeling diodes connected in antiparallel to the switching elements 11a1 to 11a4.
  • bipolar transistors are illustrated as the switching elements 11a1 to 11a4.
  • field effect transistors represented by MOSFET Metal-Oxide-semiconductor Field Effect Transistor
  • parasitic diodes may be used as the diodes 11b1 to 11b4.
  • the current sensor 20 is connected between the single-phase motor 12 and the single-phase inverter 11 and detects the motor current.
  • the detection value of the current sensor 20 is analog data.
  • the voltage sensor 23 detects a DC applied voltage applied to the single-phase inverter 11 by the power supply 10. The detection value of the voltage sensor 23 is also analog data.
  • the motor control device 2 is detected by an analog-digital converter (hereinafter referred to as “AD converter”) 30 that converts analog data, which is a detected value of the motor current detected by the current sensor 20, into digital data, and a voltage sensor 23.
  • AD converter 35 that converts analog data, which is a detected value of the DC applied voltage, into digital data, a motor current read from AD converter 30, a DC applied voltage read from AD converter 35, and position sensor 21
  • a control unit 25 that generates a PWM (Pulse Width Modulation) signal based on a position sensor signal from and a rotation speed command (rotation speed command value) (not shown), and a PWM signal output from the control unit 25 Based on this, drive signals for driving the switching elements 11a1 to 11a4 in the single-phase inverter 11 are generated.
  • a motion signal generating unit 32 that generates a PWM (Pulse Width Modulation) signal based on a position sensor signal from and a rotation speed command (rotation speed command value
  • the control unit 25 includes a processor 31, a memory 34, and a PWM control unit 40.
  • the control unit 25 generates a PWM signal described later by known PWM control.
  • the drive signal generation unit 32 generates a drive signal for controlling on / off of the switching elements 11a1 to 11a4 in the single-phase inverter 11 based on the PWM signal from the control unit 25 and outputs the drive signal to the single-phase inverter 11. To do.
  • FIG. 2 is a block diagram illustrating a relationship between input / output signals and internal components in the PWM control unit 40 of the first embodiment.
  • FIG. 3 is a block diagram illustrating a detailed configuration of the PWM control unit 40 according to the first embodiment.
  • the PWM control unit 40 includes a carrier generation unit 33 and a carrier comparison unit 38 as shown in FIG. 2, the voltage phase ⁇ v is input to the carrier generation unit 33, and the voltage phase ⁇ v, the DC applied voltage Vdc, and the voltage command Vm are input to the carrier comparison unit 38.
  • the carrier generation unit 33 generates a carrier based on the voltage phase ⁇ v.
  • the carrier comparison unit 38 generates the PWM signals Q1 to Q4 based on the carrier, the DC applied voltage Vdc, and the voltage command Vm.
  • the carrier generation unit 33 includes a carrier frequency setting unit 33a as shown in FIG.
  • the carrier frequency setting unit 33 a sets a carrier frequency fc [Hz] that is a carrier frequency, generates a carrier synchronized with the voltage phase ⁇ v, and outputs the carrier to the carrier comparison unit 38 and the processor 31.
  • a carrier waveform As an example of the carrier waveform, a triangular wave carrier that goes up and down between “0” and “1” is shown at the tip of the arrow of the carrier frequency setting unit 33a.
  • the PWM control described in this embodiment includes synchronous PWM control and asynchronous PWM control. However, in the case of asynchronous PWM control, it is not necessary to synchronize with the voltage phase ⁇ v.
  • the carrier comparison unit 38 includes an absolute value calculation unit 38a, a division unit 38b, multiplication units 38c, 38d, and 38f, an addition unit 38e, comparison units 38g and 38h, and output inversion units 38i and 38j.
  • the absolute value calculator 38a calculates the absolute value
  • is divided by the DC applied voltage Vdc detected by the voltage sensor 23.
  • the DC applied voltage Vdc is detected by the voltage sensor 23, but when the output voltage of the power supply 10 is stable, such as when the power supply 10 is connected to a commercial power supply, A value generated inside the PWM control unit 40 or a value transmitted from the processor 31 may be used without using the detection value of the voltage sensor 23.
  • the multiplication unit 38c calculates the sine value of the voltage phase ⁇ v and multiplies the output of the division unit 38b.
  • the output of the multiplication unit 38c is multiplied by 1/2.
  • the adder 38e 1/2 is added to the output result of the divider 38d.
  • the multiplication unit 38f multiplies the output of the division unit 38b by -1.
  • the output of the adder 38e is input to the comparator 38g as a positive voltage command Vp for driving the switching elements 11a1 and 11a3 connected to the high potential side DC bus 11P among the switching elements 11a1 to 11a4.
  • the output of the multiplication unit 38f is input to the comparison unit 38h as a negative side voltage command Vn for driving the switching elements 11a2 and 11a4 connected to the DC bus 11N on the low potential side.
  • the output of the comparison unit 38g becomes a PWM signal to the switching element 11a1
  • the output of the output inversion unit 38i obtained by inverting the output of the comparison unit 38g becomes a PWM signal to the switching element 11a2.
  • the output of the comparison unit 38h becomes a PWM signal to the switching element 11a3
  • the output of the output inversion unit 38j obtained by inverting the output of the comparison unit 38h becomes a PWM signal to the switching element 11a4.
  • the presence of the output inverting unit 38i does not turn on the switching element 11a1 and the switching element 11a2 at the same time, and the presence of the output inverting unit 38j does not turn on the switching element 11a3 and the switching element 11a4 at the same time.
  • FIG. 4 is a waveform diagram showing the relationship between the voltage command and the carrier, the generated PWM signal, and the voltage applied to the single-phase motor 12 (hereinafter referred to as “motor applied voltage”) in the first embodiment.
  • the horizontal axis represents the voltage phase ⁇ v
  • the vertical axis represents the waveforms of the voltage commands Vp and Vn, the carrier, the PWM signals Q1 to Q4, and the motor applied voltage in order from the upper stage.
  • the waveform shown in FIG. 4 is a synchronous PWM waveform.
  • the waveform shown in FIG. 4 is referred to as “synchronous 9 pulse waveform” or simply “synchronous 9 pulse” from the number of carriers included in one period of the voltage command.
  • the carrier generation unit 33 In the case of synchronous PWM control, the carrier generation unit 33 generates a carrier synchronized with the voltage phase ⁇ v. At this time, the carrier comparison unit 38 compares the magnitudes of the carrier and the voltage commands Vp, Vn, and generates a “High” signal if the voltage commands Vp, Vn are larger than the carrier, so that the voltage commands Vp, Vn are carrier signals. If it is smaller than that, a "Low” signal is generated. The width of the “High” or “Low” interval varies depending on the voltage phase ⁇ v, and a series of “High” or “Low” signals are PWM signals.
  • the switching elements 11a1 to 11a4 of the single-phase inverter 11 are driven by drive signals based on the PWM signals Q1 to Q4, and a motor voltage as shown in the lower part of FIG. 4 is applied to the single-phase motor 12, and the single-phase motor 12 rotates. To do.
  • the AD converter 30 and the AD converter 35 differ only in the input signals, and the basic operation is the same. Therefore, hereinafter, the AD converter 30 will be described, and the configuration and operation of the AD converter 35 will be omitted.
  • the AD converter 30 is a successive approximation type
  • the specific configuration of the AD converter 30 is not limited to the successive approximation type.
  • FIG. 5 is a block diagram showing an example of the configuration of the AD converter 30.
  • the AD converter 30 includes a control circuit 51, a comparator 52, and a DA (digital analog) converter 53.
  • the details of the operation of the AD converter 30 shown in FIG. 5 are described in Japanese Patent Application Laid-Open No. 5-152960.
  • the control circuit 51 has a processor (not shown).
  • the comparator 52 compares the comparison signal COM from the DA converter 53 with the analog input signal AIN and outputs the comparison result to the control circuit 51.
  • the analog input signal AIN corresponds to the motor current.
  • the control circuit 51 outputs a control signal CN approximating the analog input signal AIN to the DA converter 53 according to the comparison result.
  • the DA converter 53 outputs a comparison signal COM corresponding to the control signal CN to the comparator 52.
  • the control circuit 51 obtains digital data DOUT corresponding to the analog input signal AIN by executing a control that sequentially approximates the comparison signal COM to the analog input signal AIN.
  • the control circuit 51 holds the digital data DOUT in a register (not shown).
  • FIG. 6 is a diagram illustrating an example of transmission / reception of signals between the processor 31 and the AD converter 30.
  • the processor 31 outputs an activation signal S1 to the AD converter 30.
  • the activation signal S1 is a signal that instructs the AD converter 30 to start AD conversion.
  • the processor 31 activates the AD converter 30 by outputting the activation signal S1.
  • the AD converter 30 When the AD converter 30 receives the start signal S1, the AD converter 30 starts AD conversion processing for converting analog data into digital data. Specifically, when the control circuit 51 of the AD converter 30 receives the activation signal S1, the successive approximation process is started.
  • the AD converter 30 outputs a completion signal S2 indicating that the AD conversion is completed to the processor 31 after the AD conversion is completed.
  • the control circuit 51 outputs a completion signal S2 to the processor 31.
  • the processor 31 After receiving the completion signal S ⁇ b> 2 from the AD converter 30, the processor 31 reads digital data from the AD converter 30. Specifically, the processor 31 reads digital data stored in a register in the control circuit 51.
  • the AD converter 30 starts the AD conversion process when the activation signal S1 is input from the processor 31, outputs the completion signal S2 to the processor 31 when the AD conversion process is completed, and stops the AD conversion process. To do.
  • FIG. 7 is a timing chart for explaining the timing of starting the AD converter 30 and reading the digital data from the AD converter 30.
  • the example of FIG. 7 is an example in which the motor current cycle T I and the carrier cycle T c are not in an integer multiple relationship, that is, in the case of asynchronous PWM control.
  • position sensor signal represents an output signal of the position sensor 21 input to the processor 31.
  • the angle given immediately below the position sensor signal is the mechanical angle of the rotor.
  • the position sensor signal includes edges at mechanical angles of 0 °, 90 °, 180 °, 270 °, 360 ° corresponding to a 4-pole rotor.
  • the processor 31 calculates the rotor rotation angle based on the position sensor signal. The angle given immediately below the rotor rotation angle is an electrical angle.
  • “Motor current” represents the motor current waveform. “Motor current” is shown for comparison with “rotor rotation angle”. As shown in FIG. 7, the edge of the position sensor signal is synchronized with the zero cross point of the motor current. Here, the zero cross point is a change point of polarity in the waveform of the signal, and is a point at which the polarity is switched from positive to negative or from negative to positive. In FIG. 7, the zero cross points A1 and A2 adjacent to each other are shown. The period from the zero cross point A1 to the zero cross point A2 is an electric half cycle of the motor current determined by the zero cross points A1 and A2. Thus, in the following, a case where control is performed in which the edge of the position sensor signal is synchronized with the zero cross point of the motor current will be described first. In this case, the rotor rotation angle gives phase information of the motor current.
  • AD converter operation timing represents AD conversion processing
  • carrier represents a carrier waveform.
  • a certain phase angle range including the zero cross point is a prohibited range in which the start of the AD converter 30 is prohibited. Specifically, the total 2 ⁇ phase angle range including ⁇ before and after the zero cross point is set as the prohibited range.
  • the processor 31 does not output the start signal S1 to the AD converter 30 within the prohibited range, and the AD converter 30 to which the start signal S1 is not input does not execute the AD conversion process, indicating that the AD conversion process is completed.
  • the signal S2 is not output.
  • the range other than the prohibited range is a permitted range in which activation of the AD converter 30 is permitted. Note that reading of digital data from the AD converter 30 is permitted regardless of the prohibited range or the permitted range.
  • the permitted range is between adjacent prohibited ranges.
  • a period corresponding to the prohibited range, that is, a time when the prohibited range is replaced with time is hereinafter referred to as a prohibited period.
  • a period corresponding to the permission range is hereinafter referred to as a permission period.
  • the prohibited period is substantially the same as the prohibited range
  • the permitted period is substantially the same as the permitted range.
  • period T I is an electrical cycle of the motor current
  • the length of the protection period is given by 2 ⁇ ( ⁇ / 360) ⁇ T I
  • the permission period during a half cycle which is an electrical half-cycle of the motor current
  • the length is given by T I / 2-2 ⁇ ( ⁇ / 360) ⁇ T I.
  • is a predetermined angle greater than 0 and less than 90 °. In the illustrated example, ⁇ is 10 °. In this case, the prohibited range is -10 ° or more and 10 ° or less, 170 ° or more and 190 ° or less, 350 ° or more and 370 ° or less, 530 ° or more and 550 ° or less. The range is from 710 ° to 730 °. After calculating the rotor rotation angle, the processor 31 determines the prohibition range and the permission range based on the rotor rotation angle and a predetermined ⁇ .
  • activation of the AD converter 30 and reading from the AD converter 30 by the processor 31 are performed at the timing of the carrier peak generated by the carrier generation unit 33. It may be performed at a timing other than the above, or may be performed at the timing of a valley point, or at the timing of both a mountain point and a valley point. Further, the timing may be determined without depending on the carrier. However, the AD conversion processing for one sampling data is executed in a time shorter than the carrier cycle Tc .
  • AD converter operation timing will be described in detail.
  • period is used, but it can be read as “range”.
  • the processor 31 determines whether or not the time t0 that is the timing of the peak point is within the permission period. Since the time t0 is within the prohibition period, the processor 31 does not start the AD converter 30.
  • the processor 31 determines whether or not the time t1 that is the timing of the peak point following the time t0 is within the permission period. Since the time t1 is within the permission period, the processor 31 outputs the activation signal S1 to the AD converter 30 at the time t1. Note that the permission period in this case is included in the electrical half cycle from the zero cross point A1 to the zero cross point A2.
  • the AD converter 30 executes AD conversion processing. In FIG. 7, the range during AD conversion is indicated by “AD conversion” with diagonal lines.
  • the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
  • the operation waveform of FIG. 7 is an example in which two or more peak points of the carrier are included in one permission period. For this reason, time t2, which is the timing of the peak point following time t1, is within the permission period. Therefore, the processor 31 reads digital data from the AD converter 30 and outputs a start signal S1 to the AD converter 30 at time t2. The processor 31 uses this digital data for control. Upon receiving the activation signal S1, the AD converter 30 executes AD conversion processing and rewrites the register with the digital data after AD conversion. When the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
  • the processor 31 determines whether or not the time t3 that is the timing of the peak point following the time t2 is within the permission period based on the calculated rotor rotation angle. Since the time t3 is within the permission period, the processor 31 reads the digital data from the AD converter 30 and outputs the activation signal S1 to the AD converter 30 at the time t3. The processor 31 uses this digital data for control. Upon receiving the activation signal S1, the AD converter 30 executes AD conversion processing and rewrites the register with the digital data after AD conversion. When the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
  • the processor 31 determines whether or not the time t4 that is the timing of the peak point following the time t3 is within the permission period based on the calculated rotor rotation angle. Since the time t4 is within the permission period, the processor 31 reads the digital data from the AD converter 30 and outputs the activation signal S1 to the AD converter 30 at the time t4. The processor 31 uses this digital data for control. Upon receiving the activation signal S1, the AD converter 30 executes AD conversion processing and rewrites the register with the digital data after AD conversion. When the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
  • the processor 31 determines whether or not the time t5 that is the timing of the peak point following the time t4 is within the permission period. Since the time t5 is within the prohibited period, the activation signal S1 is not output to the AD converter 30. Further, the processor 31 determines whether or not the time t5 is in the electrical half cycle from the zero cross point A1 to the zero cross point A2. Since time t5 is in the electrical half cycle, the processor 31 reads digital data from the AD converter 30 at time t5. The processor 31 uses this digital data for control.
  • the processor 31 repeats the above operation during the operation of the single-phase motor 12.
  • FIG. 8 is a flowchart for determining the prohibited range.
  • the processor 31 calculates the rotor rotation angle from the position sensor signal (step S101), calculates the zero cross point of the motor current based on the calculated rotor rotation angle (step S102), and zero cross
  • the range of front and rear ⁇ including the point is set as a prohibited range (step S103).
  • the single-phase motor 12 is operated so that the edge of the position sensor signal and the zero cross point of the motor current are synchronized at the start of operation.
  • the edge of the position sensor signal and the zero cross point of the motor current become out of synchronization.
  • the rotational speed reaches a so-called high rotational speed region such as 70,000 rpm or more, the edge of the position sensor signal and the zero cross point of the motor current become asynchronous.
  • the resetting of the prohibited range is performed as follows.
  • the processor 31 monitors the digital data read from the AD converter 30 in time series, compares the previous value and the current value of the digital data within the same permitted range, and the polarity is switched between the previous value and the current value. Judge whether there is no. When the polarity is switched between the previous value and the current value, a zero-cross point is included in the permitted range. In this case, the prohibited range is reset based on the detected zero-cross point. The permitted range is also reset by resetting the prohibited range. Thereafter, the processor 31 activates the AD converter 30 and reads from the AD converter 30 only within the reset permission range.
  • the motor current can be detected even in asynchronous PWM control by the above method.
  • the synchronous PWM control is a method for controlling the carrier frequency to be an integral multiple of the electrical angle cycle of the motor as shown in the waveform shown in the upper part of FIG.
  • FIG. 9 is a waveform diagram showing an example of variation of combinations of carrier, voltage command, and synchronous PWM control.
  • the horizontal axis represents voltage phase ⁇ v, and the vertical axis represents 3 synchronous pulses, 6 synchronous pulses from the bottom, The waveform of the carrier and the waveform of the voltage command Vp when controlling with 9 synchronous pulses are shown.
  • the carrier frequency is, for example, 3 times, 6 times, or 9 times the frequency of the voltage command Vp (the same applies to the voltage command Vn).
  • the carrier frequency is changed to 3 times, 6 times, and 9 times, a PWM signal is generated in which the number of pulses included in the half cycle of the carrier is 3 pulses, 6 pulses, and 9 pulses, respectively. Since the carrier and the voltage phase ⁇ v are synchronized, these pulses are referred to as “synchronous 3 pulse”, “synchronous 6 pulse”, and “synchronous 9 pulse”.
  • the carrier frequency can be set to a frequency higher than nine times.
  • FIG. 10 is a waveform diagram showing a comparison between motor applied voltages in asynchronous PWM control and synchronous PWM control
  • FIG. 11 is a graph showing total harmonic distortion (Total Harmonic Distortion: “Current” in the case of asynchronous PWM control).
  • FIG. 6 is a diagram comparing and comparing current THD in the case of synchronous PWM control.
  • the motor applied voltage on the positive voltage side and the motor applied voltage on the negative voltage side are at the center time t m during one cycle when the positive voltage is switched to the negative voltage.
  • the left and right are asymmetrical waveforms, and imbalance of the applied voltage occurs.
  • the left and right are symmetrical waveforms with respect to the center time t m in one cycle, and the imbalance of the motor applied voltage is suppressed.
  • the current THD in the case of synchronous PWM control is smaller than the current THD in the case of asynchronous PWM control.
  • torque pulsation generated due to current distortion can be suppressed, and generation of vibration and noise due to pulsation of the rotational speed of the single-phase motor 12 can be suppressed.
  • asynchronous PWM control it is possible to suppress distortion of the output voltage when the carrier frequency is sufficiently high with respect to the voltage command, but when the carrier frequency is low with respect to the voltage command, the output voltage It is difficult to suppress the distortion. Therefore, in the case of asynchronous PWM control, it is preferable to set the carrier frequency to 10 times or more with respect to the voltage command.
  • FIG. 12 is a comparison diagram comparing the carrier frequency, generated noise, and leakage current with the conventional one.
  • the carrier frequency is reduced by using synchronous PWM control together, the number of switching times of the switching elements 11a1 to 11a4 is reduced. Therefore, noise generated in the single-phase inverter 11 and current leaked from the single-phase motor 12 are shown in FIG. As shown, it can be made lower than in the conventional case where only asynchronous PWM control is performed.
  • FIG. 13 is a timing chart for explaining the timing of starting the AD converter 30 and reading digital data from the AD converter 30 when the synchronous PWM control is applied.
  • FIG. 13 shows an operation waveform in the case of synchronous 9 pulses, and the edge of the position sensor and the zero cross of the motor current are synchronized.
  • motor control can be performed with an arbitrary number of carriers (9 in the figure) for one cycle of the rotor rotation angle, so the AD conversion timing should be the same for the current phase. Can do.
  • the prohibition period can be easily determined, it is easy to estimate the relationship between the current value obtained by AD conversion and the phase, and high-precision motor control is possible.
  • the carrier frequency is changed following the change of the rotor rotational frequency, the number of current data obtained in one cycle can be ensured regardless of the rotor rotational speed.
  • the AD conversion prohibition period ⁇ it is possible to estimate the number of times that AD conversion can be performed during one rotor rotation angle.
  • the number of synchronous PWM pulses from the number of AD conversion implementations required in one cycle (that is, the number of motor current detections). The explanation here is for the case where the edge of the position sensor and the zero crossing of the motor current are synchronized. However, the number of AD conversion executions is obtained from the AD conversion inhibition period and the number of synchronous PWM pulses, and AD conversion is performed. The selection of the number of synchronous PWM pulses from the number of times can be performed even in an asynchronous case.
  • noise occurs at the zero cross point of the motor current. Specifically, since noise is generated when the switching elements 11a1 to 11a4 of the single-phase inverter 11 are turned on or off, noise caused by switching is included in the motor current at the zero cross point where the current polarity is switched. At the zero cross point of the motor current, a recovery current flows through the diodes 11b1 to 11b4 connected in antiparallel to the switching elements 11a1 to 11a4, and this recovery current also causes noise.
  • a certain range including each zero cross point of the motor current is set as a prohibition range in which the AD converter 30 is prohibited from starting, and the AD converter 30 is started between adjacent prohibition ranges.
  • the permitted range is set to allow
  • the processor 31 outputs the start signal S1 to the AD converter 30 within the permitted range, and reads the digital data in the electrical half cycle determined by the adjacent zero cross points including the permitted range.
  • the permission period is a continuous period not including the zero cross point.
  • the processor 31 can use the digital data converted by the AD converter 30 activated within the permitted range not including the zero-cross point for control, thereby suppressing the influence on noise control, Stable motor control can be realized.
  • the filter constant can be reduced even when a filter for noise removal is provided in the motor control system 1, so that the filter can be miniaturized and the parts can be miniaturized. it can.
  • the processor 31 activates the AD converter 30 within a continuous period that does not include the zero cross point in the electrical half cycle that is a period between adjacent zero cross points of the motor current, and the AD converter 30 is activated.
  • the digital data obtained by starting the AD converter 30 is read during the same electrical half cycle. Thereby, the effect of this Embodiment mentioned above is acquired.
  • a continuous period that does not include the zero cross point of the motor current is synonymous with the same permission period, and means that it does not consist of a plurality of periods across the zero cross point.
  • the AD converter 30 is activated in the first permission period, and conversion processing is performed by the input of the activation signal S1 from the AD converter 30 in the second permission period after the first permission period. Processing such as reading digital data is eliminated.
  • the continuous period not including the zero cross point of the motor current is shorter than a half cycle of the motor current and is set to a point between adjacent zero crosses.
  • AD conversion timing can be assumed in advance by synchronous PWM control, so current detection conditions (number of detections, phase, etc.) according to the number of rotations can be set optimally, and highly stable motor control Is possible.
  • synchronous PWM control makes it possible to reduce the carrier frequency and reduce the switching frequency of the switching element, reduce the switching loss of the inverter, and realize a highly efficient drive system. Furthermore, by reducing the switching loss, it is possible to suppress the heat generation of the inverter board, and the heat dissipating fins can be reduced in size and reduced. Furthermore, by reducing the number of radiation fins, the system and products can be reduced in size and weight. Furthermore, since the degree of freedom is improved with respect to the heat dissipation structure, it is possible to reduce restrictions on the air path and arrangement for heat dissipation.
  • inverter short-circuit prevention time (dead time) can be suppressed by reducing the carrier frequency and the upper limit of the inverter output voltage can be suppressed, power is supplied from the power system such as a battery.
  • the power system such as a battery.
  • the synchronous PWM control makes it possible to suppress the induced voltage distortion of the motor, and to reduce the noise caused by the iron loss and speed fluctuation caused by the voltage distortion.
  • a system can be realized.
  • noise generated in the single-phase inverter 11 and leakage current from the single-phase motor 12 can be suppressed by reducing the carrier frequency.
  • the reliability of the device is improved and the cost for noise countermeasures can be reduced.
  • a thin material such as a PET film having a larger capacitance than that of a conventional insulating material may be wound around the slot of the stator as insulation, and the space factor of the winding can be improved.
  • a countermeasure can be taken without adding an external circuit or the like.
  • FIG. 14 is a diagram illustrating an example of variations in the number of synchronous pulses in synchronous PWM control.
  • FIG. 13 shows the reading timing in the case of synchronous 9 pulses
  • FIG. 14 shows the reading timing in the case of synchronous 8 pulses.
  • current detection is not performed before or after the edge of the position sensor signal synchronized with the zero cross point of the motor current, that is, near the switching of the position sensor signal. For this reason, when the number of synchronization pulses is odd, the relationship between the region where detection is not performed and the peak or valley of the carrier is asymmetric, but when the number of synchronization pulses is even, it is symmetric regardless of whether the current is positive or negative. It becomes.
  • the processor 31 does not read from the AD converter 30 during the prohibition period, but estimates the current value of the motor current from the measured value of the motor current obtained in the permission period immediately before the prohibition period.
  • the motor control may be performed using the estimated current value.
  • FIG. 15 is a diagram for explaining a method of estimating the current value of the motor current within the prohibited period. 15, “position sensor signal” and “motor current” are the same as those in FIG.
  • the “detected current” consists of an actually measured “detected value” and an “estimated value” estimated within the prohibited period.
  • the “detected value” is indicated by a black circle, and the “estimated value” is indicated by a white circle.
  • Points N-3 to N-1 indicate three points actually measured in the permission period immediately before the prohibition period.
  • Point N + 2 and point N + 3 indicate two points actually measured in the permission period immediately after the prohibition period.
  • Point N and point N + 1 indicate two points estimated in the prohibition period.
  • the “estimated value” can be obtained as follows.
  • the method of estimating the motor current within the prohibited period is not limited to the above example.
  • the point N and the point N + 1 may be estimated by polynomial approximation using a plurality of nearest points actually measured in the permission period immediately before the prohibition period.
  • the motor current when using vector control for controlling the motor current by dividing the motor current into two orthogonal dq axes, the motor current can be handled as a direct current amount, so that the above current value is accurately estimated. Is possible.
  • ⁇ defining the prohibited range is set to 10 °, for example, but is not limited to this. However, if ⁇ is too large, the number of current values estimated within the prohibited range increases, and if ⁇ is too small, there is a possibility of being affected by noise generated at the zero cross point. Therefore, ⁇ may be selected from a range of 5 ° or more and 15 ° or less, for example. Further, the prohibited range may be asymmetric with respect to the zero cross point.
  • the position sensor 21 is provided in the single-phase motor 12 and the rotor rotation angle is calculated based on the position sensor signal from the position sensor 21. May be estimated.
  • the estimation of the rotational position in a so-called sensorless motor is described in, for example, Japanese Patent No. 5619195.
  • the switching elements 11a1 to 11a4 and the diodes 11b1 to 11b4 can be formed using a wide band gap semiconductor.
  • the wide gap semiconductor is, for example, GaN (gallium nitride), SiC (silicon carbide), or diamond.
  • GaN gallium nitride
  • SiC silicon carbide
  • diamond diamond
  • FIG. 7 exemplify the case where the current detection is performed only with the carrier peak, the current detection may be performed only with the carrier valley.
  • current detection may be performed at both the peak and valley of the carrier.
  • FIG. 16 shows the reading timing in the case of three synchronous pulses as a variation of the number of synchronous pulses in the synchronous PWM control. According to the example shown in FIG. 16, since current detection is performed at both the peak and valley of the carrier, it is possible to ensure the number of times of current detection even if the carrier frequency is reduced, and high efficiency and A highly reliable device can be realized.
  • AD conversion is sequentially started in synchronization with the carrier.
  • AD conversion processing is always performed in carrier synchronization so that only data reflected in the control is not used. There is no problem.
  • single-phase motors are more susceptible to rotational speed fluctuations and torque fluctuations (also referred to as “torque pulsation”) than three-phase motors, and smaller motors have less inertia. It is easily affected and is difficult to drive stably under desired operating conditions.
  • Embodiment 2 FIG.
  • the motor control system 1 including the motor control device 2, the single-phase inverter 11, and the single-phase motor 12 has been described.
  • an electric device including the motor control system 1 described in the first embodiment will be described.
  • a vacuum cleaner and a hand dryer will be described in particular.
  • FIG. 17 is a diagram illustrating an example of the configuration of the electric vacuum cleaner 61.
  • the vacuum cleaner 61 includes an extension pipe 62, a suction port 63, an electric blower 64, a dust collection chamber 65, an operation unit 66, a battery 67 and a sensor 68.
  • the electric blower 64 includes the motor control system 1 described in the first embodiment.
  • the vacuum cleaner 61 drives the electric blower 64 using the battery 67 as a power source, performs suction from the suction port body 63, and sucks dust into the dust collection chamber 65 through the extension pipe 62. In use, the operation unit 66 is held and the electric vacuum cleaner 61 is operated.
  • the operation unit 66 has a power switch and an acceleration switch (not shown).
  • the power switch is a switch for switching power supply from the battery 67 to a main circuit and a control circuit (not shown).
  • the acceleration switch is a switch that switches to control for accelerating the electric blower 64 from low speed rotation to steady rotation.
  • low speed rotation means rotation of 1/10 or less of steady rotation speed. For example, when the steady rotation speed is 100,000 rotations, rotations of 10,000 rotations or less are low-speed rotations.
  • the sensor 68 When the power switch is turned on and power supply from the battery 67 to the main circuit and the control circuit is started, the sensor 68 also starts detection at the same time.
  • Sensor 68 detects the movement of the vacuum cleaner 61 or the movement of a person.
  • a low-speed activation of a motor (not shown) in the electric blower 64 is started, triggered by the signal from the sensor 68 that detects the movement of the electric vacuum cleaner 61 or the movement of a person being input into the electric blower 64.
  • the motor accelerates from the low speed rotation to the steady rotation speed by turning on the above acceleration switch after the start of the low speed start. If the acceleration switch is turned on before the power switch is turned on, the power switch is turned on to accelerate from the start up to the normal rotational speed and to perform normal operation.
  • the motor continues to operate at a low speed without stopping.
  • the motor By continuing to operate at a low speed, it is possible to suppress the possibility that accumulated dust is discharged from the dust collection chamber 65 through the extension pipe 62 during the movement between cleanings.
  • idling loss during low-speed driving can be suppressed by performing synchronous PWM even at low-speed rotation.
  • Sensor 68 is a gyro sensor that detects the movement of the vacuum cleaner 61 or a human sensor that detects the movement of a person. In either case of starting up, it is possible to shorten the arrival time to the steady rotational speed. At this time, by applying the motor control system 1 described in the first embodiment to the electric vacuum cleaner 61, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved. Can be stabilized.
  • the torque T generated when the motor rotates is determined by the product of the torque constant Kt and the motor current Ia as shown in the following equation.
  • the torque T is proportional to the motor current Ia, it is necessary to generate a larger torque T in order to shorten the acceleration time, and it is also necessary to increase the motor current Ia.
  • the power consumption increases, the merit of shortening the operation time is reduced, and the reliability of components including the battery 67 is impaired.
  • the amount of heat generated by the component can be suppressed by suppressing the current that flows during startup, the reliability of the component is also improved.
  • acceleration methods may be provided with a changeover switch so that the user can switch, and the user can set it.
  • the gyro sensor starts outputting a signal indicating the movement of the electric vacuum cleaner 61.
  • a signal that detects the movement of the electric vacuum cleaner 61 is output from the gyro sensor
  • the low speed rotation is started.
  • the acceleration switch By manually turning on the acceleration switch, the engine is accelerated from a low speed to a steady speed.
  • the low-speed rotation is resumed by manually turning off the acceleration switch.
  • the acceleration switch is manually turned on to accelerate to the normal rotational speed, and when cleaning is finished, the rotation is stopped by manually turning off the power switch.
  • the gyro sensor is attached to the vacuum cleaner 61 to detect the movement of the vacuum cleaner 61 that occurs when the vacuum cleaner 61 is used.
  • the main body of the vacuum cleaner 61 always moves immediately before use. Therefore, by attaching a gyro sensor to the vacuum cleaner 61, the movement of the vacuum cleaner 61 can be detected and the vacuum cleaner 61 can be activated in advance.
  • the motor control system 1 described in the first embodiment to the electric vacuum cleaner 61, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that the acceleration is accelerated to the steady rotational speed more quickly. can do.
  • FIG. 18 is a diagram illustrating an example of the configuration of the hand dryer 70.
  • the hand dryer 70 includes a casing 71, a hand detection sensor 72, a water receiver 73, a drain container 74, a cover 76, a sensor 77, and an intake port 78.
  • the sensor 77 is either a gyro sensor or a human sensor.
  • the hand dryer 70 has an electric blower (not shown) in the casing 71.
  • the electric blower has the motor control system 1 of the first embodiment.
  • the hand dryer 70 has a structure in which water is blown off by blowing with an electric blower by inserting a hand into a hand insertion portion 79 at the top of the water receiving portion 73 and water is stored from the water receiving portion 73 into the drain container 74. ing.
  • the sensor 77 detects that a person has come to the surroundings, and starts at a low speed.
  • the speed is accelerated to a steady rotational speed.
  • the drying is finished and the hand comes out from the hand insertion portion 79, the low speed operation is resumed. If the next person's hand is detected during low-speed driving, the vehicle is accelerated to the steady rotational speed again. If the surrounding people are not detected, the operation stop state is maintained.
  • Sensor 77 is a sensor that detects, for example, infrared rays, ultrasonic waves, or visible light.
  • a temperature sensor or a sensor that detects a person by camera recognition may be used.
  • the hand dryer 70 By attaching a human sensor to the hand dryer 70, it is possible to detect that the user has approached the hand dryer 70 and activate the hand dryer 70 in advance. At this time, by applying the motor control system 1 described in the first embodiment to the hand dryer 70, the detection accuracy of the analog signal, which is the motor current or the motor voltage, is improved. be able to.
  • FIG. 19 is a time chart illustrating an example of an operation pattern in which the control method according to the first embodiment is applied to the electric vacuum cleaner 61 or the hand dryer 70.
  • (a) shows the change in the motor speed
  • (b) shows the change in the carrier frequency with respect to the motor speed
  • (c) shows the generated noise and the leakage current.
  • asynchronous PWM control is performed in the low speed operation section (operation range (1) in the figure), which is the operation section from the start to the steady operation speed (steady rotation speed), and the steady operation speed.
  • synchronous PWM control is performed in the order of synchronous 9 pulses, synchronous 6 pulses, and synchronous 3 pulses in accordance with the increase in the motor rotation speed (rotational speed).
  • two typical examples of the number of synchronization pulses, the motor rotation speed, and the carrier frequency in this operation pattern are shown below.
  • first and second operation patterns shown above are examples, and switching from asynchronous to synchronous and switching of the number of synchronous pulses are not limited to these numerical values.
  • asynchronous PWM control with a fixed carrier frequency is performed at the start-up time when the motor rotation speed is low and in the low-speed operation range (section (1) in the figure). . At that time, the motor rotational speed is increased to the steady operation speed, and then the steady operation speed is maintained. In the section (1), since the carrier frequency is fixed, as shown in FIG. 19C, the generated noise and the leakage current can be suppressed to an allowable value or less.
  • the asynchronous PWM control is switched to the synchronous PWM control, and the carrier frequency is increased or decreased so that the generated noise and the leakage current are less than the allowable values.
  • the number of pulses is switched.
  • the control is performed with 9 synchronous pulses, but the generated noise and the leakage current increase to near the allowable value as the rotational speed increases. Therefore, an upper limit frequency is set as the carrier frequency, and control is performed so that the carrier frequency does not exceed the upper limit frequency.
  • the upper limit frequency of the carrier frequency can be determined based on the processing load of the microcomputer, generated noise, leakage current, and the like.
  • the carrier frequency is reduced at the transition from the section (2) to the section (3), and the number of synchronization pulses is switched from 9 to 6, so that the generated noise and the leakage current do not exceed the allowable values. Is suppressed.
  • the carrier frequency is reduced at the transition from the section (3) to the section (4), the number of synchronization pulses is switched from 6 to 3, and the generated noise and leakage current are allowed. It is restrained not to exceed.
  • the asynchronous PWM control and the synchronous PWM control are used in combination, and the number of synchronous pulses is reduced stepwise, thereby suppressing the generated noise and the leakage current, and the short time from the startup to the high speed operation range. Smooth acceleration is achieved.
  • FIG. 20 shows an example of an operation pattern different from that in FIG.
  • FIG. 20C shows the characteristics of switching loss and module temperature.
  • the range of the section (2) is narrowed and shifted to the section (3) due to the relationship between the generated noise and leakage current and their allowable values.
  • the operation pattern can be determined in consideration of the switching loss and the module temperature.
  • the range of the section (2) can be widened. For this reason, synchronous PWM control with a margin compared to the operation pattern shown in FIG. 19 is possible.
  • the operation switching of the starting 9 pulse, 6 pulse, and 3 pulse has been described. Needless to say, the number of pulses other than these may be controlled as shown in the second example. Control of the number of pulses exceeding 9 pulses (for example, 21 pulses, 15 pulses, 12 pulses) is also included in the gist of the present invention. It should be noted that the relationship of integer multiples may be momentarily or temporarily disrupted due to fluctuations, etc., but it is needless to say that such a case also has an integer multiple relationship. Further, in a condition where the motor rotation speed is low, the operation may be performed with a smaller number of synchronization pulses than in a condition where the motor rotation speed is high.
  • the motor control device performs control to switch from asynchronous PWM control to synchronous PWM control in accordance with an increase in the motor rotation speed.
  • the carrier frequency used for asynchronous PWM control and synchronous PWM control is set lower than the upper limit frequency which is the upper limit value of the carrier frequency.
  • the motor control device performs control so that the number of synchronous pulses decreases as the number of motor rotations increases when performing synchronous PWM control. As a result, a short time and smooth acceleration from the time of startup to the high-speed operation range is realized.
  • the arrival time from the low speed startup to the steady rotation speed is significantly shortened, it is possible to reduce power consumption by frequently reducing the speed to low speed rotation.
  • the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that vibration of the rotation speed of the motor can be suppressed and useless power consumption is achieved. Can be reduced.
  • the operation unit 66 is turned on to reach the steady rotational speed from the start, but by providing a mode for operating at a low speed in advance, the operation unit 66 is turned on. It is possible to significantly reduce the time until actual use. At this time, by using the motor control system 1 described in the first embodiment, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that the vibration of the rotation speed of the motor can be suppressed, and the wasteful consumption. Electric power can be reduced.
  • the reliability of the battery can be improved by setting a low acceleration rate and suppressing the steep rise.
  • the motor control system 1 described in the first embodiment the detection accuracy of an analog signal that is a motor current or a motor voltage is improved. Current interruption can be realized.
  • the current that flows to the motor at the time of startup also decreases, so suppressing the heat generation of the semiconductor element can suppress the heat generation of the component, leading to improved component reliability .
  • the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that vibration at a low acceleration rate can be suppressed.
  • a heat-dissipating fin having a good thermal conductivity is attached to the element surface, or a method of dispersing the heat to the mounting substrate using a surface-mounted element is used.
  • a method of cooling the semiconductor element by providing a heat radiating fan, or cooling by water cooling is used.
  • these methods are suitable for small devices due to the cost of cooling and the increase in installation volume. Absent.
  • the electric device includes the electric blower described in the present embodiment, it is possible to heat the current configuration without providing additional parts by arranging these heating elements in the path of the wind generated by the electric blower. It is possible to escape.
  • the motor control system 1 of Embodiment 1 can be applied to the electric equipment with which a motor is mounted generally.
  • Electric equipment equipped with motors include, for example, incinerators, crushers, dryers, dust collectors, printing machines, cleaning machines, confectionery machines, tea making machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, hot air generators For object transportation, dust absorption, general air supply / exhaust, or OA equipment.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Provided is a motor control device that outputs a drive signal to a single-phase inverter for driving a single-phase motor, the motor control device performing PWM control on the single-phase inverter on the basis of a detected value of a motor current flowing to the single-phase motor. The motor control device executes synchronous PWM control in which a carrier is synchronized to the phase of a voltage command, and asynchronous PWM control in which the carrier is not synchronized to the phase of the voltage command, and the motor control device switches from asynchronous PWM control to synchronous PWM control according to an increase in the number of rotations of the motor. In the operation sections in which asynchronous PWM control and synchronous PWM control are executed, the carrier frequency used for asynchronous PWM control and synchronous PWM control is set to be lower than an upper limit frequency which is the upper limit of the carrier frequency.

Description

モータ制御装置、電気掃除機およびハンドドライヤーMotor control device, vacuum cleaner and hand dryer
 本発明は、単相の電動機(以下「単相モータ」と称する)を駆動する単相インバータを制御するモータ制御装置ならびに単相モータを用いた電気掃除機およびハンドドライヤーに関する。 The present invention relates to a motor control device that controls a single-phase inverter that drives a single-phase electric motor (hereinafter referred to as “single-phase motor”), a vacuum cleaner that uses the single-phase motor, and a hand dryer.
 電気掃除機およびハンドドライヤーに用いられるモータは、高速回転域では、インバータによって数万rpm(revolution per minute)以上の高速で駆動される。この種の高速で駆動されるモータは、高速回転域において、インバータを1パルススイッチングにて駆動される場合がある(例えば、下記特許文献1参照)。 ¡Motors used in vacuum cleaners and hand dryers are driven at a high speed of tens of thousands rpm (revolution per minute) or more by an inverter in a high-speed rotation range. In such a motor driven at a high speed, an inverter may be driven by one-pulse switching in a high-speed rotation range (see, for example, Patent Document 1 below).
特開2015-342号公報Japanese Patent Laid-Open No. 2015-342
 位置センサの信号に基づいてセンサ周期に同期したスイッチング制御を実施するモータ制御装置において、上記特許文献1に示される1パルススイッチング制御を実施すると、モータの制御性の確保が困難となるおそれがある。ここで、「モータの制御性の確保」とは、回転数、騒音またはトルクといったモータの性能指標を良好に保つことである。なお、小型モータになる程、また、モータのイナーシャが小さくなる程、モータの制御性の確保が困難になり、安定したモータ制御の実現が困難となる。 In a motor control device that performs switching control synchronized with a sensor cycle based on a signal from a position sensor, if one-pulse switching control disclosed in Patent Document 1 is performed, it may be difficult to ensure controllability of the motor. . Here, “securing the controllability of the motor” means maintaining a good performance index of the motor such as the rotation speed, noise or torque. Note that as the motor becomes smaller and the inertia of the motor becomes smaller, it becomes more difficult to ensure controllability of the motor, and it becomes difficult to realize stable motor control.
 一般的に、モータの制御性を確保するためには、運転周波数、すなわちインバータの出力周波数(以下「インバータ周波数」と称する)の10倍程度の高いキャリア周波数にてインバータを制御することが必要になる。運転周波数の10倍という数値は、高速回転域においても同様である。 In general, in order to ensure the controllability of the motor, it is necessary to control the inverter at a carrier frequency that is about ten times the operating frequency, that is, the inverter output frequency (hereinafter referred to as “inverter frequency”). Become. The numerical value of 10 times the operating frequency is the same in the high-speed rotation range.
 しかしながら、制御性確保のためにキャリア周波数を高く設定すると、スイッチング損失の増加によってスイッチング素子の発熱量が大きくなり、放熱性能構造の確保が必要となって、装置が大型化するといった課題がある。 However, if the carrier frequency is set high in order to ensure controllability, the amount of heat generated by the switching element increases due to an increase in switching loss, and it is necessary to secure a heat dissipation performance structure, resulting in an increase in the size of the apparatus.
 本発明は、上記に鑑みてなされたものであって、装置の大型化を抑制しつつ、安定したモータ制御を実現可能なモータ制御装置を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a motor control device capable of realizing stable motor control while suppressing an increase in size of the device.
 上述した課題を解決し、目的を達成するため、本発明に係るモータ制御装置は、単相インバータによって駆動される単相モータに流れるモータ電流の検出値に基づいて前記単相インバータをPWM制御する制御部を備えたモータ制御装置であって、電圧指令の位相にキャリアを同期させた同期PWM制御と、前記電圧指令の位相に前記キャリアを同期させない非同期PWM制御とが実行され、モータ回転数の増加に応じて前記非同期PWM制御から前記同期PWM制御に切り替えられ、前記非同期PWM制御および前記同期PWM制御に使用するキャリア周波数が前記キャリア周波数の上限値である上限周波数よりも低く設定されている。 In order to solve the above-described problems and achieve the object, a motor control device according to the present invention PWM-controls the single-phase inverter based on a detected value of a motor current flowing in a single-phase motor driven by a single-phase inverter. A motor control device including a control unit, wherein synchronous PWM control in which a carrier is synchronized with a phase of a voltage command and asynchronous PWM control in which the carrier is not synchronized with a phase of the voltage command are executed, and In response to the increase, the asynchronous PWM control is switched to the synchronous PWM control, and the carrier frequency used for the asynchronous PWM control and the synchronous PWM control is set lower than the upper limit frequency that is the upper limit value of the carrier frequency.
 本発明によれば、装置の大型化を抑制しつつ、安定したモータ制御を実現することができる、という効果を奏する。 According to the present invention, there is an effect that stable motor control can be realized while suppressing enlargement of the apparatus.
実施の形態1に係るモータ制御システムの構成を示すブロック図1 is a block diagram showing a configuration of a motor control system according to a first embodiment. 実施の形態1のPWM制御部における入出力信号と内部の構成部との関係を示すブロック図The block diagram which shows the relationship between the input / output signal in the PWM control part of Embodiment 1, and an internal structure part 実施の形態1に係るPWM制御部の詳細構成を示すブロック図1 is a block diagram showing a detailed configuration of a PWM control unit according to Embodiment 1 実施の形態1における電圧指令とキャリアとの関係およびPWM信号ならびにモータ印加電圧を示す波形図Waveform diagram showing relationship between voltage command and carrier, PWM signal, and motor applied voltage in the first embodiment AD変換器の構成の一例を示すブロック図Block diagram showing an example of the configuration of an AD converter プロセッサとAD変換器との間の信号の授受の一例を示す図The figure which shows an example of transmission / reception of the signal between a processor and AD converter AD変換器の起動およびAD変換器からのディジタルデータの読み取りのタイミングを説明するためのタイミングチャートTiming chart for explaining timing of starting AD converter and reading digital data from AD converter 禁止範囲を決定するためのフローチャートFlow chart for determining the prohibited range 同期PWM制御におけるキャリアと電圧指令と組合せのバリエーションの例を示す波形図Waveform diagram showing an example of variation of combination of carrier and voltage command in synchronous PWM control 非同期PWM制御と同期PWM制御におけるモータ印加電圧を対比して示す波形図Waveform diagram showing motor applied voltage in comparison between asynchronous PWM control and synchronous PWM control 非同期PWM制御の場合の電流THDと同期PWM制御の場合の電流THDとを比較して示した図The figure which compared and showed electric current THD in the case of asynchronous PWM control, and electric current THD in the case of synchronous PWM control キャリア周波数と発生ノイズおよび漏洩電流とを従来と比較した比較図Comparison chart comparing carrier frequency with generated noise and leakage current 同期PWM制御を適用した場合におけるAD変換器の起動およびAD変換器からのディジタルデータの読み取りのタイミングを説明するためのタイミングチャート(同期9パルスの場合)Timing chart for explaining timing of starting AD converter and reading digital data from AD converter when synchronous PWM control is applied (in case of synchronous 9 pulses) 同期PWM制御を適用した場合におけるAD変換器の起動およびAD変換器からのディジタルデータの読み取りのタイミングを説明するためのタイミングチャート(同期8パルスの場合)Timing chart for explaining timing of starting AD converter and reading digital data from AD converter when synchronous PWM control is applied (in case of synchronous 8 pulses) 禁止期間内でのモータ電流の電流値の推定方法を説明するための図The figure for demonstrating the estimation method of the electric current value of the motor current in a prohibition period 同期PWM制御を適用した場合におけるAD変換器の起動およびAD変換器からのディジタルデータの読み取りのタイミングを説明するためのタイミングチャート(同期3パルスの場合)Timing chart for explaining timing of starting AD converter and reading digital data from AD converter when synchronous PWM control is applied (in case of synchronous 3 pulses) 実施の形態2における電気掃除機の構成の一例を示す図The figure which shows an example of a structure of the vacuum cleaner in Embodiment 2. 実施の形態2におけるハンドドライヤーの構成の一例を示す図The figure which shows an example of a structure of the hand dryer in Embodiment 2. 実施の形態1に係る制御手法を電気掃除機またはハンドドライヤーに適用した運転パターンの一例を示すタイムチャートThe time chart which shows an example of the operation pattern which applied the control method which concerns on Embodiment 1 to the vacuum cleaner or the hand dryer 実施の形態1に係る制御手法を電気掃除機またはハンドドライヤーに適用した運転パターンの他の例を示すタイムチャートThe time chart which shows the other example of the operation pattern which applied the control method which concerns on Embodiment 1 to the vacuum cleaner or the hand dryer
 以下に、本発明の実施の形態に係るモータ制御装置、電気掃除機およびハンドドライヤーを図面に基づいて詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。 Hereinafter, a motor control device, a vacuum cleaner, and a hand dryer according to an embodiment of the present invention will be described in detail based on the drawings. In addition, this invention is not limited by the following embodiment.
実施の形態1.
 図1は、実施の形態1に係るモータ制御システム1の構成を示すブロック図である。図1に示すように、モータ制御システム1は、単相モータ12と、単相モータ12に接続され、単相モータ12に交流電力を供給する単相インバータ11と、単相インバータ11への直流電源となる電源10と、単相モータ12の図示しないステータに設けられ、単相モータ12の図示しないロータの回転位置であるロータ回転位置を検出する位置センサ21と、単相モータ12に流れる交流電流であるモータ電流を検出する電流検出部である電流センサ20と、電源10が単相インバータ11に印加する直流電圧である直流印加電圧を検出する電圧センサ23と、ロータ回転位置、モータ電流および直流印加電圧に基づいて単相モータ12を駆動する単相インバータ11を制御するモータ制御装置2と、を備える。
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a configuration of a motor control system 1 according to the first embodiment. As shown in FIG. 1, the motor control system 1 includes a single-phase motor 12, a single-phase inverter 11 that is connected to the single-phase motor 12 and supplies AC power to the single-phase motor 12, and a direct current to the single-phase inverter 11. A power source 10 serving as a power source, a position sensor 21 that is provided in a stator (not shown) of the single-phase motor 12 and detects a rotor rotational position that is a rotational position of a rotor (not shown) of the single-phase motor 12, and an alternating current that flows through the single-phase motor 12 A current sensor 20 that is a current detection unit that detects a motor current that is a current; a voltage sensor 23 that detects a DC applied voltage that is a DC voltage that the power supply 10 applies to the single-phase inverter 11; a rotor rotational position, a motor current, and And a motor control device 2 that controls a single-phase inverter 11 that drives a single-phase motor 12 based on a DC applied voltage.
 単相モータ12は、ブラシレスモータである。すなわち、ロータは周方向に配列された図示しない複数個の永久磁石を有する。これらの複数個の永久磁石は、着磁方向が周方向に交互に反転するように配置され、ロータの複数個の磁極を形成する。また、ステータには図示しない巻線が巻回されている。モータ電流は、巻線に流れる交流電流である。以下では、磁極数は4極とするが、これ以外でもよい。 The single phase motor 12 is a brushless motor. That is, the rotor has a plurality of permanent magnets (not shown) arranged in the circumferential direction. The plurality of permanent magnets are arranged such that the magnetization direction is alternately reversed in the circumferential direction to form a plurality of magnetic poles of the rotor. A winding (not shown) is wound around the stator. The motor current is an alternating current flowing through the winding. In the following, the number of magnetic poles is four, but it may be other than this.
 位置センサ21は、ディジタル信号である位置センサ信号をモータ制御装置2に出力する。位置センサ信号は、ロータの回転位置を検出する信号であり、ロータからの磁束の方向に応じて高低の二値を示す。従って、位置センサ信号に含まれるエッジは磁極間に相当する。 The position sensor 21 outputs a position sensor signal that is a digital signal to the motor control device 2. The position sensor signal is a signal for detecting the rotational position of the rotor, and shows a binary value of high and low according to the direction of the magnetic flux from the rotor. Therefore, the edge included in the position sensor signal corresponds to between the magnetic poles.
 電力変換器である単相インバータ11は、スイッチング素子11a1~11a4、スイッチング素子11a1~11a4のそれぞれに逆並列に接続された還流ダイオードであるダイオード11b1~11b4を有して構成される。なお、図1では、スイッチング素子11a1~11a4としてバイポーラトランジスタを例示しているが、MOSFET(Metal-Oxide-semiconductor Field effect transistor)に代表される電界効果トランジスタでもよい。また、MOSFETを用いる場合、ダイオード11b1~11b4として寄生ダイオードを用いてもよい。 The single-phase inverter 11 that is a power converter includes switching elements 11a1 to 11a4 and diodes 11b1 to 11b4 that are free-wheeling diodes connected in antiparallel to the switching elements 11a1 to 11a4. In FIG. 1, bipolar transistors are illustrated as the switching elements 11a1 to 11a4. However, field effect transistors represented by MOSFET (Metal-Oxide-semiconductor Field Effect Transistor) may be used. In the case of using a MOSFET, parasitic diodes may be used as the diodes 11b1 to 11b4.
 電流センサ20は、単相モータ12と単相インバータ11との間に接続され、モータ電流を検出する。電流センサ20の検出値はアナログデータである。また、電圧センサ23は、電源10が単相インバータ11に印加する直流印加電圧を検出する。電圧センサ23の検出値もアナログデータである。 The current sensor 20 is connected between the single-phase motor 12 and the single-phase inverter 11 and detects the motor current. The detection value of the current sensor 20 is analog data. The voltage sensor 23 detects a DC applied voltage applied to the single-phase inverter 11 by the power supply 10. The detection value of the voltage sensor 23 is also analog data.
 モータ制御装置2は、電流センサ20により検出されたモータ電流の検出値であるアナログデータをディジタルデータに変換するアナログディジタル変換器(以下「AD変換器」と表記)30と、電圧センサ23により検出された直流印加電圧の検出値であるアナログデータをディジタルデータに変換するAD変換器35と、AD変換器30から読み取られたモータ電流、AD変換器35から読み取られた直流印加電圧、位置センサ21からの位置センサ信号および図示しない回転数指令(回転速度の指令値)に基づいてPWM(Pulse Width Modulation:パルス幅変調)信号を生成する制御部25と、制御部25から出力されたPWM信号に基づいて単相インバータ11内のスイッチング素子11a1~11a4を駆動する駆動信号を生成する駆動信号生成部32とを備える。 The motor control device 2 is detected by an analog-digital converter (hereinafter referred to as “AD converter”) 30 that converts analog data, which is a detected value of the motor current detected by the current sensor 20, into digital data, and a voltage sensor 23. AD converter 35 that converts analog data, which is a detected value of the DC applied voltage, into digital data, a motor current read from AD converter 30, a DC applied voltage read from AD converter 35, and position sensor 21 A control unit 25 that generates a PWM (Pulse Width Modulation) signal based on a position sensor signal from and a rotation speed command (rotation speed command value) (not shown), and a PWM signal output from the control unit 25 Based on this, drive signals for driving the switching elements 11a1 to 11a4 in the single-phase inverter 11 are generated. And a motion signal generating unit 32.
 制御部25は、プロセッサ31、メモリ34およびPWM制御部40を有する。制御部25は、公知のPWM制御により、後述するPWM信号を生成する。駆動信号生成部32は、制御部25からのPWM信号に基づいて、単相インバータ11内のスイッチング素子11a1~11a4のオンまたはオフを制御するための駆動信号を生成して単相インバータ11に出力する。 The control unit 25 includes a processor 31, a memory 34, and a PWM control unit 40. The control unit 25 generates a PWM signal described later by known PWM control. The drive signal generation unit 32 generates a drive signal for controlling on / off of the switching elements 11a1 to 11a4 in the single-phase inverter 11 based on the PWM signal from the control unit 25 and outputs the drive signal to the single-phase inverter 11. To do.
 つぎに、PWM制御部40について、図1から図3の図面を参照して説明する。図2は、実施の形態1のPWM制御部40における入出力信号と内部の構成部との関係を示すブロック図である。図3は、実施の形態1に係るPWM制御部40の詳細構成を示すブロック図である。 Next, the PWM control unit 40 will be described with reference to FIGS. 1 to 3. FIG. 2 is a block diagram illustrating a relationship between input / output signals and internal components in the PWM control unit 40 of the first embodiment. FIG. 3 is a block diagram illustrating a detailed configuration of the PWM control unit 40 according to the first embodiment.
 PWM制御部40は、図1に示すように、キャリア生成部33およびキャリア比較部38を有する。また、図2に示すように、キャリア生成部33には電圧位相θvが入力され、キャリア比較部38には、電圧位相θv、直流印加電圧Vdcおよび電圧指令Vmが入力される。キャリア生成部33は、電圧位相θvに基づいてキャリアを生成する。キャリア比較部38は、キャリア、直流印加電圧Vdcおよび電圧指令Vmに基づいて、PWM信号Q1~Q4を生成する。 The PWM control unit 40 includes a carrier generation unit 33 and a carrier comparison unit 38 as shown in FIG. 2, the voltage phase θv is input to the carrier generation unit 33, and the voltage phase θv, the DC applied voltage Vdc, and the voltage command Vm are input to the carrier comparison unit 38. The carrier generation unit 33 generates a carrier based on the voltage phase θv. The carrier comparison unit 38 generates the PWM signals Q1 to Q4 based on the carrier, the DC applied voltage Vdc, and the voltage command Vm.
 キャリア生成部33は、図3に示すように、キャリア周波数設定部33aを有する。キャリア周波数設定部33aでは、キャリアの周波数であるキャリア周波数fc[Hz]が設定され、電圧位相θvに同期したキャリアが生成されてキャリア比較部38およびプロセッサ31に出力される。キャリア周波数設定部33aの矢印の先には、キャリア波形の一例として、“0”と“1”との間を上下する三角波キャリアを示している。なお、本実施の形態で説明するPWM制御には、同期PWM制御と非同期PWM制御とがあるが、非同期PWM制御の場合には電圧位相θvに同期させる必要はない。 The carrier generation unit 33 includes a carrier frequency setting unit 33a as shown in FIG. The carrier frequency setting unit 33 a sets a carrier frequency fc [Hz] that is a carrier frequency, generates a carrier synchronized with the voltage phase θv, and outputs the carrier to the carrier comparison unit 38 and the processor 31. As an example of the carrier waveform, a triangular wave carrier that goes up and down between “0” and “1” is shown at the tip of the arrow of the carrier frequency setting unit 33a. Note that the PWM control described in this embodiment includes synchronous PWM control and asynchronous PWM control. However, in the case of asynchronous PWM control, it is not necessary to synchronize with the voltage phase θv.
 また、キャリア比較部38は、図3に示すように、絶対値演算部38a、除算部38b、乗算部38c,38d,38f、加算部38e、比較部38g,38hおよび出力反転部38i,38jを有する。絶対値演算部38aでは、電圧指令Vmの絶対値|Vm|が演算される。除算部38bでは、絶対値|Vm|が電圧センサ23によって検出された直流印加電圧Vdcで除算される。なお、図1では、電圧センサ23によって直流印加電圧Vdcを検出するようにしているが、電源10が商用電源に接続されている場合など、電源10の出力電圧が安定している場合には、電圧センサ23の検出値を使用せずに、PWM制御部40の内部で生成した値もしくはプロセッサ31から伝達された値を使用してもよい。 Further, as shown in FIG. 3, the carrier comparison unit 38 includes an absolute value calculation unit 38a, a division unit 38b, multiplication units 38c, 38d, and 38f, an addition unit 38e, comparison units 38g and 38h, and output inversion units 38i and 38j. Have. The absolute value calculator 38a calculates the absolute value | Vm | of the voltage command Vm. In the dividing unit 38b, the absolute value | Vm | is divided by the DC applied voltage Vdc detected by the voltage sensor 23. In FIG. 1, the DC applied voltage Vdc is detected by the voltage sensor 23, but when the output voltage of the power supply 10 is stable, such as when the power supply 10 is connected to a commercial power supply, A value generated inside the PWM control unit 40 or a value transmitted from the processor 31 may be used without using the detection value of the voltage sensor 23.
 乗算部38cでは、電圧位相θvの正弦値が演算され、除算部38bの出力に乗算される。除算部38dでは、乗算部38cの出力に1/2が乗算される。加算部38eでは、除算部38dの出力結果に1/2が加算される。乗算部38fでは、除算部38bの出力に-1が乗算される。ここで、加算部38eの出力は、スイッチング素子11a1~11a4のうち、高電位側の直流母線11Pに接続されるスイッチング素子11a1,11a3を駆動するための正側電圧指令Vpとして比較部38gに入力され、乗算部38fの出力は、低電位側の直流母線11Nに接続されるスイッチング素子11a2,11a4を駆動するための負側電圧指令Vnとして比較部38hに入力される。そして、比較部38gの出力はスイッチング素子11a1へのPWM信号となり、比較部38gの出力を反転した出力反転部38iの出力はスイッチング素子11a2へのPWM信号となる。同様に、比較部38hの出力はスイッチング素子11a3へのPWM信号となり、比較部38hの出力を反転した出力反転部38jの出力はスイッチング素子11a4へのPWM信号となる。出力反転部38iの存在により、スイッチング素子11a1とスイッチング素子11a2とが同時にオンすることはなく、出力反転部38jの存在により、スイッチング素子11a3とスイッチング素子11a4とが同時にオンすることはない。 The multiplication unit 38c calculates the sine value of the voltage phase θv and multiplies the output of the division unit 38b. In the division unit 38d, the output of the multiplication unit 38c is multiplied by 1/2. In the adder 38e, 1/2 is added to the output result of the divider 38d. The multiplication unit 38f multiplies the output of the division unit 38b by -1. Here, the output of the adder 38e is input to the comparator 38g as a positive voltage command Vp for driving the switching elements 11a1 and 11a3 connected to the high potential side DC bus 11P among the switching elements 11a1 to 11a4. Then, the output of the multiplication unit 38f is input to the comparison unit 38h as a negative side voltage command Vn for driving the switching elements 11a2 and 11a4 connected to the DC bus 11N on the low potential side. The output of the comparison unit 38g becomes a PWM signal to the switching element 11a1, and the output of the output inversion unit 38i obtained by inverting the output of the comparison unit 38g becomes a PWM signal to the switching element 11a2. Similarly, the output of the comparison unit 38h becomes a PWM signal to the switching element 11a3, and the output of the output inversion unit 38j obtained by inverting the output of the comparison unit 38h becomes a PWM signal to the switching element 11a4. The presence of the output inverting unit 38i does not turn on the switching element 11a1 and the switching element 11a2 at the same time, and the presence of the output inverting unit 38j does not turn on the switching element 11a3 and the switching element 11a4 at the same time.
 図4は、実施の形態1における電圧指令とキャリアとの関係および生成されるPWM信号ならびに単相モータ12に印加される電圧(以下「モータ印加電圧」と称する)を示す波形図である。図4において、横軸には電圧位相θvをとり、縦軸には上段部から順に、電圧指令Vp,Vnおよびキャリア、PWM信号Q1~Q4、モータ印加電圧の波形を示している。 FIG. 4 is a waveform diagram showing the relationship between the voltage command and the carrier, the generated PWM signal, and the voltage applied to the single-phase motor 12 (hereinafter referred to as “motor applied voltage”) in the first embodiment. In FIG. 4, the horizontal axis represents the voltage phase θv, and the vertical axis represents the waveforms of the voltage commands Vp and Vn, the carrier, the PWM signals Q1 to Q4, and the motor applied voltage in order from the upper stage.
 図4では、電圧指令Vp,Vnの1周期の間にキャリアの山もしくは谷が9つ含まれ、且つ、電圧指令Vp,Vnとキャリアとは電圧位相θvに関して同期している。すなわち、図4に示す波形は、同期PWMの波形である。このような図4に示される波形は、電圧指令1周期に含まれるキャリアの数から、“同期9パルスの波形”もしくは単に“同期9パルス”と称する。 In FIG. 4, nine carrier peaks or troughs are included in one cycle of the voltage commands Vp and Vn, and the voltage commands Vp and Vn and the carrier are synchronized with respect to the voltage phase θv. That is, the waveform shown in FIG. 4 is a synchronous PWM waveform. The waveform shown in FIG. 4 is referred to as “synchronous 9 pulse waveform” or simply “synchronous 9 pulse” from the number of carriers included in one period of the voltage command.
 同期PWM制御の場合、キャリア生成部33は、電圧位相θvに同期したキャリアを生成する。このとき、キャリア比較部38は、キャリアと電圧指令Vp,Vnとの大小を比較し、電圧指令Vp,Vnがキャリアよりも大きければ“High”の信号を生成し、電圧指令Vp,Vnがキャリアよりも小さければ“Low”の信号を生成する。“High”または“Low”となる区間の幅は電圧位相θvによって異なり、一連の“High”または“Low”の信号がPWM信号となる。PWM信号Q1~Q4に基づく駆動信号によって単相インバータ11のスイッチング素子11a1~11a4が駆動され、図4の下段部に示すようなモータ電圧が単相モータ12に印加され、単相モータ12は回転する。 In the case of synchronous PWM control, the carrier generation unit 33 generates a carrier synchronized with the voltage phase θv. At this time, the carrier comparison unit 38 compares the magnitudes of the carrier and the voltage commands Vp, Vn, and generates a “High” signal if the voltage commands Vp, Vn are larger than the carrier, so that the voltage commands Vp, Vn are carrier signals. If it is smaller than that, a "Low" signal is generated. The width of the “High” or “Low” interval varies depending on the voltage phase θv, and a series of “High” or “Low” signals are PWM signals. The switching elements 11a1 to 11a4 of the single-phase inverter 11 are driven by drive signals based on the PWM signals Q1 to Q4, and a motor voltage as shown in the lower part of FIG. 4 is applied to the single-phase motor 12, and the single-phase motor 12 rotates. To do.
 つぎに、AD変換器30およびAD変換器35の構成の一例について説明する。なお、AD変換器30およびAD変換器35は、入力される信号が異なるのみであり、基本的な動作は同一である。このため、以下では、AD変換器30について説明し、AD変換器35の構成および動作の説明は割愛する。また、以下では、AD変換器30は逐次比較型である場合について説明するが、AD変換器30の具体的構成は逐次比較型に限定されない。 Next, an example of the configuration of the AD converter 30 and the AD converter 35 will be described. The AD converter 30 and the AD converter 35 differ only in the input signals, and the basic operation is the same. Therefore, hereinafter, the AD converter 30 will be described, and the configuration and operation of the AD converter 35 will be omitted. Hereinafter, a case where the AD converter 30 is a successive approximation type will be described. However, the specific configuration of the AD converter 30 is not limited to the successive approximation type.
 図5は、AD変換器30の構成の一例を示すブロック図である。図5に示すように、AD変換器30は、制御回路51、比較器52、およびDA(ディジタルアナログ)変換器53を備える。なお、図5に示すAD変換器30の動作の詳細については特開平5-152960号公報に記載されている。 FIG. 5 is a block diagram showing an example of the configuration of the AD converter 30. As shown in FIG. 5, the AD converter 30 includes a control circuit 51, a comparator 52, and a DA (digital analog) converter 53. The details of the operation of the AD converter 30 shown in FIG. 5 are described in Japanese Patent Application Laid-Open No. 5-152960.
 制御回路51は、図示しないプロセッサを有する。比較器52は、DA変換器53からの比較信号COMとアナログ入力信号AINとの大小を比較し、比較結果を制御回路51に出力する。アナログ入力信号AINは、モータ電流に相当する。制御回路51は、比較結果に応じてアナログ入力信号AINを近似する制御信号CNをDA変換器53に出力する。DA変換器53は、制御信号CNに相当する比較信号COMを比較器52に出力する。制御回路51は、比較信号COMをアナログ入力信号AINに逐次近似する制御を実行することで、アナログ入力信号AINに相当するディジタルデータDOUTを求める。制御回路51は、ディジタルデータDOUTを図示しないレジスタに保持する。 The control circuit 51 has a processor (not shown). The comparator 52 compares the comparison signal COM from the DA converter 53 with the analog input signal AIN and outputs the comparison result to the control circuit 51. The analog input signal AIN corresponds to the motor current. The control circuit 51 outputs a control signal CN approximating the analog input signal AIN to the DA converter 53 according to the comparison result. The DA converter 53 outputs a comparison signal COM corresponding to the control signal CN to the comparator 52. The control circuit 51 obtains digital data DOUT corresponding to the analog input signal AIN by executing a control that sequentially approximates the comparison signal COM to the analog input signal AIN. The control circuit 51 holds the digital data DOUT in a register (not shown).
 図6は、プロセッサ31とAD変換器30との間の信号の授受の一例を示す図である。まず、プロセッサ31は、AD変換器30に起動信号S1を出力する。起動信号S1はAD変換器30にAD変換の開始を指示する信号である。プロセッサ31は、起動信号S1を出力することによりAD変換器30を起動する。 FIG. 6 is a diagram illustrating an example of transmission / reception of signals between the processor 31 and the AD converter 30. First, the processor 31 outputs an activation signal S1 to the AD converter 30. The activation signal S1 is a signal that instructs the AD converter 30 to start AD conversion. The processor 31 activates the AD converter 30 by outputting the activation signal S1.
 AD変換器30は、起動信号S1を受けると、アナログデータをディジタルデータに変換するAD変換処理を開始する。具体的には、AD変換器30の制御回路51が、起動信号S1を受けると、逐次比較処理を開始する。 When the AD converter 30 receives the start signal S1, the AD converter 30 starts AD conversion processing for converting analog data into digital data. Specifically, when the control circuit 51 of the AD converter 30 receives the activation signal S1, the successive approximation process is started.
 AD変換器30は、AD変換完了後、AD変換が完了したことを示す完了信号S2をプロセッサ31に出力する。具体的には、制御回路51が完了信号S2をプロセッサ31に出力する。プロセッサ31は、AD変換器30から完了信号S2を受けた後、AD変換器30からディジタルデータを読み取る。具体的には、プロセッサ31は、制御回路51内のレジスタに記憶されたディジタルデータを読み取る。 The AD converter 30 outputs a completion signal S2 indicating that the AD conversion is completed to the processor 31 after the AD conversion is completed. Specifically, the control circuit 51 outputs a completion signal S2 to the processor 31. After receiving the completion signal S <b> 2 from the AD converter 30, the processor 31 reads digital data from the AD converter 30. Specifically, the processor 31 reads digital data stored in a register in the control circuit 51.
 このように、AD変換器30は、プロセッサ31から起動信号S1が入力されるとAD変換処理を開始し、AD変換処理が完了するとプロセッサ31に完了信号S2を出力して、AD変換処理を停止する。 As described above, the AD converter 30 starts the AD conversion process when the activation signal S1 is input from the processor 31, outputs the completion signal S2 to the processor 31 when the AD conversion process is completed, and stops the AD conversion process. To do.
 つぎに、図7を参照して、AD変換器30の起動およびAD変換器30からのディジタルデータの読み取りのタイミングについて説明する。図7は、AD変換器30の起動およびAD変換器30からのディジタルデータの読み取りのタイミングを説明するためのタイミングチャートである。なお、図7の例は、モータ電流の周期Tと、キャリアの周期Tとが整数倍の関係にはない例、すなわち非同期PWM制御の場合の例である。 Next, with reference to FIG. 7, the timing of starting the AD converter 30 and reading digital data from the AD converter 30 will be described. FIG. 7 is a timing chart for explaining the timing of starting the AD converter 30 and reading the digital data from the AD converter 30. The example of FIG. 7 is an example in which the motor current cycle T I and the carrier cycle T c are not in an integer multiple relationship, that is, in the case of asynchronous PWM control.
 図7において、「位置センサ信号」は、プロセッサ31に入力された位置センサ21の出力信号を表す。なお、位置センサ信号の直下に付された角度はロータの機械角である。位置センサ信号は、4極のロータに対応して、機械角で0°、90°、180°、270°、360°にエッジを含む。 7, “position sensor signal” represents an output signal of the position sensor 21 input to the processor 31. The angle given immediately below the position sensor signal is the mechanical angle of the rotor. The position sensor signal includes edges at mechanical angles of 0 °, 90 °, 180 °, 270 °, 360 ° corresponding to a 4-pole rotor.
 「ロータ回転角」は、ロータの電気角を表す。すなわち、磁極数をPとして電気角=機械角×P/2で与えられる。プロセッサ31は、位置センサ信号に基づいてロータ回転角を算出する。なお、ロータ回転角の直下に付された角度は電気角である。 “Rotor rotation angle” represents the electrical angle of the rotor. That is, the electrical angle = mechanical angle × P / 2, where P is the number of magnetic poles. The processor 31 calculates the rotor rotation angle based on the position sensor signal. The angle given immediately below the rotor rotation angle is an electrical angle.
 「モータ電流」は、モータ電流の波形を表す。「モータ電流」は、「ロータ回転角」との比較のために示している。図7に示すように、位置センサ信号のエッジはモータ電流のゼロクロス点と同期している。ここでゼロクロス点は、信号の波形における極性の変化点であり、極性が正から負へまたは負から正へ切り替わる点である。図7では、互いに隣り合うゼロクロス点A1,A2を示している。ゼロクロス点A1からゼロクロス点A2までの期間は、ゼロクロス点A1,A2で決まるモータ電流の電気半サイクルである。このように、以下では、まず位置センサ信号のエッジをモータ電流のゼロクロス点と同期させた制御をする場合について説明する。この場合、ロータ回転角は、モータ電流の位相情報を与える。 “Motor current” represents the motor current waveform. “Motor current” is shown for comparison with “rotor rotation angle”. As shown in FIG. 7, the edge of the position sensor signal is synchronized with the zero cross point of the motor current. Here, the zero cross point is a change point of polarity in the waveform of the signal, and is a point at which the polarity is switched from positive to negative or from negative to positive. In FIG. 7, the zero cross points A1 and A2 adjacent to each other are shown. The period from the zero cross point A1 to the zero cross point A2 is an electric half cycle of the motor current determined by the zero cross points A1 and A2. Thus, in the following, a case where control is performed in which the edge of the position sensor signal is synchronized with the zero cross point of the motor current will be described first. In this case, the rotor rotation angle gives phase information of the motor current.
 つぎに、「AD変換器動作タイミング」と「キャリア」について説明する。「AD変換器動作タイミング」はAD変換処理を表し、「キャリア」はキャリアの波形を表す。本実施の形態では、ゼロクロス点を含む一定の位相角範囲はAD変換器30の起動が禁止された禁止範囲とする。具体的には、ゼロクロス点を中心に前後それぞれαからなる合計2αの位相角範囲を禁止範囲とする。プロセッサ31は、禁止範囲内においてAD変換器30に起動信号S1を出力せず、起動信号S1が入力されないAD変換器30はAD変換処理を実行せず、AD変換処理を完了したことを示す完了信号S2を出力しない。 Next, “AD converter operation timing” and “carrier” will be described. “AD converter operation timing” represents AD conversion processing, and “carrier” represents a carrier waveform. In the present embodiment, a certain phase angle range including the zero cross point is a prohibited range in which the start of the AD converter 30 is prohibited. Specifically, the total 2α phase angle range including α before and after the zero cross point is set as the prohibited range. The processor 31 does not output the start signal S1 to the AD converter 30 within the prohibited range, and the AD converter 30 to which the start signal S1 is not input does not execute the AD conversion process, indicating that the AD conversion process is completed. The signal S2 is not output.
 禁止範囲以外の範囲は、AD変換器30の起動が許可された許可範囲である。なお、禁止範囲か許可範囲かに関係なく、AD変換器30からのディジタルデータの読み取りは許可される。許可範囲は、隣り合う禁止範囲間となる。禁止範囲に相当する期間、すなわち禁止範囲を時間に読み替えたものを、以下では禁止期間という。同様に、許可範囲に相当する期間を、以下では許可期間という。禁止期間は禁止範囲と実質同一であり、許可期間は許可範囲と実質同一である。 The range other than the prohibited range is a permitted range in which activation of the AD converter 30 is permitted. Note that reading of digital data from the AD converter 30 is permitted regardless of the prohibited range or the permitted range. The permitted range is between adjacent prohibited ranges. A period corresponding to the prohibited range, that is, a time when the prohibited range is replaced with time is hereinafter referred to as a prohibited period. Similarly, a period corresponding to the permission range is hereinafter referred to as a permission period. The prohibited period is substantially the same as the prohibited range, and the permitted period is substantially the same as the permitted range.
 モータ電流の電気1サイクルである周期Tを使用すると、禁止期間の長さは2×(α/360)×Tで与えられ、モータ電流の電気半サイクルである半周期中における許可期間の長さはT/2-2×(α/360)×Tで与えられる。 With period T I is an electrical cycle of the motor current, the length of the protection period is given by 2 × (α / 360) × T I, the permission period during a half cycle which is an electrical half-cycle of the motor current The length is given by T I / 2-2 × (α / 360) × T I.
 αは0よりも大きく、且つ90°未満の予め決められた角度である。図示例では、αは10°である。この場合、禁止範囲は、-10°以上、且つ10°以下の範囲、170°以上、且つ190°以下の範囲、350°以上、且つ370°以下の範囲、530°以上、且つ550°以下の範囲、710°以上、且つ730°以下の範囲である。プロセッサ31は、ロータ回転角を算出した後、ロータ回転角と予め決められたαとに基づいて、禁止範囲および許可範囲を決定する。 Α is a predetermined angle greater than 0 and less than 90 °. In the illustrated example, α is 10 °. In this case, the prohibited range is -10 ° or more and 10 ° or less, 170 ° or more and 190 ° or less, 350 ° or more and 370 ° or less, 530 ° or more and 550 ° or less. The range is from 710 ° to 730 °. After calculating the rotor rotation angle, the processor 31 determines the prohibition range and the permission range based on the rotor rotation angle and a predetermined α.
 なお、図7の例では、プロセッサ31によるAD変換器30の起動およびAD変換器30からの読み取りは、キャリア生成部33で発生させるキャリアの山点のタイミングで行っているが、キャリアの山点以外のタイミングで行ってもよいし、谷点のタイミング、または山点と谷点の両方のタイミングで行ってもよい。また、キャリアによらずにタイミングを決めてもよい。ただし、1つのサンプリングデータに対するAD変換処理は、キャリアの周期Tよりも短い時間で実行されるものとする。 In the example of FIG. 7, activation of the AD converter 30 and reading from the AD converter 30 by the processor 31 are performed at the timing of the carrier peak generated by the carrier generation unit 33. It may be performed at a timing other than the above, or may be performed at the timing of a valley point, or at the timing of both a mountain point and a valley point. Further, the timing may be determined without depending on the carrier. However, the AD conversion processing for one sampling data is executed in a time shorter than the carrier cycle Tc .
 つぎに、「AD変換器動作タイミング」について詳細に説明する。以下では、「期間」を用いて説明するが「範囲」に読み替えることもできる。プロセッサ31は、算出されたロータ回転角に基づき、山点のタイミングである時刻t0が許可期間内にあるか否かの判定を行う。時刻t0は、禁止期間内にあるので、プロセッサ31は、AD変換器30の起動を行わない。 Next, “AD converter operation timing” will be described in detail. In the following description, “period” is used, but it can be read as “range”. Based on the calculated rotor rotation angle, the processor 31 determines whether or not the time t0 that is the timing of the peak point is within the permission period. Since the time t0 is within the prohibition period, the processor 31 does not start the AD converter 30.
 つぎに、プロセッサ31は、算出されたロータ回転角に基づき、時刻t0に続く山点のタイミングである時刻t1が許可期間内にあるか否かの判定を行う。時刻t1は許可期間内にあるので、プロセッサ31は、時刻t1において、AD変換器30に起動信号S1を出力する。なお、この場合の許可期間は、ゼロクロス点A1からゼロクロス点A2まで電気半サイクル中に含まれる。AD変換器30は、起動信号S1を受けると、AD変換処理を実行する。図7では、AD変換中の範囲を斜線付の「AD変換」で示している。AD変換器30は、AD変換処理を完了すると、完了信号S2をプロセッサ31に出力し、プロセッサ31はAD変換器30から完了信号S2を受ける。 Next, based on the calculated rotor rotation angle, the processor 31 determines whether or not the time t1 that is the timing of the peak point following the time t0 is within the permission period. Since the time t1 is within the permission period, the processor 31 outputs the activation signal S1 to the AD converter 30 at the time t1. Note that the permission period in this case is included in the electrical half cycle from the zero cross point A1 to the zero cross point A2. When receiving the activation signal S1, the AD converter 30 executes AD conversion processing. In FIG. 7, the range during AD conversion is indicated by “AD conversion” with diagonal lines. When the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
 なお、図7の動作波形は、1つの許可期間内に、キャリアの山点が2個以上含まれる場合の一例である。このため、時刻t1に続く山点のタイミングである時刻t2は、許可期間内にある。そこで、プロセッサ31は、時刻t2において、AD変換器30からディジタルデータを読み取ると共にAD変換器30に起動信号S1を出力する。そして、プロセッサ31は、このディジタルデータを制御に使用する。AD変換器30は、起動信号S1を受けると、AD変換処理を実行し、AD変換後のディジタルデータでレジスタを書き換える。AD変換器30は、AD変換処理を完了すると、完了信号S2をプロセッサ31に出力し、プロセッサ31はAD変換器30から完了信号S2を受ける。 Note that the operation waveform of FIG. 7 is an example in which two or more peak points of the carrier are included in one permission period. For this reason, time t2, which is the timing of the peak point following time t1, is within the permission period. Therefore, the processor 31 reads digital data from the AD converter 30 and outputs a start signal S1 to the AD converter 30 at time t2. The processor 31 uses this digital data for control. Upon receiving the activation signal S1, the AD converter 30 executes AD conversion processing and rewrites the register with the digital data after AD conversion. When the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
 つぎに、プロセッサ31は、算出されたロータ回転角に基づき、時刻t2に続く山点のタイミングである時刻t3が許可期間内にあるか否かの判定を行う。時刻t3は許可期間内にあるので、プロセッサ31は、時刻t3において、AD変換器30からディジタルデータを読み取ると共にAD変換器30に起動信号S1を出力する。そして、プロセッサ31は、このディジタルデータを制御に使用する。AD変換器30は、起動信号S1を受けると、AD変換処理を実行し、AD変換後のディジタルデータでレジスタを書き換える。AD変換器30は、AD変換処理を完了すると、完了信号S2をプロセッサ31に出力し、プロセッサ31はAD変換器30から完了信号S2を受ける。 Next, the processor 31 determines whether or not the time t3 that is the timing of the peak point following the time t2 is within the permission period based on the calculated rotor rotation angle. Since the time t3 is within the permission period, the processor 31 reads the digital data from the AD converter 30 and outputs the activation signal S1 to the AD converter 30 at the time t3. The processor 31 uses this digital data for control. Upon receiving the activation signal S1, the AD converter 30 executes AD conversion processing and rewrites the register with the digital data after AD conversion. When the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
 つぎに、プロセッサ31は、算出されたロータ回転角に基づき、時刻t3に続く山点のタイミングである時刻t4が許可期間内にあるか否かの判定を行う。時刻t4は許可期間内にあるので、プロセッサ31は、時刻t4において、AD変換器30からディジタルデータを読み取ると共にAD変換器30に起動信号S1を出力する。そして、プロセッサ31は、このディジタルデータを制御に使用する。AD変換器30は、起動信号S1を受けると、AD変換処理を実行し、AD変換後のディジタルデータでレジスタを書き換える。AD変換器30は、AD変換処理を完了すると、完了信号S2をプロセッサ31に出力し、プロセッサ31はAD変換器30から完了信号S2を受ける。 Next, the processor 31 determines whether or not the time t4 that is the timing of the peak point following the time t3 is within the permission period based on the calculated rotor rotation angle. Since the time t4 is within the permission period, the processor 31 reads the digital data from the AD converter 30 and outputs the activation signal S1 to the AD converter 30 at the time t4. The processor 31 uses this digital data for control. Upon receiving the activation signal S1, the AD converter 30 executes AD conversion processing and rewrites the register with the digital data after AD conversion. When the AD converter 30 completes the AD conversion process, the AD converter 30 outputs a completion signal S2 to the processor 31, and the processor 31 receives the completion signal S2 from the AD converter 30.
 さらに、プロセッサ31は、算出されたロータ回転角に基づき、時刻t4に続く山点のタイミングである時刻t5が許可期間内にあるか否かの判定を行う。時刻t5は禁止期間内にあるので、AD変換器30に起動信号S1を出力しない。また、プロセッサ31は、時刻t5がゼロクロス点A1からゼロクロス点A2まで電気半サイクル中にあるか否かの判定を行う。時刻t5は当該電気半サイクル中にあるので、プロセッサ31は、時刻t5において、AD変換器30からディジタルデータを読み取る。そして、プロセッサ31は、このディジタルデータを制御に使用する。 Further, based on the calculated rotor rotation angle, the processor 31 determines whether or not the time t5 that is the timing of the peak point following the time t4 is within the permission period. Since the time t5 is within the prohibited period, the activation signal S1 is not output to the AD converter 30. Further, the processor 31 determines whether or not the time t5 is in the electrical half cycle from the zero cross point A1 to the zero cross point A2. Since time t5 is in the electrical half cycle, the processor 31 reads digital data from the AD converter 30 at time t5. The processor 31 uses this digital data for control.
 プロセッサ31は、単相モータ12の運転中に以上のような動作を繰り返している。 The processor 31 repeats the above operation during the operation of the single-phase motor 12.
 図8は、禁止範囲を決定するためのフローチャートである。図8に示すように、プロセッサ31は、位置センサ信号からロータ回転角を算出し(ステップS101)、算出されたロータ回転角に基づいて、モータ電流のゼロクロス点を算出し(ステップS102)、ゼロクロス点を含む前後αの範囲を禁止範囲に設定する(ステップS103)。 FIG. 8 is a flowchart for determining the prohibited range. As shown in FIG. 8, the processor 31 calculates the rotor rotation angle from the position sensor signal (step S101), calculates the zero cross point of the motor current based on the calculated rotor rotation angle (step S102), and zero cross The range of front and rear α including the point is set as a prohibited range (step S103).
 以上の説明では、位置センサ信号のエッジとモータ電流のゼロクロス点とが同期することを前提とした。ここで、位置センサ信号のエッジとモータ電流のゼロクロス点とが同期しない場合の制御について簡単に説明する。 In the above description, it is assumed that the edge of the position sensor signal is synchronized with the zero cross point of the motor current. Here, the control when the edge of the position sensor signal and the zero cross point of the motor current are not synchronized will be briefly described.
 単相モータ12は、運転開始時には、位置センサ信号のエッジとモータ電流のゼロクロス点とが同期するようにして運転される。しかし、回転数の増加に伴い、位置センサ信号のエッジとモータ電流のゼロクロス点とが同期しなくなる。特に、回転数が例えば7万rpm以上のようないわゆる高回転数領域に達すると、位置センサ信号のエッジとモータ電流のゼロクロス点との非同期が生ずる。このように非同期が生ずると、図8のようにして設定した禁止範囲を再設定する必要が生ずる場合がある。 The single-phase motor 12 is operated so that the edge of the position sensor signal and the zero cross point of the motor current are synchronized at the start of operation. However, as the rotational speed increases, the edge of the position sensor signal and the zero cross point of the motor current become out of synchronization. In particular, when the rotational speed reaches a so-called high rotational speed region such as 70,000 rpm or more, the edge of the position sensor signal and the zero cross point of the motor current become asynchronous. When the asynchronization occurs as described above, it may be necessary to reset the prohibited range set as shown in FIG.
 禁止範囲の再設定は以下のように実施される。プロセッサ31は、AD変換器30から読み取ったディジタルデータを時系列で監視し、同一の許可範囲内でディジタルデータの前回値と今回値とを比較し、前回値と今回値とで極性が切り替わっていないかどうかの判定をする。前回値と今回値とで極性が切り替わった場合は、許可範囲内にゼロクロス点が含まれることになるので、この場合は、検出されたゼロクロス点をもとに、禁止範囲を再設定する。禁止範囲の再設定により、許可範囲も再設定される。以後、プロセッサ31は、再設定された許可範囲内でのみAD変換器30の起動およびAD変換器30からの読み取りを行う。 The resetting of the prohibited range is performed as follows. The processor 31 monitors the digital data read from the AD converter 30 in time series, compares the previous value and the current value of the digital data within the same permitted range, and the polarity is switched between the previous value and the current value. Judge whether there is no. When the polarity is switched between the previous value and the current value, a zero-cross point is included in the permitted range. In this case, the prohibited range is reset based on the detected zero-cross point. The permitted range is also reset by resetting the prohibited range. Thereafter, the processor 31 activates the AD converter 30 and reads from the AD converter 30 only within the reset permission range.
 以上の手法により非同期PWM制御においても、モータ電流の検出が可能である。 The motor current can be detected even in asynchronous PWM control by the above method.
 つぎに、同期PWM制御を適用した場合におけるモータ電流の検出手法法について説明する。同期PWM制御は、前述した図4の上段部に示す波形ようにモータの電気角周期に対して整数倍のキャリア周波数となるように制御する手法である。同期PWM制御を行うと、電気角周波数が同一であれば電気角周期中のインバータ出力電圧が周期によって変わらず同一の電圧となる。 Next, a method for detecting the motor current when the synchronous PWM control is applied will be described. The synchronous PWM control is a method for controlling the carrier frequency to be an integral multiple of the electrical angle cycle of the motor as shown in the waveform shown in the upper part of FIG. When the synchronous PWM control is performed, if the electrical angular frequency is the same, the inverter output voltage during the electrical angular cycle remains the same voltage without changing depending on the cycle.
 図9は、同期PWM制御におけるキャリアと電圧指令と組合せのバリエーションの例を示す波形図であり、横軸には電圧位相θvをとり、縦軸には下から、同期3パルス、同期6パルス、同期9パルスで制御するときのキャリアの波形および電圧指令Vpの波形を示している。 FIG. 9 is a waveform diagram showing an example of variation of combinations of carrier, voltage command, and synchronous PWM control. The horizontal axis represents voltage phase θv, and the vertical axis represents 3 synchronous pulses, 6 synchronous pulses from the bottom, The waveform of the carrier and the waveform of the voltage command Vp when controlling with 9 synchronous pulses are shown.
 同期PWM制御では、電圧指令Vp(電圧指令Vnでも同じ)の周波数に対してキャリアの周波数が例えば3倍、6倍、9倍の関係になるように制御する。キャリアの周波数を、3倍、6倍、9倍と変化させると、キャリアの半周期中に含まれるパルス数が、それぞれ3パルス、6パルス、9パルスであるPWM信号が生成される。キャリアと電圧位相θvとが同期していることから、これらのパルスは、“同期3パルス”、“同期6パルス”、“同期9パルス”と称される。なお、図9では図示していないが、キャリア周波数は9倍より高い周波数に設定することも可能である。ただし、電圧指令Vpの1周期に対してPWM信号のパルス数が増加するため、出力電圧の精度が向上する一方で、スイッチング素子11a1~11a4のスイッチング回数が増加する。すなわち、キャリア周波数の増大はスイッチング損失の増加に繋がり、キャリア周波数の増大とスイッチング損失の増加とはトレードオフの関係にある。 In the synchronous PWM control, control is performed so that the carrier frequency is, for example, 3 times, 6 times, or 9 times the frequency of the voltage command Vp (the same applies to the voltage command Vn). When the carrier frequency is changed to 3 times, 6 times, and 9 times, a PWM signal is generated in which the number of pulses included in the half cycle of the carrier is 3 pulses, 6 pulses, and 9 pulses, respectively. Since the carrier and the voltage phase θv are synchronized, these pulses are referred to as “synchronous 3 pulse”, “synchronous 6 pulse”, and “synchronous 9 pulse”. Although not shown in FIG. 9, the carrier frequency can be set to a frequency higher than nine times. However, since the number of pulses of the PWM signal increases with respect to one cycle of the voltage command Vp, the accuracy of the output voltage is improved, while the number of times of switching of the switching elements 11a1 to 11a4 is increased. That is, an increase in carrier frequency leads to an increase in switching loss, and an increase in carrier frequency and an increase in switching loss are in a trade-off relationship.
 図10は、非同期PWM制御と同期PWM制御におけるモータ印加電圧を対比して示す波形図であり、図11は、非同期PWM制御の場合のモータ電流に関する全高調波歪(Total Harmonic Distortion:以下「電流THD」と表記)と同期PWM制御の場合の電流THDとを比較して示した図である。非同期PWM制御の場合、図10の上段部に示すように、正電圧側のモータ印加電圧と負電圧側のモータ印加電圧とは、正電圧から負電圧に切り替わる1周期中の中心時刻tに対し、左右が非対称の波形となっており、印加電圧のアンバランスが生じている。これに対し、同期PWM制御の場合には、1周期中の中心時刻tに対し、左右が対称波形となっており、モータ印加電圧のアンバランスは抑制されている。このため、図11に示すように、同期PWM制御の場合の電流THDは、非同期PWM制御の場合の電流THDよりも小さくなる。その結果、同期PWM制御の場合では、電流の歪みにより発生するトルク脈動が抑制でき、単相モータ12の回転数の脈動による振動および騒音の発生を抑制することが可能となる。 FIG. 10 is a waveform diagram showing a comparison between motor applied voltages in asynchronous PWM control and synchronous PWM control, and FIG. 11 is a graph showing total harmonic distortion (Total Harmonic Distortion: “Current” in the case of asynchronous PWM control). FIG. 6 is a diagram comparing and comparing current THD in the case of synchronous PWM control. In the case of asynchronous PWM control, as shown in the upper part of FIG. 10, the motor applied voltage on the positive voltage side and the motor applied voltage on the negative voltage side are at the center time t m during one cycle when the positive voltage is switched to the negative voltage. On the other hand, the left and right are asymmetrical waveforms, and imbalance of the applied voltage occurs. On the other hand, in the case of synchronous PWM control, the left and right are symmetrical waveforms with respect to the center time t m in one cycle, and the imbalance of the motor applied voltage is suppressed. For this reason, as shown in FIG. 11, the current THD in the case of synchronous PWM control is smaller than the current THD in the case of asynchronous PWM control. As a result, in the case of synchronous PWM control, torque pulsation generated due to current distortion can be suppressed, and generation of vibration and noise due to pulsation of the rotational speed of the single-phase motor 12 can be suppressed.
 なお、非同期PWM制御の場合、電圧指令に対してキャリア周波数が十分高い場合には出力電圧の歪を抑制することが可能であるが、電圧指令に対してキャリア周波数が低い場合には、出力電圧の歪を抑制することは困難である。そのため、非同期PWM制御の場合、キャリア周波数を電圧指令に対して10倍以上に設定することが好ましい。 In the case of asynchronous PWM control, it is possible to suppress distortion of the output voltage when the carrier frequency is sufficiently high with respect to the voltage command, but when the carrier frequency is low with respect to the voltage command, the output voltage It is difficult to suppress the distortion. Therefore, in the case of asynchronous PWM control, it is preferable to set the carrier frequency to 10 times or more with respect to the voltage command.
 これに対し、同期PWM制御の場合、電圧指令に対してキャリア周波数が低い状態でも電流の脈動を抑制することができるので、例えば電圧指令に対して3倍~9倍といった低いキャリア周波数を選択することが可能となる。このため、本実施の形態のように、同期PWM制御と非同期PWM制御とを併用した場合、非同期PWM制御のみで制御する従来に比べて、キャリア周波数を低減させた状態でも、単相モータ12を安定して駆動することが可能となる。 On the other hand, in the case of synchronous PWM control, current pulsation can be suppressed even when the carrier frequency is lower than the voltage command. For example, a low carrier frequency such as 3 to 9 times the voltage command is selected. It becomes possible. For this reason, when the synchronous PWM control and the asynchronous PWM control are used together as in the present embodiment, the single-phase motor 12 can be operated even when the carrier frequency is reduced as compared with the conventional case where the control is performed only by the asynchronous PWM control. It becomes possible to drive stably.
 図12は、キャリア周波数と発生ノイズおよび漏洩電流とを従来と比較した比較図である。同期PWM制御を併用してキャリア周波数を低減させた場合、スイッチング素子11a1~11a4のスイッチング回数が低減するため、単相インバータ11で発生するノイズおよび単相モータ12から漏洩する電流は、図12に示すように、非同期PWM制御のみを行う従来に比べて、低くすることが可能となる。 FIG. 12 is a comparison diagram comparing the carrier frequency, generated noise, and leakage current with the conventional one. When the carrier frequency is reduced by using synchronous PWM control together, the number of switching times of the switching elements 11a1 to 11a4 is reduced. Therefore, noise generated in the single-phase inverter 11 and current leaked from the single-phase motor 12 are shown in FIG. As shown, it can be made lower than in the conventional case where only asynchronous PWM control is performed.
 図13は、同期PWM制御を適用した場合におけるAD変換器30の起動およびAD変換器30からのディジタルデータの読み取りのタイミングを説明するためのタイミングチャートである。図13では、同期9パルスの場合の動作波形を示しており、位置センサのエッジとモータ電流のゼロクロスとは同期している。 FIG. 13 is a timing chart for explaining the timing of starting the AD converter 30 and reading digital data from the AD converter 30 when the synchronous PWM control is applied. FIG. 13 shows an operation waveform in the case of synchronous 9 pulses, and the edge of the position sensor and the zero cross of the motor current are synchronized.
 同期PWM制御を適用すれば、ロータ回転角の1周期に対して任意のキャリア数(図では9つ)でモータ制御することができるため、AD変換のタイミングを電流位相に対して同一とすることができる。また、禁止期間の判定が容易であるため、AD変換で得られる電流値と位相の関係の推定が容易となり、高精度なモータ制御が可能となる。さらに、ロータ回転周波数の変化に追従してキャリア周波数を変化させるため、ロータ回転数によらず、1周期中に得られる電流データの数を確保することができる。 If synchronous PWM control is applied, motor control can be performed with an arbitrary number of carriers (9 in the figure) for one cycle of the rotor rotation angle, so the AD conversion timing should be the same for the current phase. Can do. In addition, since the prohibition period can be easily determined, it is easy to estimate the relationship between the current value obtained by AD conversion and the phase, and high-precision motor control is possible. Furthermore, since the carrier frequency is changed following the change of the rotor rotational frequency, the number of current data obtained in one cycle can be ensured regardless of the rotor rotational speed.
 また、AD変換禁止期間αと同期PWMパルス数の関係から、ロータ回転角1周期中にAD変換の実施可能な回数を推定することができる。逆に、1周期中に必要なAD変換実施回数(すなわちモータ電流検出回数)から同期PWMパルス数を選定することも可能である。なお、ここでの説明は、位置センサのエッジとモータ電流のゼロクロスが同期している場合の説明であるが、AD変換禁止期間と同期PWMパルス数からAD変換実施回数を求めること、AD変換実施回数から同期PWMパルス数を選定することについては、非同期の場合についても実施可能である。 Further, from the relationship between the AD conversion prohibition period α and the number of synchronous PWM pulses, it is possible to estimate the number of times that AD conversion can be performed during one rotor rotation angle. Conversely, it is also possible to select the number of synchronous PWM pulses from the number of AD conversion implementations required in one cycle (that is, the number of motor current detections). The explanation here is for the case where the edge of the position sensor and the zero crossing of the motor current are synchronized. However, the number of AD conversion executions is obtained from the AD conversion inhibition period and the number of synchronous PWM pulses, and AD conversion is performed. The selection of the number of synchronous PWM pulses from the number of times can be performed even in an asynchronous case.
 つぎに、本実施の形態の効果について説明する。モータ電流のゼロクロス点ではノイズが発生することが知られている。具体的には、単相インバータ11のスイッチング素子11a1~11a4のオンまたはオフ動作に際してノイズが発生することから、電流極性が切り替わるゼロクロス点ではスイッチングに起因するノイズがモータ電流に含まれることになる。また、モータ電流のゼロクロス点では、スイッチング素子11a1~11a4に逆並列に接続されたダイオード11b1~11b4にリカバリー電流が流れ、このリカバリー電流もノイズの要因となる。 Next, the effect of this embodiment will be described. It is known that noise occurs at the zero cross point of the motor current. Specifically, since noise is generated when the switching elements 11a1 to 11a4 of the single-phase inverter 11 are turned on or off, noise caused by switching is included in the motor current at the zero cross point where the current polarity is switched. At the zero cross point of the motor current, a recovery current flows through the diodes 11b1 to 11b4 connected in antiparallel to the switching elements 11a1 to 11a4, and this recovery current also causes noise.
 これに対して、本実施の形態では、モータ電流の各ゼロクロス点を含む一定の範囲をAD変換器30の起動を禁止する禁止範囲に設定し、隣接する禁止範囲間にAD変換器30の起動を許可する許可範囲を設定している。 On the other hand, in the present embodiment, a certain range including each zero cross point of the motor current is set as a prohibition range in which the AD converter 30 is prohibited from starting, and the AD converter 30 is started between adjacent prohibition ranges. The permitted range is set to allow
 プロセッサ31は、許可範囲内においてAD変換器30に起動信号S1を出力し、且つ当該許可範囲を含む隣り合うゼロクロス点で決まる電気半サイクル中でディジタルデータを読み取る。ここで許可期間はゼロクロス点を含まない連続する期間である。これにより、プロセッサ31は、ゼロクロス点を含まない許可範囲内で起動されたAD変換器30により変換処理されたディジタルデータを制御に使用することができるので、ノイズの制御への影響を抑制し、安定したモータ制御を実現することが可能となる。 The processor 31 outputs the start signal S1 to the AD converter 30 within the permitted range, and reads the digital data in the electrical half cycle determined by the adjacent zero cross points including the permitted range. Here, the permission period is a continuous period not including the zero cross point. As a result, the processor 31 can use the digital data converted by the AD converter 30 activated within the permitted range not including the zero-cross point for control, thereby suppressing the influence on noise control, Stable motor control can be realized.
 また、ノイズの影響を抑制することができることから、モータ制御システム1を備えた電気機器の品質の向上を図ることができる。さらに、ノイズの影響を抑制することで、モータ制御システム1にノイズ除去用のフィルタを設ける場合でも、フィルタ定数を小さくできることから、フィルタの小型化が可能となる、部品の小型化を図ることができる。 In addition, since the influence of noise can be suppressed, the quality of the electric device provided with the motor control system 1 can be improved. Further, by suppressing the influence of noise, the filter constant can be reduced even when a filter for noise removal is provided in the motor control system 1, so that the filter can be miniaturized and the parts can be miniaturized. it can.
 一般に、プロセッサ31は、モータ電流の互いに隣り合うゼロクロス点間の期間である電気半サイクルのうち、ゼロクロス点を含まない連続する期間内においてAD変換器30を起動し、AD変換器30が起動された電気半サイクルと同一の電気半サイクル中にAD変換器30の起動により得られたディジタルデータを読み取る。これにより、上記した本実施の形態の効果が得られる。 In general, the processor 31 activates the AD converter 30 within a continuous period that does not include the zero cross point in the electrical half cycle that is a period between adjacent zero cross points of the motor current, and the AD converter 30 is activated. The digital data obtained by starting the AD converter 30 is read during the same electrical half cycle. Thereby, the effect of this Embodiment mentioned above is acquired.
 ここで、モータ電流のゼロクロス点を含まない連続する期間は、同一の許可期間と同義であり、ゼロクロス点を跨いで複数の期間からなるものではないことを意味する。つまり、本実施の形態では、第1の許可期間でAD変換器30を起動し、第1の許可期間後の第2の許可期間でAD変換器30から起動信号S1の入力により変換処理されたディジタルデータを読み取る、といった処理は排除される。 Here, a continuous period that does not include the zero cross point of the motor current is synonymous with the same permission period, and means that it does not consist of a plurality of periods across the zero cross point. In other words, in the present embodiment, the AD converter 30 is activated in the first permission period, and conversion processing is performed by the input of the activation signal S1 from the AD converter 30 in the second permission period after the first permission period. Processing such as reading digital data is eliminated.
 なお、上記説明から明らかなように、モータ電流のゼロクロス点を含まない連続する期間はモータ電流の半周期よりも短く、隣り合うゼロクロス間点に設定される。 As is clear from the above description, the continuous period not including the zero cross point of the motor current is shorter than a half cycle of the motor current and is set to a point between adjacent zero crosses.
 また、本実施の形態では、同期PWM制御の併用によって以下の効果を得ることができる。 In the present embodiment, the following effects can be obtained by using synchronous PWM control together.
 まず、同期PWM制御により、AD変換のタイミングをあらかじめ想定することができることから、回転数に応じた電流検出条件(検出回数・位相等)を最適に設定することができ、安定性の高いモータ制御が可能となる。 First, AD conversion timing can be assumed in advance by synchronous PWM control, so current detection conditions (number of detections, phase, etc.) according to the number of rotations can be set optimally, and highly stable motor control Is possible.
 また、同期PWM制御により、キャリア周波数を低減してスイッチング素子のスイッチング回数を削減することが可能となり、インバータのスイッチング損失を低減し、高効率な駆動システムを実現することができる。さらに、スイッチング損失の低減により、インバータ基板の発熱を抑制することが可能となり、放熱用フィンの小型化および削減が可能となる。さらに、放熱フィンの削減により、システムおよび製品の小型化、軽量化が可能である。さらに、放熱構造に関しても自由度が向上するため、放熱のための風路および配置の制約を小さくすることができる。特に、空冷の場合、基板に対して外気を当てなくて済むため、懸念される空気中の塵埃、水分等による短絡、絶縁破壊、素子劣化等の信頼性悪化を抑制することが可能となり、高信頼なシステムの実現可能となる。 Also, synchronous PWM control makes it possible to reduce the carrier frequency and reduce the switching frequency of the switching element, reduce the switching loss of the inverter, and realize a highly efficient drive system. Furthermore, by reducing the switching loss, it is possible to suppress the heat generation of the inverter board, and the heat dissipating fins can be reduced in size and reduced. Furthermore, by reducing the number of radiation fins, the system and products can be reduced in size and weight. Furthermore, since the degree of freedom is improved with respect to the heat dissipation structure, it is possible to reduce restrictions on the air path and arrangement for heat dissipation. In particular, in the case of air cooling, since it is not necessary to apply outside air to the substrate, it is possible to suppress deterioration of reliability such as short circuit, dielectric breakdown, element degradation, etc. due to dust, moisture, etc. in air. A reliable system can be realized.
 また、キャリア周波数の低減により、インバータ短絡防止時間(デッドタイム)の影響を抑制することができ、インバータ出力電圧の上限低下を抑制することができるので、電源がバッテリー等、電力系統から供給されていないシステム(製品)の場合、高効率化と合せて電源部およびシステムの小型化、軽量化、使用期間の長時間化が可能である。 Moreover, since the influence of the inverter short-circuit prevention time (dead time) can be suppressed by reducing the carrier frequency and the upper limit of the inverter output voltage can be suppressed, power is supplied from the power system such as a battery. In the case of a system (product) that does not exist, it is possible to reduce the size and weight of the power supply unit and the system and extend the period of use together with the improvement of efficiency.
 また、同期PWM制御により、モータの誘起電圧歪みを抑制することが可能となり、また、電圧歪みに起因する鉄損および速度変動等に起因する騒音の低減が可能となり、高効率且つ低騒音の駆動システムの実現が可能となる。 In addition, the synchronous PWM control makes it possible to suppress the induced voltage distortion of the motor, and to reduce the noise caused by the iron loss and speed fluctuation caused by the voltage distortion. A system can be realized.
 また、図12を参照して説明したように、キャリア周波数の低減により、単相インバータ11で発生するノイズおよび単相モータ12からの漏洩電流の抑制が可能となる。ノイズおよび漏洩電流の抑制により、装置の信頼性が向上し、ノイズ対策のコスト低減も可能である。このため、従来の絶縁素材に比べて静電容量が大きいPETフィルムなどの薄い素材をステータのスロットに絶縁として巻いてもよく、巻線の占積率を向上させることができる。また、巻線の占積率を向上によりモータが高効率化し、漏洩電流が増加したとしても、外付け回路等の追加なく対策が可能となる。 Further, as described with reference to FIG. 12, noise generated in the single-phase inverter 11 and leakage current from the single-phase motor 12 can be suppressed by reducing the carrier frequency. By suppressing noise and leakage current, the reliability of the device is improved and the cost for noise countermeasures can be reduced. For this reason, a thin material such as a PET film having a larger capacitance than that of a conventional insulating material may be wound around the slot of the stator as insulation, and the space factor of the winding can be improved. Further, even if the efficiency of the motor is improved by improving the space factor of the winding and the leakage current is increased, a countermeasure can be taken without adding an external circuit or the like.
 図14は、同期PWM制御における同期パルス数のバリエーションの一例を示す図である。図13では、同期9パルスの場合の読み取りタイミングを示したが、図14では、同期8パルスの場合の読み取りタイミングを示している。上述のように、本実施の形態では、モータ電流のゼロクロス点と同期している位置センサ信号のエッジの前後、すなわち位置センサ信号の切り替え付近では電流検出を行わないようにしている。このため、同期パルス数が奇数の場合には、検出を行わない領域とキャリアの山もしくは谷との関係が非対称となるが、同期パルス数が偶数の場合には、電流の正負に関わらず対称となる。その結果、同期パルス数が偶数の場合には、AD変換可能な回数が毎回同数となるため、同期パルス数が奇数の場合に比して、位相における制御性の差異が小さくなり、安定した制御が可能になるという効果がある。 FIG. 14 is a diagram illustrating an example of variations in the number of synchronous pulses in synchronous PWM control. Although FIG. 13 shows the reading timing in the case of synchronous 9 pulses, FIG. 14 shows the reading timing in the case of synchronous 8 pulses. As described above, in this embodiment, current detection is not performed before or after the edge of the position sensor signal synchronized with the zero cross point of the motor current, that is, near the switching of the position sensor signal. For this reason, when the number of synchronization pulses is odd, the relationship between the region where detection is not performed and the peak or valley of the carrier is asymmetric, but when the number of synchronization pulses is even, it is symmetric regardless of whether the current is positive or negative. It becomes. As a result, when the number of synchronization pulses is even, the number of AD conversions that can be performed is the same every time, so that the difference in controllability in phase is smaller and stable control than when the number of synchronization pulses is odd. Has the effect of becoming possible.
 つぎに、禁止期間内におけるモータ制御について説明する。本実施の形態では、禁止期間内は、プロセッサ31はAD変換器30から読み取りを行わないが、禁止期間の直前の許可期間で得られたモータ電流の実測値からモータ電流の電流値を推定し、この推定された電流値を用いてモータ制御を行ってもよい。 Next, motor control within the prohibited period will be described. In this embodiment, the processor 31 does not read from the AD converter 30 during the prohibition period, but estimates the current value of the motor current from the measured value of the motor current obtained in the permission period immediately before the prohibition period. The motor control may be performed using the estimated current value.
 図15は、禁止期間内でのモータ電流の電流値の推定方法を説明するための図である。図15において、「位置センサ信号」および「モータ電流」は図7と同様である。「検出電流」は、実際に実測された「検出値」と禁止期間内で推定された「推定値」とからなる。なお、「検出値」は黒丸で、「推定値」は白丸で示している。点N-3から点N-1は禁止期間の直前の許可期間で実測された3点を示している。また、点N+2および点N+3は禁止期間の直後の許可期間で実測された2点を示している。点Nおよび点N+1は、禁止期間で推定された2点を示している。「推定値」は次のようにして求めることができる。禁止期間内にはゼロクロス点が存在するので、モータ電流は直線で近似可能である。そこで、禁止期間の直前の許可期間で実測された直近の2点である点N-2および点N-1を通る直線を求め、当該直線上に電流値が存在すると推定して点Nおよび点N+1を求めることができる。 FIG. 15 is a diagram for explaining a method of estimating the current value of the motor current within the prohibited period. 15, “position sensor signal” and “motor current” are the same as those in FIG. The “detected current” consists of an actually measured “detected value” and an “estimated value” estimated within the prohibited period. The “detected value” is indicated by a black circle, and the “estimated value” is indicated by a white circle. Points N-3 to N-1 indicate three points actually measured in the permission period immediately before the prohibition period. Point N + 2 and point N + 3 indicate two points actually measured in the permission period immediately after the prohibition period. Point N and point N + 1 indicate two points estimated in the prohibition period. The “estimated value” can be obtained as follows. Since the zero cross point exists within the prohibition period, the motor current can be approximated by a straight line. Therefore, a straight line passing through the two points N-2 and N-1, which are the latest two points actually measured in the permission period immediately before the prohibition period, is obtained, and it is estimated that a current value exists on the straight line. N + 1 can be determined.
 なお、禁止期間内でのモータ電流の推定方法は上記した例に限定されない。例えば禁止期間の直前の許可期間で実測された直近の複数点を用いて、多項式近似により、点Nおよび点N+1を推定してもよい。 Note that the method of estimating the motor current within the prohibited period is not limited to the above example. For example, the point N and the point N + 1 may be estimated by polynomial approximation using a plurality of nearest points actually measured in the permission period immediately before the prohibition period.
 また、モータ制御において、モータ電流を直交2軸のdq軸に分解して制御するベクトル制御を用いる場合、モータ電流を直流量として扱うことができるため、上記した電流値の推定を精度良く行うことが可能となる。 In addition, in the motor control, when using vector control for controlling the motor current by dividing the motor current into two orthogonal dq axes, the motor current can be handled as a direct current amount, so that the above current value is accurately estimated. Is possible.
 本実施の形態では、禁止範囲を規定するαを例えば10°としたが、これに限定されない。ただし、αをあまり大きくすると、禁止範囲内で推定する電流値の個数が多くなり、αをあまり小さくすると、ゼロクロス点で発生するノイズの影響を受ける可能性がある。そこで、αは例えば5°以上かつ15°以下の範囲から選択するとよい。また、禁止範囲はゼロクロス点に対して非対称でもよい。 In this embodiment, α defining the prohibited range is set to 10 °, for example, but is not limited to this. However, if α is too large, the number of current values estimated within the prohibited range increases, and if α is too small, there is a possibility of being affected by noise generated at the zero cross point. Therefore, α may be selected from a range of 5 ° or more and 15 ° or less, for example. Further, the prohibited range may be asymmetric with respect to the zero cross point.
 なお、本実施の形態では、単相モータ12に位置センサ21を設け、位置センサ21からの位置センサ信号に基づいてロータ回転角を算出しているが、位置センサ21によらずに位置センサ信号を推定してもよい。いわゆるセンサレスモータにおける回転位置の推定については、例えば、特許5619195号公報に記載されている。 In this embodiment, the position sensor 21 is provided in the single-phase motor 12 and the rotor rotation angle is calculated based on the position sensor signal from the position sensor 21. May be estimated. The estimation of the rotational position in a so-called sensorless motor is described in, for example, Japanese Patent No. 5619195.
 スイッチング素子11a1~11a4およびダイオード11b1~11b4は、ワイドバンドギャップ半導体を用いて形成することができる。ワイドギャップ半導体は、例えばGaN(窒化ガリウム)、SiC(シリコンカーバイド)またはダイヤモンドである。スイッチング素子11a1~11a4にワイドバンドギャップ半導体を用いることで、スイッチング素子11a1~11a4の耐電圧性および許容電流密度が高くなるため、スイッチング素子11a1~11a4の小型化が可能であり、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。また、ワイドバンドギャップ半導体は、耐熱性も高いため、ヒートシンクの放熱フィンの小型化も可能になる。 The switching elements 11a1 to 11a4 and the diodes 11b1 to 11b4 can be formed using a wide band gap semiconductor. The wide gap semiconductor is, for example, GaN (gallium nitride), SiC (silicon carbide), or diamond. By using wide band gap semiconductors for the switching elements 11a1 to 11a4, the voltage resistance and allowable current density of the switching elements 11a1 to 11a4 are increased. Therefore, the switching elements 11a1 to 11a4 can be downsized. The built-in semiconductor module can be downsized. In addition, since the wide band gap semiconductor has high heat resistance, the heat sink fins can be downsized.
 なお、図7、図13および図14では、キャリアの山のみで電流検出を実施する場合を例示したが、キャリアの谷のみで電流検出を実施してもよい。また、図16のように、キャリアの山と谷の双方で電流検出を実施してもよい。図16では、同期PWM制御における同期パルス数のバリエーションとして同期3パルスの場合の読み取りタイミングを示している。図16に示す例によれば、キャリアの山と谷の双方で電流検出を実施するようにしているので、キャリア周波数を低減したとしても、電流検出回数を確保することが可能となり、高効率および高信頼性の装置を実現することができる。 7, 13, and 14 exemplify the case where the current detection is performed only with the carrier peak, the current detection may be performed only with the carrier valley. In addition, as shown in FIG. 16, current detection may be performed at both the peak and valley of the carrier. FIG. 16 shows the reading timing in the case of three synchronous pulses as a variation of the number of synchronous pulses in the synchronous PWM control. According to the example shown in FIG. 16, since current detection is performed at both the peak and valley of the carrier, it is possible to ensure the number of times of current detection even if the carrier frequency is reduced, and high efficiency and A highly reliable device can be realized.
 また、本実施の形態ではAD変換をキャリアに同期させて逐次起動させているが、AD変換処理はキャリア同期にて常時実施させて、制御への反映のみ禁止期間のデータを用いない様にしたとしても問題ない。 In this embodiment, AD conversion is sequentially started in synchronization with the carrier. However, AD conversion processing is always performed in carrier synchronization so that only data reflected in the control is not used. There is no problem.
 なお、一般的に単相モータは三相モータに比べて回転数の変動およびトルクの変動(「トルク脈動」ともいう)が起こりやすく、さらに小型のモータであるほどイナーシャが小さいため、トルク脈動の影響を大きく受けやすく、所望の運転条件にて安定駆動することが困難である。 In general, single-phase motors are more susceptible to rotational speed fluctuations and torque fluctuations (also referred to as “torque pulsation”) than three-phase motors, and smaller motors have less inertia. It is easily affected and is difficult to drive stably under desired operating conditions.
 また、非同期PWM制御の場合では、電気角周期中のキャリア数が整数倍の関係ではないので、電気角周期毎でのインバータ出力電圧に差異があり、最適な制御が困難である。これは、電気角周期毎での電気角位相に対するキャリアの位相が異なるため、制御ズレが発生するからであるが、これが原因でモータ制御にてトルクや回転数の変動を起こす原因ともなる。 Also, in the case of asynchronous PWM control, since the number of carriers in the electrical angle cycle is not an integer multiple relationship, there is a difference in the inverter output voltage for each electrical angle cycle, and optimal control is difficult. This is because the carrier phase is different from the electrical angle phase in each electrical angle cycle, and thus a control deviation occurs. This causes a change in torque and rotational speed in the motor control.
 そこで、本実施の形態のような単相モータの駆動に対しては、同期PWM制御を適用することで、単相モータ特有のトルク脈動以外の制御に起因するトルク変動および回転数変動を抑制することができ、安定したモータ駆動の実現が可能となる。 Therefore, by applying synchronous PWM control to the driving of a single-phase motor as in this embodiment, torque fluctuation and rotational speed fluctuation caused by control other than single-phase motor-specific torque pulsation are suppressed. Therefore, stable motor driving can be realized.
 また、単相モータ駆動において、トルク脈動は周期的に発生するため、同期PWMを実施することでキャリアとモータ位相の関係が容易に推定可能となり、トルク脈動を考慮したインバータ出力制御が比較的容易に実施することができ、安定したモータ駆動の実現が可能となる。 Also, in single-phase motor drive, torque pulsation occurs periodically, so synchronous PWM makes it easy to estimate the relationship between the carrier and motor phase, and inverter output control considering torque pulsation is relatively easy Therefore, stable motor driving can be realized.
実施の形態2.
 実施の形態1では、モータ制御装置2、単相インバータ11および単相モータ12を備えたモータ制御システム1について説明した。本実施の形態では、実施の形態1に記載されたモータ制御システム1を備えた電気機器について説明する。電気機器としては、特に電気掃除機とハンドドライヤーについて説明する。
Embodiment 2. FIG.
In the first embodiment, the motor control system 1 including the motor control device 2, the single-phase inverter 11, and the single-phase motor 12 has been described. In the present embodiment, an electric device including the motor control system 1 described in the first embodiment will be described. As the electric equipment, a vacuum cleaner and a hand dryer will be described in particular.
 図17は、電気掃除機61の構成の一例を示す図である。電気掃除機61は、延長管62、吸込口体63、電動送風機64、集塵室65、操作部66、バッテリー67およびセンサ68を備える。電動送風機64は、実施の形態1に記載されたモータ制御システム1を備える。電気掃除機61は、バッテリー67を電源として電動送風機64を駆動し、吸込口体63から吸込みを行い、延長管62を介して集塵室65へごみを吸引する。使用の際は操作部66を持ち、電気掃除機61を操作する。 FIG. 17 is a diagram illustrating an example of the configuration of the electric vacuum cleaner 61. The vacuum cleaner 61 includes an extension pipe 62, a suction port 63, an electric blower 64, a dust collection chamber 65, an operation unit 66, a battery 67 and a sensor 68. The electric blower 64 includes the motor control system 1 described in the first embodiment. The vacuum cleaner 61 drives the electric blower 64 using the battery 67 as a power source, performs suction from the suction port body 63, and sucks dust into the dust collection chamber 65 through the extension pipe 62. In use, the operation unit 66 is held and the electric vacuum cleaner 61 is operated.
 操作部66は、図示しない電源スイッチおよび加速スイッチを有している。ここで、電源スイッチはバッテリー67から図示しない主回路および制御回路への電源供給を切り替えるスイッチである。また、加速スイッチは、電動送風機64を低速回転から定常回転まで加速させる制御に切り替えるスイッチである。 The operation unit 66 has a power switch and an acceleration switch (not shown). Here, the power switch is a switch for switching power supply from the battery 67 to a main circuit and a control circuit (not shown). The acceleration switch is a switch that switches to control for accelerating the electric blower 64 from low speed rotation to steady rotation.
 なお、低速回転とは、定常回転数の1/10以下の回転をいう。例えば定常回転数が10万回転の場合、1万回転以下の回転が低速回転である。 In addition, low speed rotation means rotation of 1/10 or less of steady rotation speed. For example, when the steady rotation speed is 100,000 rotations, rotations of 10,000 rotations or less are low-speed rotations.
 上記した電源スイッチをオンしバッテリー67から主回路および制御回路へ電源供給が開始されることでセンサ68も同時に検出を開始する。 When the power switch is turned on and power supply from the battery 67 to the main circuit and the control circuit is started, the sensor 68 also starts detection at the same time.
 センサ68は、電気掃除機61の動きまたは人の動きを検知する。センサ68から電気掃除機61の動きまたは人の動きを検知した信号が電動送風機64内に入力されたことをトリガーとして、電動送風機64内の図示しないモータの低速起動が開始される。 Sensor 68 detects the movement of the vacuum cleaner 61 or the movement of a person. A low-speed activation of a motor (not shown) in the electric blower 64 is started, triggered by the signal from the sensor 68 that detects the movement of the electric vacuum cleaner 61 or the movement of a person being input into the electric blower 64.
 低速起動開始後に上記した加速スイッチをオンすることでモータは低速回転から定常回転数まで加速する。なお、電源スイッチをオンするより前に加速スイッチをオンしていた場合は、電源スイッチをオンすることで起動から定常回転数まで加速されて通常動作となる。 The motor accelerates from the low speed rotation to the steady rotation speed by turning on the above acceleration switch after the start of the low speed start. If the acceleration switch is turned on before the power switch is turned on, the power switch is turned on to accelerate from the start up to the normal rotational speed and to perform normal operation.
 また、定常回転数で回転している状態から加速スイッチのみをオフした場合、モータは停止せずに低速回転で運転し続ける。低速回転で運転し続けることで、掃除の合間の移動で、蓄積された塵埃が集塵室65から延長管62を伝って排出される可能性を抑制することができる。また、低速回転においても、同期PWMを実施する事で低速駆動中のアイドリング損失を抑制することができる。 Also, when only the acceleration switch is turned off from the state of rotating at the steady rotation speed, the motor continues to operate at a low speed without stopping. By continuing to operate at a low speed, it is possible to suppress the possibility that accumulated dust is discharged from the dust collection chamber 65 through the extension pipe 62 during the movement between cleanings. Also, idling loss during low-speed driving can be suppressed by performing synchronous PWM even at low-speed rotation.
 センサ68は、電気掃除機61の動きを検知するジャイロセンサまたは人の動きを検知する人感センサである。どちらを用いて起動する場合でも定常回転数までの到達時間を短縮することが可能となる。この際、電気掃除機61に実施の形態1に記載されたモータ制御システム1を適用することで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、より高速な応答においても制御の安定化が可能となる。 Sensor 68 is a gyro sensor that detects the movement of the vacuum cleaner 61 or a human sensor that detects the movement of a person. In either case of starting up, it is possible to shorten the arrival time to the steady rotational speed. At this time, by applying the motor control system 1 described in the first embodiment to the electric vacuum cleaner 61, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved. Can be stabilized.
 モータが回転する際に発生するトルクTは、次式のように、トルク定数Ktとモータ電流Iaとの積により決定される。 The torque T generated when the motor rotates is determined by the product of the torque constant Kt and the motor current Ia as shown in the following equation.
 T=Kt×Ia T = Kt × Ia
 このように、トルクTはモータ電流Iaに比例するため、加速時間を短くするためにはより大きなトルクTを発生させる必要があり、モータ電流Iaも大きくする必要がある。大きな電流Iaを流すことで、消費電力が大きくなり、運転時間が短くなることのメリットが低減し、またバッテリー67を含む部品の信頼性を損ねる。 Thus, since the torque T is proportional to the motor current Ia, it is necessary to generate a larger torque T in order to shorten the acceleration time, and it is also necessary to increase the motor current Ia. By flowing a large current Ia, the power consumption increases, the merit of shortening the operation time is reduced, and the reliability of components including the battery 67 is impaired.
 このような問題を解決するため、加速レートをコントロールすることが一般的である。例えばモータが通常回転数に至るまでの加速時間を延長させることで、運転時間の延長と部品の信頼性を向上させることができる。この際、電気掃除機61に実施の形態1に記載されたモータ制御システム1を適用することで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、加速時間をコントロールするときに、モータの回転速度の振動を抑制することが可能となる。 In order to solve such a problem, it is common to control the acceleration rate. For example, by extending the acceleration time until the motor reaches the normal rotation speed, it is possible to extend the operation time and improve the reliability of the parts. At this time, by applying the motor control system 1 described in the first embodiment to the electric vacuum cleaner 61, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved. It becomes possible to suppress the vibration of the rotation speed of the motor.
 さらに、起動時に流れる電流を抑えることで、部品の発熱量を抑えることができることから、部品の信頼性も向上する。 Furthermore, since the amount of heat generated by the component can be suppressed by suppressing the current that flows during startup, the reliability of the component is also improved.
 また、加速を緩やかにすることで回転数が緩やかに上昇する形となるので、急加速による振動を抑えることができる。振動を抑えることで人体への不快感および周辺装置への影響を抑えることが可能となる。また、振動を抑えることで、機器から発生する音も抑制することが可能である。 Also, since the rotational speed increases gradually by slowing acceleration, vibration due to sudden acceleration can be suppressed. By suppressing vibration, it is possible to suppress discomfort to the human body and influence on peripheral devices. Further, by suppressing vibration, it is possible to suppress sound generated from the device.
 なお、上記のような方法により静止状態から始動する場合は、始動時により大きな力が必要となるため、より多くの電流が必要となる。よって電流のピークを抑えるためには、この始動時の加速度を小さくコントロールすることがより効果的である。電気掃除機61に実施の形態1に記載されたモータ制御システム1を適用することで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、加速度を細かくコントロールすることができる。 In addition, when starting from a stationary state by the method as described above, since a larger force is required at the time of starting, more current is required. Therefore, in order to suppress the current peak, it is more effective to control the acceleration at the time of starting small. By applying the motor control system 1 described in the first embodiment to the vacuum cleaner 61, the detection accuracy of an analog signal that is a motor current or a motor voltage is improved, so that the acceleration can be finely controlled.
 また、これらの加速方法は、使用者が切り替えることができるように切り替えスイッチを設け、使用者が設定できるようにしてもよい。 In addition, these acceleration methods may be provided with a changeover switch so that the user can switch, and the user can set it.
 ここで、ジャイロセンサを用いた場合の動作について説明する。まず、手動で電源スイッチをオンすることにより、ジャイロセンサが電気掃除機61の動きを検知した信号を出力開始する。ジャイロセンサから電気掃除機61の動きを検知した信号が出力されたときに低速回転が開始される。手動により加速スイッチをオンすることにより低速回転から定常回転数まで加速される。掃除が一部完了し、次の掃除場所へ移動する際は、手動により加速スイッチをオフすることにより低速回転が再開される。再度掃除する場合は、手動で加速スイッチをオンすることにより定常回転数まで加速され、掃除終了する場合は、手動により電源スイッチをオフすることで回転が停止される。 Here, the operation when the gyro sensor is used will be described. First, by manually turning on the power switch, the gyro sensor starts outputting a signal indicating the movement of the electric vacuum cleaner 61. When a signal that detects the movement of the electric vacuum cleaner 61 is output from the gyro sensor, the low speed rotation is started. By manually turning on the acceleration switch, the engine is accelerated from a low speed to a steady speed. When the cleaning is partially completed and moved to the next cleaning place, the low-speed rotation is resumed by manually turning off the acceleration switch. When cleaning again, the acceleration switch is manually turned on to accelerate to the normal rotational speed, and when cleaning is finished, the rotation is stopped by manually turning off the power switch.
 ジャイロセンサは、電気掃除機61に取り付けられることで、電気掃除機61の使用の際に生ずる電気掃除機61の動きを検知する。電気掃除機61は使用直前に必ず本体が動く。そこで、電気掃除機61にジャイロセンサを取り付けることで、電気掃除機61の動きを検知して電気掃除機61を予め起動することができる。この際、電気掃除機61に実施の形態1に記載されたモータ制御システム1を適用することで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、より早く定常回転数まで加速することができる。 The gyro sensor is attached to the vacuum cleaner 61 to detect the movement of the vacuum cleaner 61 that occurs when the vacuum cleaner 61 is used. The main body of the vacuum cleaner 61 always moves immediately before use. Therefore, by attaching a gyro sensor to the vacuum cleaner 61, the movement of the vacuum cleaner 61 can be detected and the vacuum cleaner 61 can be activated in advance. At this time, by applying the motor control system 1 described in the first embodiment to the electric vacuum cleaner 61, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that the acceleration is accelerated to the steady rotational speed more quickly. can do.
 図18は、ハンドドライヤー70の構成の一例を示す図である。ハンドドライヤー70は、ケーシング71、手検知センサ72、水受け部73、ドレン容器74、カバー76、センサ77、および吸気口78を備える。ここで、センサ77は、ジャイロセンサおよび人感センサの何れかである。ハンドドライヤー70では、ケーシング71内に図示しない電動送風機を有する。電動送風機は、実施の形態1のモータ制御システム1を有する。ハンドドライヤー70では、水受け部73の上部にある手挿入部79に手を挿入することで電動送風機による送風で水を吹き飛ばし、水受け部73からドレン容器74へと水を溜めこむ構造となっている。 FIG. 18 is a diagram illustrating an example of the configuration of the hand dryer 70. The hand dryer 70 includes a casing 71, a hand detection sensor 72, a water receiver 73, a drain container 74, a cover 76, a sensor 77, and an intake port 78. Here, the sensor 77 is either a gyro sensor or a human sensor. The hand dryer 70 has an electric blower (not shown) in the casing 71. The electric blower has the motor control system 1 of the first embodiment. The hand dryer 70 has a structure in which water is blown off by blowing with an electric blower by inserting a hand into a hand insertion portion 79 at the top of the water receiving portion 73 and water is stored from the water receiving portion 73 into the drain container 74. ing.
 センサ77が人感センサである場合の動作を説明する。まず、センサ77により、周囲に人が来たことが検知されて低速で起動する。人が手を乾かすためにハンドドライヤー70に手をかざしたところで定常回転数まで加速される。乾かしが終わり、手挿入部79から手が外に出たところで低速運転が再開される。低速運転中に次の人の手を検出されると再度定常回転数まで加速される。周囲の人を検知しなければ運転停止状態が維持される。 The operation when the sensor 77 is a human sensor will be described. First, the sensor 77 detects that a person has come to the surroundings, and starts at a low speed. When a person holds his / her hand over the hand dryer 70 in order to dry his / her hands, the speed is accelerated to a steady rotational speed. When the drying is finished and the hand comes out from the hand insertion portion 79, the low speed operation is resumed. If the next person's hand is detected during low-speed driving, the vehicle is accelerated to the steady rotational speed again. If the surrounding people are not detected, the operation stop state is maintained.
 センサ77は、例えば赤外線、超音波、または可視光を検知するセンサである。この他に、温度センサまたはカメラ認識で人を検知するセンサを用いてもよい。 Sensor 77 is a sensor that detects, for example, infrared rays, ultrasonic waves, or visible light. In addition, a temperature sensor or a sensor that detects a person by camera recognition may be used.
 人感センサをハンドドライヤー70に取り付けることで、使用者がハンドドライヤー70に近づいたことを検知してハンドドライヤー70を予め起動することができる。この際、ハンドドライヤー70に実施の形態1に記載されたモータ制御システム1を適用することで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、より早く定常回転数まで加速することができる。 By attaching a human sensor to the hand dryer 70, it is possible to detect that the user has approached the hand dryer 70 and activate the hand dryer 70 in advance. At this time, by applying the motor control system 1 described in the first embodiment to the hand dryer 70, the detection accuracy of the analog signal, which is the motor current or the motor voltage, is improved. be able to.
 つぎに、本実施の形態に係る電気掃除機61またはハンドドライヤー70に実施の形態1に係る制御手法を適用した場合の運転パターンの一例について説明する。図19は、実施の形態1に係る制御手法を電気掃除機61またはハンドドライヤー70に適用した運転パターンの一例を示すタイムチャートである。図19において、(a)はモータ回転数の変化を示し、(b)はモータ回転数に対するキャリア周波数の変化を示し、(c)は発生ノイズおよび漏洩電流を示している。 Next, an example of an operation pattern when the control method according to the first embodiment is applied to the electric vacuum cleaner 61 or the hand dryer 70 according to the present embodiment will be described. FIG. 19 is a time chart illustrating an example of an operation pattern in which the control method according to the first embodiment is applied to the electric vacuum cleaner 61 or the hand dryer 70. In FIG. 19, (a) shows the change in the motor speed, (b) shows the change in the carrier frequency with respect to the motor speed, and (c) shows the generated noise and the leakage current.
 図19に示す運転パターンの例では、起動から定常運転速度(定常回転数)までの運転区間である低速運転区間においては非同期PWM制御を行い(図中(1)の運転範囲)、定常運転速度から定常運転速度以上の運転区間である高速運転区間においては、モータ回転数(回転速度)の増加に従って、同期9パルス、同期6パルス、同期3パルスの順で同期PWM制御を行っている。ここで、以下に、この運転パターンにおける同期パルス数と、モータ回転数およびキャリア周波数との典型的な例を2つ示す。 In the example of the operation pattern shown in FIG. 19, asynchronous PWM control is performed in the low speed operation section (operation range (1) in the figure), which is the operation section from the start to the steady operation speed (steady rotation speed), and the steady operation speed. In the high-speed operation section that is an operation section higher than the steady operation speed, synchronous PWM control is performed in the order of synchronous 9 pulses, synchronous 6 pulses, and synchronous 3 pulses in accordance with the increase in the motor rotation speed (rotational speed). Here, two typical examples of the number of synchronization pulses, the motor rotation speed, and the carrier frequency in this operation pattern are shown below.
(第1の運転パターン)
         非同期  /9パルス /6パルス  /3パルス
・モータ回転数 :40000rpm /~50000rpm/~70000rpm /~120000rpm
・キャリア周波数:9kHz   /9~12kHz /8~12kHz  /6~12kHz
(First operation pattern)
Asynchronous / 9 pulses / 6 pulses / 3 pulses ・ Motor rotation speed: 40000rpm / ~ 50000rpm / ~ 70000rpm / ~ 120,000rpm
・ Carrier frequency: 9kHz / 9 ~ 12kHz / 8 ~ 12kHz / 6 ~ 12kHz
(第2の運転パターン)
         非同期  /8パルス /6パルス  /4パルス
・モータ回転数 :60000rpm /~75000rpm/~100000rpm /~150000rpm
・キャリア周波数:18kHz  /18~20kHz /15~20kHz  /13.3333~20kHz
(Second operation pattern)
Asynchronous / 8 pulse / 6 pulse / 4 pulse Motor speed: 60000rpm / ~ 75000rpm / ~ 100,000rpm / ~ 150,000rpm
・ Carrier frequency: 18kHz / 18-20kHz / 15-20kHz / 13.3333-20kHz
 なお、上記に示す第1および第2の運転パターンは一例であり、非同期から同期への切り替え、同期パルス数の切り替えが、これらの数値に限定されるものではない。 Note that the first and second operation patterns shown above are examples, and switching from asynchronous to synchronous and switching of the number of synchronous pulses are not limited to these numerical values.
 図19(a)および図19(b)に示すように、モータ回転数が低い起動時および低速運転域(図中の(1)の区間)においては、キャリア周波数を固定した非同期PWM制御を行う。その際、モータ回転数を定常運転速度まで上昇させ、その後当該定常運転速度を維持させている。区間(1)では、キャリア周波数を固定としているので、図19(c)に示すように、発生ノイズおよび漏洩電流を許容値以下に抑制することができる。 As shown in FIGS. 19A and 19B, asynchronous PWM control with a fixed carrier frequency is performed at the start-up time when the motor rotation speed is low and in the low-speed operation range (section (1) in the figure). . At that time, the motor rotational speed is increased to the steady operation speed, and then the steady operation speed is maintained. In the section (1), since the carrier frequency is fixed, as shown in FIG. 19C, the generated noise and the leakage current can be suppressed to an allowable value or less.
 また、同期PWM制御の範囲、すなわち図中の区間(2)~区間(4)では、非同期PWM制御から同期PWM制御に切り替え、発生ノイズおよび漏洩電流が許容値以下となるようにキャリア周波数を増減しつつ、パルス数を切り替えている。上記区間(2)では、同期9パルスで制御しているが、回転数が増加するに従って発生ノイズおよび漏洩電流が許容値近くまで上昇する。そこで、キャリア周波数に上限周波数を設定し、キャリア周波数が上限周波数を超えないように制御している。なお、キャリア周波数の上限周波数は、マイコンの処理負荷、発生ノイズ、漏洩電流などに基づいて決定することができる。 In addition, in the range of synchronous PWM control, that is, in the section (2) to section (4) in the figure, the asynchronous PWM control is switched to the synchronous PWM control, and the carrier frequency is increased or decreased so that the generated noise and the leakage current are less than the allowable values. However, the number of pulses is switched. In the section (2), the control is performed with 9 synchronous pulses, but the generated noise and the leakage current increase to near the allowable value as the rotational speed increases. Therefore, an upper limit frequency is set as the carrier frequency, and control is performed so that the carrier frequency does not exceed the upper limit frequency. The upper limit frequency of the carrier frequency can be determined based on the processing load of the microcomputer, generated noise, leakage current, and the like.
 キャリア周波数が上限周波数に達するか、もしくは達する前に、同期パルス数を小さくする。上記区間(3)では、区間(2)から区間(3)の移行時にキャリア周波数を低減し、且つ、同期パルス数を9から6に切り替えて、発生ノイズおよび漏洩電流が許容値を超えないように抑制している。以下、区間(4)でも同様であり、区間(3)から区間(4)の移行時にキャリア周波数を低減し、且つ、同期パルス数を6から3に切り替えて、発生ノイズおよび漏洩電流が許容値を超えないように抑制している。このように、非同期PWM制御と同期PWM制御を併用し、且つ、同期パルス数を段階的に小さくすることで、発生ノイズおよび漏洩電流を抑制しつつ、起動時から高速運転域までの短時間且つ滑らかな加速を実現している。 ∙ Reduce the number of synchronization pulses before the carrier frequency reaches or reaches the upper limit frequency. In the section (3), the carrier frequency is reduced at the transition from the section (2) to the section (3), and the number of synchronization pulses is switched from 9 to 6, so that the generated noise and the leakage current do not exceed the allowable values. Is suppressed. Hereinafter, the same applies to the section (4), the carrier frequency is reduced at the transition from the section (3) to the section (4), the number of synchronization pulses is switched from 6 to 3, and the generated noise and leakage current are allowed. It is restrained not to exceed. As described above, the asynchronous PWM control and the synchronous PWM control are used in combination, and the number of synchronous pulses is reduced stepwise, thereby suppressing the generated noise and the leakage current, and the short time from the startup to the high speed operation range. Smooth acceleration is achieved.
 また、図20には、図19とは異なる運転パターンの一例を示している。図20(c)には、スイッチング損失およびモジュール温度の特性を示している。 FIG. 20 shows an example of an operation pattern different from that in FIG. FIG. 20C shows the characteristics of switching loss and module temperature.
 図19に示す運転パターンでは、発生ノイズおよび漏洩電流と、その許容値の関係で区間(2)の範囲を狭くして区間(3)に移行しているが、発生ノイズおよび漏洩電流の許容値に余裕がある場合には、スイッチング損失およびモジュール温度を考慮して運転パターンを決定することができる。図20に示す運転パターンでは、スイッチング損失およびモジュール温度に比較的余裕があるため、区間(2)の範囲を広くすることが可能となる。このため、図19に示す運転パターンに比べて余裕のある同期PWM制御が可能となる。 In the operation pattern shown in FIG. 19, the range of the section (2) is narrowed and shifted to the section (3) due to the relationship between the generated noise and leakage current and their allowable values. When there is a margin, the operation pattern can be determined in consideration of the switching loss and the module temperature. In the operation pattern shown in FIG. 20, since the switching loss and the module temperature have a relatively large margin, the range of the section (2) can be widened. For this reason, synchronous PWM control with a margin compared to the operation pattern shown in FIG. 19 is possible.
 なお、上記では起動9パルス、6パルスおよび3パルスの動作切替について説明したが、上記第2の例にも示すように、これら以外のパルス数で制御してもよいことは言うまでもなく、また、9パルスを超えるパルス数(例えば21パルス、15パルス、12パルス)で制御することも、本発明の要旨に含まれる。なお、揺らぎ等で瞬間的または一時的に整数倍の関係が崩れることもあるが、そのような場合も整数倍の関係にあることは言うまでもない。また、モータ回転数が低い条件において、モータ回転数が高い条件よりも同期パルス数を少なくして運転してもよい。 In the above description, the operation switching of the starting 9 pulse, 6 pulse, and 3 pulse has been described. Needless to say, the number of pulses other than these may be controlled as shown in the second example. Control of the number of pulses exceeding 9 pulses (for example, 21 pulses, 15 pulses, 12 pulses) is also included in the gist of the present invention. It should be noted that the relationship of integer multiples may be momentarily or temporarily disrupted due to fluctuations, etc., but it is needless to say that such a case also has an integer multiple relationship. Further, in a condition where the motor rotation speed is low, the operation may be performed with a smaller number of synchronization pulses than in a condition where the motor rotation speed is high.
 以上のように、本実施の形態に係るモータ制御装置は、モータ回転数の増加に応じて非同期PWM制御から同期PWM制御に切り替える制御を行う。その際、非同期PWM制御および同期PWM制御に使用するキャリア周波数は、キャリア周波数の上限値である上限周波数よりも低く設定されている。これにより、モータ回転数が増加しても、発生ノイズおよび漏洩電流が抑制される。 As described above, the motor control device according to the present embodiment performs control to switch from asynchronous PWM control to synchronous PWM control in accordance with an increase in the motor rotation speed. In that case, the carrier frequency used for asynchronous PWM control and synchronous PWM control is set lower than the upper limit frequency which is the upper limit value of the carrier frequency. Thereby, even if the motor rotation speed increases, generated noise and leakage current are suppressed.
 また、本実施の形態に係るモータ制御装置は、同期PWM制御を行う際に、モータ回転数の増加に応じて同期パルス数が小さくなるように制御している。これにより、起動時から高速運転域までの短時間且つ滑らかな加速が実現される。 In addition, the motor control device according to the present embodiment performs control so that the number of synchronous pulses decreases as the number of motor rotations increases when performing synchronous PWM control. As a result, a short time and smooth acceleration from the time of startup to the high-speed operation range is realized.
 ここまでは、単相モータを駆動する単相インバータに同期PWM制御を適用することの効果について説明したが、その他の効果について説明する。 So far, the effect of applying the synchronous PWM control to the single-phase inverter that drives the single-phase motor has been described, but other effects will be described.
 電気掃除機61またはハンドドライヤー70などの高速回転のアプリケーションでは、モータには起動時に大きな電流が流れることから、起動回数が増加するに伴ってバッテリーおよび使用素子の信頼性が低下する。よって、モータを停止させることなく低速で回転させ続けることで起動回数を低減することが望まれる。このような高速回転のアプリケーションに対し、実施の形態1に記載されたモータ制御システム1を適用することで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、安定した低速回転を実現することができ、信頼性を向上させることが可能となる。 In a high-speed rotation application such as the electric vacuum cleaner 61 or the hand dryer 70, since a large current flows through the motor at the time of startup, the reliability of the battery and the elements used decreases as the number of startups increases. Therefore, it is desired to reduce the number of activations by continuing to rotate at a low speed without stopping the motor. By applying the motor control system 1 described in the first embodiment to such a high-speed rotation application, the detection accuracy of an analog signal that is a motor current or a motor voltage is improved. This can be realized and the reliability can be improved.
 さらに、低速起動から定常回転数までの到達時間が大幅に短くなることから、こまめに低速回転まで落とすことで消費電力を削減することも可能となる。このとき、実施の形態1に記載されたモータ制御システム1によれば、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、モータの回転速度の振動を抑制でき、無駄な消費電力を削減することが可能となる。 Furthermore, since the arrival time from the low speed startup to the steady rotation speed is significantly shortened, it is possible to reduce power consumption by frequently reducing the speed to low speed rotation. At this time, according to the motor control system 1 described in the first embodiment, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that vibration of the rotation speed of the motor can be suppressed and useless power consumption is achieved. Can be reduced.
 一般に、電気掃除機61では、操作部66のスイッチをオンすることで、起動から定常回転数まで到達するが、予め低速運転させておくモードを設けることで、操作部66のスイッチをオンして実際に使用するときまでの時間を大幅に低減することが可能となる。このとき、実施の形態1に記載されたモータ制御システム1を用いることで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、モータの回転速度の振動を抑制でき、無駄な消費電力を削減することが可能となる。 Generally, in the vacuum cleaner 61, the operation unit 66 is turned on to reach the steady rotational speed from the start, but by providing a mode for operating at a low speed in advance, the operation unit 66 is turned on. It is possible to significantly reduce the time until actual use. At this time, by using the motor control system 1 described in the first embodiment, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that the vibration of the rotation speed of the motor can be suppressed, and the wasteful consumption. Electric power can be reduced.
 例えば、電源供給開始から2000rpmまで回転させる時間が1sであり、2000rpmから定常回転数である60000rpmまで回転させる時間が0.3sであるとすると、起動から定常回転数に到達するまでに1.3s必要となる。よって時間がかかる起動を予め行っておくことで、実際に使用する際はスイッチオンから定常回転数までわずか0.3sで実現することが可能となる。このとき、実施の形態1に記載されたモータ制御システム1を用いることで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、より短い起動時間を実現することが可能となる。 For example, assuming that the time for rotating from the start of power supply to 2000 rpm is 1 s, and the time for rotating from 2000 rpm to 60000 rpm, which is the steady rotational speed, is 0.3 s, 1.3 s from the start to the steady rotational speed is reached. Necessary. Therefore, by performing a time-consuming start-up in advance, it is possible to realize the actual use from a switch-on to a steady rotational speed in only 0.3 s. At this time, by using the motor control system 1 described in the first embodiment, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that a shorter start-up time can be realized.
 また、入力電流の急峻な立ち上がりが発生する起動時においては、加速レートを低めに設定し急峻な立ち上がりを抑制することで、バッテリーの信頼性を向上させることが可能となる。このとき、実施の形態1に記載されたモータ制御システム1を用いることで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、急峻な立ち上がりが懸念される起動時においても迅速な電流遮断を実現することが可能となる。 In addition, at the time of start-up in which a steep rise of the input current occurs, the reliability of the battery can be improved by setting a low acceleration rate and suppressing the steep rise. At this time, by using the motor control system 1 described in the first embodiment, the detection accuracy of an analog signal that is a motor current or a motor voltage is improved. Current interruption can be realized.
 また、低速運転までの加速レートを下げることにより起動時のモータへ流れる電流も小さくなることから半導体素子の発熱を抑制することで部品の発熱を抑えることができ、部品の信頼性の向上につながる。このとき、実施の形態1に記載されたモータ制御システム1を用いることで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、低い加速レート時の振動を抑制することが可能となる。 In addition, by reducing the acceleration rate until low speed operation, the current that flows to the motor at the time of startup also decreases, so suppressing the heat generation of the semiconductor element can suppress the heat generation of the component, leading to improved component reliability . At this time, by using the motor control system 1 described in the first embodiment, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, so that vibration at a low acceleration rate can be suppressed. Become.
 半導体素子の発熱除去は、通常であれば熱伝導の良い放熱フィンを素子表面に取り付けるか、あるいは表面実装素子を使用して実装基板へ熱を分散させる方法がとられる。また、放熱用のファンを設けて半導体素子に風を当てて冷やすか、あるいは水冷で冷却する方法もあるが、冷却にかかるコストおよび設置体積の増加から、これらの方法は小型の装置には適さない。しかしながら、本実施の形態で説明した電動送風機を備えた電気機器であれば、電動送風機が発生させる風の通り道にこれらの発熱素子を配置することで追加部品を備えることなく、現状の構成で熱を逃がすことが可能となる。 In order to remove the heat generated from the semiconductor element, usually, a heat-dissipating fin having a good thermal conductivity is attached to the element surface, or a method of dispersing the heat to the mounting substrate using a surface-mounted element is used. In addition, there is a method of cooling the semiconductor element by providing a heat radiating fan, or cooling by water cooling, but these methods are suitable for small devices due to the cost of cooling and the increase in installation volume. Absent. However, if the electric device includes the electric blower described in the present embodiment, it is possible to heat the current configuration without providing additional parts by arranging these heating elements in the path of the wind generated by the electric blower. It is possible to escape.
 また、追加部品が必要ないことからコストの増加を抑えることが可能となること、および追加部品を備える分のスペースも必要なくなることから更なる小型化を達成することが可能となる。さらに、小型化が可能な分のスペースをバッテリーに割り当てることで運転時間を延長させることも可能となる。このとき、実施の形態1に記載されたモータ制御システム1を用いることで、モータ電流またはモータ電圧であるアナログ信号の検出精度が向上するため、運転に不必要な無駄な電力を消費することが少なくなるため、より運転時間を延長させることが可能となる。 Further, since no additional parts are required, it is possible to suppress an increase in cost, and it is possible to achieve further miniaturization because a space for providing additional parts is not necessary. Furthermore, it is possible to extend the operation time by allocating a space that can be reduced in size to the battery. At this time, by using the motor control system 1 described in the first embodiment, the detection accuracy of the analog signal that is the motor current or the motor voltage is improved, and therefore, unnecessary power that is unnecessary for the operation may be consumed. Since it decreases, it becomes possible to extend operating time more.
 なお、本実施の形態では、電気掃除機61およびハンドドライヤー70について説明したが、実施の形態1のモータ制御システム1は、モータが搭載された電気機器一般に適用することができる。モータが搭載された電気機器は、例えば、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、物体輸送、吸塵用、一般送排風、またはOA機器である。 In addition, although the vacuum cleaner 61 and the hand dryer 70 were demonstrated in this Embodiment, the motor control system 1 of Embodiment 1 can be applied to the electric equipment with which a motor is mounted generally. Electric equipment equipped with motors include, for example, incinerators, crushers, dryers, dust collectors, printing machines, cleaning machines, confectionery machines, tea making machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, hot air generators For object transportation, dust absorption, general air supply / exhaust, or OA equipment.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 モータ制御システム、2 モータ制御装置、10 電源、11 単相インバータ、11a1~11a4 スイッチング素子、11b1~11b4 ダイオード、11P,11N 直流母線、12 単相モータ、20 電流センサ、21 位置センサ、23 電圧センサ、25 制御部、30,35 AD変換器、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、33a キャリア周波数設定部、34 メモリ、38 キャリア比較部、38a 絶対値演算部、38b,38d 除算部、38c,38d,38f 乗算部、38e 加算部、38g,38h 比較部、38i,38j 出力反転部、40 PWM制御部、51 制御回路、52 比較器、53 DA変換器、61 電気掃除機、62 延長管、63 吸込口体、64 電動送風機、65 集塵室、66 操作部、67 バッテリー、68,77 センサ、70 ハンドドライヤー、71 ケーシング、72 手検知センサ、73 水受け部、74 ドレン容器、76 カバー、78 吸気口。 1 motor control system, 2 motor control device, 10 power supply, 11 single phase inverter, 11a1 to 11a4 switching element, 11b1 to 11b4 diode, 11P, 11N DC bus, 12 single phase motor, 20 current sensor, 21 position sensor, 23 voltage Sensor, 25 control unit, 30, 35 AD converter, 31 processor, 32 drive signal generation unit, 33 carrier generation unit, 33a carrier frequency setting unit, 34 memory, 38 carrier comparison unit, 38a absolute value calculation unit, 38b, 38d Division unit, 38c, 38d, 38f multiplication unit, 38e addition unit, 38g, 38h comparison unit, 38i, 38j output inversion unit, 40 PWM control unit, 51 control circuit, 52 comparator, 53 DA converter, 61 vacuum cleaner 62 extension pipe, 63 Port, 64 electric blower, 65 dust collection chamber, 66 operation section, 67 battery, 68, 77 sensor, 70 hand dryer, 71 casing, 72 hand detection sensor, 73 water receiving section, 74 drain container, 76 cover, 78 Air intake.

Claims (14)

  1.  単相インバータによって駆動される単相モータに流れるモータ電流の検出値に基づいて前記単相インバータをPWM制御する制御部を備えたモータ制御装置であって、
     電圧指令の位相にキャリアを同期させた同期PWM制御と、前記電圧指令の位相に前記キャリアを同期させない非同期PWM制御とが実行され、
     モータ回転数の増加に応じて前記非同期PWM制御から前記同期PWM制御に切り替えられ、前記非同期PWM制御および前記同期PWM制御に使用するキャリア周波数が前記キャリア周波数の上限値である上限周波数よりも低く設定されているモータ制御装置。
    A motor control device comprising a control unit that PWM-controls the single-phase inverter based on a detected value of a motor current flowing in a single-phase motor driven by a single-phase inverter,
    Synchronous PWM control in which the carrier is synchronized with the phase of the voltage command and asynchronous PWM control in which the carrier is not synchronized with the phase of the voltage command are executed,
    The asynchronous PWM control is switched from the asynchronous PWM control to the synchronous PWM control in accordance with an increase in the motor speed, and the carrier frequency used for the asynchronous PWM control and the synchronous PWM control is set lower than the upper limit frequency that is the upper limit value of the carrier frequency. Motor control device.
  2.  前記同期PWM制御を行う際に、モータ回転数の増加に応じて同期パルス数が小さくなるように推移する請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein when performing the synchronous PWM control, the number of synchronous pulses changes in accordance with an increase in the motor rotational speed.
  3.  前記同期パルス数が偶数である請求項2に記載のモータ制御装置。 The motor control device according to claim 2, wherein the number of synchronization pulses is an even number.
  4.  前記制御部は、前記モータ電流の検出値であるアナログデータをディジタルデータに変換するAD変換器を有し、
     前記制御部は、前記モータ電流の互いに隣り合う極性の変化点で決まる電気半サイクル中における前記極性の変化点を含まない連続する期間内において前記AD変換器を起動し、前記電気半サイクルと同一の電気半サイクル中に前記ディジタルデータを読み取る請求項1から3の何れか1項に記載のモータ制御装置。
    The control unit includes an AD converter that converts analog data that is a detected value of the motor current into digital data;
    The controller activates the AD converter in a continuous period not including the polarity change point in the electric half cycle determined by the adjacent polarity change points of the motor current, and is the same as the electric half cycle. The motor control device according to any one of claims 1 to 3, wherein the digital data is read during an electrical half cycle.
  5.  前記制御部は、前記極性の変化点を含む一定の期間である禁止期間内においては、前記AD変換器を起動せず、前記禁止期間以外の期間である許可期間内においては、前記AD変換器を起動し、且つ当該起動より変換処理された前記ディジタルデータを前記AD変換器から読み取る請求項4に記載のモータ制御装置。 The control unit does not activate the AD converter within a prohibition period that is a fixed period including the polarity change point, and does not activate the AD converter within a permission period that is a period other than the prohibition period. The motor control device according to claim 4, wherein the digital data converted from the activation is read from the AD converter.
  6.  前記制御部は、前記ロータの回転位置を検出する位置センサ信号に基づいて、前記ロータの電気角であるロータ回転角を算出し、前記ロータ回転角に基づいて、前記禁止期間および前記許可期間を決定する請求項5に記載のモータ制御装置。 The control unit calculates a rotor rotation angle that is an electrical angle of the rotor based on a position sensor signal that detects a rotation position of the rotor, and determines the prohibition period and the permission period based on the rotor rotation angle. The motor control device according to claim 5, wherein the motor control device is determined.
  7.  前記制御部は、前記禁止期間の直前の前記許可期間内において前記AD変換器から読み取られた複数個の前記ディジタルデータを用いて、前記禁止期間内における前記モータ電流を推定する請求項6に記載のモータ制御装置。 The said control part estimates the said motor current in the said prohibition period using the said several digital data read from the said AD converter in the said permission period immediately before the said prohibition period. Motor control device.
  8.  前記制御部は、キャリアを生成するキャリア生成部を有し、
     前記制御部が前記AD変換器を起動するタイミングは、前記キャリアの山点または谷点のタイミングであり、
     前記制御部が前記AD変換器から前記ディジタルデータを読み取るタイミングは、前記キャリアの山点または谷点のタイミングである請求項5から7の何れか1項に記載のモータ制御装置。
    The control unit includes a carrier generation unit that generates a carrier,
    The timing at which the control unit activates the AD converter is the timing of the peak or valley point of the carrier,
    8. The motor control device according to claim 5, wherein the timing at which the control unit reads the digital data from the AD converter is a timing of a peak point or a valley point of the carrier. 9.
  9.  前記制御部は、前記モータ電流の極性の変化点を含まない連続する期間内において、前記AD変換器からの前記ディジタルデータの読み取りを複数回行う請求項1から8の何れか1項に記載のモータ制御装置。 9. The control unit according to claim 1, wherein the controller reads the digital data from the AD converter a plurality of times within a continuous period that does not include a change point of the polarity of the motor current. Motor control device.
  10.  前記ロータは、複数個の永久磁石を有する請求項1から9の何れか1項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 9, wherein the rotor has a plurality of permanent magnets.
  11.  前記単相インバータは、複数個のスイッチング素子を有し、
     前記複数個のスイッチング素子の各々は、ワイドバンドギャップ半導体を用いて形成されている請求項1から10の何れか1項に記載のモータ制御装置。
    The single-phase inverter has a plurality of switching elements,
    11. The motor control device according to claim 1, wherein each of the plurality of switching elements is formed using a wide band gap semiconductor.
  12.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム又はダイヤモンドである請求項11に記載のモータ制御装置。 The motor control device according to claim 11, wherein the wide band gap semiconductor is silicon carbide, gallium nitride, or diamond.
  13.  請求項1から12の何れか1項に記載のモータ制御装置と前記単相インバータと前記単相モータとを備える電気掃除機。 A vacuum cleaner comprising the motor control device according to any one of claims 1 to 12, the single-phase inverter, and the single-phase motor.
  14.  請求項1から12の何れか1項に記載のモータ制御装置と前記単相インバータと前記単相モータとを備えるハンドドライヤー。 A hand dryer comprising the motor control device according to any one of claims 1 to 12, the single-phase inverter, and the single-phase motor.
PCT/JP2015/081041 2015-11-04 2015-11-04 Motor control device, vacuum cleaner, and hand dryer WO2017077599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017548560A JP6516863B2 (en) 2015-11-04 2015-11-04 Motor control device, vacuum cleaner and hand dryer
PCT/JP2015/081041 WO2017077599A1 (en) 2015-11-04 2015-11-04 Motor control device, vacuum cleaner, and hand dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081041 WO2017077599A1 (en) 2015-11-04 2015-11-04 Motor control device, vacuum cleaner, and hand dryer

Publications (1)

Publication Number Publication Date
WO2017077599A1 true WO2017077599A1 (en) 2017-05-11

Family

ID=58661767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081041 WO2017077599A1 (en) 2015-11-04 2015-11-04 Motor control device, vacuum cleaner, and hand dryer

Country Status (2)

Country Link
JP (1) JP6516863B2 (en)
WO (1) WO2017077599A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229874A1 (en) * 2017-06-13 2018-12-20 三菱電機株式会社 Motor drive device, electric air blower, electric vacuum cleaner, and hand drier
WO2019016901A1 (en) * 2017-07-19 2019-01-24 三菱電機株式会社 Motor drive device, and heat pump apparatus and refrigeration/air-conditioning apparatus using motor drive device
WO2019180968A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
WO2019180970A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric fan, vacuum cleaner, and hand dryer
CN110311620A (en) * 2018-03-23 2019-10-08 本田技研工业株式会社 Power inverter control system, electric motor system and composite system
WO2020174671A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Motor drive device and air conditioner
WO2020178955A1 (en) * 2019-03-04 2020-09-10 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2020208786A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
CN113574794A (en) * 2019-03-28 2021-10-29 三菱电机株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
CN114514691A (en) * 2020-08-28 2022-05-17 日产自动车株式会社 Motor control device and motor control method
JP7397625B2 (en) 2019-10-30 2023-12-13 株式会社Subaru vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510834A (en) * 1978-07-06 1980-01-25 Mitsubishi Electric Corp Alternating current feeder
JP2007209394A (en) * 2006-02-07 2007-08-23 Sanyo Electric Co Ltd Portable hair dryer
JP2009207261A (en) * 2008-02-27 2009-09-10 Denso Corp Controller for rotating machine
JP2015000342A (en) * 2013-06-13 2015-01-05 ダイソン テクノロジー リミテッド Vacuum cleaner
JP2015053824A (en) * 2013-09-09 2015-03-19 株式会社日立製作所 Motor drive system, and electric railway vehicle mounting the same
JP2015172473A (en) * 2014-03-12 2015-10-01 三菱電機株式会社 Heat pump hot water supply outdoor unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510834A (en) * 1978-07-06 1980-01-25 Mitsubishi Electric Corp Alternating current feeder
JP2007209394A (en) * 2006-02-07 2007-08-23 Sanyo Electric Co Ltd Portable hair dryer
JP2009207261A (en) * 2008-02-27 2009-09-10 Denso Corp Controller for rotating machine
JP2015000342A (en) * 2013-06-13 2015-01-05 ダイソン テクノロジー リミテッド Vacuum cleaner
JP2015053824A (en) * 2013-09-09 2015-03-19 株式会社日立製作所 Motor drive system, and electric railway vehicle mounting the same
JP2015172473A (en) * 2014-03-12 2015-10-01 三菱電機株式会社 Heat pump hot water supply outdoor unit

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018229874A1 (en) * 2017-06-13 2019-11-07 三菱電機株式会社 Motor driving device, electric blower, vacuum cleaner and hand dryer
WO2018229874A1 (en) * 2017-06-13 2018-12-20 三菱電機株式会社 Motor drive device, electric air blower, electric vacuum cleaner, and hand drier
WO2019016901A1 (en) * 2017-07-19 2019-01-24 三菱電機株式会社 Motor drive device, and heat pump apparatus and refrigeration/air-conditioning apparatus using motor drive device
US11114970B2 (en) 2017-07-19 2021-09-07 Mitsubishi Electric Corporation Motor driver, heat pump system and refrigeration and air conditioning equipment using motor driver
CN110915131A (en) * 2017-07-19 2020-03-24 三菱电机株式会社 Motor drive device, and heat pump device and refrigeration and air-conditioning device using same
WO2019180970A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric fan, vacuum cleaner, and hand dryer
CN110311620A (en) * 2018-03-23 2019-10-08 本田技研工业株式会社 Power inverter control system, electric motor system and composite system
US11863104B2 (en) 2018-03-23 2024-01-02 Mitsubishi Electric Corporation Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
CN110311620B (en) * 2018-03-23 2023-05-02 本田技研工业株式会社 Power conversion device control system, motor system, and compound system
JPWO2019180970A1 (en) * 2018-03-23 2020-12-03 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
JPWO2019180968A1 (en) * 2018-03-23 2020-12-03 三菱電機株式会社 Motor drive, vacuum cleaner and hand dryer
WO2019180968A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
WO2020174671A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Motor drive device and air conditioner
JP7038893B2 (en) 2019-02-28 2022-03-18 三菱電機株式会社 Motor drive and air conditioner
JPWO2020174671A1 (en) * 2019-02-28 2021-09-13 三菱電機株式会社 Motor drive and air conditioner
JPWO2020178955A1 (en) * 2019-03-04 2021-09-30 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
WO2020178955A1 (en) * 2019-03-04 2020-09-10 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
CN113519115B (en) * 2019-03-04 2024-02-23 三菱电机株式会社 Motor driving device, electric blower, electric dust collector and hand drier
CN113519115A (en) * 2019-03-04 2021-10-19 三菱电机株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7042966B2 (en) 2019-03-04 2022-03-28 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
CN113574794A (en) * 2019-03-28 2021-10-29 三菱电机株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
JP7150151B2 (en) 2019-04-11 2022-10-07 三菱電機株式会社 Motor drives, electric blowers, vacuum cleaners and hand dryers
JPWO2020208786A1 (en) * 2019-04-11 2021-10-28 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
WO2020208786A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
CN113647012A (en) * 2019-04-11 2021-11-12 三菱电机株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7397625B2 (en) 2019-10-30 2023-12-13 株式会社Subaru vehicle
EP4207587A4 (en) * 2020-08-28 2023-10-11 Nissan Motor Co., Ltd. Motor control device and motor control method
US11855566B2 (en) 2020-08-28 2023-12-26 Nissan Motor Co., Ltd. Electric motor control apparatus and electric motor control method
CN114514691A (en) * 2020-08-28 2022-05-17 日产自动车株式会社 Motor control device and motor control method

Also Published As

Publication number Publication date
JPWO2017077599A1 (en) 2018-03-15
JP6516863B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
WO2017077599A1 (en) Motor control device, vacuum cleaner, and hand dryer
JP6388730B2 (en) Motor control device, vacuum cleaner and hand dryer
JP6644159B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP6671516B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JPWO2018047274A1 (en) Motor drive device, electric blower, and vacuum cleaner
CN111937295B (en) Motor driving device, electric blower, dust collector and hand dryer
JP6847195B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2017077574A1 (en) Control device for single-phase ac motor
JP7237198B2 (en) motor drives, vacuum cleaners and hand dryers
JP6430030B2 (en) Motor control device, vacuum cleaner and hand dryer
JP7150151B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
JP7076637B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP7237197B2 (en) motor drives, vacuum cleaners and hand dryers
JP6910538B2 (en) Motor drive, vacuum cleaner and hand dryer
WO2022085050A1 (en) Motor driving device, electric blower, electric vacuum cleaner, and hand dryer
WO2022085049A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2019180968A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
WO2022085048A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7150150B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
JP7150152B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
JP6616055B1 (en) Motor drive device, vacuum cleaner and hand dryer
WO2019180969A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer
CN113597738A (en) Motor driving device, electric vacuum cleaner and hand dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907785

Country of ref document: EP

Kind code of ref document: A1