WO2017073169A1 - Electrophoresis element, display device, and electronic equipment - Google Patents

Electrophoresis element, display device, and electronic equipment Download PDF

Info

Publication number
WO2017073169A1
WO2017073169A1 PCT/JP2016/076096 JP2016076096W WO2017073169A1 WO 2017073169 A1 WO2017073169 A1 WO 2017073169A1 JP 2016076096 W JP2016076096 W JP 2016076096W WO 2017073169 A1 WO2017073169 A1 WO 2017073169A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoretic
porous layer
particles
fibrous structure
migrating particles
Prior art date
Application number
PCT/JP2016/076096
Other languages
French (fr)
Japanese (ja)
Inventor
綾 首藤
美成子 渡辺
小林 健
貝野 由利子
阿部 康之
健太郎 佐藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017073169A1 publication Critical patent/WO2017073169A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements

Definitions

  • the present disclosure relates to an electrophoretic element, a display device using the same, and an electronic apparatus.
  • Examples of such a display device include various displays such as a cholesteric liquid crystal type, an electrophoretic type, an electrooxidation reduction type, and a twist ball type.
  • a reflection type display device is advantageous. This is because a reflective display device performs display using reflection (scattering) of external light, as with paper, so that a display quality closer to that of paper can be obtained.
  • Patent Documents 1 to 4 propose a reflection type display device using an electrophoretic phenomenon.
  • an electrophoretic element in which electrophoretic particles are dispersed and a porous layer is disposed in an insulating liquid is provided with a charged layer having a polarity opposite to that of the electrophoretic particles.
  • the memory property non-volatility
  • Patent Documents 2 and 3 memory performance can be improved by adding a polymer to the migrating particles to cause depletion and aggregation.
  • memory property can be improved by aggregating electrophoretic particles using silica.
  • Patent Document 1 improves the memory performance, it takes time to peel off the migrating particles from the charged layer, which may reduce the responsiveness.
  • the polymer that covers or is modified by the electrophoretic particles inhibits the movement of the electrophoretic particles, resulting in a slow response.
  • the method of Patent Document 4 since the agglomerated migrating particles are difficult to peel off, the response is slow. As described above, there is a problem that the response is lowered while the memory performance is improved.
  • An electrophoretic element includes, in an insulating liquid, an electrophoretic particle, and a porous layer having a light reflectivity different from the electrophoretic particle and including a plurality of holes through which the electrophoretic particle passes. And the average pore diameter of the porous layer is 1.0 to 4.3 times the average particle diameter of the migrating particles.
  • a display device includes the electrophoretic element according to the embodiment of the present disclosure described above between a pair of electrodes.
  • An electronic apparatus includes the display device according to the embodiment of the present disclosure.
  • the electrophoretic particles are loosened in the display state after one voltage is applied and the electrophoretic particles move to one side of the porous layer.
  • the apparent particle size of the migrating particles increases.
  • the average pore size of the porous layer is 1.0 to 4.3 times the average particle size of the migrating particles
  • the apparent particle size of the migrating particles becomes larger than the pore size of the porous layer.
  • the migrating particles are physically supported by the porous layer. In this display state, the migrating particles are only gently gathered, so when another voltage is applied, the migrating particles are easily separated and move through the insulating liquid and pass through the porous layer. be able to.
  • the average pore diameter of the porous layer is 1.0 to 4.3 times the average particle diameter of the electrophoretic particles.
  • the apparent particle size of the migrating particles is larger than the pore size of the porous layer, and the migrating particles can be physically supported by the porous layer.
  • memory property improves.
  • the migrating particles are easily separated from each other, and thus mobility (responsiveness) is not easily inhibited. Therefore, it is possible to improve the memory performance while suppressing a decrease in responsiveness.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • 14 is a perspective view illustrating an appearance of application example 1.
  • FIG. 4B is a perspective view illustrating another example of the electronic book illustrated in FIG. 4A.
  • 12 is a perspective view illustrating an appearance of application example 2.
  • FIG. 12 is a perspective view illustrating an appearance of application example 3.
  • FIG. 6B is a perspective view illustrating another display example of the electronic timepiece illustrated in FIG. 6A.
  • Embodiment Example of display device having an electrophoretic element in which the ratio of the average pore diameter of the porous layer to the average particle diameter of the electrophoretic particles is within a predetermined range
  • Configuration of electrophoretic element 1-2.
  • Configuration of display device 1-3. Effect 2.
  • Example 3. Application examples
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) including an electrophoretic element (electrophoretic element 30) according to an embodiment of the present disclosure.
  • the electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and is used as a display body of various electronic devices such as tablets.
  • the electrophoretic element 30 includes electrophoretic particles 32 and a porous layer 33 having pores H in an insulating liquid 31.
  • FIG. 1 schematically illustrates the configuration of the display device 1 including the electrophoretic element 30 and may differ from actual dimensions and shapes.
  • the insulating liquid 31 is made of, for example, an organic solvent such as paraffin or isoparaffin.
  • an organic solvent such as paraffin or isoparaffin.
  • one kind of organic solvent may be used, or a plurality of kinds of organic solvents may be used. It is desirable to make the refractive index of the insulating liquid 31 as low as possible. When the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased.
  • the kinematic viscosity of the insulating liquid 31, for example it is desirably 1.0 mm 2 / sec or more 5.0 mm 2 / sec or less, that for example is 1.0 mm 2 / sec or more 3.0 mm 2 / sec More desirable. This is because responsiveness and reflectance can be increased.
  • a coloring agent for example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 31.
  • the migrating particles 32 dispersed in the insulating liquid 31 are one or more charged particles, and each is positively or negatively charged.
  • the migrating particles 32 have arbitrary optical characteristics (light reflectivity, light reflectivity), and a contrast (CR) is generated due to the difference between the light reflectivity of the migrating particles 32 and the light reflectivity of the porous layer 33. It is like that.
  • the migrating particles 32 may be brightly displayed and the porous layer 33 may be darkly displayed, or the migrating particles 32 may be darkly displayed and the porous layer 33 may be brightly displayed.
  • the migrating particles 32 When the migrating particles 32 are brightly displayed, the migrating particles 32 are visually recognized as, for example, white or a color close to white, and when darkly displayed, they are visually recognized as, for example, black or a color close to black.
  • the color of the migrating particles 32 is not particularly limited as long as it produces a contrast with respect to the porous layer 33.
  • the migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One of these may be used for the migrating particles 32, or two or more of them may be used.
  • the migrating particles 32 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • the particle size of the migrating particles 32 is, for example, 30 nm or more and 300 nm or less.
  • the particle size of the migrating particles 32 is a so-called primary particle size (minimum unit of particle size).
  • the average particle diameter of the migrating particles 32 is configured to have a predetermined ratio with the average pore diameter of the porous layer 33 described later.
  • the average particle diameter of the migrating particles 32 is measured in a solution in which the migrating particles 32 are dispersed (electrophoretic particle dispersion).
  • organic pigments examples include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area
  • the specific material of the migrating particles 32 is selected according to, for example, the role that the migrating particles 32 play in causing contrast.
  • a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 32.
  • the migrating particles 32 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide.
  • metal oxides such as copper-iron-chromium oxide are used.
  • Electrophoretic particles 32 made of a carbon material exhibit excellent chemical stability, mobility and light absorption.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding and mobility of the migrating particles 32 are ensured. Specifically, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are less likely to shield (conceal) the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate.
  • the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 for a long period of time and are difficult to be adsorbed on the porous layer 33. For this reason, for example, a dispersant is added to the insulating liquid 31.
  • a dispersant and a charge control agent may be used in combination.
  • This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31 and causes the migrating particles 32 to move by electrostatic repulsion. It is for dispersing.
  • a dispersant examples include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemical, or Span series manufactured by TCI America.
  • the migrating particles 32 may be subjected to a surface treatment.
  • This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • long-term dispersion stability of the migrating particles 32 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
  • a material (adsorbent material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32 is used.
  • the adsorbable functional group is determined according to the forming material of the migrating particle 32.
  • the migrating particles 32 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 32 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 32 and grafting it onto the surface (graftable material).
  • the graft material has, for example, a polymerizable functional group and a dispersing functional group.
  • the functional group for dispersion disperses the migrating particles 32 in the insulating liquid 31 and retains dispersibility due to steric hindrance.
  • the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • AIBN azobisisobutyronitrile
  • a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
  • the porous layer 33 has light reflectivity different from that of the migrating particles 32 and has a plurality of pores H (holes) through which the migrating particles 32 pass.
  • FIG. 2 shows an example of the porous layer 33.
  • the porous layer 33 is configured to include, for example, a fibrous structure 34 having a plurality of pores H and non-migrating particles 35 held by the fibrous structure 34.
  • the non-migrating particles 35 are held on the fibrous structure 34 by, for example, a surfactant.
  • the fibrous structure 34 is a three-dimensional structure (irregular network structure such as a nonwoven fabric). This is because light (external light) is diffusely reflected (multiple scattering) and the reflectance of the porous layer 33 can be increased. Further, even when the thickness of the porous layer 33 is small, a high reflectance can be obtained, the contrast of the electrophoretic element 30 can be improved, and the energy required for the migration of the migrating particles 32 can be reduced.
  • the fibrous structure 34 is formed by, for example, one or a plurality of fibers (fibrous substances) folded randomly or one or a plurality of fibers entangled randomly.
  • the fibers constituting the fibrous structure 34 have a sufficient length with respect to the fiber diameter (diameter). Moreover, what kind of thing may be sufficient as the shape of each fiber. For example, it may extend linearly or may have a curved shape. Moreover, it may be curled, may be bent in the middle, or may be branched.
  • the pore H is a portion corresponding to the gap between such fibers.
  • the pore H penetrates the porous layer 33 and has a pore diameter (diameter) through which the migrating particles 32 can pass.
  • the average pore diameter of the pores H (the average pore diameter of the porous layer 33) is 1.0 to 4.3 times the average particle diameter of the migrating particles 32.
  • the average pore diameter of the porous layer 33 is preferably, for example, 150 nm or more and 750 nm or less. This is because the memory performance can be improved.
  • the pores H pass straight through the porous layer 33 and have a constant diameter, but the shape of the pores H is not limited to such a shape.
  • the pores H only need to penetrate the porous layer 33, and may be formed along, for example, an oblique direction or may meander.
  • the pore diameter is not necessarily constant, and in fact, many pores are thicker or thinner.
  • the pore diameter of the pore H is the diameter of the narrowest part (minimum diameter).
  • the fiber diameter is not constant, and a thick portion 34a and a thin portion 34b are mixed (FIG. 2).
  • a part having a diameter of 600 nm to 1200 nm and a part having a diameter of 200 nm to 500 nm are mixed.
  • the fibrous structure 34 includes a portion having a fiber diameter of twice or more the average fiber diameter at a ratio of 20% or less. More desirably, a portion having a fiber diameter that is twice or more the average fiber diameter is contained at a ratio of 10% or less, more desirably 5% or less.
  • the fibers are partially thick or thin, but one whole fiber may be thick with a constant width or thin with a constant width. Further, as the average fiber diameter becomes smaller, the light is more easily diffusely reflected, and the pore diameter of the pores H becomes larger.
  • the fiber diameter of the fibrous structure 34 can be adjusted by several methods. That is, in the step of forming the porous layer 33, for example, the polymer concentration, the mixing ratio of the non-migrating particles 35, the modification amount of the surfactant that modifies the surface of the non-migrating particles 35, or the surfactant added to the polymer solution
  • the fiber diameter can be changed by adjusting the amount or the like.
  • the fiber diameter is relative to the portion (34b) in which the non-migrating particles 35 are discretely arranged with respect to the fibrous structure 34 (the dispersibility of the non-migrating particles 35 is good).
  • the portion (34a) where the non-electrophoretic particles 35 are locally gathered and arranged is formed to have a relatively large fiber diameter.
  • the fiber diameter of the fibrous structure 34 can be measured, for example, as follows. That is, the display device 1 is cut using an instrument such as a microtome, and an arbitrary cross section or an arbitrary plane of the cut electrophoretic element 30 is observed using a scanning electron microscope (SEM). To measure. Specifically, the fiber diameter is measured at several tens to several hundreds (points) of the SEM image, and the average value of these is taken as the average fiber diameter of the fibrous structure 34. Furthermore, the ratio of the measurement point which shows the magnitude
  • SEM scanning electron microscope
  • the thickness of the porous layer 33 is, for example, 5 ⁇ m or more and 100 ⁇ m or less, depending on the element configuration of the electrophoretic element 30. In order to provide sufficient white reflectance, black reflectance, and response time, it is more desirably 15 ⁇ m or more and 50 ⁇ m or less.
  • the fibrous structure 34 as described above is, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating. It is formed by law. By using such a method, the fibrous structure 34 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
  • the fibrous structure 34 can be composed of nanofibers.
  • the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter.
  • the fibrous structure 34 made of nanofibers the proportion of the pores H in the unit volume increases, and the migrating particles 32 can easily pass through the porous layer 33. Therefore, the energy required for moving the migrating particles 32 can be reduced.
  • the fibrous structure 34 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrospinning method, the fibrous structure 34 having a small fiber diameter can be easily and stably formed.
  • a fibrous structure 34 having a light reflectance different from that of the migrating particles 32 It is desirable to use a fibrous structure 34 having a light reflectance different from that of the migrating particles 32. Thereby, a contrast due to a difference in light reflectance between the porous layer 33 and the migrating particles 32 is easily formed.
  • a fibrous structure 34 showing light transparency (colorless and transparent) in the insulating liquid 31 may be used.
  • Non-electrophoretic particles 35 are one or more particles that are fixed to the fibrous structure 34 and do not undergo electrophoresis.
  • the non-migrating particles 35 may be embedded in the fibrous structure 34 or may partially protrude from the fibrous structure 34.
  • the average particle diameter of the non-migrating particles 35 is, for example, not less than 150 nm and not more than 700 nm.
  • the light reflectance of the non-migrating particles 35 is different from the light reflectance of the migrating particles 32.
  • the non-migrating particles 35 can be made of the same material as the material of the migrating particles 32 described above. Specifically, when the non-migrating particles 35 (porous layer 33) display brightly, the same material as that when the migrating particles 32 display brightly can be used. When the non-electrophoretic particles 35 display dark, the same material as that used when the electrophoretic particles 32 display dark can be used. When performing a bright display by the porous layer 33, it is desirable that the non-migrating particles 35 be made of a metal oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity.
  • the constituent materials of the non-migrating particles 35 and the migrating particles 32 may be the same or different. The color visually recognized when the non-electrophoretic particle 35 performs bright display or dark display is the same as that described for the electrophoretic particle 32.
  • the surface of the non-electrophoretic particle 35 may be modified with a surfactant.
  • Surfactants are, for example, anionic (anionic) surfactants having a carboxylic acid, sulfonic acid or phosphoric acid structure as hydrophilic groups and cationic (cationic) properties having, for example, tetraalkylammonium or alkylamine as hydrophilic groups. Surfactant is mentioned.
  • nonionic (nonionic) surfactants having a hydrophilic part as a non-electrolyte that is, a non-ionized hydrophilic part
  • amphoteric surfactants having both an anionic part and a cationic part in the molecule may be used. .
  • amphoteric surfactants examples include alkyl dimethylamine oxide and alkyl carboxybetaine.
  • a metal material such as titanium oxide
  • an anionic surfactant it is desirable to use an anionic surfactant.
  • a surfactant having a hydrophilic group with a small molecular volume such as carboxylic acid is desirable because it easily covers the entire surface of the non-electrophoretic particle 35. Further, it is desirable that the surfactant does not ooze into the insulating liquid 31 so that the display characteristics are not deteriorated for a long time.
  • Such a porous layer 33 can be formed by the following method, for example.
  • the non-migrating particles 35 for example, titanium oxide having a predetermined primary particle size is prepared, and this is added to, for example, an organic solvent in which a carboxylic acid anionic surfactant is dissolved and stirred. Thereby, titanium oxide (non-electrophoretic particles 35) whose surface is coated with a carboxylic acid anionic surfactant is obtained.
  • a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then the non-electrophoretic particles 35 are added to the solution and sufficiently stirred. And spinning to prepare a spinning solution.
  • the fibrous structure 34 holding the non-migrating particles 35 is formed by spinning the spinning solution by, for example, an electrostatic spinning method.
  • the primary particle size is a minimum particle size.
  • the primary particle size represents the particle size of each particle.
  • the dispersibility of the non-migrating particles 35 in the spinning solution is enhanced by using the non-migrating particles 35 that have been modified with a surfactant in advance.
  • an electric field is easily applied to the non-migrating particles 35 during spinning, and a fibrous structure 34 with a reduced fiber diameter, that is, a fine fiber is obtained.
  • the surface of the non-electrophoretic particle 35 fixed to the fibrous structure 34 is covered with a polymer constituting the fibrous structure 34.
  • the porous layer 33 is not limited to the one including the fibrous structure 34 and the non-electrophoretic particle 35 as described above, and may include the pore H and a light reflectivity different from that of the electrophoretic particle 32. That's fine.
  • it may be a polymer film having pores H formed by laser processing.
  • the porous layer 33 may be a cloth knitted with synthetic fibers or the like, or an open-cell porous polymer.
  • the fibrous structure 34 is preferably composed of molecules having a main skeleton (main part of the molecule) composed of, for example, carbon atoms, oxygen atoms and hydrogen atoms.
  • the main skeleton of this molecule does not contain atoms other than carbon atoms, oxygen atoms, and hydrogen atoms, and consists only of these atoms. It is desirable that such molecules forming the fibrous structure 34 do not include a highly polar functional group such as a hydroxyl group and a carboxylic acid group. Thereby, the absolute value of the surface potential of the fibrous structure 34 becomes small, and the responsiveness of the electrophoretic element 30 can be improved.
  • the main skeleton refers to a portion excluding both ends of the molecule.
  • the molecules forming the fibrous structure 34 are preferably composed of carbon atoms, oxygen atoms and hydrogen atoms up to both ends, but the terminals contain atoms other than these carbon atoms, oxygen atoms and hydrogen atoms. May be.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) is used as a catalyst. Nitrogen atoms and the like are contained at both ends of the polymer synthesized in this way, but the atoms at the ends are less than 1/1000 of the whole molecule in terms of molecular weight. Therefore, this terminal atom contributes little to the properties of the molecule.
  • polymerization initiators other than AIBN are preferably composed of carbon atoms, oxygen atoms and hydrogen atoms up to both ends, but the terminals contain atoms other than these carbon atoms, oxygen atoms and hydrogen atoms. May be.
  • AIBN azobisisobutyronitrile
  • the electrophoretic element 30 can obtain high reliability.
  • the molecule forming the fibrous structure 34 is a chain polymer.
  • a chain molecule refers to a molecule that does not include a cyclic atomic arrangement structure.
  • Examples of the cyclic atomic arrangement include a monocyclic compound and a heterocyclic compound.
  • Monocyclic compounds are composed of a single element, and specifically include aromatic compounds, cycloalkenes, cycloalkanes, cycloalkynes, and the like.
  • the heterocyclic compound is composed of two or more kinds of elements, and specifically includes pyrrole, carbazole, cyclic acetal, pyran, furan and thiophene.
  • the chain molecule may be linear or branched.
  • the fibrous structure 34 is composed of chain molecules, the steric hindrance is smaller than that of a molecule including a cyclic structure, so that the migrating particles 32 are easily moved, and the contrast and responsiveness of the electrophoretic element 30 are improved. To do.
  • the chain molecule constituting the fibrous structure 34 includes an ester group.
  • Specific examples of the chain molecule include polyalkyl methacrylate, polyalkyl acrylate, polyalkenyl methacrylate, polyalkenyl acrylate, polyalkynyl methacrylate and polyalkynyl acrylate.
  • This chain molecule does not have a functional group having a polarity higher than that of the ester group, and the absolute value of the surface potential of the fibrous structure 34 is, for example, 20 mV or less. It is more desirable to select the chain molecule so that the absolute value of the surface potential of the fibrous structure 34 is 10 mV or less. That is, the ester group has a smaller polarity than the cyano group and the like, but this is sufficiently large for spinning using the electrospinning method, and the fibrous structure 34 can be easily formed by the electrospinning method. can do.
  • the chain molecule constituting the fibrous structure 34 it is desirable to use a material that is not easily decomposed by microorganisms. That is, it is desirable that the chain molecule is resistant to biodegradation.
  • the biodegradable polymer include polylactic acid, polyvinyl alcohol, cellulose acetate, collagen, gelatin, and chitosan. Since such a polymer is easily decomposed, there is a possibility that the characteristics of the fibrous structure cannot be maintained when some kind of stimulus is applied to the electrophoretic element from the outside. In addition, many of such polymers are water-soluble and may be dissolved by moisture in the electrophoretic element, so that the shape of the fibrous structure cannot be maintained.
  • the fibrous structure 34 is formed of chain molecules having resistance to biodegradation, the stability of the fibrous structure 34 is increased. Therefore, the reliability of the electrophoretic element 30 can be improved.
  • the surface of the fibrous structure 34 may be covered with an arbitrary protective layer.
  • the display device 1 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information or a symbol) using an electrophoretic phenomenon, and between the drive substrate 10 and the counter substrate 20, The electrophoretic element 30 described above is included.
  • the space between the driving substrate 10 and the counter substrate 20 is adjusted to a predetermined distance by the spacer 40.
  • the drive substrate 10 has, for example, a TFT (Thin Film Transistor) 12 on one surface of the support member 11.
  • a protective layer 13 and a planarization insulating layer 14 are formed on the TFT 12.
  • a pixel electrode 15 is provided on the planarization insulating layer 14.
  • An electrophoretic element 30 is formed on the pixel electrode 15 via an adhesive layer (not shown).
  • the TFT 12 and the pixel electrode 15 are arranged in a matrix or segment, for example.
  • the support member 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like.
  • the inorganic material include silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ).
  • Silicon oxide includes glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel
  • examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
  • the support member 11 may be non-light transmissive.
  • the support member 11 may be configured by a rigid substrate such as a wafer, or may be configured by a flexible thin glass or film. By using a flexible material for the support member 11, the flexible display device 1 can be realized.
  • the TFT 12 is a switching element for selecting a pixel.
  • the TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer.
  • the protective layer 13 and the planarization insulating layer 14 are made of an insulating resin material such as polyimide, for example. If the surface of the protective layer 13 is sufficiently flat, the planarization insulating layer 14 can be omitted.
  • the pixel electrode 15 is formed of a metal material such as gold (Au), silver (Ag), or copper (Cu), for example.
  • the pixel electrode 15 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the planarization insulating layer 14.
  • the counter substrate 20 includes, for example, a support member 21 and a counter electrode 22.
  • the counter electrode 22 is provided on the entire surface of the support member 21 (the surface facing the drive substrate 10).
  • the counter electrode 22 may be arranged in a matrix or segment like the pixel electrode 15.
  • the support member 21 is made of the same material as the support member 11 except that it is light transmissive.
  • the counter electrode 22 for example, indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), or the like has a light-transmitting conductivity.
  • ITO indium oxide-tin oxide
  • ATO antimony oxide-tin oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • a material transparent conductive film
  • the light transmittance (transmittance) of the counter electrode 22 is as high as possible. For example, it is 80% or more.
  • the electrical resistance of the counter electrode 22 is desirably as low as possible, for example, 100 ⁇ / ⁇ or less.
  • an insulating liquid 31 is filled between the drive substrate 10 and the counter substrate 20, specifically, a space between the pixel electrode 15 and the counter electrode 22.
  • the porous layer 33 is supported by the spacer 40, for example.
  • the space filled with the insulating liquid 31 between the pixel electrode 15 and the counter electrode 22 is, for example, a region close to the pixel electrode 15 with the porous layer 33 as a boundary, as a save region R1 and a counter electrode 22.
  • the area on the near side is divided as a display area R2. In practice, however, the saving area R1 and the display area R2 are often not clearly separated.
  • the porous layer 33 is disposed in almost the entire area between the pixel electrode 15 and the counter electrode 22, and the retreat area R 1 and the display area R 2 exist in the porous layer 33.
  • the porous layer 33 may be disposed so as to be biased to one of the pixel electrode 15 and the counter electrode 22.
  • the thickness of the spacer 40 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the spacer 40 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 10 and the counter substrate 20.
  • the arrangement shape of the spacer 40 is not particularly limited, it is desirable that the spacer 40 is provided so as not to disturb the movement of the migrating particles 32 and to be uniformly distributed.
  • the migrating particles 32 are shielded by the porous layer 33 in the state where the migrating particles 32 are disposed in the retreat area R ⁇ b> 1 in all the pixels.
  • the electrophoretic element 30 is viewed from the 20 side, no contrast is generated (an image is not displayed).
  • the migrating particles 32 are porous from the retreat area R1. It moves to the display area R2 via the quality layer 33 (pore H).
  • the pixels where the migrating particles 32 are shielded by the porous layer 33 and the pixels which are not shielded coexist, when the electrophoretic element 30 is viewed from the counter substrate 20 side, the migrating particles 32 and the porous layer are seen. Contrast is generated due to the difference in light reflectivity from 33. Thereby, an image is displayed.
  • this display device 1 it is possible to display a high-quality image suitable for colorization and moving image display, for example, by the electrophoretic element 30 having high responsiveness.
  • the electrophoretic element 30 since the electrophoretic element 30 generates contrast due to the difference in light reflectivity between the electrophoretic particles 32 and the porous layer 33, the electrophoretic particles 32 and the porous layer 33 that are brightly displayed.
  • the light reflectance is higher than the light reflectance for the dark display.
  • the display device 1 when a single voltage is applied to the electrophoretic element 30, as described above, the electrophoretic particles 32 move to one side of the porous layer 33 in the selective pixel region, thereby improving the contrast. It is possible to display an image. In this display state, the migrating particles 32 gather together in the vicinity of the pixel electrode 15 or the counter electrode 22, and the apparent particle size of the migrating particles increases.
  • the average pore diameter of the porous layer 33 is 1.0 to 4.3 times the average particle diameter of the migrating particles 32, the apparent particle diameter of the migrating particles 32 is the porous layer 33.
  • the migrating particles 32 are physically supported by the porous layer 33. Thereby, even after the supply of voltage is temporarily stopped, the display state is maintained, that is, the memory performance is improved.
  • a method for improving the memory performance for example, there is a method of providing a charged layer having a polarity opposite to that of the migrating particles. In this method, it takes time to peel off the migrating particles from the charged layer.
  • a method of adding polymer to the electrophoretic particles to cause depletion and aggregation for example, the polymer covering the electrophoretic particles or modified with the electrophoretic particles inhibits the movement of the electrophoretic particles, so that the responsiveness is high. Become slow.
  • there is a method of aggregating the migrating particles using silica but the responsiveness is slow because the agglomerated migrating particles are difficult to peel off. As described above, the memory performance is improved while the responsiveness is lowered. Alternatively, extra energy is required to peel off the migrating particles, increasing power consumption.
  • the electrophoretic particles 32 are only gathered gently in the display state after application of a certain voltage. Therefore, when another voltage is applied again, the electrophoretic particles 32 are easily separated. Then, it can move through the insulating liquid 31 and pass through the porous layer 33. That is, it is difficult to inhibit mobility (responsiveness).
  • the average pore diameter of the porous layer 33 (pore H) is 1.0 to 4.3 times the average particle diameter of the migrating particles 32, so that the display after voltage application is performed.
  • the apparent particle size of the migrating particles 32 is larger than the pore size of the porous layer 33, and the migrating particles 32 can be physically supported by the porous layer 33.
  • memory property improves.
  • the migrating particles are easily separated from each other, and thus mobility (responsiveness) is not easily inhibited. Therefore, it is possible to improve the memory performance while suppressing a decrease in responsiveness.
  • the fibrous structure 34 when the fibrous structure 34 includes a portion having a fiber diameter twice or more the average fiber diameter at a ratio of 20% or less, the reflectance can be further increased. This can increase the contrast. By making the ratio 10% or less or 5% or less, the reflectance can be further increased.
  • the kinematic viscosity of the insulating liquid 31 is 1.0 mm 2 / second or more and 5.0 mm 2 / second or less, preferably 1.0 mm 2 / second or more and 3.0 mm 2 / second or less, the responsiveness and The reflectance can be increased.
  • Display devices (Experimental Examples 1 to 18) were prepared using black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) according to the following procedure.
  • Example 1 First, a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution. Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath.
  • composite oxide fine particles copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550
  • the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation.
  • the precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C.
  • black electrophoretic particles coated with a dispersing group that are negatively charged in the insulating liquid were obtained.
  • the insulating liquid 49.6 g of the insulating liquid, 0.25 g of the basic additive alkylamine, and 0.12 g of the acidic additive are added to the solution D2 (50 g) and stirred, and the migrating particles and the acidic additive are added.
  • Insulating liquids each containing 0.4 mmol and 1.75 mmol of basic additive were obtained.
  • Table 1 five types of electrophoretic particle dispersions (electrophoretic particle dispersions 1 to 5) having different average particle diameters were prepared as shown in Table 1 below.
  • the average particle size of the migrating particles can be measured in the prepared dispersion by, for example, a laser Doppler method.
  • the porous layer was formed as follows. First, titanium oxide having an average primary particle diameter of 250 nm was prepared as non-electrophoretic particles, mixed with 15% by weight in tetrahydrofuran in which a carboxylic acid anionic surfactant was dissolved, and stirred for 1 hour using a paint shaker. Thereafter, the mixture was centrifuged (5000 rpm for 10 minutes), the solvent was removed by decantation, washed 3 times, and dried overnight at 70 ° C. Thereby, titanium oxide coated with a carboxylic acid anionic surfactant (referred to as non-electrophoretic particles T1) was obtained.
  • a carboxylic acid anionic surfactant referred to as non-electrophoretic particles T1
  • polymethyl methacrylate was prepared as a constituent material of the fibrous structure.
  • this polymethyl methacrylate was dissolved in 87 g of N, N′-dimethylformamide, 30 g of non-electrophoretic particles T1 were added to 70 g of this solution and mixed with a bead mill.
  • a spinning solution for forming the fibrous structure was obtained.
  • a pixel electrode made of ITO having a predetermined pattern was formed on the driving substrate, and then spinning was performed using this spinning solution. Specifically, the spinning solution was put into a syringe, and spinning was performed on a driving substrate.
  • the amount of the carboxylic acid anionic surfactant is increased as compared with the fibrous structures A1 to A3, and the other conditions are the same as those of the fibrous structures A1 to A3.
  • Body (A4 to A6) was prepared.
  • these fibrous structures A4 to A6 at least two kinds of fibers having different fiber diameters are mixed.
  • a fiber having a fiber diameter twice or more of the average fiber diameter is a fiber L and the other fiber is a fiber S
  • the non-migrating particles T1 are hardly dispersed in the fiber L.
  • it is desirable that the number (ratio) of the fibers L is smaller than the number (ratio) of the fibers S.
  • the fibrous structure A4 has a fiber L ratio of 5%
  • the fibrous structure A5 has a fiber L ratio of 10%
  • the fibrous structure A6 has a fiber L ratio of 10%. The ratio was 20%.
  • the average pore diameters of the fibrous structures A1 to A6 were measured in a state of being crushed to 15 ⁇ m so as to be the same as the cell gap in the final display device.
  • a palm porometer manufactured by PMI was used as a measuring device.
  • the average pore diameter varies depending on the weight. Specifically, the larger the weight, the smaller the average pore diameter, and the smaller the weight, the larger the average pore diameter. This is because the volume fraction of the fibrous structures A1 to A3 varies because the cell gap is the same (15 ⁇ m).
  • the average fiber diameter and the ratio of the fibers L of the fibrous structures A1 to A6 were measured by observation with an SEM.
  • the average fiber diameter is smaller than that of the fibrous structures A1 to A3, but the ratio of the fibers L is large. Therefore, the average pore diameter of the fibrous structures A4 to A6 is approximately the same as that of the fibrous structure A1.
  • the unnecessary porous layer was removed from the drive substrate. Specifically, a spacer having a thickness of 15 ⁇ m was disposed inside the fibrous structure, and unnecessary portions of the porous layer were removed.
  • a counter electrode made of ITO is formed on the support member as a counter substrate, and an insulating liquid in which the electrophoretic particles are dispersed (electrophoretic particle dispersions 1 to 5) is injected onto the counter substrate.
  • the driving substrate on which the porous layer was formed was placed in an overlapping manner. At this time, the pixel electrode and the counter electrode were separated so as to hold the porous layer with the spacer. Finally, the peripheral portion is sealed with, for example, an ultraviolet curable resin so that the electrophoretic particle dispersion does not leak, and the display device 1 is completed by irradiating with ultraviolet rays to seal between the driving substrate and the counter substrate. .
  • the display device 1 of 1 to 18 was produced, and each memory property and reflectance were evaluated.
  • the “ratio” in Table 3 is a value of (average pore diameter of fibrous structure) / (average particle diameter of migrating particles).
  • the reflectance white reflectance
  • 43% or more is indicated as “aa”, 40% or more as “a”, and less than 40% as “b”.
  • the white retention rate after 10 minutes is indicated as “a” when 90% or more and “b” when less than 90%.
  • Experimental Examples 16, 17, and 18 use fibrous structures A4 to A6 containing fibers L. Although the fibrous structures A4 to A6 have a smaller average fiber diameter than the fibrous structures A1 to A3, the fibrous structures A4 to A6 have the same average pore diameter because they contain the fibers L. When the amount of the surfactant is increased, the average fiber diameter is reduced from the fibrous structure A4 to the fibrous structure A5. However, when the amount is excessively increased, the balance is lost as in the fibrous structure A6. The fiber L increases and the average fiber diameter increases. In Experimental Examples 16 to 18, the electrophoretic particle dispersion liquid 2 having an average particle diameter of 150 nm is combined with these fibrous structures A4 to A6.
  • the electrophoretic particle dispersion liquid 2 having an average particle diameter of 150 nm is combined with the fibrous structures A1 and A2 that do not include the fiber L.
  • these experimental examples 16 to 18 are compared with experimental examples 4 and 5, it can be seen that the inclusion of the fiber L improves the reflectance. This is because the path through which the migrating particles can pass can be ensured at the same time by mixing the fibers L while increasing the dispersibility of the white pigment (non-migrating particles) by reducing the diameter of the fibers.
  • the number of fibers L is preferably 20% or less and more preferably 10% or less because the reflectance starts to decrease by increasing from 10% to 20% when comparing Experimental Examples 17 and 18. desirable.
  • the electrophoretic element can exhibit memory properties regardless of the viscosity of the solution. That is, the memory property based on the kinematic viscosity of the insulating liquid used as a solvent can be improved.
  • a display device was produced under the same conditions as in Experimental Example 4, and the reflectance and memory performance of each display device were evaluated. Table 4 shows.
  • the initial white reflectance was lowered when the solvent B5 was used.
  • the reflectance retention ratio (memory property) after 10 minutes was almost the same regardless of the kinematic viscosity. This indicates that the memory performance appears regardless of the viscosity of the solution of the electrophoretic element.
  • the kinematic viscosity is increased up to the solvent B5, the responsiveness becomes slow and the reflectance decreases.
  • the kinematic viscosity of the solvent is desirably 1.0 mm 2 / sec or more and 5.0 mm 2 / sec or less, and more desirably 1.0 mm 2 / sec or more and 3.0 mm 2 / sec or less.
  • the boiling point of the solvent is desirably 140 ° or more and 280 ° or less, and more desirably 140 ° or more and 240 ° or less.
  • the display device 1 of the present disclosure can be applied to various electronic devices or clothing, and the type of the electronic device is not particularly limited.
  • the display device 1 can be mounted on, for example, the following electronic devices.
  • the configuration of the electronic device or the like described below is merely an example, and the configuration can be changed as appropriate.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as shown in FIG. 4A or may be provided on the upper surface as shown in FIG. 4B.
  • the display unit 110 includes the display device 1.
  • the display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 4A and 4B.
  • PDA Personal Digital Assistants
  • FIG. 5 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 includes the display device 1.
  • the display device 1 can also be applied to a part of clothing such as a watch (watch), bag, clothes, hat, and shoes. Below, an example of such an electronic device integrated with clothing is shown.
  • 6A and 6B show the appearance of an electronic timepiece (a wristwatch-integrated electronic device).
  • the electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 6A and 6B by display driving using the electrophoretic element 30 described above.
  • the band unit 420 is a part that can be attached to an arm or the like, for example.
  • Various display patterns can be displayed by using the display device 1 in the band unit 420, and the design of the band unit 420 can be changed from the example of FIG. 6A to the example of FIG. 6B. .
  • Electronic devices that are also useful in fashion applications can be realized.
  • the present disclosure can also have the following configurations.
  • the average pore size of the porous layer is not less than 3.3 times and not more than 4.3 times the average particle size of the electrophoretic particles.
  • (3) The average pore diameter of the porous layer is 150 nm or more and 750 nm or less.
  • the porous layer includes a fibrous structure that forms the plurality of pores;
  • the porous layer includes a fibrous structure that forms the plurality of pores;
  • the porous layer includes a fibrous structure that forms the plurality of pores;
  • the electrophoretic element according to any one of (1) to (5), wherein the fibrous structure includes a portion having a fiber diameter of twice or more the average fiber diameter at a ratio of 5% or less.
  • the porous layer includes a fibrous structure that forms the plurality of pores;
  • the fibrous structure includes a part having a fiber diameter of 600 nm or more and 1200 nm or less and a part having a fiber diameter of 200 nm or more and 500 nm or less, in any one of the above (1) to (6) Electrophoretic element.
  • the electrophoretic device according to any one of (1) to (7), wherein the insulating liquid has a kinematic viscosity of 1.0 mm 2 / sec to 5.0 mm 2 / sec. (9) The electrophoretic device according to any one of (1) to (8), wherein the insulating liquid has a kinematic viscosity of 1.0 mm 2 / sec to 3.0 mm 2 / sec. (10)
  • the porous layer is A fibrous structure forming the plurality of holes;
  • the electrophoretic element according to any one of (1) to (9), further comprising non-electrophoretic particles that are held by the fibrous structure and have light reflectivity different from the electrophoretic particles.
  • An electrophoretic element is provided between a pair of electrodes, The electrophoretic element is: In insulating liquid, Electrophoretic particles, And having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass, The average pore size of the porous layer is 1.0 to 4.3 times the average particle size of the migrating particles.
  • a display device having an electrophoretic element between a pair of electrodes The electrophoretic element is: In insulating liquid, Electrophoretic particles, Having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass, The average pore diameter of the porous layer is 1.0 to 4.3 times the average particle diameter of the electrophoretic particles.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is electrophoresis element with which memory effect can be improved while suppressing reductions in reactivity. This electrophoresis element has, in an insulating liquid, electrophoresis particles and a porous layer that has optical reactivity different from the electrophoresis particles and includes a plurality of holes through which the electrophoresis particles pass. The average hole diameter in the porous layer is 1.0 - 4.3 times the average diameter of the electrophoresis particles.

Description

電気泳動素子、表示装置および電子機器Electrophoretic element, display device and electronic device
 本開示は、電気泳動素子、およびこれを用いた表示装置ならびに電子機器に関する。 The present disclosure relates to an electrophoretic element, a display device using the same, and an electronic apparatus.
 近年、携帯電話機または携帯情報端末等のモバイル機器の普及に伴い、低消費電力で高画質の表示装置の需要が高まっている。また、電子書籍の普及により、読書用途に適した表示品位の表示装置が望まれている。 In recent years, with the widespread use of mobile devices such as mobile phones or personal digital assistants, there is an increasing demand for display devices with low power consumption and high image quality. In addition, with the widespread use of electronic books, display devices with display quality suitable for reading applications are desired.
 このような表示装置としては、例えばコレステリック液晶型,電気泳動型,電気酸化還元型またはツイストボール型等の様々なディスプレイが挙げられるが、中でも、反射型の表示装置が有利である。反射型の表示装置では、紙と同様に、外光の反射(散乱)を利用して表示を行うため、より紙に近い表示品位が得られるからである。 Examples of such a display device include various displays such as a cholesteric liquid crystal type, an electrophoretic type, an electrooxidation reduction type, and a twist ball type. Among them, a reflection type display device is advantageous. This is because a reflective display device performs display using reflection (scattering) of external light, as with paper, so that a display quality closer to that of paper can be obtained.
 例えば、特許文献1~4には、電気泳動現象を利用した反射型の表示装置が提案されている。これらのうち特許文献1に記載の表示装置では、絶縁性液体中に、泳動粒子を分散させると共に多孔質層を配置してなる電気泳動素子において、泳動粒子と逆極性をもつ帯電層を設けることで、メモリ性(不揮発性)を向上させることができる。また、特許文献2,3では、泳動粒子にポリマーを添加し、枯渇凝集させることでメモリ性を向上させることができる。あるいは特許文献4では、シリカを用いて泳動粒子同士を凝集させることで、メモリ性を向上させることができる。 For example, Patent Documents 1 to 4 propose a reflection type display device using an electrophoretic phenomenon. Among these, in the display device described in Patent Document 1, an electrophoretic element in which electrophoretic particles are dispersed and a porous layer is disposed in an insulating liquid is provided with a charged layer having a polarity opposite to that of the electrophoretic particles. Thus, the memory property (non-volatility) can be improved. In Patent Documents 2 and 3, memory performance can be improved by adding a polymer to the migrating particles to cause depletion and aggregation. Or in patent document 4, memory property can be improved by aggregating electrophoretic particles using silica.
特開2012-173602号公報JP 2012-173602 A 米国特許出願公開第2002/0180687号明細書US Patent Application Publication No. 2002/0180687 特表2007-508588号公報Special table 2007-508588 特開2011-43797号公報JP 2011-43797 A
 しかしながら、上記特許文献1の手法では、メモリ性は向上するものの、帯電層から泳動粒子を引き剥がすのに時間を要することから、応答性が低下することがある。また、特許文献2,3の手法では、泳動粒子を覆うあるいは泳動粒子に修飾されたポリマーが、泳動粒子の動きを阻害し、応答性が遅くなる。また、特許文献4の手法では、凝集した泳動粒子同士を引き剥がしにくいことから、応答性が遅くなる。このように、メモリ性が向上する一方で応答性が低下するという問題がある。 However, although the method of Patent Document 1 improves the memory performance, it takes time to peel off the migrating particles from the charged layer, which may reduce the responsiveness. In the methods of Patent Documents 2 and 3, the polymer that covers or is modified by the electrophoretic particles inhibits the movement of the electrophoretic particles, resulting in a slow response. Further, in the method of Patent Document 4, since the agglomerated migrating particles are difficult to peel off, the response is slow. As described above, there is a problem that the response is lowered while the memory performance is improved.
 応答性の低下を抑制しつつメモリ性を向上させることが可能な電気泳動素子、表示装置および電子機器を提供することが望ましい。 It is desirable to provide an electrophoretic element, a display device, and an electronic device that can improve memory performance while suppressing a decrease in responsiveness.
 本開示の一実施の形態の電気泳動素子は、絶縁性液体中に、泳動粒子と、泳動粒子とは異なる光反射性を有すると共に、泳動粒子が通過する複数の孔を含む多孔質層とを有し、多孔質層の平均孔径は、泳動粒子の平均粒径の1.0倍以上4.3倍以下であるものである。 An electrophoretic element according to an embodiment of the present disclosure includes, in an insulating liquid, an electrophoretic particle, and a porous layer having a light reflectivity different from the electrophoretic particle and including a plurality of holes through which the electrophoretic particle passes. And the average pore diameter of the porous layer is 1.0 to 4.3 times the average particle diameter of the migrating particles.
 本開示の一実施の形態の表示装置は、一対の電極間に上記本開示の一実施の形態の電気泳動素子を備えたものである。 A display device according to an embodiment of the present disclosure includes the electrophoretic element according to the embodiment of the present disclosure described above between a pair of electrodes.
 本開示の一実施の形態の電子機器は、上記本開示の一実施の形態の表示装置を備えたものである。 An electronic apparatus according to an embodiment of the present disclosure includes the display device according to the embodiment of the present disclosure.
 本開示の一実施の形態の電気泳動素子、表示装置および電子機器では、一の電圧が印加され、多孔質層の一方の側に泳動粒子が移動した後の表示状態では、泳動粒子同士が緩やかに集まり、泳動粒子の見かけの粒径が大きくなる。ここで、多孔質層の平均孔径が泳動粒子の平均粒径の1.0倍以上4.3倍以下であることにより、その泳動粒子の見かけの粒径が多孔質層の孔径よりも大きくなり、泳動粒子が多孔質層によって物理的に支持される。この表示状態では、泳動粒子同士が緩やかに集まっているだけなので、他の電圧が印加されると、泳動粒子同士は容易に離散して、絶縁性液体中を移動し、多孔質層を通過することができる。 In the electrophoretic element, the display device, and the electronic apparatus according to an embodiment of the present disclosure, the electrophoretic particles are loosened in the display state after one voltage is applied and the electrophoretic particles move to one side of the porous layer. And the apparent particle size of the migrating particles increases. Here, when the average pore size of the porous layer is 1.0 to 4.3 times the average particle size of the migrating particles, the apparent particle size of the migrating particles becomes larger than the pore size of the porous layer. The migrating particles are physically supported by the porous layer. In this display state, the migrating particles are only gently gathered, so when another voltage is applied, the migrating particles are easily separated and move through the insulating liquid and pass through the porous layer. be able to.
 本開示の一実施の形態の電気泳動素子、表示装置および電子機器によれば、多孔質層の平均孔径が泳動粒子の平均粒径の1.0倍以上4.3倍以下であることにより、電圧印加後の表示状態では、泳動粒子の見かけの粒径が多孔質層の孔径よりも大きくなり、泳動粒子を多孔質層によって物理的に支えることができる。これにより、メモリ性が向上する。一方で、他の電圧が印加されると、泳動粒子同士は容易に離散することから、移動性(応答性)は阻害されにくい。したがって、応答性の低下を抑制しつつ、メモリ性を向上させることが可能である。 According to the electrophoretic element, the display device, and the electronic apparatus of the embodiment of the present disclosure, the average pore diameter of the porous layer is 1.0 to 4.3 times the average particle diameter of the electrophoretic particles. In the display state after voltage application, the apparent particle size of the migrating particles is larger than the pore size of the porous layer, and the migrating particles can be physically supported by the porous layer. Thereby, memory property improves. On the other hand, when other voltages are applied, the migrating particles are easily separated from each other, and thus mobility (responsiveness) is not easily inhibited. Therefore, it is possible to improve the memory performance while suppressing a decrease in responsiveness.
 尚、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本開示の一実施の形態に係る電気泳動素子を用いた表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus using the electrophoretic element which concerns on one embodiment of this indication. 図1に示した電気泳動素子の多孔質層を説明するための平面模式図である。It is a plane schematic diagram for demonstrating the porous layer of the electrophoretic element shown in FIG. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 適用例1の外観を表す斜視図である。14 is a perspective view illustrating an appearance of application example 1. FIG. 図4Aに示した電子ブックの他の例を表す斜視図である。FIG. 4B is a perspective view illustrating another example of the electronic book illustrated in FIG. 4A. 適用例2の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 2. FIG. 適用例3の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 3. FIG. 図6Aに示した電子時計の他の表示例を表す斜視図である。FIG. 6B is a perspective view illustrating another display example of the electronic timepiece illustrated in FIG. 6A.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態(多孔質層の平均孔径と泳動粒子の平均粒径との比が所定の範囲内とされた電気泳動素子を有する表示装置の例)
  1-1.電気泳動素子の構成
  1-2.表示装置の構成
  1-3.効果
 2.実施例
 3.適用例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (Example of display device having an electrophoretic element in which the ratio of the average pore diameter of the porous layer to the average particle diameter of the electrophoretic particles is within a predetermined range)
1-1. Configuration of electrophoretic element 1-2. Configuration of display device 1-3. Effect 2. Example 3. Application examples
<1.実施の形態>
(1-1.電気泳動素子の構成)
 図1は、本開示の一実施の形態に係る電気泳動素子(電気泳動素子30)を備えた表示装置(表示装置1)の断面構成を表したものである。この電気泳動素子30は、電気泳動現象を利用してコントラストを生じさせるものであり、例えば、タブレット等の多様な電子機器の表示体として用いられる。電気泳動素子30は、絶縁性液体31中に、泳動粒子32と、細孔Hを有する多孔質層33とを含んでいる。なお、図1は電気泳動素子30を備えた表示装置1の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
<1. Embodiment>
(1-1. Configuration of electrophoretic element)
FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) including an electrophoretic element (electrophoretic element 30) according to an embodiment of the present disclosure. The electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and is used as a display body of various electronic devices such as tablets. The electrophoretic element 30 includes electrophoretic particles 32 and a porous layer 33 having pores H in an insulating liquid 31. FIG. 1 schematically illustrates the configuration of the display device 1 including the electrophoretic element 30 and may differ from actual dimensions and shapes.
 絶縁性液体31は、例えば、パラフィンまたはイソパラフィン等の有機溶媒により構成されている。絶縁性液体31には、1種類の有機溶媒を用いてもよく、あるいは複数種類の有機溶媒を用いるようにしてもよい。絶縁性液体31の屈折率は、できるだけ低くすることが望ましい。絶縁性液体31の屈折率を低くすると、絶縁性液体31と多孔質層33との屈折率の差が大きくなり、多孔質層33の反射率が高くなる。この絶縁性液体31の動粘度は、例えば1.0mm2/秒以上5.0mm2/秒以下であることが望ましく、例えば1.0mm2/秒以上3.0mm2/秒以下であることがより望ましい。応答性および反射率を高めることができるためである。 The insulating liquid 31 is made of, for example, an organic solvent such as paraffin or isoparaffin. As the insulating liquid 31, one kind of organic solvent may be used, or a plurality of kinds of organic solvents may be used. It is desirable to make the refractive index of the insulating liquid 31 as low as possible. When the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased. The kinematic viscosity of the insulating liquid 31, for example it is desirably 1.0 mm 2 / sec or more 5.0 mm 2 / sec or less, that for example is 1.0 mm 2 / sec or more 3.0 mm 2 / sec More desirable. This is because responsiveness and reflectance can be increased.
 絶縁性液体31には、例えば、着色剤,電荷調整剤,分散安定剤,粘度調整剤,界面活性剤または樹脂等を添加するようにしてもよい。 For example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 31.
 絶縁性液体31中に分散された泳動粒子32は、1または2以上の荷電粒子であり、それぞれが正または負に帯電している。泳動粒子32は、任意の光学特性(光反射性,光反射率)を有しており、泳動粒子32の光反射性と多孔質層33の光反射性との違いによりコントラスト(CR)が生じるようになっている。例えば、泳動粒子32が明表示し、多孔質層33が暗表示するようにしてもよく、泳動粒子32が暗表示し、多孔質層33が明表示するようにしてもよい。 The migrating particles 32 dispersed in the insulating liquid 31 are one or more charged particles, and each is positively or negatively charged. The migrating particles 32 have arbitrary optical characteristics (light reflectivity, light reflectivity), and a contrast (CR) is generated due to the difference between the light reflectivity of the migrating particles 32 and the light reflectivity of the porous layer 33. It is like that. For example, the migrating particles 32 may be brightly displayed and the porous layer 33 may be darkly displayed, or the migrating particles 32 may be darkly displayed and the porous layer 33 may be brightly displayed.
 泳動粒子32が明表示する場合には、泳動粒子32は、例えば、白色または白色に近い色に視認され、暗表示する場合には、例えば、黒色または黒色に近い色に視認される。この泳動粒子32の色は、多孔質層33に対してコントラストを生じるものであれば特に限定されない。 When the migrating particles 32 are brightly displayed, the migrating particles 32 are visually recognized as, for example, white or a color close to white, and when darkly displayed, they are visually recognized as, for example, black or a color close to black. The color of the migrating particles 32 is not particularly limited as long as it produces a contrast with respect to the porous layer 33.
 泳動粒子32は、例えば、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料(樹脂)等の粒子(粉末)により構成されている。泳動粒子32に、これらのうちの1種類を用いてもよく、または2種類以上を用いてもよい。泳動粒子32を、上記粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等により構成することも可能である。なお、上記炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料に該当する材料は、有機顔料,無機顔料または染料に該当する材料から除く。泳動粒子32の粒径は例えば、30nm以上300nm以下である。尚、この泳動粒子32の粒径は、いわゆる一次粒径(粒子径の最小単位)である。本実施の形態では、この泳動粒子32の平均粒径が、後述する多孔質層33の平均孔径と所定の比率を成すように構成されている。但し、泳動粒子32の平均粒径は、泳動粒子32を分散した溶液(泳動粒子分散液)中において測定されるものである。 The migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One of these may be used for the migrating particles 32, or two or more of them may be used. The migrating particles 32 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. The particle size of the migrating particles 32 is, for example, 30 nm or more and 300 nm or less. The particle size of the migrating particles 32 is a so-called primary particle size (minimum unit of particle size). In the present embodiment, the average particle diameter of the migrating particles 32 is configured to have a predetermined ratio with the average pore diameter of the porous layer 33 described later. However, the average particle diameter of the migrating particles 32 is measured in a solution in which the migrating particles 32 are dispersed (electrophoretic particle dispersion).
 上記の有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Examples of the organic pigments include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments. Perinone pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area | region in visible region, the kind will not be specifically limited.
 泳動粒子32の具体的な材料は、例えば、泳動粒子32がコントラストを生じさせるために担う役割に応じて選択される。泳動粒子32が明表示する場合、泳動粒子32には例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物等が用いられる。泳動粒子32が暗表示する場合、泳動粒子32には例えば、カーボンブラック等の炭素材料または銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物および銅-鉄-クロム酸化物等の金属酸化物等が用いられる。中でも、泳動粒子32には炭素材料を用いることが望ましい。炭素材料からなる泳動粒子32は、優れた化学的安定性、移動性および光吸収性を示す。 The specific material of the migrating particles 32 is selected according to, for example, the role that the migrating particles 32 play in causing contrast. When the migrating particles 32 display brightly, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 32. When the migrating particles 32 display in the dark, the migrating particles 32 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide. In addition, metal oxides such as copper-iron-chromium oxide are used. Among these, it is desirable to use a carbon material for the migrating particles 32. Electrophoretic particles 32 made of a carbon material exhibit excellent chemical stability, mobility and light absorption.
 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。この濃度範囲では、泳動粒子32の遮蔽性および移動性が確保される。詳細には、泳動粒子32の含有量が0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽(隠蔽)しにくくなり、十分にコントラストを生じさせることができない可能性がある。一方、泳動粒子32の含有量が10重量%よりも多いと、泳動粒子32の分散性が低下するため、その泳動粒子32が泳動しにくくなり、凝集する虞がある。 The content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding and mobility of the migrating particles 32 are ensured. Specifically, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are less likely to shield (conceal) the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate.
 泳動粒子32は、絶縁性液体31中で長期間に渡って分散および帯電しやすく、また、多孔質層33に吸着しにくいことが望ましい。このため、例えば、絶縁性液体31中に分散剤が添加される。分散剤と電荷調整剤とを併用するようにしてもよい。 It is desirable that the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 for a long period of time and are difficult to be adsorbed on the porous layer 33. For this reason, for example, a dispersant is added to the insulating liquid 31. A dispersant and a charge control agent may be used in combination.
 この分散剤または電荷調整剤は、例えば、正、負のどちらか一方、または両方の電荷を有しており、絶縁性液体31中の帯電量を増加させると共に、静電反発により泳動粒子32を分散させるためのものである。このような分散剤として、例えば、Lubrizol社製のSolsperceシリーズ、BYK-Chemic社製のBYKシリーズまたはAnti-Terraシリーズ、あるいはTCI America社製Spanシリーズ等が挙げられる。 This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31 and causes the migrating particles 32 to move by electrostatic repulsion. It is for dispersing. Examples of such a dispersant include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemical, or Span series manufactured by TCI America.
 泳動粒子32の分散性を向上させるため、泳動粒子32に表面処理を施すようにしてもよい。この表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。特に、グラフト重合処理、マイクロカプセル化処理またはこれらを組み合わせて処理を行うことにより、泳動粒子32の長期間の分散安定性を維持することができる。 In order to improve the dispersibility of the migrating particles 32, the migrating particles 32 may be subjected to a surface treatment. This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. In particular, long-term dispersion stability of the migrating particles 32 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
 このような表面処理には、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着性材料)等が用いられる。吸着可能な官能基は、泳動粒子32の形成材料に応じて決定する。例えば、泳動粒子32がカーボンブラック等の炭素材料により構成されている場合には、4-ビニルアニリン等のアニリン誘導体、泳動粒子32が金属酸化物により構成されている場合には、メタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体をそれぞれ吸着することができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 For such surface treatment, for example, a material (adsorbent material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32 is used. The adsorbable functional group is determined according to the forming material of the migrating particle 32. For example, when the migrating particles 32 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 32 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 泳動粒子32の表面に重合性官能基を導入し、これにグラフトさせて表面処理を行うようにしてもよい(グラフト性材料)。グラフト性材料は、例えば、重合性官能基と分散用官能基とを有している。分散用官能基は、絶縁性液体31中に泳動粒子32を分散させ、その立体障害により分散性を保持するものである。絶縁性液体31が例えば、パラフィンである場合、分散用官能基として分岐状のアルキル基等を用いることができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。グラフト性材料を重合およびグラフトさせるためには、例えば、アゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。この他、泳動粒子32の表面に吸着可能な官能基と分散性を付与するためのアルキル鎖を有する材料を用いることができる。このような材料としては、例えば、チタネート系カップリング剤(例えば、味の素ファインテクノ株式会社製KR-TTS)およびアルミネート系カップリング剤が挙げられる。 A surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 32 and grafting it onto the surface (graftable material). The graft material has, for example, a polymerizable functional group and a dispersing functional group. The functional group for dispersion disperses the migrating particles 32 in the insulating liquid 31 and retains dispersibility due to steric hindrance. For example, when the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used. In addition, a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
 上記泳動粒子32を絶縁性液体31中に分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For details of the method for dispersing the migrating particles 32 in the insulating liquid 31, see “Dispersion Technology of Ultrafine Particles and its Evaluation: Surface Treatment / Fine Grinding and Dispersion Stabilization in Air / Liquid / Polymer— Science & Technology)).
 多孔質層33は、泳動粒子32とは異なる光反射性を有すると共に、泳動粒子32が通過する複数の細孔H(孔)を有している。 The porous layer 33 has light reflectivity different from that of the migrating particles 32 and has a plurality of pores H (holes) through which the migrating particles 32 pass.
 図2に、多孔質層33の一例を示す。このように、多孔質層33は、例えば、複数の細孔Hを有する繊維状構造体34と、この繊維状構造体34に保持された非泳動粒子35とを含んで構成されている。非泳動粒子35は、例えば、界面活性剤によって繊維状構造体34に保持されている。 FIG. 2 shows an example of the porous layer 33. Thus, the porous layer 33 is configured to include, for example, a fibrous structure 34 having a plurality of pores H and non-migrating particles 35 held by the fibrous structure 34. The non-migrating particles 35 are held on the fibrous structure 34 by, for example, a surfactant.
 繊維状構造体34は、3次元立体構造物(不織布のような不規則なネットワーク構造物)あることが望ましい。光(外光)が乱反射(多重散乱)し、多孔質層33の反射率を高めることができるからである。また、多孔質層33の厚みが小さい場合であっても高反射率が得られ、電気泳動素子30のコントラストを向上させると共に泳動粒子32の移動に必要なエネルギーを小さくすることができる。 Desirably, the fibrous structure 34 is a three-dimensional structure (irregular network structure such as a nonwoven fabric). This is because light (external light) is diffusely reflected (multiple scattering) and the reflectance of the porous layer 33 can be increased. Further, even when the thickness of the porous layer 33 is small, a high reflectance can be obtained, the contrast of the electrophoretic element 30 can be improved, and the energy required for the migration of the migrating particles 32 can be reduced.
 この繊維状構造体34は、例えば、1または複数本の繊維(繊維状物質)がランダムに折り重なり、あるいは1または複数本の繊維がランダムに絡み合うことにより形成されたものである。繊維状構造体34を構成する繊維は、その繊維径(直径)に対して十分な長さを有している。また、各繊維の形状は、どのようなものであってもよい。例えば、直線状に延在していてもよいし、湾曲した形状であってもよい。また、縮れていたり、途中で折れ曲がったり、あるいは分岐していてもよい。細孔Hは、このような繊維同士の間隙に相当する部分である。 The fibrous structure 34 is formed by, for example, one or a plurality of fibers (fibrous substances) folded randomly or one or a plurality of fibers entangled randomly. The fibers constituting the fibrous structure 34 have a sufficient length with respect to the fiber diameter (diameter). Moreover, what kind of thing may be sufficient as the shape of each fiber. For example, it may extend linearly or may have a curved shape. Moreover, it may be curled, may be bent in the middle, or may be branched. The pore H is a portion corresponding to the gap between such fibers.
 細孔Hは、多孔質層33を貫通すると共に、泳動粒子32が通過することが可能な孔径(直径)を有する。この細孔Hの平均孔径(多孔質層33の平均孔径)は、泳動粒子32の平均粒径の1.0倍以上4.3倍以下である。多孔質層33の平均孔径は、例えば150nm以上750nm以下であることが望ましい。メモリ性を高めることができるためである。尚、図1では、細孔Hが多孔質層33を真っ直ぐに貫通し、かつ一定の径で形成されているが、細孔Hの形状は、このような形状に限定されるものではない。細孔Hは、多孔質層33を貫通していればよく、例えば斜め方向に沿って形成されていてもよいし、あるいは蛇行していてもよい。また、1つの細孔Hにおいて、その孔径は、必ずしも一定ではなく、実際には、太くなったり細くなったり変化しているものが多い。本明細書では、細孔Hの孔径は、最も細い部分の径(最小径)とする。 The pore H penetrates the porous layer 33 and has a pore diameter (diameter) through which the migrating particles 32 can pass. The average pore diameter of the pores H (the average pore diameter of the porous layer 33) is 1.0 to 4.3 times the average particle diameter of the migrating particles 32. The average pore diameter of the porous layer 33 is preferably, for example, 150 nm or more and 750 nm or less. This is because the memory performance can be improved. In FIG. 1, the pores H pass straight through the porous layer 33 and have a constant diameter, but the shape of the pores H is not limited to such a shape. The pores H only need to penetrate the porous layer 33, and may be formed along, for example, an oblique direction or may meander. In addition, in one pore H, the pore diameter is not necessarily constant, and in fact, many pores are thicker or thinner. In this specification, the pore diameter of the pore H is the diameter of the narrowest part (minimum diameter).
 繊維状構造体34では、繊維径が一定ではなく、太い部分34aと細い部分34bとが混在する(図2)。例えば、600nm以上1200nm以下の径を有する部分と、例えば200nm以上500nm以下の径を有する部分とが混在する。望ましくは、繊維状構造体34は、平均繊維径の2倍以上の繊維径を有する部分を20%以下の割合で含む。より望ましくは、平均繊維径の2倍以上の繊維径を有する部分を10%以下、更に望ましくは5%以下の割合で含む。尚、ここでは、繊維が部分的に太く、あるいは細く形成された例を挙げているが、1本の繊維全体が一定の幅で太く、あるいは一定の幅で細く形成されていてもよい。また、平均繊維径が小さくなるに従って、光が乱反射し易くなり、また、細孔Hの孔径が大きくなる。 In the fibrous structure 34, the fiber diameter is not constant, and a thick portion 34a and a thin portion 34b are mixed (FIG. 2). For example, a part having a diameter of 600 nm to 1200 nm and a part having a diameter of 200 nm to 500 nm are mixed. Desirably, the fibrous structure 34 includes a portion having a fiber diameter of twice or more the average fiber diameter at a ratio of 20% or less. More desirably, a portion having a fiber diameter that is twice or more the average fiber diameter is contained at a ratio of 10% or less, more desirably 5% or less. Here, an example is given in which the fibers are partially thick or thin, but one whole fiber may be thick with a constant width or thin with a constant width. Further, as the average fiber diameter becomes smaller, the light is more easily diffusely reflected, and the pore diameter of the pores H becomes larger.
 繊維状構造体34の繊維径は、いくつかの方法によって調整することができる。即ち、多孔質層33の形成工程において、例えばポリマー濃度、非泳動粒子35の配合比、非泳動粒子35の表面を修飾する界面活性剤の修飾量、あるいはポリマー溶液内に添加する界面活性剤の量等を調整することで、繊維径を変えることができる。尚、図2に示した例では、繊維状構造体34に対して非泳動粒子35が離散して配置された(非泳動粒子35の分散性が良い)部分(34b)では繊維径が相対的に細く、非泳動粒子35が局所的に集まって配置された部分(34a)では繊維径が相対的に太く形成されている。 The fiber diameter of the fibrous structure 34 can be adjusted by several methods. That is, in the step of forming the porous layer 33, for example, the polymer concentration, the mixing ratio of the non-migrating particles 35, the modification amount of the surfactant that modifies the surface of the non-migrating particles 35, or the surfactant added to the polymer solution The fiber diameter can be changed by adjusting the amount or the like. In the example shown in FIG. 2, the fiber diameter is relative to the portion (34b) in which the non-migrating particles 35 are discretely arranged with respect to the fibrous structure 34 (the dispersibility of the non-migrating particles 35 is good). The portion (34a) where the non-electrophoretic particles 35 are locally gathered and arranged is formed to have a relatively large fiber diameter.
 繊維状構造体34の繊維径は、例えば次のようにして測定することができる。即ち、表示装置1をマイクロトームなどの器具を使用して切断し、切断された電気泳動素子30の任意の断面または任意の平面をSEM(Scanning Electron Microscope:走査型電子顕微鏡)を用いて観察することにより測定する。具体的には、SEM画像のうちの数10~数100箇所(点)において繊維径を測定し、これらの平均値を繊維状構造体34の平均繊維径とする。更に、これら全ての測定点のうち、平均繊維径の2倍以上の大きさを示す測定点の比率を算出する。 The fiber diameter of the fibrous structure 34 can be measured, for example, as follows. That is, the display device 1 is cut using an instrument such as a microtome, and an arbitrary cross section or an arbitrary plane of the cut electrophoretic element 30 is observed using a scanning electron microscope (SEM). To measure. Specifically, the fiber diameter is measured at several tens to several hundreds (points) of the SEM image, and the average value of these is taken as the average fiber diameter of the fibrous structure 34. Furthermore, the ratio of the measurement point which shows the magnitude | size of 2 times or more of an average fiber diameter among all these measurement points is calculated.
 多孔質層33の厚みは、電気泳動素子30の素子構成にもよるが、例えば、5μm以上100μm以下である。十分な白反射率、黒反射率、応答時間を付与するためには、より望ましくは15μm以上50μm以下である。 The thickness of the porous layer 33 is, for example, 5 μm or more and 100 μm or less, depending on the element configuration of the electrophoretic element 30. In order to provide sufficient white reflectance, black reflectance, and response time, it is more desirably 15 μm or more and 50 μm or less.
 上記のような繊維状構造体34は、例えば、相分離法,相反転法,静電(電界)紡糸法,溶融紡糸法,湿式紡糸法,乾式紡糸法,ゲル紡糸法,ゾルゲル法またはスプレー塗布法等により形成される。このような方法を用いることにより、繊維径に対して十分な長さを有する繊維状構造体34を容易に、かつ安定して形成することができる。 The fibrous structure 34 as described above is, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating. It is formed by law. By using such a method, the fibrous structure 34 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体34は、ナノファイバーにより構成することができる。ここでナノファイバーとは、繊維径が1nm~1000nmであり、長さが繊維径の100倍以上である繊維状物質である。このようなナノファイバーを繊維状構造体34として用いることにより、光が乱反射し易くなり、多孔質層33の反射率をより向上させることができる。即ち、電気泳動素子30のコントラストを向上させることが可能となる。また、ナノファイバーからなる繊維状構造体34では、単位体積中に占める細孔Hの割合が大きくなり、多孔質層33を泳動粒子32が通過し易くなる。従って、泳動粒子32の移動に必要なエネルギーを小さくすることができる。ナノファイバーからなる繊維状構造体34は、静電紡糸法により形成することが望ましい。静電紡糸法を用いることにより繊維径が小さい繊維状構造体34を容易に、かつ安定して形成することができる。 The fibrous structure 34 can be composed of nanofibers. Here, the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter. By using such nanofibers as the fibrous structure 34, light is easily diffusely reflected, and the reflectance of the porous layer 33 can be further improved. That is, the contrast of the electrophoretic element 30 can be improved. Further, in the fibrous structure 34 made of nanofibers, the proportion of the pores H in the unit volume increases, and the migrating particles 32 can easily pass through the porous layer 33. Therefore, the energy required for moving the migrating particles 32 can be reduced. The fibrous structure 34 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrospinning method, the fibrous structure 34 having a small fiber diameter can be easily and stably formed.
 繊維状構造体34には、その光反射率が泳動粒子32の光反射率と異なるものを用いることが望ましい。これにより、多孔質層33と泳動粒子32との光反射率の差によるコントラストが形成され易くなる。絶縁性液体31中で光透過性(無色透明)を示す繊維状構造体34を用いるようにしてもよい。 It is desirable to use a fibrous structure 34 having a light reflectance different from that of the migrating particles 32. Thereby, a contrast due to a difference in light reflectance between the porous layer 33 and the migrating particles 32 is easily formed. A fibrous structure 34 showing light transparency (colorless and transparent) in the insulating liquid 31 may be used.
 非泳動粒子35は、繊維状構造体34に固定されており、電気泳動を行わない1または2以上の粒子である。非泳動粒子35は、繊維状構造体34の内部に埋め込まれていてもよいし、あるいは、繊維状構造体34から部分的に突出していてもよい。非泳動粒子35の平均粒径は、例えば150nm以上700nm以下である。 Non-electrophoretic particles 35 are one or more particles that are fixed to the fibrous structure 34 and do not undergo electrophoresis. The non-migrating particles 35 may be embedded in the fibrous structure 34 or may partially protrude from the fibrous structure 34. The average particle diameter of the non-migrating particles 35 is, for example, not less than 150 nm and not more than 700 nm.
 非泳動粒子35の光反射率は、泳動粒子32の光反射率と異なっている。非泳動粒子35は、上記泳動粒子32の材料として挙げたものと同様の材料により構成することが可能である。詳細には、非泳動粒子35(多孔質層33)が明表示する場合には、上記泳動粒子32が明表示する場合と同様の材料を用いることができる。非泳動粒子35が暗表示する場合には、上記泳動粒子32が暗表示する場合と同様の材料を用いることができる。多孔質層33により明表示を行うとき、非泳動粒子35を金属酸化物により構成することが望ましい。これにより、優れた化学的安定性、定着性および光反射性を得ることができる。非泳動粒子35、泳動粒子32それぞれの構成材料は同じであってもよく、異なっていてもよい。非泳動粒子35が明表示または暗表示を行うときに視認される色は、上記泳動粒子32について説明したものと同様である。 The light reflectance of the non-migrating particles 35 is different from the light reflectance of the migrating particles 32. The non-migrating particles 35 can be made of the same material as the material of the migrating particles 32 described above. Specifically, when the non-migrating particles 35 (porous layer 33) display brightly, the same material as that when the migrating particles 32 display brightly can be used. When the non-electrophoretic particles 35 display dark, the same material as that used when the electrophoretic particles 32 display dark can be used. When performing a bright display by the porous layer 33, it is desirable that the non-migrating particles 35 be made of a metal oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity. The constituent materials of the non-migrating particles 35 and the migrating particles 32 may be the same or different. The color visually recognized when the non-electrophoretic particle 35 performs bright display or dark display is the same as that described for the electrophoretic particle 32.
 また、非泳動粒子35はその表面が界面活性剤によって修飾されていてもよい。界面活性剤は、親水基として例えば、カルボン酸、スルホン酸あるいはリン酸構造を有する陰イオン(アニオン)性界面活性剤および親水基として例えば、テトラアルキルアンモニウムあるいはアルキルアミンを有する陽イオン(カチオン)性界面活性剤が挙げられる。この他、親水部が非電解質、即ちイオン化しない親水性部分を有する非イオン(ノニオン)性界面活性剤および分子内にアニオン性部位およびカチオン性部位の両方を有する両性界面活性剤を用いてもよい。両性界面活性剤としては、例えば、アルキルジメチルアミンオキシドあるいはアルキルカルボキシベタインが挙げられる。なお、非泳動粒子35として酸化チタン等の金属材料を用いる場合にはアニオン性界面活性剤を用いることが望ましい。特に、カルボン酸のような分子の嵩の小さな親水基を有する界面活性剤は非泳動粒子35の表面全体を被覆しやすく望ましい。また、界面活性剤は、表示特性を長期的に劣化させることのないように、絶縁性液体31中に染み出してこないものが望ましい。 Further, the surface of the non-electrophoretic particle 35 may be modified with a surfactant. Surfactants are, for example, anionic (anionic) surfactants having a carboxylic acid, sulfonic acid or phosphoric acid structure as hydrophilic groups and cationic (cationic) properties having, for example, tetraalkylammonium or alkylamine as hydrophilic groups. Surfactant is mentioned. In addition, nonionic (nonionic) surfactants having a hydrophilic part as a non-electrolyte, that is, a non-ionized hydrophilic part, and amphoteric surfactants having both an anionic part and a cationic part in the molecule may be used. . Examples of amphoteric surfactants include alkyl dimethylamine oxide and alkyl carboxybetaine. In the case where a metal material such as titanium oxide is used as the non-electrophoretic particle 35, it is desirable to use an anionic surfactant. In particular, a surfactant having a hydrophilic group with a small molecular volume such as carboxylic acid is desirable because it easily covers the entire surface of the non-electrophoretic particle 35. Further, it is desirable that the surfactant does not ooze into the insulating liquid 31 so that the display characteristics are not deteriorated for a long time.
 このような多孔質層33は、例えば、以下の方法により形成することができる。まず、非泳動粒子35として、例えば、所定の一次粒径を有する酸化チタンを用意し、これを例えば、カルボン酸系陰イオン性界面活性剤が溶解した有機溶剤に添加して攪拌する。これにより表面がカルボン酸系陰イオン界面活性剤によって被覆された酸化チタン(非泳動粒子35)が得られる。次に、例えば、有機溶剤に、例えば、高分子材料(ポリマー)等の繊維状構造体34の構成材料を溶解させ、溶液を調製したのち、この溶液に非泳動粒子35を加えて十分に攪拌して分散させることで、紡糸溶液を調製する。続いて、この紡糸溶液から例えば、静電紡糸法により紡糸を行うことで、非泳動粒子35を保持する繊維状構造体34が形成される。なお、ここで一次粒径とは、最小限の粒径であり、例えば、粒子同士が凝集あるいは結合している場合には個々の粒子の粒径を表す。 Such a porous layer 33 can be formed by the following method, for example. First, as the non-migrating particles 35, for example, titanium oxide having a predetermined primary particle size is prepared, and this is added to, for example, an organic solvent in which a carboxylic acid anionic surfactant is dissolved and stirred. Thereby, titanium oxide (non-electrophoretic particles 35) whose surface is coated with a carboxylic acid anionic surfactant is obtained. Next, for example, a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then the non-electrophoretic particles 35 are added to the solution and sufficiently stirred. And spinning to prepare a spinning solution. Subsequently, the fibrous structure 34 holding the non-migrating particles 35 is formed by spinning the spinning solution by, for example, an electrostatic spinning method. Here, the primary particle size is a minimum particle size. For example, when the particles are aggregated or bonded, the primary particle size represents the particle size of each particle.
 このように、あらかじめ界面活性剤で修飾された非泳動粒子35を用いることによって紡糸溶液中の非泳動粒子35の分散性が高まる。これにより、紡糸時において非泳動粒子35に電界が印加されやすくなり、繊維径が抑えられた、即ち細繊維化された繊維状構造体34が得られる。なお、繊維状構造体34に固定された非泳動粒子35の表面は、繊維状構造体34を構成するポリマーによって覆われている。 Thus, the dispersibility of the non-migrating particles 35 in the spinning solution is enhanced by using the non-migrating particles 35 that have been modified with a surfactant in advance. As a result, an electric field is easily applied to the non-migrating particles 35 during spinning, and a fibrous structure 34 with a reduced fiber diameter, that is, a fine fiber is obtained. Note that the surface of the non-electrophoretic particle 35 fixed to the fibrous structure 34 is covered with a polymer constituting the fibrous structure 34.
 尚、多孔質層33は、上述したような繊維状構造体34と非泳動粒子35とを含むものに限定されず、細孔Hを含むと共に泳動粒子32と異なる光反射性を有するものであればよい。例えば、レーザ加工により形成された細孔Hを有する高分子フィルムであってもよい。また、多孔質層33は、合成繊維等により編まれた布、または連泡多孔性高分子等であってもよい。このような高分子材料に非泳動粒子を組み合わせる場合には、高分子に非泳動粒子を練りこむ作業を行えばよい。 The porous layer 33 is not limited to the one including the fibrous structure 34 and the non-electrophoretic particle 35 as described above, and may include the pore H and a light reflectivity different from that of the electrophoretic particle 32. That's fine. For example, it may be a polymer film having pores H formed by laser processing. Further, the porous layer 33 may be a cloth knitted with synthetic fibers or the like, or an open-cell porous polymer. When combining non-electrophoretic particles with such a polymer material, an operation of kneading the non-electrophoretic particles into the polymer may be performed.
 また、繊維状構造体34は、例えば、炭素原子、酸素原子および水素原子で構成されている主骨格(分子の主部)を有する分子によって構成されることが望ましい。換言すれば、この分子の主骨格は炭素原子、酸素原子および水素原子以外の原子を含まず、これらの原子のみからなっている。繊維状構造体34を形成するこのような分子は、水酸基およびカルボン酸基等の極性の高い官能基を含んでいないことが望ましい。これにより、繊維状構造体34の表面電位の絶対値が小さくなり、電気泳動素子30の応答性を向上させることができる。ここで、主骨格とは分子の両末端を除いた部分を指す。繊維状構造体34を形成する分子は、両末端まで炭素原子、酸素原子および水素原子で構成されていることが望ましいが、末端にこれら炭素原子、酸素原子および水素原子以外の原子が含まれていてもよい。例えば、高分子をラジカル重合により合成する場合には、触媒にアゾビスイソブチロニトリル(AIBN)等の重合開始剤が用いられる。このように合成された高分子の両末端には窒素原子等が含まれることになるが、この末端の原子は分子量で換算して分子全体の1000分の1にも満たない。従って、この末端の原子は分子の特性にはほとんど寄与しない。AIBN以外の重合開始剤についても同様である。このように、炭素原子、酸素原子および水素原子のみで構成された繊維状構造体34の反応性は低いので、繊維状構造体34が絶縁性液体31中に安定して存在する。従って、電気泳動素子30では高い信頼性が得られる。 Also, the fibrous structure 34 is preferably composed of molecules having a main skeleton (main part of the molecule) composed of, for example, carbon atoms, oxygen atoms and hydrogen atoms. In other words, the main skeleton of this molecule does not contain atoms other than carbon atoms, oxygen atoms, and hydrogen atoms, and consists only of these atoms. It is desirable that such molecules forming the fibrous structure 34 do not include a highly polar functional group such as a hydroxyl group and a carboxylic acid group. Thereby, the absolute value of the surface potential of the fibrous structure 34 becomes small, and the responsiveness of the electrophoretic element 30 can be improved. Here, the main skeleton refers to a portion excluding both ends of the molecule. The molecules forming the fibrous structure 34 are preferably composed of carbon atoms, oxygen atoms and hydrogen atoms up to both ends, but the terminals contain atoms other than these carbon atoms, oxygen atoms and hydrogen atoms. May be. For example, when a polymer is synthesized by radical polymerization, a polymerization initiator such as azobisisobutyronitrile (AIBN) is used as a catalyst. Nitrogen atoms and the like are contained at both ends of the polymer synthesized in this way, but the atoms at the ends are less than 1/1000 of the whole molecule in terms of molecular weight. Therefore, this terminal atom contributes little to the properties of the molecule. The same applies to polymerization initiators other than AIBN. Thus, the reactivity of the fibrous structure 34 composed of only carbon atoms, oxygen atoms, and hydrogen atoms is low, so that the fibrous structure 34 exists stably in the insulating liquid 31. Therefore, the electrophoretic element 30 can obtain high reliability.
 繊維状構造体34を形成する分子は鎖状の高分子である。ここで、鎖状の分子(鎖状分子)とは環状の原子配列の構造を含まない分子をいう。環状の原子配列の例として、例えば、単素環式化合物および複素環式化合物が挙げられる。単素環式化合物は、単一元素によって構成されており、具体的には、芳香族化合物,シクロアルケン,シクロアルカンおよびシクロアルキン等である。複素環式化合物は2種類以上の元素によって構成されており、具体的には、ピロール,カルバゾール,環状アセタール,ピラン,フランおよびチオフェン等である。鎖状分子は直鎖状であってもよく、あるいは分岐していてもよい。繊維状構造体34は鎖状分子により構成することにより、環状構造を含む分子に比べて、立体障害が小さいため、泳動粒子32が移動し易くなり、電気泳動素子30のコントラストおよび応答性が向上する。 The molecule forming the fibrous structure 34 is a chain polymer. Here, a chain molecule (chain molecule) refers to a molecule that does not include a cyclic atomic arrangement structure. Examples of the cyclic atomic arrangement include a monocyclic compound and a heterocyclic compound. Monocyclic compounds are composed of a single element, and specifically include aromatic compounds, cycloalkenes, cycloalkanes, cycloalkynes, and the like. The heterocyclic compound is composed of two or more kinds of elements, and specifically includes pyrrole, carbazole, cyclic acetal, pyran, furan and thiophene. The chain molecule may be linear or branched. When the fibrous structure 34 is composed of chain molecules, the steric hindrance is smaller than that of a molecule including a cyclic structure, so that the migrating particles 32 are easily moved, and the contrast and responsiveness of the electrophoretic element 30 are improved. To do.
 この繊維状構造体34を構成する鎖状分子には、エステル基が含まれている。例えば、アクリル樹脂により繊維状構造体34を形成することが望ましい。具体的な鎖状分子として、例えば、ポリアルキルメタクリレート、ポリアルキルアクリレート、ポリアルケニルメタクリレート、ポリアルケニルアクリレート、ポリアルキニルメタクリレートおよびポリアルキニルアクリレート等が挙げられる。この鎖状分子は、エステル基よりも高い極性の官能基を有しておらず、繊維状構造体34の表面電位の絶対値は、例えば、20mV以下となる。繊維状構造体34の表面電位の絶対値が10mV以下となるように、鎖状分子を選択することがより望ましい。即ち、上記のシアノ基等に比べてエステル基がもつ極性は小さいが、これは、電界紡糸法を用いた紡糸に十分な大きさであり、電界紡糸法により繊維状構造体34を容易に形成することができる。 The chain molecule constituting the fibrous structure 34 includes an ester group. For example, it is desirable to form the fibrous structure 34 with an acrylic resin. Specific examples of the chain molecule include polyalkyl methacrylate, polyalkyl acrylate, polyalkenyl methacrylate, polyalkenyl acrylate, polyalkynyl methacrylate and polyalkynyl acrylate. This chain molecule does not have a functional group having a polarity higher than that of the ester group, and the absolute value of the surface potential of the fibrous structure 34 is, for example, 20 mV or less. It is more desirable to select the chain molecule so that the absolute value of the surface potential of the fibrous structure 34 is 10 mV or less. That is, the ester group has a smaller polarity than the cyano group and the like, but this is sufficiently large for spinning using the electrospinning method, and the fibrous structure 34 can be easily formed by the electrospinning method. can do.
 繊維状構造体34を構成する鎖状分子には、微生物により分解されにくい材料を用いることが望ましい。即ち、鎖状分子は生分解に対して耐性を有することが望ましい。生分解性を有する高分子として、例えば、ポリ乳酸,ポリビニルアルコール,セルロースアセテート,コラーゲン,ゼラチンおよびキトサン等が挙げられる。このような高分子は分解され易いので、外部から電気泳動素子に何らかの刺激が加わった際に繊維状構造体の特性を維持できない虞がある。また、このような高分子は水溶性のものが多く、電気泳動素子内の水分により溶解して、繊維状構造体の形状を維持できない虞がある。これに対し、生分解に対して耐性を有する鎖状分子により繊維状構造体34を形成すると、繊維状構造体34の安定性が増す。従って、電気泳動素子30の信頼性を向上させることが可能となる。繊維状構造体34の表面を任意の保護層で被覆するようにしてもよい。 For the chain molecule constituting the fibrous structure 34, it is desirable to use a material that is not easily decomposed by microorganisms. That is, it is desirable that the chain molecule is resistant to biodegradation. Examples of the biodegradable polymer include polylactic acid, polyvinyl alcohol, cellulose acetate, collagen, gelatin, and chitosan. Since such a polymer is easily decomposed, there is a possibility that the characteristics of the fibrous structure cannot be maintained when some kind of stimulus is applied to the electrophoretic element from the outside. In addition, many of such polymers are water-soluble and may be dissolved by moisture in the electrophoretic element, so that the shape of the fibrous structure cannot be maintained. On the other hand, when the fibrous structure 34 is formed of chain molecules having resistance to biodegradation, the stability of the fibrous structure 34 is increased. Therefore, the reliability of the electrophoretic element 30 can be improved. The surface of the fibrous structure 34 may be covered with an arbitrary protective layer.
(1-2.表示装置の構成)
 次に、表示装置1の全体構成と、動作原理について説明する。
(1-2. Configuration of display device)
Next, the overall configuration and operation principle of the display device 1 will be described.
(全体構成)
 図1および図3は、電気泳動素子30を用いた表示装置1の断面構成を表したものである。表示装置1は、電気泳動現象を利用して画像(例えば、文字情報や図柄等)を表示する電気泳動型ディスプレイ(いわゆる電子ペーパーディスプレイ)であり、駆動基板10と対向基板20との間に、上述の電気泳動素子30を有している。駆動基板10と対向基板20との間は、スペーサ40により所定の間隔に調整されている。
(overall structure)
1 and 3 illustrate a cross-sectional configuration of the display device 1 using the electrophoretic element 30. FIG. The display device 1 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information or a symbol) using an electrophoretic phenomenon, and between the drive substrate 10 and the counter substrate 20, The electrophoretic element 30 described above is included. The space between the driving substrate 10 and the counter substrate 20 is adjusted to a predetermined distance by the spacer 40.
 駆動基板10は、支持部材11の一方の面に例えば、TFT(Thin Film Transistor)12を有するものである。TFT12上には、保護層13および平坦化絶縁層14が形成されている。この平坦化絶縁層14上に、画素電極15が設けられている。画素電極15の上には、図示しない接着層を介して、電気泳動素子30が形成されている。TFT12および画素電極15は、例えばマトリクス状またはセグメント状に配置されている。 The drive substrate 10 has, for example, a TFT (Thin Film Transistor) 12 on one surface of the support member 11. A protective layer 13 and a planarization insulating layer 14 are formed on the TFT 12. A pixel electrode 15 is provided on the planarization insulating layer 14. An electrophoretic element 30 is formed on the pixel electrode 15 via an adhesive layer (not shown). The TFT 12 and the pixel electrode 15 are arranged in a matrix or segment, for example.
 支持部材11は、例えば、無機材料,金属材料またはプラスチック材料等により構成されている。無機材料としては、例えば、ケイ素(Si),酸化ケイ素(SiOX),窒化ケイ素(SiNX)または酸化アルミニウム(AlOX)等が挙げられる。酸化ケイ素には、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料としては、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等が挙げられ、プラスチック材料としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)等が挙げられる。 The support member 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like. Examples of the inorganic material include silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ). Silicon oxide includes glass or spin-on-glass (SOG). Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel, and examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
 表示装置1では、対向基板20の表面に画像が表示されるため、支持部材11は非光透過性であってもよい。支持部材11を、ウェハ等の剛性を有する基板により構成してもよく、あるいは可撓性を有する薄層ガラスまたはフィルム等により構成してもよい。支持部材11に可撓性材料を用いることにより、フレキシブル(折り曲げ可能)な表示装置1を実現できる。 In the display device 1, since an image is displayed on the surface of the counter substrate 20, the support member 11 may be non-light transmissive. The support member 11 may be configured by a rigid substrate such as a wafer, or may be configured by a flexible thin glass or film. By using a flexible material for the support member 11, the flexible display device 1 can be realized.
 TFT12は、画素を選択するためのスイッチング用素子である。TFT12は、チャネル層として無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。保護層13および平坦化絶縁層14は、例えば、ポリイミド等の絶縁性樹脂材料により構成されている。保護層13の表面が十分に平坦であれば、平坦化絶縁層14を省略することも可能である。画素電極15は、例えば、金(Au)、銀(Ag)または銅(Cu)等の金属材料により形成されている。画素電極15は、保護層13および平坦化絶縁層14に設けられたコンタクトホール(図示せず)を通じてTFT12に接続されている。 TFT 12 is a switching element for selecting a pixel. The TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer. The protective layer 13 and the planarization insulating layer 14 are made of an insulating resin material such as polyimide, for example. If the surface of the protective layer 13 is sufficiently flat, the planarization insulating layer 14 can be omitted. The pixel electrode 15 is formed of a metal material such as gold (Au), silver (Ag), or copper (Cu), for example. The pixel electrode 15 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the planarization insulating layer 14.
 対向基板20は、例えば、支持部材21および対向電極22を有している。対向電極22は、支持部材21の全面(駆動基板10との対向面)に設けられている。この対向電極22は、画素電極15と同様に、マトリクス状またはセグメント状に配置されていてもよい。 The counter substrate 20 includes, for example, a support member 21 and a counter electrode 22. The counter electrode 22 is provided on the entire surface of the support member 21 (the surface facing the drive substrate 10). The counter electrode 22 may be arranged in a matrix or segment like the pixel electrode 15.
 支持部材21は、光透過性であることを除き、支持部材11と同様の材料により構成されている。対向電極22には、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等の光透過性をもつ導電性材料(透明導電膜)を用いることができる。 The support member 21 is made of the same material as the support member 11 except that it is light transmissive. For the counter electrode 22, for example, indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), or the like has a light-transmitting conductivity. A material (transparent conductive film) can be used.
 対向基板20の側に画像を表示する場合には、対向電極22を介して電気泳動素子30を見ることになるため、対向電極22の光透過性(透過率)は、できるだけ高いことが望ましく、例えば、80%以上である。また、対向電極22の電気抵抗は、できるだけ低いことが望ましく、例えば、100Ω/□以下である。 When displaying an image on the counter substrate 20 side, since the electrophoretic element 30 is viewed through the counter electrode 22, it is desirable that the light transmittance (transmittance) of the counter electrode 22 is as high as possible. For example, it is 80% or more. The electrical resistance of the counter electrode 22 is desirably as low as possible, for example, 100Ω / □ or less.
 この表示装置1では、駆動基板10と対向基板20との間、詳細には画素電極15と対向電極22との間の空間に、絶縁性液体31が充填されている。多孔質層33は、例えば、スペーサ40により支持されている。画素電極15と対向電極22との間の絶縁性液体31が充填された空間は、例えば、多孔質層33を境にして、画素電極15に近い側の領域を待避領域R1、対向電極22に近い側の領域を表示領域R2として区分けされている。但し、実際には、これらの待避領域R1と表示領域R2とが明確に区分けされていない場合が多い。即ち、画素電極15と対向電極22との間のほぼ全域に多孔質層33が配置され、この多孔質層33内に、待避領域R1と表示領域R2とが存在している。あるいは、多孔質層33は、画素電極15および対向電極22のうちのどちらか一方に偏って配置されていても構わない。画素電極15および対向電極22を通じて、電気泳動素子30に電界が印加されることで、泳動粒子32は、その電界に応じて、画素電極15または対向電極22に向かって移動する。 In this display device 1, an insulating liquid 31 is filled between the drive substrate 10 and the counter substrate 20, specifically, a space between the pixel electrode 15 and the counter electrode 22. The porous layer 33 is supported by the spacer 40, for example. The space filled with the insulating liquid 31 between the pixel electrode 15 and the counter electrode 22 is, for example, a region close to the pixel electrode 15 with the porous layer 33 as a boundary, as a save region R1 and a counter electrode 22. The area on the near side is divided as a display area R2. In practice, however, the saving area R1 and the display area R2 are often not clearly separated. That is, the porous layer 33 is disposed in almost the entire area between the pixel electrode 15 and the counter electrode 22, and the retreat area R 1 and the display area R 2 exist in the porous layer 33. Alternatively, the porous layer 33 may be disposed so as to be biased to one of the pixel electrode 15 and the counter electrode 22. By applying an electric field to the electrophoretic element 30 through the pixel electrode 15 and the counter electrode 22, the migrating particles 32 move toward the pixel electrode 15 or the counter electrode 22 in accordance with the electric field.
 スペーサ40の厚みは、例えば10μm以上100μm以下である。スペーサ40は、例えば、高分子材料等の絶縁性材料により構成され、駆動基板10と対向基板20との間に例えば、格子状に設けられている。スペーサ40の配置形状は、特に限定されないが、泳動粒子32の移動を妨げず、かつ、泳動粒子32が均一に分配されるように設けられることが望ましい。 The thickness of the spacer 40 is, for example, 10 μm or more and 100 μm or less. The spacer 40 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 10 and the counter substrate 20. Although the arrangement shape of the spacer 40 is not particularly limited, it is desirable that the spacer 40 is provided so as not to disturb the movement of the migrating particles 32 and to be uniformly distributed.
(動作原理)
 表示装置1では、例えば図1に示したように、全画素において、泳動粒子32が待避領域R1に配置されている状態では、泳動粒子32が多孔質層33により遮蔽されているため、対向基板20側から電気泳動素子30を見ると、コントラストは生じていない(画像が表示されていない)。
(Operating principle)
In the display device 1, for example, as illustrated in FIG. 1, the migrating particles 32 are shielded by the porous layer 33 in the state where the migrating particles 32 are disposed in the retreat area R <b> 1 in all the pixels. When the electrophoretic element 30 is viewed from the 20 side, no contrast is generated (an image is not displayed).
 一方、TFT12により画素が選択され、画素電極15と対向電極22との間に電圧が印加されると、図3に示したように、選択的な画素では、泳動粒子32が待避領域R1から多孔質層33(細孔H)を経由して表示領域R2に移動する。この場合、泳動粒子32が多孔質層33により遮蔽されている画素と、遮蔽されていない画素とが併存するため、対向基板20側から電気泳動素子30を見ると、泳動粒子32と多孔質層33との光反射性の違いによるコントラストが生じる。これにより、画像が表示される。 On the other hand, when a pixel is selected by the TFT 12 and a voltage is applied between the pixel electrode 15 and the counter electrode 22, as shown in FIG. 3, in the selective pixel, the migrating particles 32 are porous from the retreat area R1. It moves to the display area R2 via the quality layer 33 (pore H). In this case, since the pixels where the migrating particles 32 are shielded by the porous layer 33 and the pixels which are not shielded coexist, when the electrophoretic element 30 is viewed from the counter substrate 20 side, the migrating particles 32 and the porous layer are seen. Contrast is generated due to the difference in light reflectivity from 33. Thereby, an image is displayed.
 なお、この表示装置1によれば、高い応答性を有する電気泳動素子30により、例えば、カラー化や動画表示にも適した高品位な画像を表示できる。 In addition, according to this display device 1, it is possible to display a high-quality image suitable for colorization and moving image display, for example, by the electrophoretic element 30 having high responsiveness.
 ここで、電気泳動素子30は、泳動粒子32と多孔質層33との光反射性の違いによりコントラストを生じさせるものであるから、泳動粒子32および多孔質層33のうち、明表示する方の光反射率が暗表示する方の光反射率よりも高くなっている。例えば、多孔質層33(非泳動粒子35)の光反射率を泳動粒子32よりも高くして、多孔質層33で明表示し、泳動粒子32で暗表示することが望ましい。明表示がなされる際の光反射率が、多孔質層33における光の乱反射によって高くなり、コントラストが向上するからである。 Here, since the electrophoretic element 30 generates contrast due to the difference in light reflectivity between the electrophoretic particles 32 and the porous layer 33, the electrophoretic particles 32 and the porous layer 33 that are brightly displayed. The light reflectance is higher than the light reflectance for the dark display. For example, it is desirable that the light reflectance of the porous layer 33 (non-migrating particles 35) be higher than that of the migrating particles 32, so that the porous layer 33 is brightly displayed and the migrating particles 32 are darkly displayed. This is because the light reflectance at the time of bright display is increased by the irregular reflection of light in the porous layer 33, and the contrast is improved.
(1-3.効果)
 表示装置1では、電気泳動素子30に一の電圧が印加されると、上述したように、選択的な画素領域において多孔質層33の一方の側に泳動粒子32が移動し、これによりコントラストを生じさせて画像を表示することができる。この表示状態では、泳動粒子32同士が画素電極15または対向電極22の近傍に緩やかに集まり、泳動粒子の見かけの粒径が大きくなる。
(1-3. Effect)
In the display device 1, when a single voltage is applied to the electrophoretic element 30, as described above, the electrophoretic particles 32 move to one side of the porous layer 33 in the selective pixel region, thereby improving the contrast. It is possible to display an image. In this display state, the migrating particles 32 gather together in the vicinity of the pixel electrode 15 or the counter electrode 22, and the apparent particle size of the migrating particles increases.
 本実施の形態では、多孔質層33の平均孔径が泳動粒子32の平均粒径の1.0倍以上4.3倍以下であることにより、泳動粒子32の見かけの粒径が多孔質層33の孔径よりも大きくなり、泳動粒子32が多孔質層33によって物理的に支持される。これにより、電圧の供給が一旦停止された後も、その表示状態が維持され、即ちメモリ性が向上する。 In the present embodiment, since the average pore diameter of the porous layer 33 is 1.0 to 4.3 times the average particle diameter of the migrating particles 32, the apparent particle diameter of the migrating particles 32 is the porous layer 33. The migrating particles 32 are physically supported by the porous layer 33. Thereby, even after the supply of voltage is temporarily stopped, the display state is maintained, that is, the memory performance is improved.
 ここで、メモリ性を向上させる手法としては、例えば泳動粒子と逆極性をもつ帯電層を設ける手法があるが、この手法では、帯電層から泳動粒子を引き剥がすのに時間を要する。また、泳動粒子にポリマーを添加して枯渇凝集させる手法があるが、この手法においても、泳動粒子を覆うあるいは泳動粒子に修飾されたポリマーが、泳動粒子の動きを阻害することから、応答性が遅くなる。また、シリカを用いて泳動粒子同士を凝集させる手法もあるが、凝集した泳動粒子同士を引き剥がしにくいことから、応答性が遅くなる。このように、メモリ性が向上する一方で、応答性が低下する。あるいは泳動粒子同士を引き剥がすために余分なエネルギーを要し、消費電力が増大する。 Here, as a method for improving the memory performance, for example, there is a method of providing a charged layer having a polarity opposite to that of the migrating particles. In this method, it takes time to peel off the migrating particles from the charged layer. In addition, there is a method of adding polymer to the electrophoretic particles to cause depletion and aggregation. However, in this method, the polymer covering the electrophoretic particles or modified with the electrophoretic particles inhibits the movement of the electrophoretic particles, so that the responsiveness is high. Become slow. In addition, there is a method of aggregating the migrating particles using silica, but the responsiveness is slow because the agglomerated migrating particles are difficult to peel off. As described above, the memory performance is improved while the responsiveness is lowered. Alternatively, extra energy is required to peel off the migrating particles, increasing power consumption.
 これに対し、本実施の形態では、ある電圧印加後の表示状態では、泳動粒子32同士が緩やかに集まっているだけなので、再び他の電圧が印加されると、泳動粒子32同士は容易に離散して、絶縁性液体31中を移動し、多孔質層33を通過することができる。即ち、移動性(応答性)を阻害しにくい。 On the other hand, in the present embodiment, the electrophoretic particles 32 are only gathered gently in the display state after application of a certain voltage. Therefore, when another voltage is applied again, the electrophoretic particles 32 are easily separated. Then, it can move through the insulating liquid 31 and pass through the porous layer 33. That is, it is difficult to inhibit mobility (responsiveness).
 このように本実施の形態では、多孔質層33(細孔H)の平均孔径が泳動粒子32の平均粒径の1.0倍以上4.3倍以下であることにより、電圧印加後の表示状態では、泳動粒子32の見かけの粒径が多孔質層33の孔径よりも大きくなり、泳動粒子32を多孔質層33によって物理的に支えることができる。これにより、メモリ性が向上する。一方で、他の電圧が印加されると、泳動粒子同士は容易に離散することから、移動性(応答性)は阻害されにくい。したがって、応答性の低下を抑制しつつ、メモリ性を向上させることが可能である。 As described above, in the present embodiment, the average pore diameter of the porous layer 33 (pore H) is 1.0 to 4.3 times the average particle diameter of the migrating particles 32, so that the display after voltage application is performed. In this state, the apparent particle size of the migrating particles 32 is larger than the pore size of the porous layer 33, and the migrating particles 32 can be physically supported by the porous layer 33. Thereby, memory property improves. On the other hand, when other voltages are applied, the migrating particles are easily separated from each other, and thus mobility (responsiveness) is not easily inhibited. Therefore, it is possible to improve the memory performance while suppressing a decrease in responsiveness.
 また、繊維状構造体34が、平均繊維径の2倍以上の繊維径を有する部分を20%以下の割合で含むことにより、更に反射率を高めることができる。これによりコントラストを高めることができる。その割合を、10%以下あるいは5%以下とすることで、より反射率を高めることができる。 Further, when the fibrous structure 34 includes a portion having a fiber diameter twice or more the average fiber diameter at a ratio of 20% or less, the reflectance can be further increased. This can increase the contrast. By making the ratio 10% or less or 5% or less, the reflectance can be further increased.
 更に、絶縁性液体31の動粘度が、1.0mm2/秒以上5.0mm2/秒以下、望ましくは1.0mm2/秒以上3.0mm2/秒以下であることにより、応答性および反射率を高めることができる。 Furthermore, since the kinematic viscosity of the insulating liquid 31 is 1.0 mm 2 / second or more and 5.0 mm 2 / second or less, preferably 1.0 mm 2 / second or more and 3.0 mm 2 / second or less, the responsiveness and The reflectance can be increased.
<2.実施例>
 次に、上記実施の形態の実施例について詳細に説明する。
<2. Example>
Next, examples of the above embodiment will be described in detail.
 以下の手順により、黒色(暗表示)の泳動粒子および白色(明表示)の多孔質層(粒子含有繊維状構造体)を用いて、表示装置(実験例1~18)を作製した。 Display devices (Experimental Examples 1 to 18) were prepared using black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) according to the following procedure.
(実験例1)
 まず、テトラヒドロフラン400mlとメタノール400mlとの混合溶液を調製した後、この溶液に複合酸化物微粒子(銅-鉄-マンガンの酸化物:大日精化工業株式会社製ダイピロキサイドカラーTM9550)50gを加え、超音波浴槽にて超音波攪拌(25℃~35℃で30分間)を行った。次いで、この複合酸化物微粒子の分散液に28%アンモニア水40mlを30分間かけて滴下したのち、テトラヒドロフラン80mlにプレンアクト KR-TTS(味の素ファインテクノ株式会社製)10gを溶解させた溶液を30分間かけて滴下した。続いて、超音波浴槽を60℃まで昇温させ3時間保持したのちこれを室温まで冷却して遠心分離およびデカンテーションを行った。続いて、このデカンテーション後の沈殿物をテトラヒドロフランとメタノールとの混合溶媒(体積比1:1)に再分散させ、遠心分離(6000rpmで10分間)およびデカンテーションを行った。この洗浄作業を3回繰り返して得られた沈殿物を70℃の真空オーブンで一晩乾燥させた。これにより、絶縁性液体中において負に帯電する、分散基で被覆された黒色の泳動粒子が得られた。
(Experimental example 1)
First, a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution. Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath. Next, 40 ml of 28% ammonia water was added dropwise to the dispersion of the composite oxide fine particles over 30 minutes, and then a solution in which 10 g of preneact KR-TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.) was dissolved in 80 ml of tetrahydrofuran was added over 30 minutes. And dripped. Subsequently, the ultrasonic bath was heated to 60 ° C. and held for 3 hours, and then cooled to room temperature, followed by centrifugation and decantation. Subsequently, the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. The precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a dispersing group that are negatively charged in the insulating liquid were obtained.
 泳動粒子を調製した後、絶縁性液体94gに、分散剤として長鎖アルキルコハク酸無水物6gを溶解させ、溶液D1を調製した。絶縁性液体としては、イソパラフィン(エクソンモービル社製isoparG)を用いた。この溶液D1(9g)に、上記の泳動粒子1gを添加し、超音波分散を行った。続いて、遠心分離およびデカンテーションを行った後、絶縁性液体に再分散させた。この作業を3回繰り返し、得られた分散液中の泳動粒子成分が10重量%になるように絶縁性液体を加え、溶液D2を調製した。続いて、この溶液D2(50g)に、絶縁性液体49.6gと、塩基性添加剤アルキルアミン0.25gと、酸性添加剤0.12gとを加えて攪拌し、泳動粒子と、酸性添加剤0.4mmolと、塩基性添加剤1.75mmolとを、それぞれ含有する絶縁性液体(泳動粒子分散液)を得た。このとき、遠心分離条件等を変更して、以下の表1に示したように、泳動粒子の平均粒径の異なる5種類の泳動粒子分散液(泳動粒子分散液1~5)を調製した。尚、泳動粒子の平均粒径は、調製された分散液中において、例えばレーザードップラー方式により測定することができる。 After preparing the migrating particles, 6 g of long-chain alkyl succinic anhydride as a dispersant was dissolved in 94 g of the insulating liquid to prepare a solution D1. As the insulating liquid, isoparaffin (isopar G manufactured by ExxonMobil) was used. To this solution D1 (9 g), 1 g of the above migrating particles was added, and ultrasonic dispersion was performed. Subsequently, centrifugation and decantation were performed, followed by redispersion in the insulating liquid. This operation was repeated three times, and an insulating liquid was added so that the electrophoretic particle component in the obtained dispersion was 10% by weight to prepare a solution D2. Subsequently, 49.6 g of the insulating liquid, 0.25 g of the basic additive alkylamine, and 0.12 g of the acidic additive are added to the solution D2 (50 g) and stirred, and the migrating particles and the acidic additive are added. Insulating liquids (electrophoretic particle dispersions) each containing 0.4 mmol and 1.75 mmol of basic additive were obtained. At this time, as shown in Table 1 below, five types of electrophoretic particle dispersions (electrophoretic particle dispersions 1 to 5) having different average particle diameters were prepared as shown in Table 1 below. The average particle size of the migrating particles can be measured in the prepared dispersion by, for example, a laser Doppler method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 一方、多孔質層は以下のようにして形成した。まず、非泳動粒子として平均一次粒径250nmの酸化チタンを用意し、カルボン酸系陰イオン性界面活性剤を溶解させたテトラヒドロフラン中に15重量%混合し、ペイントシェイカーを用いて1時間攪拌した。その後、遠心分離(5000rpmで10分)にかけ、デカンテーションにより溶媒を取り除き、3回洗浄した後、70℃で一晩乾燥させた。これにより、カルボン酸系陰イオン性界面活性剤でコーティングされた酸化チタン(非泳動粒子T1とする)が得られた。 On the other hand, the porous layer was formed as follows. First, titanium oxide having an average primary particle diameter of 250 nm was prepared as non-electrophoretic particles, mixed with 15% by weight in tetrahydrofuran in which a carboxylic acid anionic surfactant was dissolved, and stirred for 1 hour using a paint shaker. Thereafter, the mixture was centrifuged (5000 rpm for 10 minutes), the solvent was removed by decantation, washed 3 times, and dried overnight at 70 ° C. Thereby, titanium oxide coated with a carboxylic acid anionic surfactant (referred to as non-electrophoretic particles T1) was obtained.
 次いで、繊維状構造体の構成材料としてポリメチルメタクリレートを準備した。このポリメチルメタクリレート13gをN,N’-ジメチルホルムアミド87gに溶解させた後、この溶液70gに、非泳動粒子T1を30g加えてビーズミルで混合した。これにより、繊維状構造体を形成するための紡糸溶液が得られた。駆動基板上に、所定パターンのITOからなる画素電極を形成した後、この紡糸溶液を用いて紡糸を行った。具体的には、紡糸溶液をシリンジに入れ、駆動基板上で紡糸を行った。これにより、以下の表2に示したように、平均繊維径(520nm)は同じで、単位面積あたりの重量(紡糸量)の異なる3種類の繊維状構造体(A1~A3)を形成した。重量は、繊維状構造体A1が最も大きく、繊維状構造体A2,A3の順に小さくした。紡糸は、電界紡糸装置(株式会社メック製NANON)を用いて行った。 Next, polymethyl methacrylate was prepared as a constituent material of the fibrous structure. After 13 g of this polymethyl methacrylate was dissolved in 87 g of N, N′-dimethylformamide, 30 g of non-electrophoretic particles T1 were added to 70 g of this solution and mixed with a bead mill. As a result, a spinning solution for forming the fibrous structure was obtained. A pixel electrode made of ITO having a predetermined pattern was formed on the driving substrate, and then spinning was performed using this spinning solution. Specifically, the spinning solution was put into a syringe, and spinning was performed on a driving substrate. As a result, as shown in Table 2 below, three types of fibrous structures (A1 to A3) having the same average fiber diameter (520 nm) and different weights per unit area (spinning amount) were formed. The weight of the fibrous structure A1 was the largest, and the weight was decreased in the order of the fibrous structures A2 and A3. Spinning was performed using an electrospinning apparatus (NANON manufactured by MEC Co., Ltd.).
Figure JPOXMLDOC01-appb-T000002
 また、繊維状構造体A1~A3よりも、カルボン酸系陰イオン性界面活性剤の量を増やし、それ以外の条件は繊維状構造体A1~A3と同様にして、更に3種類の繊維状構造体(A4~A6)を作製した。これらの繊維状構造体A4~A6には、繊維径の異なる少なくとも2種類の繊維が混在する。ここで、平均繊維径の2倍以上の繊維径をもつ繊維を繊維Lとし、それ以外の繊維を繊維Sとすると、繊維Lでは非泳動粒子T1が分散しづらい状態となる。このため、繊維Lの数(割合)は、繊維Sの数(割合)よりも少ないことが望ましい。表2に示したように、繊維状構造体A4では、繊維Lの割合を5%とし、繊維状構造体A5では、繊維Lの割合を10%とし、繊維状構造体A6では、繊維Lの割合を20%とした。
Figure JPOXMLDOC01-appb-T000002
Further, the amount of the carboxylic acid anionic surfactant is increased as compared with the fibrous structures A1 to A3, and the other conditions are the same as those of the fibrous structures A1 to A3. Body (A4 to A6) was prepared. In these fibrous structures A4 to A6, at least two kinds of fibers having different fiber diameters are mixed. Here, if a fiber having a fiber diameter twice or more of the average fiber diameter is a fiber L and the other fiber is a fiber S, the non-migrating particles T1 are hardly dispersed in the fiber L. For this reason, it is desirable that the number (ratio) of the fibers L is smaller than the number (ratio) of the fibers S. As shown in Table 2, the fibrous structure A4 has a fiber L ratio of 5%, the fibrous structure A5 has a fiber L ratio of 10%, and the fibrous structure A6 has a fiber L ratio of 10%. The ratio was 20%.
 繊維状構造体A1~A6の平均孔径は、最終的な表示デバイスにおけるセルギャップと同一になるように、15μmとなるまで押し潰した状態で測定した。測定装置としては、PMI社製パームポロメーターを使用した。繊維状構造体A1~A3では、その重量に応じて平均孔径が変動し、具体的には重量が大きいほど平均孔径が小さく、重量が小さいほど平均孔径が大きくなる。これはセルギャップを同一(15μm)としているため、繊維状構造体A1~A3の体積分率が変動するためである。 The average pore diameters of the fibrous structures A1 to A6 were measured in a state of being crushed to 15 μm so as to be the same as the cell gap in the final display device. As a measuring device, a palm porometer manufactured by PMI was used. In the fibrous structures A1 to A3, the average pore diameter varies depending on the weight. Specifically, the larger the weight, the smaller the average pore diameter, and the smaller the weight, the larger the average pore diameter. This is because the volume fraction of the fibrous structures A1 to A3 varies because the cell gap is the same (15 μm).
 繊維状構造体A1~A6の平均繊維径および繊維Lの割合は、SEMで観察して測定を行った。繊維状構造体A4~A6では、繊維状構造体A1~A3に比べ、平均繊維径が小さいものの、繊維Lの割合は大きくなっている。このため、繊維状構造体A4~A6の平均孔径は、繊維状構造体A1と同程度となる。 The average fiber diameter and the ratio of the fibers L of the fibrous structures A1 to A6 were measured by observation with an SEM. In the fibrous structures A4 to A6, the average fiber diameter is smaller than that of the fibrous structures A1 to A3, but the ratio of the fibers L is large. Therefore, the average pore diameter of the fibrous structures A4 to A6 is approximately the same as that of the fibrous structure A1.
 上記のようにして、駆動基板上に多孔質層を形成した後、駆動基板から不要な多孔質層を除去した。具体的には、繊維状構造体内部に厚み15μmのスペーサを配置し、不要な部分の多孔質層を除去した。一方、対向基板として、支持部材にITOからなる対向電極を形成し、この対向基板上に、上記泳動粒子が分散された絶縁性液体(泳動粒子分散液1~5)を注入し、その上から多孔質層を形成した駆動基板を重ねて配置した。このとき、スペーサにより、多孔質層を保持するようにして、画素電極および対向電極を離間させた。最後に、泳動粒子分散液が漏れ出ないように周辺部を例えば紫外線硬化樹脂で封止し、紫外線を照射して、駆動基板および対向基板間をシールすることにより、表示装置1を完成させた。 As described above, after the porous layer was formed on the drive substrate, the unnecessary porous layer was removed from the drive substrate. Specifically, a spacer having a thickness of 15 μm was disposed inside the fibrous structure, and unnecessary portions of the porous layer were removed. On the other hand, a counter electrode made of ITO is formed on the support member as a counter substrate, and an insulating liquid in which the electrophoretic particles are dispersed (electrophoretic particle dispersions 1 to 5) is injected onto the counter substrate. The driving substrate on which the porous layer was formed was placed in an overlapping manner. At this time, the pixel electrode and the counter electrode were separated so as to hold the porous layer with the spacer. Finally, the peripheral portion is sealed with, for example, an ultraviolet curable resin so that the electrophoretic particle dispersion does not leak, and the display device 1 is completed by irradiating with ultraviolet rays to seal between the driving substrate and the counter substrate. .
 泳動粒子分散液1~5と、繊維状構造体A1~A6とのそれぞれを組み合わせることにより、多孔質層の平均孔径と泳動粒子の平均粒径との比率を変えて、計18パターン(実験例1~18)の表示装置1を作製し、それぞれのメモリ性および反射率を評価した。その結果を表3に示す。尚、表3中の「比」とは、(繊維状構造体の平均孔径)/(泳動粒子の平均粒径)の値である。反射率(白反射率)では、43%以上を「aa」、40%以上を「a」、40%未満を「b」として示している。また、メモリ性では、10分後の白保持率が90%以上を「a」、90%未満を「b」として示している。 By combining each of the electrophoretic particle dispersions 1 to 5 and the fibrous structures A1 to A6, the ratio of the average pore diameter of the porous layer to the average particle diameter of the electrophoretic particles was changed, and a total of 18 patterns (experimental examples) The display device 1 of 1 to 18) was produced, and each memory property and reflectance were evaluated. The results are shown in Table 3. The “ratio” in Table 3 is a value of (average pore diameter of fibrous structure) / (average particle diameter of migrating particles). In the reflectance (white reflectance), 43% or more is indicated as “aa”, 40% or more as “a”, and less than 40% as “b”. In the memory property, the white retention rate after 10 minutes is indicated as “a” when 90% or more and “b” when less than 90%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実験例1,2,3,6,9,12のように、「比」が大きい場合、即ち平均孔径に対して平均粒径が小さい場合、繊維状構造体により泳動粒子を支えにくくなるので、メモリ性が良好ではない。このため、「比」の値は、1.0以上4.3以下であることが望ましい。これに対し、実験例13,14,15のように「比」が小さい場合、即ち平均孔径に対して平均粒径が大きい場合、繊維状構造体により泳動粒子を支え易くなるものの、そもそも繊維状構造体内を通過しにくくなってしまう。このため、反射率が低下してしまう。これらのことから、「比」の値は、3.3以上4.3以下であることがより望ましい。 As in Experimental Examples 1, 2, 3, 6, 9, and 12, when the “ratio” is large, that is, when the average particle diameter is small with respect to the average pore diameter, it becomes difficult to support the migrating particles by the fibrous structure. Memory performance is not good. For this reason, it is desirable that the value of “ratio” is 1.0 or more and 4.3 or less. On the other hand, when the “ratio” is small as in Experimental Examples 13, 14, and 15, that is, when the average particle size is large with respect to the average pore size, it becomes easy to support the migrating particles by the fibrous structure, but in the first place the fibrous shape It becomes difficult to pass through the structure. For this reason, a reflectance will fall. Therefore, the value of “ratio” is more preferably 3.3 or more and 4.3 or less.
 実験例16,17,18は、繊維Lを含む繊維状構造体A4~A6を用いたものである。繊維状構造体A4~A6は、繊維状構造体A1~A3に比べ、平均繊維径が細いものの、繊維Lを含むことから、平均孔径の値は同等となっている。界面活性剤の量を増した場合、繊維状構造体A4から繊維状構造体A5のように平均繊維径は細くなるが、量を増やし過ぎると、繊維状構造体A6のようにバランスが崩れて繊維Lが多くなり、平均繊維径が太くなる。実験例16~18では、これらの繊維状構造体A4~A6に対して、平均粒径150nmの泳動粒子分散液2を組み合わせている。実験例4,5では、繊維Lを含まない繊維状構造体A1,A2に対し、平均粒径150nmの泳動粒子分散液2を組み合わせている。これらの実験例16~18と実験例4,5とを比較すると、繊維Lを含むことにより、反射率が向上することがわかる。これは、細い繊維径になることで白色顔料(非泳動粒子)の分散性を増しながら、繊維Lが混在することによって泳動粒子の通過できる経路をも同時に確保できるためである。繊維Lの数は、実験例17,18を比較すると10%から20%へ増加することで反射率が低下し始めることから、20%以下であることが望ましく、10%以下であることがより望ましい。 Experimental Examples 16, 17, and 18 use fibrous structures A4 to A6 containing fibers L. Although the fibrous structures A4 to A6 have a smaller average fiber diameter than the fibrous structures A1 to A3, the fibrous structures A4 to A6 have the same average pore diameter because they contain the fibers L. When the amount of the surfactant is increased, the average fiber diameter is reduced from the fibrous structure A4 to the fibrous structure A5. However, when the amount is excessively increased, the balance is lost as in the fibrous structure A6. The fiber L increases and the average fiber diameter increases. In Experimental Examples 16 to 18, the electrophoretic particle dispersion liquid 2 having an average particle diameter of 150 nm is combined with these fibrous structures A4 to A6. In Experimental Examples 4 and 5, the electrophoretic particle dispersion liquid 2 having an average particle diameter of 150 nm is combined with the fibrous structures A1 and A2 that do not include the fiber L. When these experimental examples 16 to 18 are compared with experimental examples 4 and 5, it can be seen that the inclusion of the fiber L improves the reflectance. This is because the path through which the migrating particles can pass can be ensured at the same time by mixing the fibers L while increasing the dispersibility of the white pigment (non-migrating particles) by reducing the diameter of the fibers. The number of fibers L is preferably 20% or less and more preferably 10% or less because the reflectance starts to decrease by increasing from 10% to 20% when comparing Experimental Examples 17 and 18. desirable.
 上記結果より、電気泳動素子では、溶液の粘度に関わらず、メモリ性を発現することが可能である。即ち、溶媒として用いられる絶縁性液体の動粘度によらすメモリ性を高めることができる。ここで、動粘度の異なる溶媒(溶媒B1~B5)を用いて、上記の実験例4と同様の条件により表示デバイスを作製し、各表示デバイスの反射率およびメモリ性を評価した結果を、以下の表4に示す。 From the above results, the electrophoretic element can exhibit memory properties regardless of the viscosity of the solution. That is, the memory property based on the kinematic viscosity of the insulating liquid used as a solvent can be improved. Here, using a solvent having different kinematic viscosities (solvents B1 to B5), a display device was produced under the same conditions as in Experimental Example 4, and the reflectance and memory performance of each display device were evaluated. Table 4 shows.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 動粘度の低い溶媒B1を用いた場合、沸点が低いため扱いが難しく、表示デバイスを安定して作製することができないが、動粘度が高い溶媒B2~B5を用いた場合、表示デバイスを安定して作製することができた。 When the solvent B1 having a low kinematic viscosity is used, it is difficult to handle because the boiling point is low, and the display device cannot be stably produced. However, when the solvents B2 to B5 having a high kinematic viscosity are used, the display device is stabilized. It was possible to make it.
 動粘度の低い溶媒B2~B4に比べ、溶媒B5を用いた時には、初期の白反射率が低くなった。10分後の反射率の保持率(メモリ性)は、動粘度に関わらず、同程度であった。これは、電気泳動素子の溶液の粘性によらず、メモリ性が発現することを示している。但し、溶媒B5まで動粘度を上げてしまうと、応答性が遅くなり、反射率が低下してしまう。 When compared with the solvents B2 to B4 having a low kinematic viscosity, the initial white reflectance was lowered when the solvent B5 was used. The reflectance retention ratio (memory property) after 10 minutes was almost the same regardless of the kinematic viscosity. This indicates that the memory performance appears regardless of the viscosity of the solution of the electrophoretic element. However, if the kinematic viscosity is increased up to the solvent B5, the responsiveness becomes slow and the reflectance decreases.
 これらのことから、溶媒の動粘度は望ましくは1.0mm2/秒以上5.0mm2/秒以下であり、より望ましくは1.0mm2/秒以上3.0mm2/秒以下である。換言すると、溶媒の沸点は、望ましくは140°以上280度以下であり、より望ましくは140°以上240度以下である。これにより、メモリ性を向上させつつ、反射性ないし応答性を高めることができる。 From these facts, the kinematic viscosity of the solvent is desirably 1.0 mm 2 / sec or more and 5.0 mm 2 / sec or less, and more desirably 1.0 mm 2 / sec or more and 3.0 mm 2 / sec or less. In other words, the boiling point of the solvent is desirably 140 ° or more and 280 ° or less, and more desirably 140 ° or more and 240 ° or less. Thereby, it is possible to improve reflectivity or responsiveness while improving memory performance.
<3.適用例>
 次に、上記表示装置1の適用例について説明する。
<3. Application example>
Next, an application example of the display device 1 will be described.
 本開示の表示装置1は、各種の電子機器あるいは服飾品に適用可能であり、その電子機器等の種類は特に限定されない。この表示装置1は、例えば、以下の電子機器等に搭載可能である。ただし、以下で説明する電子機器等の構成はあくまで一例であるため、その構成は適宜変更可能である。 The display device 1 of the present disclosure can be applied to various electronic devices or clothing, and the type of the electronic device is not particularly limited. The display device 1 can be mounted on, for example, the following electronic devices. However, the configuration of the electronic device or the like described below is merely an example, and the configuration can be changed as appropriate.
(適用例1)
 図4A,4Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図4Aに示したように非表示部120の前面に設けられていてもよいし、図4Bに示したように上面に設けられていてもよい。表示部110が表示装置1を含んで構成される。なお、表示装置1は、図4A,4Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。
(Application example 1)
4A and 4B show the external configuration of the electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. Note that the operation unit 130 may be provided on the front surface of the non-display unit 120 as shown in FIG. 4A or may be provided on the upper surface as shown in FIG. 4B. The display unit 110 includes the display device 1. The display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 4A and 4B.
(適用例2)
 図5は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部310および筐体320を有しており、タッチパネル部310が上記表示装置1を含んで構成されている。
(Application example 2)
FIG. 5 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 includes the display device 1.
 上記の表示装置1は、例えば時計(腕時計)、鞄、衣服、帽子および靴等の服飾品の一部に適用することも可能である。以下に、そのような服飾品一体型の電子機器の一例を示す。 The display device 1 can also be applied to a part of clothing such as a watch (watch), bag, clothes, hat, and shoes. Below, an example of such an electronic device integrated with clothing is shown.
(適用例3)
 図6Aおよび図6Bは、電子時計(腕時計一体型電子機器)の外観を表したものである。この電子時計は、例えば文字盤(文字情報表示部分)410とバンド部(色柄表示部分)420とを有しており、これらの文字盤410とバンド部420とが上記表示装置1を含んで構成されている。文字盤410には、上述の電気泳動素子30を用いた表示駆動により、図6Aおよび図6Bのように、例えば様々な文字や図柄が表示される。バンド部420は、例えば腕などに装着可能な部位である。このバンド部420において、表示装置1が用いられることで、様々な色柄を表示することができ、図6Aの例から図6Bの例のように、バンド部420の意匠を変更することができる。ファッション用途においても有用な電子デバイスを実現可能となる。
(Application example 3)
6A and 6B show the appearance of an electronic timepiece (a wristwatch-integrated electronic device). The electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 6A and 6B by display driving using the electrophoretic element 30 described above. The band unit 420 is a part that can be attached to an arm or the like, for example. Various display patterns can be displayed by using the display device 1 in the band unit 420, and the design of the band unit 420 can be changed from the example of FIG. 6A to the example of FIG. 6B. . Electronic devices that are also useful in fashion applications can be realized.
 以上、実施の形態および実施例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。 Although the present disclosure has been described with reference to the embodiment and examples, the present disclosure is not limited to the above-described embodiment and the like, and various modifications are possible.
 尚、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 また、本開示は以下のような構成も取ることができる。
(1)
 絶縁性液体中に、
 泳動粒子と、
 前記泳動粒子とは異なる光反射性を有すると共に、前記泳動粒子が通過する複数の孔を含む多孔質層と
 を有し、
 前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の1.0倍以上4.3倍以下である
 電気泳動素子。
(2)
 前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の3.3倍以上4.3倍以下である
 上記(1)に記載の電気泳動素子。
(3)
 前記多孔質層の平均孔径は、150nm以上750nm以下である
 上記(1)または(2)に記載の電気泳動素子。
(4)
 前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
 前記繊維状構造体は、その平均繊維径の2倍以上の繊維径を有する部分を20%以下の割合で含む
 上記(1)~(3)のいずれか1つに記載の電気泳動素子。
(5)
 前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
 前記繊維状構造体は、その平均繊維径の2倍以上の繊維径を有する部分を10%以下の割合で含む
 上記(1)~(4)のいずれか1つに記載の電気泳動素子。
(6)
 前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
 前記繊維状構造体は、その平均繊維径の2倍以上の繊維径を有する部分を5%以下の割合で含む
 上記(1)~(5)のいずれか1つに記載の電気泳動素子。
(7)
 前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
 前記繊維状構造体は、600nm以上1200nm以下の繊維径を有する部分と、200nm以上500nm以下の繊維径を有する部分とを混在して含む
 上記(1)~(6)のいずれか1つに記載の電気泳動素子。
(8)
 前記絶縁性液体の動粘度は、1.0mm2/秒以上5.0mm2/秒以下である
 上記(1)~(7)のいずれか1つに記載の電気泳動素子。
(9)
 前記絶縁性液体の動粘度は、1.0mm2/秒以上3.0mm2/秒以下である
 上記(1)~(8)のいずれか1つに記載の電気泳動素子。
(10)
 前記多孔質層は、
 前記複数の孔を形成する繊維状構造体と、
 前記繊維状構造体により保持されると共に、前記泳動粒子とは異なる光反射性を有する非泳動粒子と
 を有する
 上記(1)~(9)のいずれか1つに記載の電気泳動素子。
(11)
 前記繊維状構造体はナノファイバーによって構成されている
 上記(10)に記載の電気泳動素子。
(12)
 前記繊維状構造体は静電防止法により形成された
 上記(10)または(11)に記載の電気泳動素子。
(13)
 一対の電極間に電気泳動素子を備え、
 前記電気泳動素子は、
 絶縁性液体中に、
 泳動粒子と、
 前記泳動粒子とは異なる光反射性を有すると共に、前記泳動粒子が通過する複数の孔を含む多孔質層と
 を有し、
 前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の1.0倍以上4.3倍以下である
 表示装置。
(14)
 一対の電極間に電気泳動素子を有する表示装置を備え、
 前記電気泳動素子は、
 絶縁性液体中に、
 泳動粒子と、
 前記泳動粒子とは異なる光反射性を有すると共に、前記泳動粒子が通過する複数の孔を含む多孔質層とを有し、
 前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の1.0倍以上4.3倍以下である
 電子機器。
(15)
 服飾品の少なくとも一部に、前記服飾品と一体的に配置された
 上記(14)に記載の電子機器。
The present disclosure can also have the following configurations.
(1)
In insulating liquid,
Electrophoretic particles,
And having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass,
The electrophoretic element, wherein the porous layer has an average pore size of 1.0 to 4.3 times the average particle size of the electrophoretic particles.
(2)
The average pore size of the porous layer is not less than 3.3 times and not more than 4.3 times the average particle size of the electrophoretic particles. The electrophoretic element according to (1) above.
(3)
The average pore diameter of the porous layer is 150 nm or more and 750 nm or less. The electrophoretic device according to (1) or (2).
(4)
The porous layer includes a fibrous structure that forms the plurality of pores;
The electrophoretic element according to any one of (1) to (3), wherein the fibrous structure includes a portion having a fiber diameter that is twice or more the average fiber diameter at a ratio of 20% or less.
(5)
The porous layer includes a fibrous structure that forms the plurality of pores;
The electrophoretic element according to any one of (1) to (4), wherein the fibrous structure includes a portion having a fiber diameter that is twice or more the average fiber diameter at a ratio of 10% or less.
(6)
The porous layer includes a fibrous structure that forms the plurality of pores;
The electrophoretic element according to any one of (1) to (5), wherein the fibrous structure includes a portion having a fiber diameter of twice or more the average fiber diameter at a ratio of 5% or less.
(7)
The porous layer includes a fibrous structure that forms the plurality of pores;
The fibrous structure includes a part having a fiber diameter of 600 nm or more and 1200 nm or less and a part having a fiber diameter of 200 nm or more and 500 nm or less, in any one of the above (1) to (6) Electrophoretic element.
(8)
The electrophoretic device according to any one of (1) to (7), wherein the insulating liquid has a kinematic viscosity of 1.0 mm 2 / sec to 5.0 mm 2 / sec.
(9)
The electrophoretic device according to any one of (1) to (8), wherein the insulating liquid has a kinematic viscosity of 1.0 mm 2 / sec to 3.0 mm 2 / sec.
(10)
The porous layer is
A fibrous structure forming the plurality of holes;
The electrophoretic element according to any one of (1) to (9), further comprising non-electrophoretic particles that are held by the fibrous structure and have light reflectivity different from the electrophoretic particles.
(11)
The electrophoretic device according to (10), wherein the fibrous structure is composed of nanofibers.
(12)
The electrophoretic device according to (10) or (11), wherein the fibrous structure is formed by an antistatic method.
(13)
An electrophoretic element is provided between a pair of electrodes,
The electrophoretic element is:
In insulating liquid,
Electrophoretic particles,
And having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass,
The average pore size of the porous layer is 1.0 to 4.3 times the average particle size of the migrating particles.
(14)
A display device having an electrophoretic element between a pair of electrodes,
The electrophoretic element is:
In insulating liquid,
Electrophoretic particles,
Having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass,
The average pore diameter of the porous layer is 1.0 to 4.3 times the average particle diameter of the electrophoretic particles.
(15)
The electronic device according to (14), wherein the electronic device is disposed integrally with the clothing article on at least a part of the clothing article.
 本出願は、日本国特許庁において2015年10月28日に出願された日本特許出願番号第2015-211728号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015- 211728 filed on October 28, 2015 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (14)

  1.  絶縁性液体中に、
     泳動粒子と、
     前記泳動粒子とは異なる光反射性を有すると共に、前記泳動粒子が通過する複数の孔を含む多孔質層と
     を有し、
     前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の1.0倍以上4.3倍以下である
     電気泳動素子。
    In insulating liquid,
    Electrophoretic particles,
    And having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass,
    The electrophoretic element, wherein the porous layer has an average pore size of 1.0 to 4.3 times the average particle size of the electrophoretic particles.
  2.  前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の3.3倍以上4.3倍以下である
     請求項1に記載の電気泳動素子。
    The electrophoretic element according to claim 1, wherein an average pore diameter of the porous layer is 3.3 times or more and 4.3 times or less of an average particle diameter of the electrophoretic particles.
  3.  前記多孔質層の平均孔径は、150nm以上750nm以下である
     請求項1に記載の電気泳動素子。
    The electrophoretic device according to claim 1, wherein an average pore diameter of the porous layer is 150 nm or more and 750 nm or less.
  4.  前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
     前記繊維状構造体は、その平均繊維径の2倍以上の繊維径を有する部分を20%以下の割合で含む
     請求項1に記載の電気泳動素子。
    The porous layer includes a fibrous structure that forms the plurality of pores;
    The electrophoretic element according to claim 1, wherein the fibrous structure includes a portion having a fiber diameter of twice or more the average fiber diameter at a ratio of 20% or less.
  5.  前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
     前記繊維状構造体は、その平均繊維径の2倍以上の繊維径を有する部分を10%以下の割合で含む
     請求項1に記載の電気泳動素子。
    The porous layer includes a fibrous structure that forms the plurality of pores;
    The electrophoretic element according to claim 1, wherein the fibrous structure includes a portion having a fiber diameter that is twice or more the average fiber diameter at a ratio of 10% or less.
  6.  前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
     前記繊維状構造体は、その平均繊維径の2倍以上の繊維径を有する部分を5%以下の割合で含む
     請求項1に記載の電気泳動素子。
    The porous layer includes a fibrous structure that forms the plurality of pores;
    The electrophoretic element according to claim 1, wherein the fibrous structure includes a portion having a fiber diameter that is twice or more the average fiber diameter at a ratio of 5% or less.
  7.  前記多孔質層は、前記複数の孔を形成する繊維状構造体を含み、
     前記繊維状構造体は、600nm以上1200nm以下の繊維径を有する部分と、200nm以上500nm以下の繊維径を有する部分とを混在して含む
     請求項1に記載の電気泳動素子。
    The porous layer includes a fibrous structure that forms the plurality of pores;
    The electrophoretic element according to claim 1, wherein the fibrous structure includes a portion having a fiber diameter of 600 nm or more and 1200 nm or less and a portion having a fiber diameter of 200 nm or more and 500 nm or less.
  8.  前記絶縁性液体の動粘度は、1.0mm2/秒以上5.0mm2/秒以下である
     請求項1に記載の電気泳動素子。
    The electrophoretic element according to claim 1, wherein the insulating liquid has a kinematic viscosity of 1.0 mm 2 / sec to 5.0 mm 2 / sec.
  9.  前記絶縁性液体の動粘度は、1.0mm2/秒以上3.0mm2/秒以下である
     請求項1に記載の電気泳動素子。
    The electrophoretic element according to claim 1, wherein the insulating liquid has a kinematic viscosity of 1.0 mm 2 / sec to 3.0 mm 2 / sec.
  10.  前記多孔質層は、
     前記複数の孔を形成する繊維状構造体と、
     前記繊維状構造体により保持されると共に、前記泳動粒子とは異なる光反射性を有する非泳動粒子と
     を有する
     請求項1に記載の電気泳動素子。
    The porous layer is
    A fibrous structure forming the plurality of holes;
    The electrophoretic element according to claim 1, wherein the electrophoretic element is held by the fibrous structure and has non-electrophoretic particles having light reflectivity different from the electrophoretic particles.
  11.  前記繊維状構造体はナノファイバーによって構成されている
     請求項10に記載の電気泳動素子。
    The electrophoretic element according to claim 10, wherein the fibrous structure is composed of nanofibers.
  12.  一対の電極間に電気泳動素子を備え、
     前記電気泳動素子は、
     絶縁性液体中に、
     泳動粒子と、
     前記泳動粒子とは異なる光反射性を有すると共に、前記泳動粒子が通過する複数の孔を含む多孔質層と
     を有し、
     前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の1.0倍以上4.3倍以下である
     表示装置。
    An electrophoretic element is provided between a pair of electrodes,
    The electrophoretic element is:
    In insulating liquid,
    Electrophoretic particles,
    And having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass,
    The average pore size of the porous layer is 1.0 to 4.3 times the average particle size of the migrating particles.
  13.  一対の電極間に電気泳動素子を有する表示装置を備え、
     前記電気泳動素子は、
     絶縁性液体中に、
     泳動粒子と、
     前記泳動粒子とは異なる光反射性を有すると共に、前記泳動粒子が通過する複数の孔を含む多孔質層とを有し、
     前記多孔質層の平均孔径は、前記泳動粒子の平均粒径の1.0倍以上4.3倍以下である
     電子機器。
    A display device having an electrophoretic element between a pair of electrodes,
    The electrophoretic element is:
    In insulating liquid,
    Electrophoretic particles,
    Having a light reflectivity different from that of the migrating particles, and a porous layer including a plurality of holes through which the migrating particles pass,
    The average pore diameter of the porous layer is 1.0 to 4.3 times the average particle diameter of the electrophoretic particles.
  14.  服飾品の少なくとも一部に、前記服飾品と一体的に配置された
     請求項13に記載の電子機器。
    The electronic device according to claim 13, wherein the electronic device is arranged integrally with the clothing article on at least a part of the clothing article.
PCT/JP2016/076096 2015-10-28 2016-09-06 Electrophoresis element, display device, and electronic equipment WO2017073169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-211728 2015-10-28
JP2015211728A JP2017083642A (en) 2015-10-28 2015-10-28 Electrophoresis element, display device, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2017073169A1 true WO2017073169A1 (en) 2017-05-04

Family

ID=58630158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076096 WO2017073169A1 (en) 2015-10-28 2016-09-06 Electrophoresis element, display device, and electronic equipment

Country Status (2)

Country Link
JP (1) JP2017083642A (en)
WO (1) WO2017073169A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181058A (en) * 2006-12-26 2008-08-07 Fuji Xerox Co Ltd Display medium and display device
JP2012198417A (en) * 2011-03-22 2012-10-18 Sony Corp Electrophoretic element, display device, and electronic apparatus
JP2014002272A (en) * 2012-06-19 2014-01-09 Sony Corp Electrophoresis device and display
JP2014209159A (en) * 2013-03-26 2014-11-06 ソニー株式会社 Display unit and electronic apparatus
JP2015102845A (en) * 2013-11-28 2015-06-04 セイコーエプソン株式会社 Electrophoretic display device, method for manufacturing electrophoretic display device, and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181058A (en) * 2006-12-26 2008-08-07 Fuji Xerox Co Ltd Display medium and display device
JP2012198417A (en) * 2011-03-22 2012-10-18 Sony Corp Electrophoretic element, display device, and electronic apparatus
JP2014002272A (en) * 2012-06-19 2014-01-09 Sony Corp Electrophoresis device and display
JP2014209159A (en) * 2013-03-26 2014-11-06 ソニー株式会社 Display unit and electronic apparatus
JP2015102845A (en) * 2013-11-28 2015-06-04 セイコーエプソン株式会社 Electrophoretic display device, method for manufacturing electrophoretic display device, and electronic equipment

Also Published As

Publication number Publication date
JP2017083642A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP5884659B2 (en) Electrophoretic element and display device
JP5609700B2 (en) Electrophoretic element and display device
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP5942394B2 (en) Electrophoretic element and display device
JP6176252B2 (en) Electrophoretic element, display device and electronic apparatus
JP5880295B2 (en) Method for manufacturing electrophoretic element
JP5900179B2 (en) Electrophoretic element and display device
JP5673269B2 (en) Electrophoretic element, display device and electronic device
JP2017167344A (en) Reflective display device and electronic device
JP2013088444A (en) Display device, driving method therefor, and electronic instrument
JP5942776B2 (en) Electrophoretic element and display device
JP2014106332A (en) Electrophoretic element and display device
WO2017073169A1 (en) Electrophoresis element, display device, and electronic equipment
JP5817464B2 (en) Electrophoretic element and display device
WO2015145965A1 (en) Display unit and electronic apparatus
JP2015004914A (en) Display unit and electronic apparatus
WO2016114011A1 (en) Display device and electronic device
WO2016199618A1 (en) Display device and electronic apparatus
JP2012173395A (en) Electrophoretic element and display device
WO2015141303A1 (en) Display device, method for manufacturing display device and electronic device
JP2014209159A (en) Display unit and electronic apparatus
WO2016129435A1 (en) Electrophoretic element and method for manufacturing same, and display device
WO2017086140A1 (en) Electrophoretic particles and display device
WO2016190136A1 (en) Display device
WO2016199617A1 (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859406

Country of ref document: EP

Kind code of ref document: A1