WO2016129435A1 - Electrophoretic element and method for manufacturing same, and display device - Google Patents

Electrophoretic element and method for manufacturing same, and display device Download PDF

Info

Publication number
WO2016129435A1
WO2016129435A1 PCT/JP2016/052917 JP2016052917W WO2016129435A1 WO 2016129435 A1 WO2016129435 A1 WO 2016129435A1 JP 2016052917 W JP2016052917 W JP 2016052917W WO 2016129435 A1 WO2016129435 A1 WO 2016129435A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous structure
electrophoretic
particles
element according
porous layer
Prior art date
Application number
PCT/JP2016/052917
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 佐藤
綾 首藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016129435A1 publication Critical patent/WO2016129435A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Definitions

  • the present technology relates to an electrophoretic element including a plurality of electrophoretic particles in an insulating liquid, a manufacturing method thereof, and a display device using the same.
  • a display various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications.
  • a reflective display is advantageous for reading applications.
  • bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
  • electrophoretic displays using the electrophoretic phenomenon are expected to be promising candidates because of their low power consumption and fast response speed.
  • the display method the following two methods are mainly proposed.
  • the first method is to disperse two kinds of charged particles in an insulating liquid and move the charged particles according to the electric field.
  • the two kinds of charged particles have different optical reflection characteristics and opposite polarities.
  • an image is displayed by changing a distribution state of charged particles according to an electric field.
  • the second method is to disperse charged particles in an insulating liquid and dispose a porous layer (for example, Patent Document 1).
  • a porous layer for example, Patent Document 1
  • charged particles move through the pores of the porous layer according to the electric field.
  • the porous layer includes, for example, a fibrous structure made of a polymer material, and non-electrophoretic particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles.
  • the display is switched by moving charged particles through voids (pores) according to an electric field.
  • the fibrous structure constituting the porous layer is provided with a highly functional group such as an amide group, an imide group, a carboxyl group, a cyano group, a chloride group, a sulfonyl group, an amino group, or a urethane bond.
  • a highly functional group such as an amide group, an imide group, a carboxyl group, a cyano group, a chloride group, a sulfonyl group, an amino group, or a urethane bond.
  • the fibrous structure is deformed by bending or pressing the display screen, and the pore diameter is reduced. This makes it difficult to move the electrophoretic particles, resulting in a problem that the responsiveness of the electrophoretic display is deteriorated.
  • As a method for solving this problem it is conceivable to increase the rigidity by forming a fibrous structure using a molecule (polymer) having a large molecular weight, but in this case, the fiber diameter becomes thick and the scattering efficiency decreases. There is a problem that the contrast is lowered.
  • an electrophoretic element that can reinforce the fibrous structure and improve the reliability, a manufacturing method thereof, and a display device.
  • An electrophoretic element includes a fibrous structure formed by superimposing electrophoretic particles and one or more fibers in an insulating liquid, and non-electrophoretic particles held by the fibrous structure.
  • the fibrous structure is provided with a reinforcing portion in at least a part of the proximity portion between the fibers.
  • An electrophoretic device manufacturing method includes forming electrophoretic particles, mixing non-electrophoretic particles, forming a fibrous structure that forms a porous layer, and fibrous structure. Forming a reinforcing portion.
  • a display device includes a plurality of the electrophoretic elements of the present technology.
  • the manufacturing method according to the embodiment, and the display device according to the embodiment at least a part of a proximity portion in which the fibers are adjacent to each other in the fibrous structure constituting the porous layer.
  • the fibrous structure is reinforced and the rigidity of the porous layer is improved.
  • the manufacturing method of the one embodiment, and the display device of the one embodiment at least a part of the proximity portion between the fibers of the fibrous structure constituting the porous layer A reinforcing portion was provided to reinforce the fibrous structure.
  • the rigidity of a porous layer improves and the hole diameter of the pore formed with a fibrous structure is maintained. That is, a display device with high reliability can be provided.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • It is a plane schematic diagram of the porous layer as a comparative example.
  • It is a plane schematic diagram of the porous layer of this technique.
  • It is an expansion schematic diagram of the fibrous structure as a comparative example.
  • FIG. 5B It is an expansion schematic diagram of the fibrous structure of this technique shown in FIG. 5B.
  • 12 is a perspective view illustrating an example of an appearance of application example 1.
  • FIG. 7B is a perspective view illustrating another example of the electronic book illustrated in FIG. 7A.
  • 12 is a perspective view illustrating an appearance of application example 2.
  • Embodiment Example in which reinforcing portion is formed on fibrous structure forming porous layer
  • Configuration of electrophoretic element 1-2 Configuration of display device 1-3. Manufacturing method 1-4. Action / Effect Application example Example
  • FIG. 1 illustrates a planar configuration of an electrophoretic element (electrophoretic element 30) according to an embodiment of the present technology
  • FIG. 2 illustrates a display device including the electrophoretic element 30 illustrated in FIG. 2 shows a cross-sectional configuration of (display device 1).
  • the electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and is used as a display body of various electronic devices such as tablets.
  • the electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having pores 36 in an insulating liquid 31.
  • the porous layer 33 includes a fibrous structure 34 and non-migrating particles 35 held by the fibrous structure 34.
  • the porous layer 33 has the reinforcement part A by which the fibers were bridge
  • 1 and 2 schematically illustrate the configuration of the electrophoretic element 30 and the display device 1 including the same, and may differ from actual dimensions and shapes.
  • the insulating liquid 31 is made of, for example, an organic solvent such as paraffin or isoparaffin.
  • an organic solvent such as paraffin or isoparaffin.
  • one kind of organic solvent may be used, or a plurality of kinds of organic solvents may be used. It is preferable to make the viscosity and refractive index of the insulating liquid 31 as low as possible.
  • the viscosity of the insulating liquid 31 is lowered, the mobility (response speed) of the migrating particles 32 is improved. In accordance with this, the energy (power consumption) required to move the migrating particles 32 is reduced.
  • the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased.
  • a coloring agent for example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 31.
  • the migrating particles 32 dispersed in the insulating liquid 31 are one or two or more charged particles, and the charged migrating particles 32 move through the pores 36 according to the electric field.
  • the migrating particles 32 have an arbitrary optical reflection characteristic (light reflectance), and a contrast (CR) is generated due to the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33. It has become.
  • the migrating particles 32 may be brightly displayed and the porous layer 33 may be darkly displayed, or the migrating particles 32 may be darkly displayed and the porous layer 33 may be brightly displayed.
  • the electrophoretic element 30 When the electrophoretic element 30 is viewed from the outside, when the electrophoretic particles 32 are brightly displayed, the electrophoretic particles 32 are visually recognized as white or a color close to white, and when darkly displayed, for example, black or black It is visually recognized as a color close to.
  • the color of the migrating particles 32 is not particularly limited as long as contrast can be generated.
  • the migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One of these may be used for the migrating particles 32, or two or more of them may be used.
  • the migrating particles 32 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • the particle size of the migrating particles 32 is, for example, 30 nm to 300 nm.
  • organic pigments examples include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area
  • the specific material of the migrating particles 32 is selected according to, for example, the role that the migrating particles 32 play in causing contrast.
  • a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 32.
  • the migrating particles 32 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide.
  • metal oxides such as copper-iron-chromium oxide are used.
  • Electrophoretic particles 32 made of a carbon material exhibit excellent chemical stability, mobility and light absorption.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding and mobility of the migrating particles 32 are ensured. Specifically, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are less likely to shield (conceal) the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate.
  • the migrating particles 32 are preferably easily dispersed and charged in the insulating liquid 31 for a long period of time, and are preferably not easily adsorbed to the porous layer 33. For this reason, for example, a dispersant is added to the insulating liquid 31.
  • a dispersant and a charge control agent may be used in combination.
  • This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31 and causes the migrating particles 32 to move by electrostatic repulsion. It is for dispersing.
  • a dispersant examples include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemie, or Span series manufactured by TCI America.
  • the migrating particles 32 may be subjected to a surface treatment.
  • This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • long-term dispersion stability of the migrating particles 32 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
  • a material (adsorbent material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32 is used.
  • the adsorbable functional group is determined according to the forming material of the migrating particle 32.
  • the migrating particles 32 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 32 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 32 and grafting it onto the surface (graftable material).
  • the graft material has, for example, a polymerizable functional group and a dispersing functional group.
  • the functional group for dispersion disperses the migrating particles 32 in the insulating liquid 31 and retains dispersibility due to steric hindrance.
  • the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • AIBN azobisisobutyronitrile
  • a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
  • the porous layer 33 can shield the migrating particles 32, and includes a fibrous structure 34 and non-migrating particles 35 that are modified by the surfactant and held by the fibrous structure 34. Yes.
  • the porous layer 33 is a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by the fibrous structure 34, and is provided with a plurality of gaps (pores 36). By forming the three-dimensional structure of the porous layer 33 by the fibrous structure 34, light (external light) is irregularly reflected (multiple scattering), and the reflectance of the porous layer 33 is increased.
  • the film thickness in the Z-axis direction of the entire porous layer 33 (hereinafter simply referred to as thickness) is, for example, 1 ⁇ m or more and 300 ⁇ m or less, depending on the element configuration of the electrophoretic element 30.
  • the reinforcing portion A is formed between the fibers on which the fibrous structures 34 are superimposed, in other words, in a proximity portion where the fibers are close to each other.
  • the reinforcing portion A reinforces the three-dimensional structure of the fibrous structure 34 and improves the rigidity of the porous layer 33.
  • a polymer for reinforcement including a binder and a curing agent in a polymer material constituting the fibrous structure 34 described later, for example, after spinning using an electrostatic spinning method, It is formed by heating to promote crosslinking of the reinforcing polymer.
  • the reinforcing polymer solution may be prepared and applied to the surface of the fibrous structure 34 using an electrostatic coating method, and then heated to promote crosslinking of the reinforcing polymer.
  • the fiber diameter becomes larger than the fibrous structure in the state where the reinforcing polymer is not mixed (see, for example, FIGS. 5A and 5B and FIGS. 6A and 6B).
  • the rigidity of the whole porous layer 33 improves.
  • the reinforcing polymer is applied to the surface of the fibrous structure 34, the smoothness of the surface is improved by covering the fibrous structure 34 with the reinforcing polymer, and migration when passing through the pores 36 is performed. The movement of the particles 32 is facilitated. Thereby, although the whole intensity
  • the binder includes vinyl chloride, vinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate ester-acrylonitrile copolymer.
  • the curing agent include polyisocyanate, toluene diisocyanate, and
  • the load on the porous layer 33 in the manufacturing process is selected by selecting a material that can be crosslinked at a low temperature and in a short time (for example, 60 ° C., 2 hours) as the material of the reinforcing polymer for forming the reinforcing portion A. Is reduced.
  • the fibrous structure 34 is a fibrous substance having a sufficient length with respect to the fiber diameter (diameter). For example, a plurality of fibrous structures 34 are assembled and randomly overlapped to form the porous layer 33. One fibrous structure 34 may be entangled randomly to form the porous layer 33. Or the porous layer 33 by the one fibrous structure 34 and the porous layer 33 by the some fibrous structure 34 may be mixed.
  • the fibrous structure 34 extends, for example, in a straight line.
  • the shape of the fibrous structure 34 may be any shape.
  • the fibrous structure 34 may be crimped or bent in the middle. Or the fibrous structure 34 may be branched on the way.
  • the fiber diameter of the fibrous structure 34 is preferably, for example, 50 nm or more and 2000 nm or less, but may be outside the above range. By reducing the average fiber diameter, light is easily diffusely reflected, and the pore diameter of the pores 36 is increased. The fiber diameter is determined so that the fibrous structure 34 can hold the non-migrating particles 35.
  • the average fiber diameter can be measured, for example, by microscopic observation using a scanning electron microscope or the like.
  • the average length of the fibrous structure 34 is arbitrary.
  • the fibrous structure 34 is formed by, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating method. Is done. By using such a method, the fibrous structure 34 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
  • the fibrous structure 34 can be made of a polymer material or an inorganic material. Among these, it is preferable to use nanofibers.
  • the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter.
  • the fibrous structure 34 made of nanofibers the proportion of the pores 36 in the unit volume increases, and the migrating particles 32 can easily move through the pores 36. Therefore, the energy required for moving the migrating particles 32 can be reduced.
  • the fibrous structure 34 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrospinning method, the fibrous structure 34 having a small fiber diameter can be easily and stably formed.
  • a fibrous structure 34 having a light reflectance different from that of the migrating particles 32 It is preferable to use a fibrous structure 34 having a light reflectance different from that of the migrating particles 32. Thereby, a contrast due to a difference in light reflectance between the porous layer 33 and the migrating particles 32 is easily formed.
  • a fibrous structure 34 showing light transparency (colorless and transparent) in the insulating liquid 31 may be used.
  • the pores 36 are configured by overlapping a plurality of fibrous structures 34 or tangling one fibrous structure 34.
  • the pores 36 preferably have as large an average pore diameter as possible so that the migrating particles 32 can easily move through the pores 36.
  • the average pore diameter of the pores 36 is, for example, not less than 0.1 ⁇ m and not more than 10 ⁇ m.
  • Non-electrophoretic particles 35 are one or more particles that are fixed to the fibrous structure 34 and do not undergo electrophoresis.
  • the non-migrating particles 35 may be embedded in the held fibrous structure 34 or may partially protrude from the fibrous structure 34 (see FIGS. 5B and 6B).
  • the non-electrophoretic particles 35 those having a light reflectance different from that of the electrophoretic particles 32 are used.
  • the average particle diameter of the non-migrating particles 35 is preferably, for example, 50 nm or more and 1000 nm or less.
  • the non-migrating particles 35 can be made of the same material as the migrating particles 32. Specifically, when the non-electrophoretic particles 35 (porous layer 33) display brightly, the material when the electrophoretic particles 32 display brightly, and when the non-electrophoretic particles 35 display darkly, the electrophoretic particles 32 darken. Each material for display can be used. When performing bright display by the porous layer 33, it is preferable that the non-migrating particles 35 are made of a metal oxide.
  • the constituent materials of the non-migrating particles 35 and the migrating particles 32 may be the same or different.
  • the color visually recognized from the outside when the non-electrophoretic particle 35 performs bright display or dark display is the same as that described for the electrophoretic particle 32.
  • the surface of the non-electrophoretic particle 35 may be modified with a surfactant.
  • Surfactants are, for example, anionic (anionic) surfactants having a carboxylic acid, sulfonic acid or phosphoric acid structure as hydrophilic groups and cationic (cationic) properties having, for example, tetraalkylammonium or alkylamine as hydrophilic groups. Surfactant is mentioned.
  • nonionic (nonionic) surfactants having a hydrophilic part as a non-electrolyte that is, a non-ionized hydrophilic part
  • amphoteric surfactants having both an anionic part and a cationic part in the molecule may be used. .
  • amphoteric surfactants examples include alkyl dimethylamine oxide and alkyl carboxybetaine.
  • metal materials such as a titanium oxide, as the non-electrophoretic particle 35
  • an anionic surfactant when using metal materials, such as a titanium oxide, it is preferable to use an anionic surfactant.
  • a surfactant having a hydrophilic group with a small molecular volume such as carboxylic acid is preferable because it easily covers the entire surface of the non-electrophoretic particle 35. Further, it is desirable that the surfactant does not ooze into the insulating liquid 31 so that the display characteristics are not deteriorated for a long time.
  • the porous layer 33 can be formed by the following method, for example.
  • FIG. 3A shows the flow of the formation procedure of the porous layer 33.
  • the non-electrophoretic particles 35 for example, titanium oxide having two types of primary particle sizes (for example, 250 nm (small particles) and, for example, 450 nm (large particles)) is prepared, and these are, for example, carboxylic acid anions.
  • the organic surfactant is added to the organic solvent in which it has been dissolved and stirred.
  • titanium oxide (non-electrophoretic particles 35) whose surface is coated with a carboxylic acid anionic surfactant is obtained (step S101).
  • a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then the non-electrophoretic particles 35 are sufficiently added to the solution.
  • a spinning solution for stirring and dispersing the non-electrophoretic particles 35 is prepared (step S102).
  • the spinning solution is spun by, for example, an electrostatic spinning method to form a fibrous structure 34 to which the non-migrating particles 35 are fixed (step S103).
  • the primary particle size is a minimum particle size. For example, when the particles are aggregated or bonded, the primary particle size represents the particle size of each particle.
  • the reinforcing part A is formed on the fibrous structure 34.
  • a binder for example, a vinyl chloride copolymer resin and a curing agent, for example, an isocyanate curing agent is dissolved in N, N′-dimethylformamide (DMF) to prepare a reinforcing polymer solution.
  • This reinforcing polymer solution is put into a syringe and electrostatically applied to the fibrous structure 34 (step S104).
  • the film substrate is heated to promote the crosslinking reaction between the binder and the curing agent, thereby forming the porous layer 33 having the reinforcing portion A (step S105).
  • the reinforcing polymer solution has a fibrous structure that does not fill the voids of the fibrous structure 34, that is, does not narrow the pore diameter of the fibrous structure 34, by setting the diameter and weight of the coating droplets within a predetermined range. 34 can be coated.
  • the dispersibility of the non-migrating particles 35 in the spinning solution is improved by using the non-migrating particles 35 previously modified with a surfactant.
  • an electric field is easily applied to the non-migrating particles 35 during spinning, and a fibrous structure 34 with a reduced fiber diameter, that is, a fine fiber is obtained.
  • the porous layer 33 has a multilayer structure (for example, a three-layer structure (first layer 33A, second layer 33B, and third layer 33C) as shown in FIG. 2), and the fibers of each layer.
  • the reinforcing polymer solution may be electrostatically coated and then heated to form the reinforcing portion A.
  • the organic solvent is made of, for example, a constituent material of the fibrous structure 34 such as a polymer material (polymer). Is dissolved to prepare a solution. Subsequently, a reinforcing polymer (a binder and a curing agent) is added to the solution together with the non-electrophoretic particles 35 and sufficiently stirred to prepare a mixed spinning solution in which the non-electrophoretic particles 35 and the reinforcing polymer are dispersed (Ste S202).
  • a constituent material of the fibrous structure 34 such as a polymer material (polymer).
  • the spinning solution is spun by, for example, an electrostatic spinning method to form a fibrous structure 34 in which the non-migrating particles 35 are fixed and the reinforcing polymer is mixed (step S103).
  • the fibrous structure 34 is heated to promote the crosslinking reaction of the binder and the curing agent, which are reinforcing polymers, to form the porous layer 33 having the reinforcing portion A (step S204).
  • the porous layer 33 may be formed by forming holes in the polymer film by using a laser, and a cloth knitted with a synthetic fiber or the like on the porous layer 33, Alternatively, open-cell porous polymer may be used.
  • the fibrous structure is preferably composed of molecules having a main skeleton (main part of the molecule) composed of, for example, carbon atoms, oxygen atoms and hydrogen atoms.
  • the main skeleton of this molecule does not contain atoms other than carbon atoms, oxygen atoms, and hydrogen atoms, and consists only of these atoms.
  • Such molecules forming the fibrous structure 34 preferably do not contain a highly polar functional group such as a hydroxyl group and a carboxylic acid group. Thereby, the absolute value of the surface potential of the fibrous structure 34 becomes small, and the response speed of the electrophoretic element 30 can be improved.
  • the main skeleton refers to a portion excluding both ends of the molecule.
  • the molecules forming the fibrous structure 34 are preferably composed of carbon atoms, oxygen atoms and hydrogen atoms up to both ends, but the ends contain atoms other than these carbon atoms, oxygen atoms and hydrogen atoms. May be.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) is used as a catalyst. Nitrogen atoms and the like are contained at both ends of the polymer synthesized in this way, but the atoms at the ends are less than 1/1000 of the whole molecule in terms of molecular weight. Therefore, this terminal atom contributes little to the properties of the molecule.
  • AIBN azobisisobutyronitrile
  • the electrophoretic element 30 can obtain high reliability.
  • the molecule forming the fibrous structure 34 is a chain polymer.
  • a chain molecule refers to a molecule that does not include a cyclic atomic arrangement structure.
  • Examples of the cyclic atomic arrangement include a monocyclic compound and a heterocyclic compound.
  • Monocyclic compounds are composed of a single element, and specifically include aromatic compounds, cycloalkenes, cycloalkanes, cycloalkynes, and the like.
  • the heterocyclic compound is composed of two or more kinds of elements, and specifically includes pyrrole, carbazole, cyclic acetal, pyran, furan and thiophene.
  • the chain molecule may be linear or branched.
  • the fibrous structure 34 is composed of chain molecules, since the steric hindrance is smaller than that of a molecule including a cyclic structure, the migrating particles 32 are easily moved, and the contrast and response speed of the electrophoretic element 30 are improved. To do.
  • the chain molecule constituting the fibrous structure 34 includes an ester group.
  • the fibrous structure 34 is preferably formed from an acrylic resin.
  • Specific examples of the chain molecule include polyalkyl methacrylate, polyalkyl acrylate, polyalkenyl methacrylate, polyalkenyl acrylate, polyalkynyl methacrylate and polyalkynyl acrylate.
  • This chain molecule does not have a functional group having a polarity higher than that of the ester group, and the absolute value of the surface potential of the fibrous structure 34 is, for example, 20 mV or less. It is more preferable to select chain molecules so that the absolute value of the surface potential of the fibrous structure 34 is 10 mV or less. That is, the ester group has a smaller polarity than the cyano group and the like, but this is sufficiently large for spinning using the electrospinning method, and the fibrous structure 34 can be easily formed by the electrospinning method. can do.
  • the chain molecule constituting the fibrous structure 34 it is preferable to use a material that is not easily decomposed by microorganisms. That is, the chain molecule is preferably resistant to biodegradation.
  • the biodegradable polymer include polylactic acid, polyvinyl alcohol, cellulose acetate, collagen, gelatin, and chitosan. Since such a polymer is easily decomposed, there is a possibility that the characteristics of the fibrous structure cannot be maintained when some kind of stimulus is applied to the electrophoretic element from the outside. In addition, many of such polymers are water-soluble and may be dissolved by moisture in the electrophoretic element, so that the shape of the fibrous structure cannot be maintained.
  • the fibrous structure 34 is formed of chain molecules having resistance to biodegradation, the stability of the fibrous structure 34 is increased. Therefore, the reliability of the electrophoretic element 30 can be improved.
  • the surface of the fibrous structure 34 may be covered with an arbitrary protective layer.
  • FIG. 2 shows an example of a cross-sectional configuration of the display device 1 using the electrophoretic element 30.
  • the display device 1 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information) using an electrophoretic phenomenon, and an electrophoretic element between a driving substrate 10 and a counter substrate 20. 30 is provided. The space between the driving substrate 10 and the counter substrate 20 is adjusted to a predetermined distance by the spacer 40.
  • the drive substrate 10 includes, for example, a TFT (Thin Film Transistor) 12, a protective layer 13, a pixel electrode 14, and an adhesive layer 15 in this order on one surface of the support member 11.
  • TFT Thin Film Transistor
  • the TFT 12 and the pixel electrode 14 are arranged in a matrix or a segment according to the pixel arrangement.
  • the support member 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like.
  • the inorganic material include silicon (Si), silicon oxide (SiOx), silicon nitride (SiNx), and aluminum oxide (AlOx). Silicon oxide includes glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel
  • examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
  • the support member 11 may be non-light transmissive.
  • the support member 11 may be configured by a rigid substrate such as a wafer, or may be configured by a flexible thin glass or film. By using a flexible material for the support member 11, the flexible display device 1 can be realized.
  • the TFT 12 is a switching element for selecting a pixel.
  • the TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer.
  • the protective layer 13 and the adhesive layer 15 are made of, for example, an insulating resin material such as polyimide. If the surface of the protective layer 13 is sufficiently flat, the adhesive layer 15 can be omitted.
  • the pixel electrode 14 is made of a metal material such as gold (Au), silver (Ag), or copper (Cu). The pixel electrode 14 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the adhesive layer 15.
  • the counter substrate 20 includes, for example, a support member 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support member 21 (a surface facing the drive substrate 10). Similarly to the pixel electrode 14, the counter electrode 22 may be arranged in a matrix or a segment.
  • the support member 21 is made of the same material as the support member 11 except that it is light transmissive.
  • a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). (Transparent electrode material) can be used.
  • the light transmittance (transmittance) of the counter electrode 22 is preferably as high as possible. 80% or more. Further, the electrical resistance of the counter electrode 22 is preferably as low as possible, for example, 100 ⁇ / ⁇ or less.
  • the electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having a plurality of pores 36 in an insulating liquid 31.
  • the insulating liquid 31 is filled in the space between the driving substrate 10 and the counter substrate 20, and the porous layer 33 is supported by the spacer 40, for example.
  • the space filled with the insulating liquid 31 is divided into, for example, a retreat area R1 closer to the pixel electrode 14 and a display area R2 closer to the counter electrode 22 with the porous layer 33 as a boundary. .
  • the configurations of the insulating liquid 31, the migrating particles 32, and the porous layer 33 are the same as those described in the above embodiments and the like.
  • the pores 36 are omitted in order to simplify the illustrated contents.
  • the porous layer 33 may be adjacent to one of the pixel electrode 14 and the counter electrode 22, and the retreat area R1 and the display area R2 may not be clearly separated.
  • the migrating particles 32 move toward the pixel electrode 14 or the counter electrode 22 according to the electric field.
  • the thickness of the spacer 40 is, for example, 10 ⁇ m to 100 ⁇ m, and is preferably as thin as possible. Thereby, power consumption can be suppressed.
  • the spacer 40 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 10 and the counter substrate 20.
  • the arrangement shape of the spacer 40 is not particularly limited, but it is preferable that the spacer 40 is provided so as not to disturb the movement of the migrating particles 32 and to uniformly distribute the migrating particles 32.
  • the migrating particles 32 are arranged in the retreat area R1 (FIG. 4A). In this case, since the migrating particles 32 are shielded by the porous layer 33 in all the pixels, no contrast is generated when the electrophoretic element 30 is viewed from the counter substrate 20 side (an image is not displayed). Is in a state.
  • the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to display area R2 via (pore 36).
  • a contrast is generated. become. Thereby, an image is displayed.
  • the electrophoretic element 30 having a high response speed can display a high-quality image suitable for, for example, colorization and moving image display.
  • contrast is generated by the difference between the light reflectance of the migrating particles and the light reflectance of the porous layer.
  • the light reflectance for bright display is higher than the light reflectance for dark display.
  • the light reflectance of the non-electrophoretic particles is higher than that of the electrophoretic particles so that the porous layer displays light and the electrophoretic particles display dark.
  • the electrophoretic particles move through the pores of the porous layer within the range where the electric field is applied. Depending on the area where the migrating particles have moved or not moved, either bright display or dark display is performed, and an image is displayed.
  • the rigidity of the porous layer 33 is added to the fibrous structure 34 constituting the porous layer 33.
  • the reinforcing part A to be improved is formed. Specifically, the reinforcing polymer solution was applied to the fibrous structure 34, or when the fibrous structure was formed, the reinforcing polymer was added to the spinning solution to form the reinforcing portion A.
  • the reinforcing part A is formed by heating after spinning to promote the crosslinking reaction of the reinforcing polymer (binder and curing agent).
  • FIG. 5A and 5B schematically show actual shapes of a general fibrous structure (FIG. 5A) and the fibrous structure 34 of the present embodiment (FIG. 5B).
  • 6A is an enlarged schematic view of the fibrous structure shown in FIG. 5A
  • FIG. 6B is an enlarged schematic view of the fibrous structure 34 shown in FIG. 5B.
  • the reinforcing polymer when the reinforcing polymer is applied, not only the fibrous structure 34 but also the non-migrating particles 35 held by the fibrous structure 34 are coated, thereby improving the smoothness of the surface and reducing the pores.
  • the moving speed of the migrating particles 32 moving in the 36 is further improved.
  • the reinforcing polymer is applied to the fibrous structure 34 constituting the porous layer 33, or the fibers
  • the reinforcing polymer was added to the spinning solution forming the fibrous structure 34 and spun, and the reinforcing part A was provided in the vicinity of the fibers constituting the fibrous structure 34.
  • the rigidity of the porous layer 33 is improved, and the pore diameter of the pores 36 formed by the three-dimensional structure of the fibrous structure 34 can be maintained against bending or pressing of the display screen. That is, the durability of the porous layer 33 is improved.
  • a display device with improved reliability can be provided.
  • the smoothness of the surface of the fibrous structure 34 is improved by applying the reinforcing polymer to the fibrous structure 34. Thereby, it becomes possible to improve the responsiveness while improving the strength of the porous layer 33. That is, a display device with improved reliability and display characteristics can be provided.
  • the display device 1 of the present technology can be applied to electronic devices for various uses, and the type of the electronic device is not particularly limited.
  • This display device 1 can be mounted on, for example, the following electronic devices.
  • the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 7A, or may be provided on the upper surface as illustrated in FIG. 7B.
  • the display unit 110 is configured by the display device 1.
  • the display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 7A and 7B.
  • PDA Personal Digital Assistants
  • FIG. 8 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 1.
  • Display devices (Experimental Examples 1 to 10) were prepared using black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) by the following procedure.
  • Example 1 Preparation of migrating particles
  • a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution.
  • Ultrasonic stirring at 25 ° C. to 35 ° C. for 30 minutes was performed in an ultrasonic bath.
  • the precipitate after the decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), and centrifuged (at 6000 rpm for 10 minutes) and decantation again.
  • the precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a dispersing group were obtained.
  • OLOA 1200 1 g, ADDOCONATE S (manufactured by Lubrizol) 10 g and the above dispersion 20 g were added to 69 g of insulating liquid and stirred to obtain an insulating liquid containing additives and migrating particles.
  • a solution D was prepared by dissolving 14 g of polymethyl methacrylate, which is a material for forming a fibrous structure, in 86 g of N, N′-dimethylformamide. Subsequently, 30 g of titanium oxide (primary particle size 250 nm) as non-electrophoretic particles was added to 70 g of the solution D, and then mixed with a bead mill to prepare a spinning solution E. Next, this spinning solution E is put in a syringe, and on a PET film having a counter electrode (ITO) formed on the entire surface thereof, a UV resin is provided with a pitch of 30 ⁇ m in height, 10 ⁇ m in width, and 200 ⁇ m in pitch. Spinning with a basis weight of 1.2 mg / cm 2 was performed using an electrospinning apparatus (NANON manufactured by MEC Co., Ltd.).
  • the fiber reinforcing polymer solution F is put into a syringe, and, for example, the fibrous structure placed on the ITO PET film (film substrate) is electrostatically charged with a basis weight of 0.1 mg / cm 2 using an electrospinning device. Application was performed. Further, this film substrate was placed in an oven at 70 ° C. for 2 hours to promote the crosslinking reaction.
  • the film substrate in which the fibrous structure and the reinforcing polymer are coated on the lattice-like ribs is subjected to nip treatment 8 times with a metal roll at a linear pressure of 16 kgf / cm and a treatment speed of 6 m / min. Filled between rib lattices. This was overlaid with an ITO PET film serving as a counter electrode.
  • a photocurable resin photosensitive resin Photorec A-400 manufactured by Sekisui Chemical Co., Ltd.
  • an insulating liquid in which electrophoretic particles were dispersed was injected between two ITO PET film substrates.
  • the photocurable resin was cured by irradiation with ultraviolet light.
  • the gap between the superimposed films was kept at 30 ⁇ m with beads mixed with ribs and a photocurable resin.
  • Example 2 It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 1.8 g (10 parts by weight).
  • Example 3 It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 3.6 g (20 parts by weight).
  • Example 4 It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 5.4 g (30 parts by weight).
  • Example 5 It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 0.54 g (3 parts by weight).
  • Example 6 It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate-based curing agent as the reinforcing polymer was 3.6 g (20 parts by weight) and the electrostatic coating amount of the reinforcing polymer was 0.05 mg / cm 2 . .
  • Example 7 It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate-based curing agent as the reinforcing polymer was 3.6 g (20 parts by weight) and the electrostatic coating amount of the reinforcing polymer was 0.30 mg / cm 2 . .
  • Example 8 The amount of the isocyanate curing agent as the reinforcing polymer was 3.6 g (20 parts by weight), and the reinforcing polymer was 0.1 mg / cm 2 electrostatically coated when the fibrous structure was spun at 0.6 mg / cm 2. This was prepared in the same manner as in Experimental Example 1 except that the fibrous structure was spun at 0.6 mg / cm 2 from above and the reinforcing polymer was electrostatically applied to the intermediate layer of the fibrous structure.
  • Example 9 It was produced in the same manner as in Experimental Example 1 except that the reinforcing portion was not formed with the reinforcing polymer.
  • Solution G Polymethyl methacrylate, which is a material for forming a fibrous structure, and a vinyl chloride copolymer resin and an isocyanate curing agent (20 parts by weight) mixed at a ratio of 70:30 to make 14 g, N, Solution G was prepared by dissolving in 86 g of N′-dimethylformamide. 30 g of non-migrating particles (titanium oxide (primary particle size 250 nm)) were added to 70 g of this solution G, and then mixed by a bead mill to prepare a spinning solution H.
  • non-migrating particles titanium oxide (primary particle size 250 nm)
  • the film substrate on which the fibrous structure was formed was placed in an oven at 70 ° C. for 2 hours to promote the crosslinking reaction. I let you. Other than the above, it was fabricated in the same manner as in Experimental Example 1.
  • the compounding ratio of the reinforcing polymer to the polymer constituting the fibrous structure in this experimental example is 30 parts by weight.
  • the average fiber diameter, the maximum fiber diameter, and the minimum fiber diameter of the fibrous structure are 80 measurement points, and the fiber of the fibrous structure is 5,000 times the field emission scanning electron microscope FFE-SEM (S4800, manufactured by Hitachi High-Technology Corporation). The diameter was measured.
  • Example 4 the number of defective cells was as small as one and the effect of crosslinking the reinforcing polymer was observed, but the black reflectance was high and the contrast was lowered.
  • the average mobility was also low. This is because the amount of the curing agent contained in the reinforcing polymer is large and the viscosity of the paint is high, so that it cannot be applied finely in the electrostatic coating process. As a result, the fiber diameter of the portion where the reinforcing polymer is applied This is thought to be because the movement of the migrating particles was hindered by the increase in the thickness. In Experimental Examples 5 and 6, the number of defective cells was relatively large.
  • this technique can also take the following structures.
  • Electrophoretic particles a fibrous structure formed by superimposing one or more fibers in an insulating liquid, and a porous layer formed by non-electrophoretic particles held by the fibrous structure
  • the fibrous structure includes an electrophoretic element having a reinforcing portion in at least a part of a proximity portion between the fibers.
  • the electrophoretic element according to (1) wherein the reinforcing portion is formed of a reinforcing polymer.
  • the fiber in the proximity portion of the fibrous structure is covered with the reinforcing polymer and connected to each other, as described in any one of (2) and (3) Electrophoretic element.
  • the electrophoretic element according to (1), wherein the fibrous structure has a fiber diameter of 50 nm to 2000 nm.
  • the electrophoretic element according to any one of (1) to (7), wherein the fibrous structure is formed of a polymer material or an inorganic material.
  • the migrating particles and the non-migrating particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material.
  • the electrophoretic element according to any one of (1) to (12), wherein the non-electrophoretic particles include titanium oxide.
  • the light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the porous layer perform light display.
  • Electricity including a step of forming electrophoretic particles, a step of mixing non-electrophoretic particles to form a fibrous structure constituting a porous layer, and a step of forming a reinforcing portion in the fibrous structure. Manufacturing method of electrophoretic element.

Abstract

In an electrophoretic element according to the present technique, migrating particles and a porous layer are provided in an insulating liquid, wherein the porous layer is formed from a fibrous structure formed by overlaying one or more fibers and non-migrating particles held by the fibrous structure, and reinforcing parts are provided at at least some of fiber-fiber neighboring sections in the fibrous structure.

Description

電気泳動素子およびその製造方法ならびに表示装置Electrophoretic element, method for manufacturing the same, and display device
 本技術は、絶縁性液体中に複数の電気泳動粒子を含む電気泳動素子およびその製造方法ならびに、これを用いた表示装置に関する。 The present technology relates to an electrophoretic element including a plurality of electrophoretic particles in an insulating liquid, a manufacturing method thereof, and a display device using the same.
 近年、携帯電話機または携帯情報端末等のモバイル機器の普及に伴い、低消費電力で高品位画質の表示装置(ディスプレイ)の需要が高まっている。特に最近では、電子書籍の配信事業が始まり、読書用途に適した表示品位のディスプレイが望まれている。 In recent years, with the spread of mobile devices such as mobile phones or portable information terminals, the demand for display devices (displays) with low power consumption and high quality image quality has increased. In particular, recently, the electronic book distribution business has started, and a display with a display quality suitable for reading applications is desired.
 このようなディスプレイとして、コレステリック液晶ディスプレイ,電気泳動型ディスプレイ,電気酸化還元型ディスプレイおよびツイストボール型ディスプレイ等の様々なディスプレイが提案されているが、読書用途には、反射型のディスプレイが有利である。反射型のディスプレイでは、紙と同様に、外光の反射(散乱)を利用して明表示を行うため、より紙に近い表示品位が得られる。 As such a display, various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications. . In the reflective display, bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
 反射型ディスプレイの中でも、電気泳動現象を利用した電気泳動型ディスプレイは低消費電力であると共に応答速度が速く、有力候補として期待されている。その表示方法としては、主に以下の2つの方法が提案されている。 Among the reflective displays, electrophoretic displays using the electrophoretic phenomenon are expected to be promising candidates because of their low power consumption and fast response speed. As the display method, the following two methods are mainly proposed.
 第1の方法は、絶縁性液体中に2種類の荷電粒子を分散させ、電界に応じて荷電粒子を移動させるものである。この2種類の荷電粒子は、互いに光学的反射特性が異なり、また、その極性も反対である。この方法では、電界に応じて荷電粒子の分布状態が変化して画像が表示される。 The first method is to disperse two kinds of charged particles in an insulating liquid and move the charged particles according to the electric field. The two kinds of charged particles have different optical reflection characteristics and opposite polarities. In this method, an image is displayed by changing a distribution state of charged particles according to an electric field.
 第2の方法は、絶縁性液体中に荷電粒子を分散させると共に、多孔質層を配置するものである(例えば、特許文献1)。この方法では、電界に応じて、荷電粒子が多孔質層の細孔を経て移動する。多孔質層は、例えば、高分子材料からなる繊維状構造体と、この繊維状構造体に保持されると共に、荷電粒子とは光学的反射特性が異なる非泳動粒子とを含んでいる。このような多孔質層が配置された電気泳動型ディスプレイでは、電界に応じて荷電粒子が空隙(細孔)を経て移動することによって表示の切り替えがなされている。例えば、特許文献2では、多孔質層を構成する繊維状構造体に、例えば、アミド基,イミド基,カルボキシル基,シアノ基,クロライド基,スルホニル基およびアミノ基あるいはウレタン結合等の極性の高い官能基や反応性の高い官能基を修飾することで、構造体の形成を容易にすると共に、表面電位の絶対値が大きくして表示特性を向上させた電気泳動素子が開示されている。 The second method is to disperse charged particles in an insulating liquid and dispose a porous layer (for example, Patent Document 1). In this method, charged particles move through the pores of the porous layer according to the electric field. The porous layer includes, for example, a fibrous structure made of a polymer material, and non-electrophoretic particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles. In an electrophoretic display in which such a porous layer is arranged, the display is switched by moving charged particles through voids (pores) according to an electric field. For example, in Patent Document 2, the fibrous structure constituting the porous layer is provided with a highly functional group such as an amide group, an imide group, a carboxyl group, a cyano group, a chloride group, a sulfonyl group, an amino group, or a urethane bond. An electrophoretic element has been disclosed in which the structure and the functional group having high reactivity are modified to facilitate the formation of a structure, and the absolute value of the surface potential is increased to improve the display characteristics.
特開2012-22296号公報JP 2012-22296 A 特開2013-254019号公報JP 2013-254019 A
 しかしながら、このような電気泳動型ディスプレイは、折り曲げたり、表示画面を押したりすることで繊維状構造体が変形し、細孔の孔径が小さくなる。これにより、電気泳動粒子の移動が困難になり、電気泳動型ディスプレイの応答性が悪化するという問題があった。この問題を改善する方法として、分子量の大きな分子(高分子)を用いて繊維状構造体を形成し、剛性を高めることが考えられるが、この場合、繊維径が太くなり、散乱効率が低下してコントラストが低下するという問題があった。 However, in such an electrophoretic display, the fibrous structure is deformed by bending or pressing the display screen, and the pore diameter is reduced. This makes it difficult to move the electrophoretic particles, resulting in a problem that the responsiveness of the electrophoretic display is deteriorated. As a method for solving this problem, it is conceivable to increase the rigidity by forming a fibrous structure using a molecule (polymer) having a large molecular weight, but in this case, the fiber diameter becomes thick and the scattering efficiency decreases. There is a problem that the contrast is lowered.
 従って、繊維状構造体を補強し信頼性を向上させることが可能な電気泳動素子およびその製造方法ならびに表示装置を提供するが望ましい。 Therefore, it is desirable to provide an electrophoretic element that can reinforce the fibrous structure and improve the reliability, a manufacturing method thereof, and a display device.
 本技術の一実施形態の電気泳動素子は、絶縁性液体中に、泳動粒子と、1または2以上の繊維を重畳してなる繊維状構造体および繊維状構造体によって保持された非泳動粒子によって形成された多孔質層とを備え、繊維状構造体は、繊維同士の近接部の少なくとも一部に補強部を有するものである。 An electrophoretic element according to an embodiment of the present technology includes a fibrous structure formed by superimposing electrophoretic particles and one or more fibers in an insulating liquid, and non-electrophoretic particles held by the fibrous structure. The fibrous structure is provided with a reinforcing portion in at least a part of the proximity portion between the fibers.
 本技術の一実施形態の電気泳動素子の製造方法は、泳動粒子を形成することと、非泳動粒子を混合し、多孔質層を構成する繊維状構造体を形成することと、繊維状構造体に補強部を形成することとを含むものである。 An electrophoretic device manufacturing method according to an embodiment of the present technology includes forming electrophoretic particles, mixing non-electrophoretic particles, forming a fibrous structure that forms a porous layer, and fibrous structure. Forming a reinforcing portion.
 本技術の一実施形態の表示装置は、上記本技術の電気泳動素子を複数備えたものである。 A display device according to an embodiment of the present technology includes a plurality of the electrophoretic elements of the present technology.
 本技術の一実施形態の電気泳動素子およびその一実施形態の製造方法ならびに一実施形態の表示装置では、多孔質層を構成する繊維状構造体の、繊維同士が近接した近接部の少なくとも一部に補強部を設けることにより、繊維状構造体が補強され、多孔質層の剛性が向上する。 In the electrophoretic element according to an embodiment of the present technology, the manufacturing method according to the embodiment, and the display device according to the embodiment, at least a part of a proximity portion in which the fibers are adjacent to each other in the fibrous structure constituting the porous layer. By providing the reinforcing portion on the fibrous structure, the fibrous structure is reinforced and the rigidity of the porous layer is improved.
 本技術の一実施形態の電気泳動素子およびその一実施形態の製造方法ならびに一実施形態の表示装置によれば、多孔質層を構成する繊維状構造体の、繊維同士の近接部の少なくとも一部に補強部を設け、繊維状構造体を補強するようにした。これにより、多孔質層の剛性が向上し、繊維状構造体によって形成される細孔の孔径が維持される。即ち、高い信頼性を有する表示装置を提供することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the electrophoretic element of one embodiment of the present technology, the manufacturing method of the one embodiment, and the display device of the one embodiment, at least a part of the proximity portion between the fibers of the fibrous structure constituting the porous layer A reinforcing portion was provided to reinforce the fibrous structure. Thereby, the rigidity of a porous layer improves and the hole diameter of the pore formed with a fibrous structure is maintained. That is, a display device with high reliability can be provided. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本技術の一実施の形態に係る電気泳動素子の構成を表す平面図である。It is a top view showing the composition of the electrophoretic device concerning one embodiment of this art. 図1に示した電気泳動素子を備えた表示装置の断面図である。It is sectional drawing of the display apparatus provided with the electrophoretic element shown in FIG. 多孔質層の形成工程の一例を説明する流れ図である。It is a flowchart explaining an example of the formation process of a porous layer. 多孔質層の形成工程の他の例を説明する流れ図である。It is a flowchart explaining the other example of the formation process of a porous layer. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 比較例としての多孔質層の平面模式図である。It is a plane schematic diagram of the porous layer as a comparative example. 本技術の多孔質層の平面模式図である。It is a plane schematic diagram of the porous layer of this technique. 比較例としての繊維状構造体の拡大模式図である。It is an expansion schematic diagram of the fibrous structure as a comparative example. 図5Bに示した本技術の繊維状構造体の拡大模式図である。It is an expansion schematic diagram of the fibrous structure of this technique shown in FIG. 5B. 適用例1の外観の一例を表す斜視図である。12 is a perspective view illustrating an example of an appearance of application example 1. FIG. 図7Aに示した電子ブックの他の例を表す斜視図である。FIG. 7B is a perspective view illustrating another example of the electronic book illustrated in FIG. 7A. 適用例2の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 2. FIG.
 以下、本技術の一実施形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態(多孔質層を形成する繊維状構造体に補強部を形成した例)
  1-1.電気泳動素子の構成
  1-2.表示装置の構成
  1-3.製造方法
  1-4.作用・効果
 2.適用例
 3.実施例
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (Example in which reinforcing portion is formed on fibrous structure forming porous layer)
1-1. Configuration of electrophoretic element 1-2. Configuration of display device 1-3. Manufacturing method 1-4. Action / Effect Application example Example
<1.実施の形態>
(1-1.電気泳動素子の構成)
 図1は、本技術の一実施の形態に係る電気泳動素子(電気泳動素子30)の平面構成を表したものであり、図2は、図1に示した電気泳動素子30を備えた表示装置(表示装置1)の断面構成を表したものである。この電気泳動素子30は、電気泳動現象を利用してコントラストを生じさせるものであり、例えば、タブレット等の多様な電子機器の表示体として用いられる。電気泳動素子30は、絶縁性液体31中に、泳動粒子32と細孔36を有する多孔質層33とを含んでいる。この多孔質層33は、繊維状構造体34およびこの繊維状構造体34に保持された非泳動粒子35によって構成されている。本実施の形態では、多孔質層33は、3次元立体構造物として形成された繊維状構造体34の繊維同士の近接部分において、繊維同士が架橋された補強部Aを有する。なお、図1および図2は電気泳動素子30およびこれを備えた表示装置1の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
<1. Embodiment>
(1-1. Configuration of electrophoretic element)
FIG. 1 illustrates a planar configuration of an electrophoretic element (electrophoretic element 30) according to an embodiment of the present technology, and FIG. 2 illustrates a display device including the electrophoretic element 30 illustrated in FIG. 2 shows a cross-sectional configuration of (display device 1). The electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and is used as a display body of various electronic devices such as tablets. The electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having pores 36 in an insulating liquid 31. The porous layer 33 includes a fibrous structure 34 and non-migrating particles 35 held by the fibrous structure 34. In this Embodiment, the porous layer 33 has the reinforcement part A by which the fibers were bridge | crosslinked in the adjacent part of the fibers of the fibrous structure 34 formed as a three-dimensional solid structure. 1 and 2 schematically illustrate the configuration of the electrophoretic element 30 and the display device 1 including the same, and may differ from actual dimensions and shapes.
 絶縁性液体31は、例えば、パラフィンまたはイソパラフィン等の有機溶媒により構成されている。絶縁性液体31には、1種類の有機溶媒を用いてもよく、あるいは複数種類の有機溶媒を用いるようにしてもよい。絶縁性液体31の粘度および屈折率は、できるだけ低くすることが好ましい。絶縁性液体31の粘度を低くすると泳動粒子32の移動性(応答速度)が向上する。また、これに応じて泳動粒子32の移動に必要なエネルギー(消費電力)は低くなる。絶縁性液体31の屈折率を低くすると、絶縁性液体31と多孔質層33との屈折率の差が大きくなり、多孔質層33の反射率が高くなる。 The insulating liquid 31 is made of, for example, an organic solvent such as paraffin or isoparaffin. As the insulating liquid 31, one kind of organic solvent may be used, or a plurality of kinds of organic solvents may be used. It is preferable to make the viscosity and refractive index of the insulating liquid 31 as low as possible. When the viscosity of the insulating liquid 31 is lowered, the mobility (response speed) of the migrating particles 32 is improved. In accordance with this, the energy (power consumption) required to move the migrating particles 32 is reduced. When the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased.
 絶縁性液体31には、例えば、着色剤,電荷調整剤,分散安定剤,粘度調整剤,界面活性剤または樹脂等を添加するようにしてもよい。 For example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 31.
 絶縁性液体31中に分散された泳動粒子32は、1または2以上の荷電粒子であり、このような帯電した泳動粒子32が電界に応じ細孔36を介して移動する。泳動粒子32は、任意の光学的反射特性(光反射率)を有しており、泳動粒子32の光反射率と多孔質層33の光反射率との違いによりコントラスト(CR)が生じるようになっている。例えば、泳動粒子32が明表示し、多孔質層33が暗表示するようにしてもよく、泳動粒子32が暗表示し、多孔質層33が明表示するようにしてもよい。 The migrating particles 32 dispersed in the insulating liquid 31 are one or two or more charged particles, and the charged migrating particles 32 move through the pores 36 according to the electric field. The migrating particles 32 have an arbitrary optical reflection characteristic (light reflectance), and a contrast (CR) is generated due to the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33. It has become. For example, the migrating particles 32 may be brightly displayed and the porous layer 33 may be darkly displayed, or the migrating particles 32 may be darkly displayed and the porous layer 33 may be brightly displayed.
 外部から電気泳動素子30を見ると、泳動粒子32が明表示する場合には、泳動粒子32は、例えば、白色または白色に近い色に視認され、暗表示する場合には、例えば、黒色または黒色に近い色に視認される。このような泳動粒子32の色は、コントラストを生じさせることができれば特に限定されない。 When the electrophoretic element 30 is viewed from the outside, when the electrophoretic particles 32 are brightly displayed, the electrophoretic particles 32 are visually recognized as white or a color close to white, and when darkly displayed, for example, black or black It is visually recognized as a color close to. The color of the migrating particles 32 is not particularly limited as long as contrast can be generated.
 泳動粒子32は、例えば、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料(樹脂)等の粒子(粉末)により構成されている。泳動粒子32に、これらのうちの1種類を用いてもよく、または2種類以上を用いてもよい。泳動粒子32を、上記粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等により構成することも可能である。なお、上記炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料に該当する材料は、有機顔料,無機顔料または染料に該当する材料から除く。泳動粒子32の粒径は例えば、30nm~300nmである。 The migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One of these may be used for the migrating particles 32, or two or more of them may be used. The migrating particles 32 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. The particle size of the migrating particles 32 is, for example, 30 nm to 300 nm.
 上記の有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Examples of the organic pigments include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments. Perinone pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area | region in visible region, the kind will not be specifically limited.
 泳動粒子32の具体的な材料は、例えば、泳動粒子32がコントラストを生じさせるために担う役割に応じて選択される。泳動粒子32が明表示する場合、泳動粒子32には例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物等が用いられる。泳動粒子32が暗表示する場合、泳動粒子32には例えば、カーボンブラック等の炭素材料または銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物および銅-鉄-クロム酸化物等の金属酸化物等が用いられる。中でも、泳動粒子32には炭素材料を用いることが好ましい。炭素材料からなる泳動粒子32は、優れた化学的安定性、移動性および光吸収性を示す。 The specific material of the migrating particles 32 is selected according to, for example, the role that the migrating particles 32 play in causing contrast. When the migrating particles 32 display brightly, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 32. When the migrating particles 32 display in the dark, the migrating particles 32 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide. In addition, metal oxides such as copper-iron-chromium oxide are used. Among these, it is preferable to use a carbon material for the migrating particles 32. Electrophoretic particles 32 made of a carbon material exhibit excellent chemical stability, mobility and light absorption.
 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。この濃度範囲では、泳動粒子32の遮蔽性および移動性が確保される。詳細には、泳動粒子32の含有量が0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽(隠蔽)しにくくなり、十分にコントラストを生じさせることができない可能性がある。一方、泳動粒子32の含有量が10重量%よりも多いと、泳動粒子32の分散性が低下するため、その泳動粒子32が泳動しにくくなり、凝集する虞がある。 The content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding and mobility of the migrating particles 32 are ensured. Specifically, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are less likely to shield (conceal) the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate.
 泳動粒子32は、絶縁性液体31中で長期間に渡って分散および帯電しやすく、また、多孔質層33に吸着しにくいことが好ましい。このため、例えば、絶縁性液体31中に分散剤が添加される。分散剤と電荷調整剤とを併用するようにしてもよい。 The migrating particles 32 are preferably easily dispersed and charged in the insulating liquid 31 for a long period of time, and are preferably not easily adsorbed to the porous layer 33. For this reason, for example, a dispersant is added to the insulating liquid 31. A dispersant and a charge control agent may be used in combination.
 この分散剤または電荷調整剤は、例えば、正、負のどちらか一方、または両方の電荷を有しており、絶縁性液体31中の帯電量を増加させると共に、静電反発により泳動粒子32を分散させるためのものである。このような分散剤として、例えば、Lubrizol社製のSolsperceシリーズ、BYK-Chemie社製のBYKシリーズまたはAnti-Terraシリーズ、あるいはTCI America社製Spanシリーズ等が挙げられる。 This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31 and causes the migrating particles 32 to move by electrostatic repulsion. It is for dispersing. Examples of such a dispersant include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemie, or Span series manufactured by TCI America.
 泳動粒子32の分散性を向上させるため、泳動粒子32に表面処理を施すようにしてもよい。この表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。特に、グラフト重合処理、マイクロカプセル化処理またはこれらを組み合わせて処理を行うことにより、泳動粒子32の長期間の分散安定性を維持することができる。 In order to improve the dispersibility of the migrating particles 32, the migrating particles 32 may be subjected to a surface treatment. This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. In particular, long-term dispersion stability of the migrating particles 32 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
 このような表面処理には、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着性材料)等が用いられる。吸着可能な官能基は、泳動粒子32の形成材料に応じて決定する。例えば、泳動粒子32がカーボンブラック等の炭素材料により構成されている場合には、4-ビニルアニリン等のアニリン誘導体、泳動粒子32が金属酸化物により構成されている場合には、メタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体をそれぞれ吸着することができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 For such surface treatment, for example, a material (adsorbent material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32 is used. The adsorbable functional group is determined according to the forming material of the migrating particle 32. For example, when the migrating particles 32 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 32 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 泳動粒子32の表面に重合性官能基を導入し、これにグラフトさせて表面処理を行うようにしてもよい(グラフト性材料)。グラフト性材料は、例えば、重合性官能基と分散用官能基とを有している。分散用官能基は、絶縁性液体31中に泳動粒子32を分散させ、その立体障害により分散性を保持するものである。絶縁性液体31が例えば、パラフィンである場合、分散用官能基として分岐状のアルキル基等を用いることができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。グラフト性材料を重合およびグラフトさせるためには、例えば、アゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。この他、泳動粒子32の表面に吸着可能な官能基と分散性を付与するためのアルキル鎖を有する材料を用いることができる。このような材料としては、例えば、チタネート系カップリング剤(例えば、味の素ファインテクノ株式会社製KR-TTS)およびアルミネート系カップリング剤が挙げられる。 A surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 32 and grafting it onto the surface (graftable material). The graft material has, for example, a polymerizable functional group and a dispersing functional group. The functional group for dispersion disperses the migrating particles 32 in the insulating liquid 31 and retains dispersibility due to steric hindrance. For example, when the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used. In addition, a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
 上記泳動粒子32を絶縁性液体31中に分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For details of the method for dispersing the migrating particles 32 in the insulating liquid 31, see “Dispersion Technology of Ultrafine Particles and its Evaluation: Surface Treatment / Fine Grinding and Dispersion Stabilization in Air / Liquid / Polymer— Science & Technology)).
 多孔質層33は泳動粒子32を遮蔽可能なものであり、繊維状構造体34と、界面活性剤によって修飾されると共に、繊維状構造体34に保持された非泳動粒子35とを有している。多孔質層33は、繊維状構造体34により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)であり、複数の隙間(細孔36)が設けられている。繊維状構造体34によって多孔質層33の3次元立体構造が構成されることで、光(外光)が乱反射(多重散乱)し、多孔質層33の反射率が高くなる。従って、多孔質層33の厚みが小さい場合であっても高反射率を得ることができ、電気泳動素子30のコントラストを向上させると共に、泳動粒子32の移動に必要なエネルギーを小さくすることができる。多孔質層33の全体のZ軸方向の膜厚(以下、単に厚みという)は、電気泳動素子30の素子構成にもよるが、例えば、1μm以上300μm以下である。 The porous layer 33 can shield the migrating particles 32, and includes a fibrous structure 34 and non-migrating particles 35 that are modified by the surfactant and held by the fibrous structure 34. Yes. The porous layer 33 is a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by the fibrous structure 34, and is provided with a plurality of gaps (pores 36). By forming the three-dimensional structure of the porous layer 33 by the fibrous structure 34, light (external light) is irregularly reflected (multiple scattering), and the reflectance of the porous layer 33 is increased. Therefore, even when the thickness of the porous layer 33 is small, a high reflectance can be obtained, the contrast of the electrophoretic element 30 can be improved, and the energy required to move the electrophoretic particles 32 can be reduced. . The film thickness in the Z-axis direction of the entire porous layer 33 (hereinafter simply referred to as thickness) is, for example, 1 μm or more and 300 μm or less, depending on the element configuration of the electrophoretic element 30.
 更に、本実施の形態の多孔質層33は、繊維状構造体34が重畳された繊維間、換言すると、繊維同士が互いに近接する近接部に補強部Aが形成されている。この補強部Aは、繊維状構造体34の3次元立体構造を補強し、多孔質層33の剛性を向上させるものである。補強部Aは、例えば、後述する繊維状構造体34を構成する高分子材料に、結合剤および硬化剤等を含む補強用ポリマーを混合し、例えば、静電紡糸法を用いて紡糸したのち、加熱して補強用ポリマーの架橋を促進させることによって形成される。また、補強用ポリマー溶液を調整し、これを静電塗布法を用いて繊維状構造体34の表面に塗布したのち、加熱して補強用ポリマーの架橋を促進させることでも形成することができる。 Furthermore, in the porous layer 33 of the present embodiment, the reinforcing portion A is formed between the fibers on which the fibrous structures 34 are superimposed, in other words, in a proximity portion where the fibers are close to each other. The reinforcing portion A reinforces the three-dimensional structure of the fibrous structure 34 and improves the rigidity of the porous layer 33. For example, after the reinforcing portion A is mixed with a polymer for reinforcement including a binder and a curing agent in a polymer material constituting the fibrous structure 34 described later, for example, after spinning using an electrostatic spinning method, It is formed by heating to promote crosslinking of the reinforcing polymer. Alternatively, the reinforcing polymer solution may be prepared and applied to the surface of the fibrous structure 34 using an electrostatic coating method, and then heated to promote crosslinking of the reinforcing polymer.
 補強用ポリマーを混合した場合には、補強用ポリマーを混合していない状態の繊維状構造体よりも繊維径が太くなる(例えば、図5A,5Bおよび図6A,6B参照)。これにより、多孔質層33全体の剛性が向上する。補強用ポリマーを繊維状構造体34の表面に塗布した場合には、補強用ポリマーによって繊維状構造体34が被覆されることによって表面の平滑性が向上し、細孔36を通過する際の泳動粒子32の移動が容易になる。これにより、混合した場合よりも全体の強度は低いものの、応答速度を向上させることができる。 When the reinforcing polymer is mixed, the fiber diameter becomes larger than the fibrous structure in the state where the reinforcing polymer is not mixed (see, for example, FIGS. 5A and 5B and FIGS. 6A and 6B). Thereby, the rigidity of the whole porous layer 33 improves. When the reinforcing polymer is applied to the surface of the fibrous structure 34, the smoothness of the surface is improved by covering the fibrous structure 34 with the reinforcing polymer, and migration when passing through the pores 36 is performed. The movement of the particles 32 is facilitated. Thereby, although the whole intensity | strength is lower than the case where it mixes, a response speed can be improved.
 補強部Aを形成する補強用ポリマー(結合剤および硬化剤)には、繊維状構造体の弾力性を維持しつつ、繊維状構造体34の強度を向上させることが可能な材料を用いることが好ましい。具体的には、結合剤としては、塩化ビニル、酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリ弗化ビニル、塩化ビニリデン-アルリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリエステル樹脂、アミノ樹脂等が挙げられる。硬化剤としては、例えばポリイソシアネートとして、トルエンジイソシアネート、およびこれらの付加体、アルキレンジイソシアネート、およびこれらの付加体等が挙げられる。 For the reinforcing polymer (binder and curing agent) forming the reinforcing portion A, a material capable of improving the strength of the fibrous structure 34 while maintaining the elasticity of the fibrous structure is used. preferable. Specifically, the binder includes vinyl chloride, vinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate ester-acrylonitrile copolymer. , Acrylic ester-vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic ester-acrylonitrile copolymer, acrylic ester-vinylidene chloride copolymer, methacrylic ester-vinylidene chloride copolymer , Methacrylate ester-vinyl chloride copolymer, methacrylate ester-ethylene copolymer, polyvinyl fluoride, vinylidene chloride-alrilonitrile copolymer, acrylonitrile-butadiene copolymer, polyamide resin, polyvinyl butyral, cellulose derivative Cellulose acetate butyrate, cellulose diacetate, cellulose triacetate, cellulose propionate, nitrocellulose), styrene-butadiene copolymer, polyester resin, amino resin, and the like. Examples of the curing agent include polyisocyanate, toluene diisocyanate, and adducts thereof, alkylene diisocyanate, adducts thereof and the like.
 なお、補強部Aを形成するための補強用ポリマーの材料に低温且つ短時間(例えば、60℃,2時間)に架橋が可能な材料を選択することにより製造工程における多孔質層33への負荷が低減される。 It should be noted that the load on the porous layer 33 in the manufacturing process is selected by selecting a material that can be crosslinked at a low temperature and in a short time (for example, 60 ° C., 2 hours) as the material of the reinforcing polymer for forming the reinforcing portion A. Is reduced.
 繊維状構造体34は、繊維径(直径)に対して十分な長さを有する繊維状物質である。例えば、複数の繊維状構造体34が集合し、ランダムに重なって多孔質層33を構成する。1つの繊維状構造体34がランダムに絡みあって多孔質層33を構成していてもよい。あるいは、1つの繊維状構造体34による多孔質層33と複数の繊維状構造体34による多孔質層33とが混在していてもよい。 The fibrous structure 34 is a fibrous substance having a sufficient length with respect to the fiber diameter (diameter). For example, a plurality of fibrous structures 34 are assembled and randomly overlapped to form the porous layer 33. One fibrous structure 34 may be entangled randomly to form the porous layer 33. Or the porous layer 33 by the one fibrous structure 34 and the porous layer 33 by the some fibrous structure 34 may be mixed.
 繊維状構造体34は、例えば、直線状に延在している。繊維状構造体34の形状は、どのようなものであってもよく、例えば、縮れていたり、途中で折れ曲がったりしていてもよい。あるいは、繊維状構造体34は途中で分岐していてもよい。 The fibrous structure 34 extends, for example, in a straight line. The shape of the fibrous structure 34 may be any shape. For example, the fibrous structure 34 may be crimped or bent in the middle. Or the fibrous structure 34 may be branched on the way.
 繊維状構造体34の繊維径は、例えば、50nm以上2000nm以下であることが好ましいが、上記範囲外であってもよい。平均繊維径を小さくすることにより、光が乱反射し易くなり、また、細孔36の孔径が大きくなる。繊維状構造体34が非泳動粒子35を保持できるよう、その繊維径を決定する。平均繊維径は、例えば、走査型電子顕微鏡等を用いた顕微鏡観察により測定することができる。繊維状構造体34の平均長さは任意である。繊維状構造体34は、例えば、相分離法,相反転法,静電(電界)紡糸法,溶融紡糸法,湿式紡糸法,乾式紡糸法,ゲル紡糸法,ゾルゲル法またはスプレー塗布法等により形成される。このような方法を用いることにより、繊維径に対して十分な長さを有する繊維状構造体34を容易に、かつ安定して形成することができる。 The fiber diameter of the fibrous structure 34 is preferably, for example, 50 nm or more and 2000 nm or less, but may be outside the above range. By reducing the average fiber diameter, light is easily diffusely reflected, and the pore diameter of the pores 36 is increased. The fiber diameter is determined so that the fibrous structure 34 can hold the non-migrating particles 35. The average fiber diameter can be measured, for example, by microscopic observation using a scanning electron microscope or the like. The average length of the fibrous structure 34 is arbitrary. The fibrous structure 34 is formed by, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating method. Is done. By using such a method, the fibrous structure 34 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体34は、高分子材料あるいは、無機材料により構成することができる。中でも、ナノファイバーにより構成することが好ましい。ここでナノファイバーとは、繊維径が1nm~1000nmであり、長さが繊維径の100倍以上である繊維状物質である。このようなナノファイバーを繊維状構造体34として用いることにより、光が乱反射し易くなり、多孔質層33の反射率をより向上させることができる。即ち、電気泳動素子30のコントラストを向上させることが可能となる。また、ナノファイバーからなる繊維状構造体34では、単位体積中に占める細孔36の割合が大きくなり、細孔36を経由して泳動粒子32が移動し易くなる。従って、泳動粒子32の移動に必要なエネルギーを小さくすることができる。ナノファイバーからなる繊維状構造体34は、静電紡糸法により形成することが好ましい。静電紡糸法を用いることにより繊維径が小さい繊維状構造体34を容易に、かつ安定して形成することができる。 The fibrous structure 34 can be made of a polymer material or an inorganic material. Among these, it is preferable to use nanofibers. Here, the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter. By using such nanofibers as the fibrous structure 34, light is easily diffusely reflected, and the reflectance of the porous layer 33 can be further improved. That is, the contrast of the electrophoretic element 30 can be improved. Further, in the fibrous structure 34 made of nanofibers, the proportion of the pores 36 in the unit volume increases, and the migrating particles 32 can easily move through the pores 36. Therefore, the energy required for moving the migrating particles 32 can be reduced. The fibrous structure 34 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrospinning method, the fibrous structure 34 having a small fiber diameter can be easily and stably formed.
 繊維状構造体34には、その光反射率が泳動粒子32の光反射率と異なるものを用いることが好ましい。これにより、多孔質層33と泳動粒子32との光反射率の差によるコントラストが形成され易くなる。絶縁性液体31中で光透過性(無色透明)を示す繊維状構造体34を用いるようにしてもよい。 It is preferable to use a fibrous structure 34 having a light reflectance different from that of the migrating particles 32. Thereby, a contrast due to a difference in light reflectance between the porous layer 33 and the migrating particles 32 is easily formed. A fibrous structure 34 showing light transparency (colorless and transparent) in the insulating liquid 31 may be used.
 細孔36は、複数の繊維状構造体34が重なり合い、または1つの繊維状構造体34が絡まりあうことにより構成されている。この細孔36は、泳動粒子32が細孔36を経て移動し易いよう、できるだけ大きな平均孔径を有していることが好ましい。細孔36の平均孔径は、例えば、0.1μm以上10μm以下である。 The pores 36 are configured by overlapping a plurality of fibrous structures 34 or tangling one fibrous structure 34. The pores 36 preferably have as large an average pore diameter as possible so that the migrating particles 32 can easily move through the pores 36. The average pore diameter of the pores 36 is, for example, not less than 0.1 μm and not more than 10 μm.
 非泳動粒子35は、繊維状構造体34に固定されており、電気泳動を行わない1または2以上の粒子である。非泳動粒子35は、保持されている繊維状構造体34の内部に埋設されていてもよく、あるいは、繊維状構造体34から部分的に突出していてもよい(図5B,図6B参照)。 Non-electrophoretic particles 35 are one or more particles that are fixed to the fibrous structure 34 and do not undergo electrophoresis. The non-migrating particles 35 may be embedded in the held fibrous structure 34 or may partially protrude from the fibrous structure 34 (see FIGS. 5B and 6B).
 非泳動粒子35には、その光反射率が泳動粒子32の光反射率と異なるものを用いる。非泳動粒子35の平均粒径は、例えば、50nm以上1000nm以下であることが好ましい。非泳動粒子35は、上記泳動粒子32と同様の材料により構成することが可能である。詳細には、非泳動粒子35(多孔質層33)が明表示する場合には上記泳動粒子32が明表示する場合の材料、非泳動粒子35が暗表示する場合には上記泳動粒子32が暗表示する場合の材料をそれぞれ用いることができる。多孔質層33により明表示を行うとき、非泳動粒子35を金属酸化物により構成することが好ましい。これにより、優れた化学的安定性、定着性および光反射性を得ることができる。非泳動粒子35、泳動粒子32それぞれの構成材料は同じであってもよく、異なっていてもよい。非泳動粒子35が明表示または暗表示を行うときに外部から視認される色は、上記泳動粒子32について説明したものと同様である。 As the non-electrophoretic particles 35, those having a light reflectance different from that of the electrophoretic particles 32 are used. The average particle diameter of the non-migrating particles 35 is preferably, for example, 50 nm or more and 1000 nm or less. The non-migrating particles 35 can be made of the same material as the migrating particles 32. Specifically, when the non-electrophoretic particles 35 (porous layer 33) display brightly, the material when the electrophoretic particles 32 display brightly, and when the non-electrophoretic particles 35 display darkly, the electrophoretic particles 32 darken. Each material for display can be used. When performing bright display by the porous layer 33, it is preferable that the non-migrating particles 35 are made of a metal oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity. The constituent materials of the non-migrating particles 35 and the migrating particles 32 may be the same or different. The color visually recognized from the outside when the non-electrophoretic particle 35 performs bright display or dark display is the same as that described for the electrophoretic particle 32.
 また、非泳動粒子35はその表面が界面活性剤によって修飾されていてもよい。界面活性剤は、親水基として例えば、カルボン酸、スルホン酸あるいはリン酸構造を有する陰イオン(アニオン)性界面活性剤および親水基として例えば、テトラアルキルアンモニウムあるいはアルキルアミンを有する陽イオン(カチオン)性界面活性剤が挙げられる。この他、親水部が非電解質、即ちイオン化しない親水性部分を有する非イオン(ノニオン)性界面活性剤および分子内にアニオン性部位およびカチオン性部位の両方を有する両性界面活性剤を用いてもよい。両性界面活性剤としては、例えば、アルキルジメチルアミンオキシドあるいはアルキルカルボキシベタインが挙げられる。なお、非泳動粒子35として酸化チタン等の金属材料を用いる場合にはアニオン性界面活性剤を用いることが好ましい。特に、カルボン酸のような分子の嵩の小さな親水基を有する界面活性剤は非泳動粒子35の表面全体を被覆しやすく好ましい。また、界面活性剤は、表示特性を長期的に劣化させることのないように、絶縁性液体31中に染み出してこないものが望ましい。 Further, the surface of the non-electrophoretic particle 35 may be modified with a surfactant. Surfactants are, for example, anionic (anionic) surfactants having a carboxylic acid, sulfonic acid or phosphoric acid structure as hydrophilic groups and cationic (cationic) properties having, for example, tetraalkylammonium or alkylamine as hydrophilic groups. Surfactant is mentioned. In addition, nonionic (nonionic) surfactants having a hydrophilic part as a non-electrolyte, that is, a non-ionized hydrophilic part, and amphoteric surfactants having both an anionic part and a cationic part in the molecule may be used. . Examples of amphoteric surfactants include alkyl dimethylamine oxide and alkyl carboxybetaine. In addition, when using metal materials, such as a titanium oxide, as the non-electrophoretic particle 35, it is preferable to use an anionic surfactant. In particular, a surfactant having a hydrophilic group with a small molecular volume such as carboxylic acid is preferable because it easily covers the entire surface of the non-electrophoretic particle 35. Further, it is desirable that the surfactant does not ooze into the insulating liquid 31 so that the display characteristics are not deteriorated for a long time.
 多孔質層33は、例えば、以下の方法により形成することができる。図3Aは、多孔質層33の形成手順の流れを表したものである。まず、非泳動粒子35として、例えば、2種類の一次粒径(例えば、250nm(小粒子)および例えば、450nm(大粒子))を有する酸化チタンを用意し、これらを例えば、カルボン酸系陰イオン性界面活性剤が溶解した有機溶剤に添加して攪拌する。これにより表面がカルボン酸系陰イオン界面活性剤によって被覆された酸化チタン(非泳動粒子35)が得られる(ステップS101)。次に、例えば、有機溶剤に、例えば、高分子材料(ポリマー)等の繊維状構造体34の構成材料を溶解させ、溶液を調製したのち、この溶液に上記非泳動粒子35を加えて十分に攪拌し、非泳動粒子35を分散させる紡糸溶液を調製する(ステップS102)。続いて、この紡糸溶液を、例えば、静電紡糸法により紡糸を行うことにより非泳動粒子35が固定された繊維状構造体34を形成する(ステップS103)。なお、ここで一次粒径とは、最小限の粒径であり、例えば、粒子同士が凝集あるいは結合している場合には個々の粒子の粒径を表す。 The porous layer 33 can be formed by the following method, for example. FIG. 3A shows the flow of the formation procedure of the porous layer 33. First, as the non-electrophoretic particles 35, for example, titanium oxide having two types of primary particle sizes (for example, 250 nm (small particles) and, for example, 450 nm (large particles)) is prepared, and these are, for example, carboxylic acid anions. The organic surfactant is added to the organic solvent in which it has been dissolved and stirred. As a result, titanium oxide (non-electrophoretic particles 35) whose surface is coated with a carboxylic acid anionic surfactant is obtained (step S101). Next, for example, a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then the non-electrophoretic particles 35 are sufficiently added to the solution. A spinning solution for stirring and dispersing the non-electrophoretic particles 35 is prepared (step S102). Subsequently, the spinning solution is spun by, for example, an electrostatic spinning method to form a fibrous structure 34 to which the non-migrating particles 35 are fixed (step S103). Here, the primary particle size is a minimum particle size. For example, when the particles are aggregated or bonded, the primary particle size represents the particle size of each particle.
 次に、繊維状構造体34に補強部Aを形成する。まず、結合剤として、例えば、塩化ビニル系共重合樹脂および硬化剤として、例えば、イソシアネート系硬化剤を、N,N'-ジメチルホルムアミド(DMF)に溶解させ、補強用ポリマー溶液を調整したのち、この補強用ポリマー溶液をシリンジに入れ、繊維状構造体34に、例えば、静電塗布する(ステップS104)。こののち、このフィルム基板を加熱して結合剤および硬化剤の架橋反応を促進させて補強部Aを有する多孔質層33を形成する(ステップS105)。補強用ポリマー溶液は、塗布液滴の径および秤量を所定の範囲とすることで、繊維状構造体34の空隙を埋めることなく、即ち、細孔36の孔径を狭めることなく、繊維状構造体34を被覆することができる。 Next, the reinforcing part A is formed on the fibrous structure 34. First, as a binder, for example, a vinyl chloride copolymer resin and a curing agent, for example, an isocyanate curing agent is dissolved in N, N′-dimethylformamide (DMF) to prepare a reinforcing polymer solution. This reinforcing polymer solution is put into a syringe and electrostatically applied to the fibrous structure 34 (step S104). After that, the film substrate is heated to promote the crosslinking reaction between the binder and the curing agent, thereby forming the porous layer 33 having the reinforcing portion A (step S105). The reinforcing polymer solution has a fibrous structure that does not fill the voids of the fibrous structure 34, that is, does not narrow the pore diameter of the fibrous structure 34, by setting the diameter and weight of the coating droplets within a predetermined range. 34 can be coated.
 このように、あらかじめ界面活性剤で修飾された非泳動粒子35を用いることによって紡糸溶液中の非泳動粒子35の分散性が向上する。これにより、紡糸時において非泳動粒子35に電界が印加されやすくなり、繊維径が抑えられた、即ち細繊維化された繊維状構造体34が得られる。 Thus, the dispersibility of the non-migrating particles 35 in the spinning solution is improved by using the non-migrating particles 35 previously modified with a surfactant. As a result, an electric field is easily applied to the non-migrating particles 35 during spinning, and a fibrous structure 34 with a reduced fiber diameter, that is, a fine fiber is obtained.
 なお、ここでは、多孔質層33の表示面側に補強部Aを形成する例を示したが、この他、補強部Aは多孔質層33全体に万遍なく設けるようにしてもよい。その場合には、例えば、多孔質層33を多層構造(例えば、図2に示したように3層構構造(第1層33A,第2層33Bおよび第3層33C))とし、各層の繊維状構造体34を紡糸する毎に、補強用ポリマー溶液を静電塗布したのち加熱し、補強部Aを形成するようにしてもよい。あるいは、図3Bに示した多孔質層33の形成手順の流れのように補強部Aを形成するようにしてもよい。具体的には、上記ステップS101と同様の方法を用いて非泳動粒子35を調整(ステップ201)したのち、有機溶剤に、例えば、高分子材料(ポリマー)等の繊維状構造体34の構成材料を溶解させ溶液を調製する。続いて、この溶液に上記非泳動粒子35と共に、補強用ポリマー(結合剤および硬化剤)を加えて十分に攪拌し、非泳動粒子35および補強用ポリマーを分散させた混合紡糸溶液を調製する(ステップS202)。次いで、この紡糸溶液を、例えば、静電紡糸法により紡糸を行うことにより、非泳動粒子35が固定されると共に、補強用ポリマーが混合された繊維状構造体34を形成する(ステップS103)。続いて、この繊維状構造体34を加熱して補強用ポリマーである結合剤および硬化剤の架橋反応を促進させて補強部Aを有する多孔質層33を形成する(ステップS204)。 In addition, although the example which forms the reinforcement part A in the display surface side of the porous layer 33 was shown here, you may make it provide the reinforcement part A uniformly in the whole porous layer 33 besides this. In that case, for example, the porous layer 33 has a multilayer structure (for example, a three-layer structure (first layer 33A, second layer 33B, and third layer 33C) as shown in FIG. 2), and the fibers of each layer. Each time the shaped structure 34 is spun, the reinforcing polymer solution may be electrostatically coated and then heated to form the reinforcing portion A. Or you may make it form the reinforcement part A like the flow of the formation procedure of the porous layer 33 shown to FIG. 3B. Specifically, after adjusting the non-migrating particles 35 using the same method as in step S101 (step 201), the organic solvent is made of, for example, a constituent material of the fibrous structure 34 such as a polymer material (polymer). Is dissolved to prepare a solution. Subsequently, a reinforcing polymer (a binder and a curing agent) is added to the solution together with the non-electrophoretic particles 35 and sufficiently stirred to prepare a mixed spinning solution in which the non-electrophoretic particles 35 and the reinforcing polymer are dispersed ( Step S202). Next, the spinning solution is spun by, for example, an electrostatic spinning method to form a fibrous structure 34 in which the non-migrating particles 35 are fixed and the reinforcing polymer is mixed (step S103). Subsequently, the fibrous structure 34 is heated to promote the crosslinking reaction of the binder and the curing agent, which are reinforcing polymers, to form the porous layer 33 having the reinforcing portion A (step S204).
 また、多孔質層33は、高分子フィルムに、レーザを使用して穴開け加工を施して細孔23を形成するようにしてもよく、多孔質層33に合成繊維等により編まれた布、または連泡多孔性高分子等を用いるようにしてもよい。 In addition, the porous layer 33 may be formed by forming holes in the polymer film by using a laser, and a cloth knitted with a synthetic fiber or the like on the porous layer 33, Alternatively, open-cell porous polymer may be used.
 なお、繊維状構造体は、例えば、炭素原子、酸素原子および水素原子で構成されている主骨格(分子の主部)を有する分子によって構成されることが好ましい。換言すれば、この分子の主骨格は炭素原子、酸素原子および水素原子以外の原子を含まず、これらの原子のみからなっている。繊維状構造体34を形成するこのような分子は、水酸基およびカルボン酸基等の極性の高い官能基を含んでいないことが好ましい。これにより、繊維状構造体34の表面電位の絶対値が小さくなり、電気泳動素子30の応答速度を向上させることができる。ここで、主骨格とは分子の両末端を除いた部分を指す。繊維状構造体34を形成する分子は、両末端まで炭素原子、酸素原子および水素原子で構成されていることが好ましいが、末端にこれら炭素原子、酸素原子および水素原子以外の原子が含まれていてもよい。例えば、高分子をラジカル重合により合成する場合には、触媒にアゾビスイソブチロニトリル(AIBN)等の重合開始剤が用いられる。このように合成された高分子の両末端には窒素原子等が含まれることになるが、この末端の原子は分子量で換算して分子全体の1000分の1にも満たない。従って、この末端の原子は分子の特性にはほとんど寄与しない。AIBN以外の重合開始剤についても同様である。このように、炭素原子、酸素原子および水素原子のみで構成された繊維状構造体34の反応性は低いので、繊維状構造体34が絶縁性液体31中に安定して存在する。従って、電気泳動素子30では高い信頼性が得られる。 The fibrous structure is preferably composed of molecules having a main skeleton (main part of the molecule) composed of, for example, carbon atoms, oxygen atoms and hydrogen atoms. In other words, the main skeleton of this molecule does not contain atoms other than carbon atoms, oxygen atoms, and hydrogen atoms, and consists only of these atoms. Such molecules forming the fibrous structure 34 preferably do not contain a highly polar functional group such as a hydroxyl group and a carboxylic acid group. Thereby, the absolute value of the surface potential of the fibrous structure 34 becomes small, and the response speed of the electrophoretic element 30 can be improved. Here, the main skeleton refers to a portion excluding both ends of the molecule. The molecules forming the fibrous structure 34 are preferably composed of carbon atoms, oxygen atoms and hydrogen atoms up to both ends, but the ends contain atoms other than these carbon atoms, oxygen atoms and hydrogen atoms. May be. For example, when a polymer is synthesized by radical polymerization, a polymerization initiator such as azobisisobutyronitrile (AIBN) is used as a catalyst. Nitrogen atoms and the like are contained at both ends of the polymer synthesized in this way, but the atoms at the ends are less than 1/1000 of the whole molecule in terms of molecular weight. Therefore, this terminal atom contributes little to the properties of the molecule. The same applies to polymerization initiators other than AIBN. Thus, the reactivity of the fibrous structure 34 composed of only carbon atoms, oxygen atoms, and hydrogen atoms is low, so that the fibrous structure 34 exists stably in the insulating liquid 31. Therefore, the electrophoretic element 30 can obtain high reliability.
 繊維状構造体34を形成する分子は鎖状の高分子である。ここで、鎖状の分子(鎖状分子)とは環状の原子配列の構造を含まない分子をいう。環状の原子配列の例として、例えば、単素環式化合物および複素環式化合物が挙げられる。単素環式化合物は、単一元素によって構成されており、具体的には、芳香族化合物,シクロアルケン,シクロアルカンおよびシクロアルキン等である。複素環式化合物は2種類以上の元素によって構成されており、具体的には、ピロール,カルバゾール,環状アセタール,ピラン,フランおよびチオフェン等である。鎖状分子は直鎖状であってもよく、あるいは分岐していてもよい。繊維状構造体34は鎖状分子により構成することにより、環状構造を含む分子に比べて、立体障害が小さいため、泳動粒子32が移動し易くなり、電気泳動素子30のコントラストおよび応答速度が向上する。 The molecule forming the fibrous structure 34 is a chain polymer. Here, a chain molecule (chain molecule) refers to a molecule that does not include a cyclic atomic arrangement structure. Examples of the cyclic atomic arrangement include a monocyclic compound and a heterocyclic compound. Monocyclic compounds are composed of a single element, and specifically include aromatic compounds, cycloalkenes, cycloalkanes, cycloalkynes, and the like. The heterocyclic compound is composed of two or more kinds of elements, and specifically includes pyrrole, carbazole, cyclic acetal, pyran, furan and thiophene. The chain molecule may be linear or branched. When the fibrous structure 34 is composed of chain molecules, since the steric hindrance is smaller than that of a molecule including a cyclic structure, the migrating particles 32 are easily moved, and the contrast and response speed of the electrophoretic element 30 are improved. To do.
 この繊維状構造体34を構成する鎖状分子には、エステル基が含まれている。例えば、アクリル樹脂により繊維状構造体34を形成することが好ましい。具体的な鎖状分子として、例えば、ポリアルキルメタクリレート、ポリアルキルアクリレート、ポリアルケニルメタクリレート、ポリアルケニルアクリレート、ポリアルキニルメタクリレートおよびポリアルキニルアクリレート等が挙げられる。この鎖状分子は、エステル基よりも高い極性の官能基を有しておらず、繊維状構造体34の表面電位の絶対値は、例えば、20mV以下となる。繊維状構造体34の表面電位の絶対値が10mV以下となるように、鎖状分子を選択することがより好ましい。即ち、上記のシアノ基等に比べてエステル基がもつ極性は小さいが、これは、電界紡糸法を用いた紡糸に十分な大きさであり、電界紡糸法により繊維状構造体34を容易に形成することができる。 The chain molecule constituting the fibrous structure 34 includes an ester group. For example, the fibrous structure 34 is preferably formed from an acrylic resin. Specific examples of the chain molecule include polyalkyl methacrylate, polyalkyl acrylate, polyalkenyl methacrylate, polyalkenyl acrylate, polyalkynyl methacrylate and polyalkynyl acrylate. This chain molecule does not have a functional group having a polarity higher than that of the ester group, and the absolute value of the surface potential of the fibrous structure 34 is, for example, 20 mV or less. It is more preferable to select chain molecules so that the absolute value of the surface potential of the fibrous structure 34 is 10 mV or less. That is, the ester group has a smaller polarity than the cyano group and the like, but this is sufficiently large for spinning using the electrospinning method, and the fibrous structure 34 can be easily formed by the electrospinning method. can do.
 繊維状構造体34を構成する鎖状分子には、微生物により分解されにくい材料を用いることが好ましい。即ち、鎖状分子は生分解に対して耐性を有することが好ましい。生分解性を有する高分子として、例えば、ポリ乳酸,ポリビニルアルコール,セルロースアセテート,コラーゲン,ゼラチンおよびキトサン等が挙げられる。このような高分子は分解され易いので、外部から電気泳動素子に何らかの刺激が加わった際に繊維状構造体の特性を維持できない虞がある。また、このような高分子は水溶性のものが多く、電気泳動素子内の水分により溶解して、繊維状構造体の形状を維持できない虞がある。これに対し、生分解に対して耐性を有する鎖状分子により繊維状構造体34を形成すると、繊維状構造体34の安定性が増す。従って、電気泳動素子30の信頼性を向上させることが可能となる。繊維状構造体34の表面を任意の保護層で被覆するようにしてもよい。 For the chain molecule constituting the fibrous structure 34, it is preferable to use a material that is not easily decomposed by microorganisms. That is, the chain molecule is preferably resistant to biodegradation. Examples of the biodegradable polymer include polylactic acid, polyvinyl alcohol, cellulose acetate, collagen, gelatin, and chitosan. Since such a polymer is easily decomposed, there is a possibility that the characteristics of the fibrous structure cannot be maintained when some kind of stimulus is applied to the electrophoretic element from the outside. In addition, many of such polymers are water-soluble and may be dissolved by moisture in the electrophoretic element, so that the shape of the fibrous structure cannot be maintained. On the other hand, when the fibrous structure 34 is formed of chain molecules having resistance to biodegradation, the stability of the fibrous structure 34 is increased. Therefore, the reliability of the electrophoretic element 30 can be improved. The surface of the fibrous structure 34 may be covered with an arbitrary protective layer.
(1-2.表示装置の構成)
 次に、表示装置1の全体構成および動作原理について説明する。
(1-2. Configuration of display device)
Next, the overall configuration and operation principle of the display device 1 will be described.
 図2,図4Aおよび図4Bは、電気泳動素子30を用いた表示装置1の断面構成の一例を表したものである。表示装置1は、電気泳動現象を利用して画像(例えば、文字情報等)を表示する電気泳動型ディスプレイ(いわゆる電子ペーパーディスプレイ)であり、駆動基板10と対向基板20との間に電気泳動素子30が設けられている。駆動基板10と対向基板20との間は、スペーサ40により所定の間隔に調整されている。 2, 4A and 4B show an example of a cross-sectional configuration of the display device 1 using the electrophoretic element 30. FIG. The display device 1 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information) using an electrophoretic phenomenon, and an electrophoretic element between a driving substrate 10 and a counter substrate 20. 30 is provided. The space between the driving substrate 10 and the counter substrate 20 is adjusted to a predetermined distance by the spacer 40.
 駆動基板10は、支持部材11の一方の面に例えば、TFT(Thin Film Transistor)12、保護層13、画素電極14および接着層15をこの順に有している。TFT12および画素電極14は、例えば、画素配置に応じてマトリクス状またはセグメント状に配置されている。 The drive substrate 10 includes, for example, a TFT (Thin Film Transistor) 12, a protective layer 13, a pixel electrode 14, and an adhesive layer 15 in this order on one surface of the support member 11. For example, the TFT 12 and the pixel electrode 14 are arranged in a matrix or a segment according to the pixel arrangement.
 支持部材11は、例えば、無機材料,金属材料またはプラスチック材料等により構成されている。無機材料としては、例えば、ケイ素(Si),酸化ケイ素(SiOx),窒化ケイ素(SiNx)または酸化アルミニウム(AlOx)等が挙げられる。酸化ケイ素には、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料としては、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等が挙げられ、プラスチック材料としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)等が挙げられる。 The support member 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like. Examples of the inorganic material include silicon (Si), silicon oxide (SiOx), silicon nitride (SiNx), and aluminum oxide (AlOx). Silicon oxide includes glass or spin-on-glass (SOG). Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel, and examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
 表示装置1では、対向基板20側に画像が表示されるため、支持部材11は非光透過性であってもよい。支持部材11を、ウェハ等の剛性を有する基板により構成してもよく、あるいは可撓性を有する薄層ガラスまたはフィルム等により構成してもよい。支持部材11に可撓性材料を用いることにより、フレキシブル(折り曲げ可能)な表示装置1を実現できる。 Since the display device 1 displays an image on the counter substrate 20 side, the support member 11 may be non-light transmissive. The support member 11 may be configured by a rigid substrate such as a wafer, or may be configured by a flexible thin glass or film. By using a flexible material for the support member 11, the flexible display device 1 can be realized.
 TFT12は、画素を選択するためのスイッチング用素子である。TFT12は、チャネル層として無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。保護層13および接着層15は、例えば、ポリイミド等の絶縁性樹脂材料により構成されている。保護層13の表面が十分に平坦であれば、接着層15を省略することも可能である。画素電極14は、例えば、金(Au)、銀(Ag)または銅(Cu)等の金属材料により形成されている。画素電極14は、保護層13および接着層15に設けられたコンタクトホール(図示せず)を通じてTFT12に接続されている。 TFT 12 is a switching element for selecting a pixel. The TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer. The protective layer 13 and the adhesive layer 15 are made of, for example, an insulating resin material such as polyimide. If the surface of the protective layer 13 is sufficiently flat, the adhesive layer 15 can be omitted. The pixel electrode 14 is made of a metal material such as gold (Au), silver (Ag), or copper (Cu). The pixel electrode 14 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the adhesive layer 15.
 対向基板20は、例えば、支持部材21および対向電極22を有しており、支持部材21の全面(駆動基板10との対向面)に対向電極22が設けられている。対向電極22を、画素電極14と同様に、マトリクス状またはセグメント状に配置するようにしてもよい。 The counter substrate 20 includes, for example, a support member 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support member 21 (a surface facing the drive substrate 10). Similarly to the pixel electrode 14, the counter electrode 22 may be arranged in a matrix or a segment.
 支持部材21は、光透過性であることを除き、支持部材11と同様の材料により構成されている。対向電極22には、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等の光透光性導電性材料(透明電極材料)を用いることができる。 The support member 21 is made of the same material as the support member 11 except that it is light transmissive. For the counter electrode 22, for example, a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). (Transparent electrode material) can be used.
 対向基板20側に画像を表示する場合には、対向電極22を介して電気泳動素子30を見ることになるため、対向電極22の光透過性(透過率)は、できるだけ高いことが好ましく、例えば、80%以上である。また、対向電極22の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□以下である。 When displaying an image on the counter substrate 20 side, since the electrophoretic element 30 is viewed through the counter electrode 22, the light transmittance (transmittance) of the counter electrode 22 is preferably as high as possible. 80% or more. Further, the electrical resistance of the counter electrode 22 is preferably as low as possible, for example, 100Ω / □ or less.
 電気泳動素子30は、絶縁性液体31中に、泳動粒子32と、複数の細孔36を有する多孔質層33とを含んでいる。絶縁性液体31は、駆動基板10と対向基板20との間の空間に充填されており、多孔質層33は、例えば、スペーサ40により支持されている。絶縁性液体31が充填されている空間は、例えば、多孔質層33を境界として、画素電極14に近い側の待避領域R1と、対向電極22に近い側の表示領域R2とに区分けされている。絶縁性液体31、泳動粒子32および多孔質層33の構成は、上記実施の形態等で説明したものと同様である。なお、図4Aおよび後述の図4Bでは、図示内容を簡略化するために、細孔36は省略している。 The electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having a plurality of pores 36 in an insulating liquid 31. The insulating liquid 31 is filled in the space between the driving substrate 10 and the counter substrate 20, and the porous layer 33 is supported by the spacer 40, for example. The space filled with the insulating liquid 31 is divided into, for example, a retreat area R1 closer to the pixel electrode 14 and a display area R2 closer to the counter electrode 22 with the porous layer 33 as a boundary. . The configurations of the insulating liquid 31, the migrating particles 32, and the porous layer 33 are the same as those described in the above embodiments and the like. In FIG. 4A and later-described FIG. 4B, the pores 36 are omitted in order to simplify the illustrated contents.
 多孔質層33は、画素電極14および対向電極22のうちのどちらか一方に隣接していてもよく、待避領域R1と表示領域R2とが明確に区切られていなくてもよい。泳動粒子32は、電界に応じて画素電極14または対向電極22に向かって移動する。 The porous layer 33 may be adjacent to one of the pixel electrode 14 and the counter electrode 22, and the retreat area R1 and the display area R2 may not be clearly separated. The migrating particles 32 move toward the pixel electrode 14 or the counter electrode 22 according to the electric field.
 スペーサ40の厚みは、例えば、10μm~100μmであり、できるだけ薄くすることが好ましい。これにより、消費電力を抑えることができる。スペーサ40は、例えば、高分子材料等の絶縁性材料により構成され、駆動基板10と対向基板20との間に例えば、格子状に設けられている。スペーサ40の配置形状は、特に限定されないが、泳動粒子32の移動を妨げず、かつ、泳動粒子32を均一分布させるように設けることが好ましい。 The thickness of the spacer 40 is, for example, 10 μm to 100 μm, and is preferably as thin as possible. Thereby, power consumption can be suppressed. The spacer 40 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 10 and the counter substrate 20. The arrangement shape of the spacer 40 is not particularly limited, but it is preferable that the spacer 40 is provided so as not to disturb the movement of the migrating particles 32 and to uniformly distribute the migrating particles 32.
 初期状態の表示装置1では、泳動粒子32が待避領域R1に配置されている(図4A)。この場合には、全ての画素で泳動粒子32が多孔質層33により遮蔽されているため、対向基板20側から電気泳動素子30を見ると、コントラストが生じていない(画像が表示されていない)状態にある。 In the display device 1 in the initial state, the migrating particles 32 are arranged in the retreat area R1 (FIG. 4A). In this case, since the migrating particles 32 are shielded by the porous layer 33 in all the pixels, no contrast is generated when the electrophoretic element 30 is viewed from the counter substrate 20 side (an image is not displayed). Is in a state.
 一方、TFT12により画素が選択され、画素電極14と対向電極22との間に電界が印加されると、図4Bに示したように、画素毎に泳動粒子32が待避領域R1から多孔質層33(細孔36)を経由して表示領域R2に移動する。この場合には、泳動粒子32が多孔質層33により遮蔽されている画素と遮蔽されていない画素とが併存するため、対向基板20側から電気泳動素子30を見ると、コントラストが生じている状態になる。これにより、画像が表示される。 On the other hand, when a pixel is selected by the TFT 12 and an electric field is applied between the pixel electrode 14 and the counter electrode 22, as shown in FIG. 4B, the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to display area R2 via (pore 36). In this case, since the pixels in which the migrating particles 32 are shielded by the porous layer 33 and the pixels that are not shielded coexist, when the electrophoretic element 30 is viewed from the counter substrate 20 side, a contrast is generated. become. Thereby, an image is displayed.
 なお、この表示装置1によれば、高い応答速度を有する電気泳動素子30により、例えば、カラー化や動画表示にも適した高品位な画像を表示できる。 In addition, according to the display device 1, the electrophoretic element 30 having a high response speed can display a high-quality image suitable for, for example, colorization and moving image display.
 一般的な電気泳動型ディスプレイは、上記のように、泳動粒子の光反射率と多孔質層の光反射率との差によりコントラストを生じさせるものである。具体的には、泳動粒子および多孔質層のうち、明表示する方の光反射率が暗表示する方の光反射率よりも高くなっている。非泳動粒子の光反射率を、泳動粒子よりも高くして、多孔質層で明表示し、泳動粒子で暗表示することが好ましい。このような表示を行うことにより、明表示がなされる際の光反射率が、多孔質層(3次元立体構造物)による光の乱反射を利用して著しく高くなる。従って、これに応じ、コントラストも著しく向上する。 In general electrophoretic displays, as described above, contrast is generated by the difference between the light reflectance of the migrating particles and the light reflectance of the porous layer. Specifically, among the migrating particles and the porous layer, the light reflectance for bright display is higher than the light reflectance for dark display. It is preferable that the light reflectance of the non-electrophoretic particles is higher than that of the electrophoretic particles so that the porous layer displays light and the electrophoretic particles display dark. By performing such a display, the light reflectance at the time of bright display is remarkably increased by utilizing the irregular reflection of light by the porous layer (three-dimensional structure). Accordingly, the contrast is remarkably improved accordingly.
 電気泳動素子では、電界が印加された範囲内で泳動粒子が多孔質層の細孔を経て移動する。泳動粒子の移動した領域、移動しない領域に応じて、明表示および暗表示のうちのどちらか一方がなされ、画像が表示される。 In the electrophoretic element, the electrophoretic particles move through the pores of the porous layer within the range where the electric field is applied. Depending on the area where the migrating particles have moved or not moved, either bright display or dark display is performed, and an image is displayed.
 しかしながら、一対の電極(例えば、図2における画素電極14と対向電極22)との間に多孔質層を備えた電気泳動型ティスプレイでは、前述したように、折り曲げたり、表示画面を押すことによって多孔質層が変形し、特に、多孔質層が繊維状構造体で構成されている場合には、繊維構造体が変形し、細孔の孔径が小さくなって応答性が悪化するという問題があった。このため、高分子材料を用いて剛性の高い繊維状構造体を形成することが考えられるが、その場合には、繊維径が太くなり、散乱効率が低下してコントラストが悪化する虞がある However, in an electrophoretic display having a porous layer between a pair of electrodes (for example, the pixel electrode 14 and the counter electrode 22 in FIG. 2), as described above, by bending or pressing the display screen The porous layer is deformed. In particular, when the porous layer is composed of a fibrous structure, there is a problem that the fiber structure is deformed, the pore diameter is reduced, and the responsiveness is deteriorated. It was. For this reason, it is conceivable to form a highly rigid fibrous structure using a polymer material. In this case, however, the fiber diameter becomes thick, and the scattering efficiency may be lowered, resulting in a deterioration in contrast.
 これに対して、本実施の形態の電気泳動素子30およびその製造方法、ならびにこれを備えた表示装置1では、多孔質層33を構成する繊維状構造体34に、多孔質層33の剛性を向上させる補強部Aを形成するようにした。具体的には、繊維状構造体34に補強用ポリマー溶液を塗布、あるいは、繊維状構造体を形成する際に、紡糸溶液に補強用ポリマーを添加して補強部Aを形成するようにした。この補強部Aは、紡糸後、加熱することで補強用ポリマー(結合剤および硬化剤)の架橋反応が促進されて形成される。 On the other hand, in the electrophoretic element 30 and the manufacturing method thereof according to the present embodiment, and the display device 1 including the same, the rigidity of the porous layer 33 is added to the fibrous structure 34 constituting the porous layer 33. The reinforcing part A to be improved is formed. Specifically, the reinforcing polymer solution was applied to the fibrous structure 34, or when the fibrous structure was formed, the reinforcing polymer was added to the spinning solution to form the reinforcing portion A. The reinforcing part A is formed by heating after spinning to promote the crosslinking reaction of the reinforcing polymer (binder and curing agent).
 図5Aおよび図5Bは、一般的な繊維状構造体(図5A)および本実施の形態の繊維状構造体34(図5B)の実際の形状を模式的に表したものである。図6Aは図5Aに示した繊維状構造体の拡大模式図、図6Bは、図5Bに示した繊維状構造体34の拡大模式図である。補強用ポリマーを繊維状構造体34に混合、あるいは、塗布することによって、図5Bおよび図6Bに示したように、繊維状構造体34の繊維径を太くなり繊維自体の強度を向上する。また、補強用ポリマーの架橋によって近接する繊維間に補強部Aが形成され繊維状構造体34の剛性、即ち、多孔質層33の剛性が向上する。更に、補強用ポリマーを塗布した場合には、繊維状構造体34だけでなく、繊維状構造体34に保持された非泳動粒子35も被覆されることによって表面の平滑性が向上し、細孔36内を移動する泳動粒子32の移動速度がより改善される。 5A and 5B schematically show actual shapes of a general fibrous structure (FIG. 5A) and the fibrous structure 34 of the present embodiment (FIG. 5B). 6A is an enlarged schematic view of the fibrous structure shown in FIG. 5A, and FIG. 6B is an enlarged schematic view of the fibrous structure 34 shown in FIG. 5B. By mixing or applying the reinforcing polymer to the fibrous structure 34, as shown in FIGS. 5B and 6B, the fiber diameter of the fibrous structure 34 is increased and the strength of the fiber itself is improved. Further, the reinforcing portion A is formed between adjacent fibers by crosslinking of the reinforcing polymer, and the rigidity of the fibrous structure 34, that is, the rigidity of the porous layer 33 is improved. Further, when the reinforcing polymer is applied, not only the fibrous structure 34 but also the non-migrating particles 35 held by the fibrous structure 34 are coated, thereby improving the smoothness of the surface and reducing the pores. The moving speed of the migrating particles 32 moving in the 36 is further improved.
 以上のように、本実施の形態の電気泳動素子30およびその製造方法ならびに、これを備えた表示装置1では、多孔質層33を構成する繊維状構造体34に補強用ポリマーを塗布あるいは、繊維状構造体34を形成する紡糸溶液に補強用ポリマーを添加して紡糸し、繊維状構造体34を構成する繊維の近接部に補強部Aを設けるようにした。これにより、多孔質層33の剛性が向上し、折り曲げや、表示画面の押圧に対して繊維状構造体34の3次元立体構造によって形成される細孔36の孔径の維持が可能となる。即ち、多孔質層33の耐久性が向上する。よって、信頼性の向上した表示装置を提供することが可能となる。 As described above, in the electrophoretic element 30 of the present embodiment, the manufacturing method thereof, and the display device 1 including the same, the reinforcing polymer is applied to the fibrous structure 34 constituting the porous layer 33, or the fibers The reinforcing polymer was added to the spinning solution forming the fibrous structure 34 and spun, and the reinforcing part A was provided in the vicinity of the fibers constituting the fibrous structure 34. Thereby, the rigidity of the porous layer 33 is improved, and the pore diameter of the pores 36 formed by the three-dimensional structure of the fibrous structure 34 can be maintained against bending or pressing of the display screen. That is, the durability of the porous layer 33 is improved. Thus, a display device with improved reliability can be provided.
 更に、補強用ポリマーを繊維状構造体34に塗布することにより、繊維状構造体34の表面の平滑性が向上する。これにより、多孔質層33の強度を向上させつつ、応答性を向上させることが可能となる。即ち、信頼性および表示特性の向上した表示装置を提供することが可能となる。 Furthermore, the smoothness of the surface of the fibrous structure 34 is improved by applying the reinforcing polymer to the fibrous structure 34. Thereby, it becomes possible to improve the responsiveness while improving the strength of the porous layer 33. That is, a display device with improved reliability and display characteristics can be provided.
<2.適用例>
 次に、上記表示装置1の適用例について説明する。
<2. Application example>
Next, an application example of the display device 1 will be described.
 本技術の表示装置1は、各種用途の電子機器に適用可能であり、その電子機器の種類は特に限定されない。この表示装置1は、例えば、以下の電子機器に搭載可能である。ただし、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。 The display device 1 of the present technology can be applied to electronic devices for various uses, and the type of the electronic device is not particularly limited. This display device 1 can be mounted on, for example, the following electronic devices. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
(適用例1)
 図7A,7Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図7Aに示したように非表示部120の前面に設けられていてもよいし、図7Bに示したように上面に設けられていてもよい。表示部110が表示装置1により構成される。なお、表示装置1は、図7A,7Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。
(Application example 1)
7A and 7B show the external configuration of the electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. Note that the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 7A, or may be provided on the upper surface as illustrated in FIG. 7B. The display unit 110 is configured by the display device 1. The display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 7A and 7B.
(適用例2)
 図8は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部310および筐体320を有しており、タッチパネル部310が上記表示装置1により構成されている。
(Application example 2)
FIG. 8 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 1.
<3.実施例>
 次に、本技術の実施例について詳細に説明する。
<3. Example>
Next, embodiments of the present technology will be described in detail.
 以下の手順により、黒色(暗表示)の泳動粒子および白色(明表示)の多孔質層(粒子含有繊維状構造体)を用いて、表示装置(実験例1~10)を作製した。 Display devices (Experimental Examples 1 to 10) were prepared using black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) by the following procedure.
(実験例1)
(泳動粒子の準備)
 まず、テトラヒドロフラン400mlとメタノール400mlとの混合溶液を調製した後、この溶液に複合酸化物微粒子(銅-鉄-マンガンの酸化物:大日精化工業株式会社製ダイピロキサイドカラーTM9550)50gを加え、超音波浴槽にて超音波攪拌(25℃~35℃で30分間)を行った。次いで、この複合酸化物微粒子の分散液に28%アンモニア水40mlを30分間かけて滴下したのち、テトラヒドロフラン80mlにプレンアクト KR-TTS(味の素ファインテクノ株式会社製)10gを溶解させた溶液を30分間かけて滴下した。続いて、超音波浴槽を60℃まで昇温させ3時間保持したのちこれを室温まで冷却して遠心分離(6000rpmで10分間)およびデカンテーションを行った。次いで、このデカンテーション後の沈殿物をテトラヒドロフランとメタノールとの混合溶媒(体積比1:1)に再分散させ、再度、遠心分離(6000rpmで10分間)およびデカンテーションを行った。この洗浄作業を3回繰り返して得られた沈殿物を70℃の真空オーブンで一晩乾燥させた。これにより、分散基で被覆された黒色の泳動粒子が得られた。
(Experimental example 1)
(Preparation of migrating particles)
First, a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution. Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath. Next, 40 ml of 28% ammonia water was added dropwise to the dispersion of the composite oxide fine particles over 30 minutes, and then a solution in which 10 g of preneact KR-TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.) was dissolved in 80 ml of tetrahydrofuran was added over 30 minutes. And dripped. Subsequently, the ultrasonic bath was heated to 60 ° C. and held for 3 hours, and then cooled to room temperature, followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. Next, the precipitate after the decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), and centrifuged (at 6000 rpm for 10 minutes) and decantation again. The precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a dispersing group were obtained.
(絶縁性液体の準備)
 泳動粒子を調製した後、絶縁性液体83.3gにOLOA1200(Chevron Chemicals社製)を16.7g溶解させOLOA1200溶液を調製した。このOLOA1200溶液9gに上記泳動粒子1gを加え、超音波分散を行った。この分散液を遠心分離(6000rpmで90分間)およびデカンテーションを行ったのち、絶縁性液体に再分散させた。この作業を3回繰り返し、得られた分散液中の泳動粒子成分が10重量%となるように調製した。次いで、絶縁性液体69gにOLOA1200 1gとADDOCONATE S(Lubrizol社製)10gおよび上記分散液20gを加えて攪拌し、添加剤および泳動粒子を含有する絶縁性液体を得た。
(Preparation of insulating liquid)
After preparing the migrating particles, 16.7 g of OLOA 1200 (manufactured by Chevron Chemicals) was dissolved in 83.3 g of the insulating liquid to prepare an OLOA 1200 solution. 1 g of the migrating particles was added to 9 g of this OLOA 1200 solution, and ultrasonic dispersion was performed. This dispersion was centrifuged (at 6000 rpm for 90 minutes) and decanted, and then redispersed in an insulating liquid. This operation was repeated 3 times, and the resulting electrophoretic particle component in the dispersion liquid was adjusted to 10% by weight. Subsequently, OLOA 1200 1 g, ADDOCONATE S (manufactured by Lubrizol) 10 g and the above dispersion 20 g were added to 69 g of insulating liquid and stirred to obtain an insulating liquid containing additives and migrating particles.
(繊維状構造体の準備)
 繊維状構造体の形成材料であるポリメチルメタクリレート14gをN,N’-ジメチルホルムアミド86gに溶解させて溶液Dを準備した。続いて、非泳動粒子である酸化チタン(一次粒径250nm)30gを溶液D70gに加えたのち、ビーズミルで混合して紡糸溶液Eを準備した。次に、この紡糸溶液Eをシリンジに入れ、対向電極(ITO)が全面形成されたPETフィルムの上にUVレジンで高さ30μm、幅10μm、ピッチ200μmのピッチを格子状に設けたものの上に、電界紡糸装置(株式会社メック製NANON)を用いて坪量1.2mg/cm2の紡糸を行った。
(Preparation of fibrous structure)
A solution D was prepared by dissolving 14 g of polymethyl methacrylate, which is a material for forming a fibrous structure, in 86 g of N, N′-dimethylformamide. Subsequently, 30 g of titanium oxide (primary particle size 250 nm) as non-electrophoretic particles was added to 70 g of the solution D, and then mixed with a bead mill to prepare a spinning solution E. Next, this spinning solution E is put in a syringe, and on a PET film having a counter electrode (ITO) formed on the entire surface thereof, a UV resin is provided with a pitch of 30 μm in height, 10 μm in width, and 200 μm in pitch. Spinning with a basis weight of 1.2 mg / cm 2 was performed using an electrospinning apparatus (NANON manufactured by MEC Co., Ltd.).
(補強用ポリマーの準備)
 補強用結合剤の形成材料である塩化ビニル系共重合樹脂(日本ゼオン社製MR-110シクロヘキサノン30wt%溶液)30gとイソシアネート系硬化剤(日本ポリウレタン工業社製 コロネートL-50 50wt%)0.9g(5重量部)およびN,N’-ジメチルホルムアミド50gを混合して繊維補強用ポリマー溶液Fを作製した。続いて、繊維補強用ポリマー溶液Fをシリンジに入れ、例えば、ITO PETフィルム(フィルム基板)上に戴置した繊維状構造体に電界紡糸装置を用いて坪量0.1mg/cm2で静電塗布を行った。更に、このフィルム基板を70℃2時間オーブンに入れて架橋反応を促進させた。
(Preparation of polymer for reinforcement)
30 g of vinyl chloride copolymer resin (MR-110 cyclohexanone 30 wt% solution manufactured by Nippon Zeon Co., Ltd.) and 0.9 g of isocyanate curing agent (Coronate L-50 50 wt% manufactured by Nippon Polyurethane Industry Co., Ltd.), which are forming materials for reinforcing binders (5 parts by weight) and 50 g of N, N′-dimethylformamide were mixed to prepare a fiber reinforcing polymer solution F. Subsequently, the fiber reinforcing polymer solution F is put into a syringe, and, for example, the fibrous structure placed on the ITO PET film (film substrate) is electrostatically charged with a basis weight of 0.1 mg / cm 2 using an electrospinning device. Application was performed. Further, this film substrate was placed in an oven at 70 ° C. for 2 hours to promote the crosslinking reaction.
(表示装置の組み立て)
 格子状のリブの上に繊維状構造体ならびに補強用ポリマーが塗布されたフィルム基板を、線圧16kgf/cm、処理速度6m/minで金属ロールでニップ処理を8回行い、繊維状構造体をリブ格子間に充填した。これに対抗電極となるITO PETフィルムを重ねた。この重ねあわせたフィルムの外周に沿って、ビーズ(外径=30μm)を含む光硬化性樹脂(積水化学工業株式会社製感光性樹脂フォトレックA-400)を描画した。続いて、2枚のITO PET フィルム基板の間に、電気泳動粒子が分散された絶縁性液体を注入した。最後に、紫外線光を照射して光硬化性樹脂を硬化させた。この重ね合わせたフィルム間のギャップは、リブおよび光硬化性樹脂に混合されたビーズにて30μmに保たれた。
(Assembly of display device)
The film substrate in which the fibrous structure and the reinforcing polymer are coated on the lattice-like ribs is subjected to nip treatment 8 times with a metal roll at a linear pressure of 16 kgf / cm and a treatment speed of 6 m / min. Filled between rib lattices. This was overlaid with an ITO PET film serving as a counter electrode. A photocurable resin (photosensitive resin Photorec A-400 manufactured by Sekisui Chemical Co., Ltd.) containing beads (outer diameter = 30 μm) was drawn along the outer periphery of the superimposed film. Subsequently, an insulating liquid in which electrophoretic particles were dispersed was injected between two ITO PET film substrates. Finally, the photocurable resin was cured by irradiation with ultraviolet light. The gap between the superimposed films was kept at 30 μm with beads mixed with ribs and a photocurable resin.
(実験例2)
 補強用ポリマーとしてイソシアネート系硬化剤の量を1.8g(10重量部)としたこと以外は、実験例1と同様に作製した。
(Experimental example 2)
It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 1.8 g (10 parts by weight).
(実験例3)
 補強用ポリマーとしてイソシアネート系硬化剤の量を3.6g(20重量部)としたこと以外は、実験例1と同様に作製した。
(Experimental example 3)
It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 3.6 g (20 parts by weight).
(実験例4)
 補強用ポリマーとしてイソシアネート系硬化剤の量を5.4g(30重量部)としたこと以外は、実験例1と同様に作製した。
(Experimental example 4)
It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 5.4 g (30 parts by weight).
(実験例5)
 補強用ポリマーとしてイソシアネート系硬化剤の量を0.54g(3重量部)としたこと以外は、実験例1と同様に作製した。
(Experimental example 5)
It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate curing agent as the reinforcing polymer was 0.54 g (3 parts by weight).
(実験例6)
 補強用ポリマーとしてイソシアネート系硬化剤の量を3.6g(20重量部)とし、補強用ポリマーの静電塗布量を0.05mg/cm2としたこと以外は、実験例1と同様に作製した。
(Experimental example 6)
It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate-based curing agent as the reinforcing polymer was 3.6 g (20 parts by weight) and the electrostatic coating amount of the reinforcing polymer was 0.05 mg / cm 2 . .
(実験例7)
 補強用ポリマーとしてイソシアネート系硬化剤の量を3.6g(20重量部)とし、補強用ポリマーの静電塗布量を0.30mg/cm2としたこと以外は、実験例1と同様に作製した。
(Experimental example 7)
It was produced in the same manner as in Experimental Example 1 except that the amount of the isocyanate-based curing agent as the reinforcing polymer was 3.6 g (20 parts by weight) and the electrostatic coating amount of the reinforcing polymer was 0.30 mg / cm 2 . .
(実験例8)
 補強用ポリマーとしてイソシアネート系硬化剤の量を3.6g(20重量部)とし、繊維状構造体を0.6mg/cm2で紡糸した時点で補強用ポリマーを0.1mg/cm2静電塗布を行い、この上から繊維状構造体を0.6mg/cm2紡糸して繊維状構造体の中間層に補強用ポリマーを静電塗布した以外は、実験例1と同様に作製した。
(Experimental example 8)
The amount of the isocyanate curing agent as the reinforcing polymer was 3.6 g (20 parts by weight), and the reinforcing polymer was 0.1 mg / cm 2 electrostatically coated when the fibrous structure was spun at 0.6 mg / cm 2. This was prepared in the same manner as in Experimental Example 1 except that the fibrous structure was spun at 0.6 mg / cm 2 from above and the reinforcing polymer was electrostatically applied to the intermediate layer of the fibrous structure.
(実験例9)
 補強用ポリマーによる補強部の形成を行わない以外は、実験例1と同様に作製した。
(Experimental example 9)
It was produced in the same manner as in Experimental Example 1 except that the reinforcing portion was not formed with the reinforcing polymer.
(実験例10)
 繊維状構造体の形成材料であるポリメチルメタクリレートと、塩化ビニル系共重合樹脂およびイソシアネート系硬化剤(20重量部)とを70:30の割合で混合して合わせて14gとしたものをN,N’-ジメチルホルムアミド86gに溶解させて溶液Gを準備した。この溶液G70gに、非泳動粒子(酸化チタン(一次粒径250nm))30gを加えたのち、ビーズミルで混合して紡糸溶液Hを準備した。続いて、紡糸溶液Hを、実験例1と同様に紡糸して繊維状構造体を形成したのち、この繊維状構造体が形成されたフィルム基板を70℃2時間オーブンに入れて架橋反応を促進させた。上記以外は、実験例1と同様に作製した。なお、本実験例における繊維状構造体を構成するポリマーに対する補強用ポリマーの配合比率は30重量部である。
(Experimental example 10)
Polymethyl methacrylate, which is a material for forming a fibrous structure, and a vinyl chloride copolymer resin and an isocyanate curing agent (20 parts by weight) mixed at a ratio of 70:30 to make 14 g, N, Solution G was prepared by dissolving in 86 g of N′-dimethylformamide. 30 g of non-migrating particles (titanium oxide (primary particle size 250 nm)) were added to 70 g of this solution G, and then mixed by a bead mill to prepare a spinning solution H. Subsequently, after spinning the spinning solution H in the same manner as in Experimental Example 1 to form a fibrous structure, the film substrate on which the fibrous structure was formed was placed in an oven at 70 ° C. for 2 hours to promote the crosslinking reaction. I let you. Other than the above, it was fabricated in the same manner as in Experimental Example 1. In addition, the compounding ratio of the reinforcing polymer to the polymer constituting the fibrous structure in this experimental example is 30 parts by weight.
 これら実験例1~10の表示装置の性能として、繊維状構造体の繊維径を測定すると共に、白反射率(%)、黒反射率(%)、コントラスト(CR)、平均移動度(μm2/V・ms)および不良セル数を測定した。表1は、実験例1~10の各構成をまとめたものであり、表2は、上記測定結果をまとめたものである。各測定項目は、以下のように測定した。 As the performance of the display devices of Experimental Examples 1 to 10, the fiber diameter of the fibrous structure was measured, and the white reflectance (%), black reflectance (%), contrast (CR), average mobility (μm 2) / V · ms) and the number of defective cells. Table 1 summarizes the configurations of Experimental Examples 1 to 10, and Table 2 summarizes the measurement results. Each measurement item was measured as follows.
(反射率測定)
 まず、交流電圧(0.1Hzおよび15V)を1時間印加したのちに白反射率(%)および黒反射率(%)を測定すると共に、コントラスト=白反射率/黒反射率を算出した。ここでは、分光光度計(エックスライト株式会社製eye-one pro )を用いて、45°-0°リング照明で標準拡散板に対する基板法線方向の白反射率および黒反射率を測定した。
(Reflectance measurement)
First, after applying an alternating voltage (0.1 Hz and 15 V) for 1 hour, white reflectance (%) and black reflectance (%) were measured, and contrast = white reflectance / black reflectance was calculated. Here, using a spectrophotometer (eye-one pro manufactured by X-Rite Co., Ltd.), the white reflectance and black reflectance in the normal direction of the substrate with respect to the standard diffuser plate were measured with 45 ° -0 ° ring illumination.
(平均移動度測定)
 まず、ファンクションジェネレータ(東洋テクニカ株式会社製)を用いて、矩形波電界(15V)を印加しながら輝度を測定した。ここでは、白色状態の輝度=1、黒色状態の輝度=0とし、電界を印加して輝度が0.1から0.9まで変化するために要する時間と電界印加を中止して輝度が0.9から0.1まで変化するために要する時間との平均値(応答時間(ms))を算出した。更に、作製したセルの実ギャップを測定し、平均応答時間(ms/μm)を算出し、印加電圧である15Vを単位電界強度(V/μm)に換算後、平均応答時間を割ることによって、泳動粒子の平均移動度(μm2/V・ms)を算出した。
(Average mobility measurement)
First, brightness was measured using a function generator (manufactured by Toyo Technica Co., Ltd.) while applying a rectangular wave electric field (15 V). Here, the luminance in the white state = 1, the luminance in the black state = 0, the time required for the luminance to change from 0.1 to 0.9 by applying the electric field, and the electric field application are stopped, and the luminance is 0. The average value (response time (ms)) with the time required to change from 9 to 0.1 was calculated. Further, by measuring the actual gap of the fabricated cell, calculating the average response time (ms / μm), converting the applied voltage 15V to unit electric field strength (V / μm), and then dividing the average response time, The average mobility (μm 2 / V · ms) of the migrating particles was calculated.
(不良セル数測定)
 不良セル数の測定として、引っ張り試験機(イマダ社製MX2-500N-FA)を用いてスタイラスプッシング試験を行った。先端はスタイラスペン(ソニー社製R=0.7mm)とし、荷重は10N、プッシングスピードは30回/分で表示素子を10回タッピングした後に白表示および黒表示を行い、タッピング部で正常に白黒反転表示をしないセル(格子サイズ200μm)を不良セルとして、その不良セル数を計測した。
(Defect cell count measurement)
As a measurement of the number of defective cells, a stylus pushing test was performed using a tensile tester (MX2-500N-FA manufactured by Imada Co., Ltd.). The tip is a stylus pen (R = 0.7 mm, manufactured by Sony Corporation), the load is 10 N, the pushing speed is 30 times / minute, the display element is tapped 10 times, and then white display and black display are performed. The number of defective cells was measured with a cell that was not reversed (lattice size 200 μm) as a defective cell.
(繊維径測定)
 繊維状構造体の平均繊維径、最大繊維径および最小繊維径は、測定点数は80とし、電界放出型走査電子顕微鏡FFE-SEM(日立ハイテクノロジー社製 S4800)5000倍で繊維状構造体の繊維径を測定した。
(Fiber diameter measurement)
The average fiber diameter, the maximum fiber diameter, and the minimum fiber diameter of the fibrous structure are 80 measurement points, and the fiber of the fibrous structure is 5,000 times the field emission scanning electron microscope FFE-SEM (S4800, manufactured by Hitachi High-Technology Corporation). The diameter was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、補強部を設けなかった実験例9と比較して実験例1~3では、不良セル数が1~2個と非常に少なかった。これは、補強用ポリマーの架橋により、繊維状構造体の剛性が向上したことが要因と考えられる。また、実験例9と比較して平均移動度も高かった。これは、補強用ポリマーの塗布により、繊維径の凹凸差が小さくなり、泳動粒子の移動が滑らかになったためと推定される。 As can be seen from Table 2, in Experimental Examples 1 to 3, the number of defective cells was 1 or 2 which was very small compared to Experimental Example 9 in which no reinforcing portion was provided. This is considered to be because the rigidity of the fibrous structure is improved by the crosslinking of the reinforcing polymer. In addition, the average mobility was higher than that of Experimental Example 9. This is presumably because the unevenness of the fiber diameter was reduced by the application of the reinforcing polymer, and the migration of the migrating particles became smooth.
 これに対し、実験例4は、不良セル数は1個と少なく、補強用ポリマーの架橋の効果がみられたが、黒反射率が高く、コントラストが低下した。また、平均移動度も低かった。これは、補強用ポリマーに含まれる硬化剤の量が多く、塗料粘度が高くなったため静電塗布工程において微細に塗布することができず、その結果、補強用ポリマーが塗布された箇所の繊維径が太くなったことで泳動粒子の移動が妨げられたためと考えられる。実験例5,6は、不良セル数が比較的多かった。これは、実験例5では、硬化剤の添加量が少なかったため、溶液中や雰囲気中の水分で硬化剤のイソシアネート基が反応してウレタン化反応が十分に行われず、補強効果が不十分であったためと考えられる。実験例6では補強用ポリマーの塗布量が少なかったため、十分に繊維状構造体の補強ができなかったことが原因と考えられる。また、実験例7は、不良セル数は少ないものの、白反射率や黒反射率、コントラストや平均移動度が低下した。これは、補強用ポリマーの塗布量が多かったことにより、補強用ポリマーが塗布された繊維部分の繊維径が太くなりすぎたためと考えられる。 On the other hand, in Example 4, the number of defective cells was as small as one and the effect of crosslinking the reinforcing polymer was observed, but the black reflectance was high and the contrast was lowered. The average mobility was also low. This is because the amount of the curing agent contained in the reinforcing polymer is large and the viscosity of the paint is high, so that it cannot be applied finely in the electrostatic coating process. As a result, the fiber diameter of the portion where the reinforcing polymer is applied This is thought to be because the movement of the migrating particles was hindered by the increase in the thickness. In Experimental Examples 5 and 6, the number of defective cells was relatively large. In Experimental Example 5, the amount of the curing agent added was small, so that the isocyanate group of the curing agent reacted with moisture in the solution or in the atmosphere, so that the urethanization reaction was not sufficiently performed, and the reinforcing effect was insufficient. It is thought that it was because of. In Experimental Example 6, since the amount of the reinforcing polymer applied was small, it is considered that the fibrous structure was not sufficiently reinforced. In Experimental Example 7, although the number of defective cells was small, white reflectance, black reflectance, contrast, and average mobility decreased. This is presumably because the fiber diameter of the fiber portion to which the reinforcing polymer was applied became too thick due to the large amount of the reinforcing polymer applied.
 多孔質層の内部、中間層に補強用ポリマーを塗布した実験例8では、不良セル数は2個と非常に少なかった。このことから、補強用ポリマーを繊維状構造体の内部に設けた場合にも、繊維状構造体の剛性が向上し、耐久性が向上することがわかる。 In Experimental Example 8 in which the reinforcing polymer was applied to the inside and intermediate layer of the porous layer, the number of defective cells was very small at two. This shows that the rigidity of the fibrous structure is improved and the durability is improved even when the reinforcing polymer is provided inside the fibrous structure.
 実験例10は、繊維状構造体中に補強用ポリマーを混合したものであるが、繊維状構造体の表面に補強用ポリマーを塗布した実験例1~4および実験例7,8と同様に不良セル数が2個と非常に少なかった。一方、平均移動度は低かった。これは、補強用ポリマーを混合したことにより紡糸溶液の粘度が高くなり、繊維状構造体の繊維径が太くなったためと考えられる。 In Experimental Example 10, a reinforcing polymer was mixed in a fibrous structure, but it was defective as in Experimental Examples 1 to 4 and Experimental Examples 7 and 8 in which the reinforcing polymer was applied to the surface of the fibrous structure. The number of cells was two and very small. On the other hand, the average mobility was low. This is presumably because the viscosity of the spinning solution was increased by mixing the reinforcing polymer, and the fiber diameter of the fibrous structure was increased.
 以上、実施の形態および実施例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。 Although the present technology has been described with reference to the embodiments and examples, the present technology is not limited to the above-described embodiments and the like, and various modifications are possible.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本技術は以下のような構成も取ることができる。
(1)絶縁性液体中に、泳動粒子と、1または2以上の繊維を重畳してなる繊維状構造体および前記繊維状構造体によって保持された非泳動粒子によって形成された多孔質層とを備え、前記繊維状構造体は、前記繊維同士の近接部の少なくとも一部に補強部を有する電気泳動素子。
(2)前記補強部は、補強用ポリマーによって形成されている、前記(1)に記載の電気泳動素子。
(3)前記補強用ポリマーは、結合剤および硬化剤である、前記(2)に記載の電気泳動素子。
(4)前記繊維状構造体の前記近接部の繊維は、前記補強用ポリマーによって被覆されると共に、互いに連結している、前記(2)または(3)のうちのいずれか1つに記載の電気泳動素子。
(5)前記繊維は、前記補強用ポリマーが混合されている、前記(2)乃至(4)のうちのいずれか1つに記載の電気泳動素子。
(6)前記繊維状構造体の平均孔径は0.1μm以上10μm以下である、前記(1)乃至(5)のうちのいずれか1つに記載の電気泳動素子。
(7)前記繊維状構造体の繊維径は50nm以上2000nm以下である、前記(1乃至(6)のうちのいずれか1つ)に記載の電気泳動素子。
(8)前記繊維状構造体は、高分子材料または無機材料により形成されている、前記(1)乃至(7)のうちのいずれか1つに記載の電気泳動素子。
(9)前記繊維状構造体はナノファイバーによって構成されている、前記(1)乃至(8)のうちのいずれか1つに記載の電気泳動素子。
(10)前記繊維状構造体は静電防止法により形成された、前記(1)乃至(9)のうちのいずれか1つに記載の電気泳動素子。
(11)前記非泳動粒子は、前記泳動粒子とは異なる光学的反射特性を有する、前記(1)乃至(10)のうちのいずれか1つに記載の電気泳動素子。
(12)前記泳動粒子および前記非泳動粒子は、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスおよび高分子材料のうちの少なくともいずれか1つにより構成されている、前記(1)乃至(11)のうちのいずれか1つに記載の電気泳動素子。(13)前記非泳動粒子は、酸化チタンを含む、前記(1)乃至(12)のうちのいずれか1つに記載の電気泳動素子。
(14)前記非泳動粒子の光反射率は前記泳動粒子の光反射率よりも高く、前記泳動粒子が暗表示、前記非泳動粒子および前記多孔質層が明表示を行う、前記(1)乃至(13)のうちのいずれか1つに記載の電気泳動素子。
(15)泳動粒子を形成する工程と、非泳動粒子を混合し、多孔質層を構成する繊維状構造体を形成する工程と、前記繊維状構造体に補強部を形成する工程とを含む電気泳動素子の製造方法。
(16)前記補強部は、前記繊維状構造体に補強用ポリマーを静電塗布したのち加熱して形成する、前記(15)に記載の電気泳動素子の製造方法。
(17)前記補強部は、前記非泳動粒子と共に補強用ポリマーを混合して前記繊維状構造体を形成したのち加熱して形成する、前記(15)または前記(16)に記載の電気泳動素子の製造方法。
(18)複数の電気泳動素子を有し、前記電気泳動素子は、絶縁性液体中に、泳動粒子と、1または2以上の繊維を重畳してなる繊維状構造体および前記繊維状構造体によって保持された非泳動粒子によって形成された多孔質層とを備え、前記繊維状構造体は、前記繊維同士の近接部の少なくとも一部に補強部を有する表示装置。
In addition, this technique can also take the following structures.
(1) Electrophoretic particles, a fibrous structure formed by superimposing one or more fibers in an insulating liquid, and a porous layer formed by non-electrophoretic particles held by the fibrous structure The fibrous structure includes an electrophoretic element having a reinforcing portion in at least a part of a proximity portion between the fibers.
(2) The electrophoretic element according to (1), wherein the reinforcing portion is formed of a reinforcing polymer.
(3) The electrophoretic device according to (2), wherein the reinforcing polymer is a binder and a curing agent.
(4) The fiber in the proximity portion of the fibrous structure is covered with the reinforcing polymer and connected to each other, as described in any one of (2) and (3) Electrophoretic element.
(5) The electrophoretic element according to any one of (2) to (4), wherein the fiber is mixed with the reinforcing polymer.
(6) The electrophoretic element according to any one of (1) to (5), wherein an average pore diameter of the fibrous structure is 0.1 μm or more and 10 μm or less.
(7) The electrophoretic element according to (1), wherein the fibrous structure has a fiber diameter of 50 nm to 2000 nm.
(8) The electrophoretic element according to any one of (1) to (7), wherein the fibrous structure is formed of a polymer material or an inorganic material.
(9) The electrophoretic element according to any one of (1) to (8), wherein the fibrous structure is configured by nanofibers.
(10) The electrophoretic element according to any one of (1) to (9), wherein the fibrous structure is formed by an antistatic method.
(11) The electrophoretic element according to any one of (1) to (10), wherein the non-electrophoretic particle has an optical reflection characteristic different from that of the electrophoretic particle.
(12) The migrating particles and the non-migrating particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material. The electrophoretic device according to any one of (1) to (11). (13) The electrophoretic element according to any one of (1) to (12), wherein the non-electrophoretic particles include titanium oxide.
(14) The light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the porous layer perform light display. (13) The electrophoretic device according to any one of (13).
(15) Electricity including a step of forming electrophoretic particles, a step of mixing non-electrophoretic particles to form a fibrous structure constituting a porous layer, and a step of forming a reinforcing portion in the fibrous structure. Manufacturing method of electrophoretic element.
(16) The method for manufacturing an electrophoretic element according to (15), wherein the reinforcing portion is formed by electrostatically applying a reinforcing polymer to the fibrous structure and then heating.
(17) The electrophoretic element according to (15) or (16), wherein the reinforcing portion is formed by mixing a reinforcing polymer together with the non-electrophoretic particles to form the fibrous structure and then heating. Manufacturing method.
(18) It has a plurality of electrophoretic elements, and the electrophoretic element includes a fibrous structure formed by superimposing electrophoretic particles and one or more fibers in an insulating liquid, and the fibrous structure. And a porous layer formed of held non-electrophoretic particles, wherein the fibrous structure has a reinforcing portion in at least a part of a proximity portion between the fibers.
 本出願は、日本国特許庁において2015年2月13日に出願された日本特許出願番号2015-26730号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-26730 filed on February 13, 2015 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (18)

  1.  絶縁性液体中に、
     泳動粒子と、
     1または2以上の繊維を重畳してなる繊維状構造体および前記繊維状構造体によって保持された非泳動粒子によって形成された多孔質層とを備え、
     前記繊維状構造体は、前記繊維同士の近接部の少なくとも一部に補強部を有する
     電気泳動素子。
    In insulating liquid,
    Electrophoretic particles,
    A fibrous structure formed by superimposing one or more fibers and a porous layer formed by non-electrophoretic particles held by the fibrous structure;
    The fibrous structure is an electrophoretic element having a reinforcing portion in at least a part of a proximity portion between the fibers.
  2.  前記補強部は、補強用ポリマーによって形成されている、請求項1に記載の電気泳動素子。 2. The electrophoretic element according to claim 1, wherein the reinforcing portion is formed of a reinforcing polymer.
  3.  前記補強用ポリマーは、結合剤および硬化剤である、請求項2に記載の電気泳動素子。 The electrophoretic element according to claim 2, wherein the reinforcing polymer is a binder and a curing agent.
  4.  前記繊維状構造体の前記近接部の繊維は、前記補強用ポリマーによって被覆されると共に、互いに連結している、請求項2に記載の電気泳動素子。 3. The electrophoretic element according to claim 2, wherein the fibers in the proximity portion of the fibrous structure are covered with the reinforcing polymer and connected to each other.
  5.  前記繊維は、前記補強用ポリマーが混合されている、請求項2に記載の電気泳動素子。 The electrophoretic element according to claim 2, wherein the fiber is mixed with the reinforcing polymer.
  6.  前記繊維状構造体の平均孔径は0.1μm以上10μm以下である、請求項1に記載の電気泳動素子。 The electrophoretic element according to claim 1, wherein the fibrous structure has an average pore diameter of 0.1 μm or more and 10 μm or less.
  7.  前記繊維状構造体の繊維径は50nm以上2000nm以下である、請求項1に記載の電気泳動素子。 The electrophoretic element according to claim 1, wherein the fibrous structure has a fiber diameter of 50 nm or more and 2000 nm or less.
  8.  前記繊維状構造体は、高分子材料または無機材料により形成されている、請求項1に記載の電気泳動素子。 2. The electrophoretic element according to claim 1, wherein the fibrous structure is formed of a polymer material or an inorganic material.
  9.  前記繊維状構造体はナノファイバーによって構成されている、請求項1に記載の電気泳動素子。 The electrophoretic element according to claim 1, wherein the fibrous structure is composed of nanofibers.
  10.  前記繊維状構造体は静電防止法により形成された、請求項1に記載の電気泳動素子。 The electrophoretic element according to claim 1, wherein the fibrous structure is formed by an antistatic method.
  11.  前記非泳動粒子は、前記泳動粒子とは異なる光学的反射特性を有する、請求項1に記載の電気泳動素子。 The electrophoretic element according to claim 1, wherein the non-electrophoretic particles have optical reflection characteristics different from those of the electrophoretic particles.
  12.  前記泳動粒子および前記非泳動粒子は、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスおよび高分子材料のうちの少なくともいずれか1つにより構成されている、請求項1に記載の電気泳動素子。 The electrophoretic particles and the non-electrophoretic particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material. The electrophoretic element according to 1.
  13.  前記非泳動粒子は、酸化チタンを含む、請求項1に記載の電気泳動素子。 The electrophoretic element according to claim 1, wherein the non-electrophoretic particles include titanium oxide.
  14.  前記非泳動粒子の光反射率は前記泳動粒子の光反射率よりも高く、前記泳動粒子が暗表示、前記非泳動粒子および前記多孔質層が明表示を行う、請求項1に記載の電気泳動素子。 2. The electrophoresis according to claim 1, wherein the light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the porous layer perform light display. element.
  15.  泳動粒子を形成することと、
     非泳動粒子を混合し、多孔質層を構成する繊維状構造体を形成することと、
     前記繊維状構造体に補強部を形成することと
     を含む電気泳動素子の製造方法。
    Forming electrophoretic particles;
    Mixing non-electrophoretic particles to form a fibrous structure constituting the porous layer;
    Forming a reinforcing portion on the fibrous structure.
  16.  前記補強部は、前記繊維状構造体に補強用ポリマーを静電塗布したのち加熱して形成する、請求項15に記載の電気泳動素子の製造方法。 The method for producing an electrophoretic element according to claim 15, wherein the reinforcing portion is formed by electrostatically applying a reinforcing polymer to the fibrous structure and then heating.
  17.  前記補強部は、前記非泳動粒子と共に補強用ポリマーを混合して前記繊維状構造体を形成したのち加熱して形成する、請求項15に記載の電気泳動素子の製造方法。 The method of manufacturing an electrophoretic element according to claim 15, wherein the reinforcing portion is formed by mixing a non-electrophoretic particle together with a reinforcing polymer to form the fibrous structure and then heating.
  18.  複数の電気泳動素子を有し、
     前記電気泳動素子は、
     絶縁性液体中に、
     泳動粒子と、
     1または2以上の繊維を重畳してなる繊維状構造体および前記繊維状構造体によって保持された非泳動粒子によって形成された多孔質層とを備え、
     前記繊維状構造体は、前記繊維同士の近接部の少なくとも一部に補強部を有する
     表示装置。
    Having a plurality of electrophoretic elements,
    The electrophoretic element is:
    In insulating liquid,
    Electrophoretic particles,
    A fibrous structure formed by superimposing one or more fibers and a porous layer formed by non-electrophoretic particles held by the fibrous structure;
    The said fibrous structure has a reinforcement part in at least one part of the proximity | contact part of the said fibers. Display apparatus.
PCT/JP2016/052917 2015-02-13 2016-02-01 Electrophoretic element and method for manufacturing same, and display device WO2016129435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-026730 2015-02-13
JP2015026730A JP2016148814A (en) 2015-02-13 2015-02-13 Electrophoretic element, manufacturing method of the same, and display device

Publications (1)

Publication Number Publication Date
WO2016129435A1 true WO2016129435A1 (en) 2016-08-18

Family

ID=56614736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052917 WO2016129435A1 (en) 2015-02-13 2016-02-01 Electrophoretic element and method for manufacturing same, and display device

Country Status (2)

Country Link
JP (1) JP2016148814A (en)
WO (1) WO2016129435A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254019A (en) * 2012-06-05 2013-12-19 Sony Corp Electrophoretic element, method of manufacturing the same, and display unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254019A (en) * 2012-06-05 2013-12-19 Sony Corp Electrophoretic element, method of manufacturing the same, and display unit

Also Published As

Publication number Publication date
JP2016148814A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5741829B2 (en) Electrophoretic element, display device and electronic device
JP5609700B2 (en) Electrophoretic element and display device
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP5880295B2 (en) Method for manufacturing electrophoretic element
JP6176252B2 (en) Electrophoretic element, display device and electronic apparatus
JP5942394B2 (en) Electrophoretic element and display device
JP6127924B2 (en) Display device and electronic device
WO2017159075A1 (en) Reflective display device and electronic device
JP5966885B2 (en) Electrophoretic element and display device
JP5942776B2 (en) Electrophoretic element and display device
WO2016129435A1 (en) Electrophoretic element and method for manufacturing same, and display device
US9869920B2 (en) Display unit and electronic apparatus
JP5817464B2 (en) Electrophoretic element and display device
JP2015191037A (en) display device and electronic equipment
WO2016114011A1 (en) Display device and electronic device
WO2017141608A1 (en) Display device, display device manufacturing method, and electronic apparatus
WO2015151409A1 (en) Display unit and electronic apparatus
JP2012173602A (en) Electrophoretic element and display device
WO2017073169A1 (en) Electrophoresis element, display device, and electronic equipment
WO2015141303A1 (en) Display device, method for manufacturing display device and electronic device
WO2016194504A1 (en) Display device and electronic component
WO2017086140A1 (en) Electrophoretic particles and display device
JP2017003685A (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749079

Country of ref document: EP

Kind code of ref document: A1