WO2016194504A1 - Display device and electronic component - Google Patents

Display device and electronic component Download PDF

Info

Publication number
WO2016194504A1
WO2016194504A1 PCT/JP2016/062497 JP2016062497W WO2016194504A1 WO 2016194504 A1 WO2016194504 A1 WO 2016194504A1 JP 2016062497 W JP2016062497 W JP 2016062497W WO 2016194504 A1 WO2016194504 A1 WO 2016194504A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
display device
layer
particles
polymer material
Prior art date
Application number
PCT/JP2016/062497
Other languages
French (fr)
Japanese (ja)
Inventor
万吉 吉原
浅岡 聡子
由威 石井
伊藤 大介
知明 鈴木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016194504A1 publication Critical patent/WO2016194504A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Definitions

  • the present technology relates to a display device including an electrophoretic element and an electronic apparatus including the display device.
  • a display various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications.
  • a reflective display is advantageous for reading applications.
  • bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
  • Patent Document 1 discloses a display device in which charged particles are dispersed in an insulating liquid and a porous layer is disposed. In this display device, charged particles move through the pores of the porous layer according to the electric field.
  • the porous layer includes, for example, a fibrous structure made of a polymer material, and non-electrophoretic particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles.
  • a partition that partitions a plurality of cells between opposing substrates is provided to prevent biased charged particles and the like, thereby suppressing display unevenness.
  • the porous layer is easily sandwiched between the partition wall and the substrate in manufacturing, and when the porous layer is white, the partition wall is always displayed in white and the contrast is increased. There was a problem that decreased. Further, even if the porous layer is not sandwiched, there is a problem that the contrast is lowered due to reflection of the pixel electrode.
  • Patent Document 2 discloses an image display device in which a light shielding film is provided on the entire surface of the lower electrode, for example.
  • white electrophoretic particles may still be caught between the partition walls and the substrate, and it is estimated that it is difficult to sufficiently improve the contrast.
  • Patent Document 3 discloses an information display panel in which an insulating colored layer is provided between a substrate and a partition, but the adhesion between the colored layer and the substrate is not sufficiently ensured. There was a problem that the mechanical reliability was low.
  • a display device is formed of a fibrous structure while being provided between a first substrate, a second substrate disposed opposite to the first substrate, and the first substrate and the second substrate.
  • a display element including migrating particles that move between the porous layer and the gap between the porous layers, a partition extending in the stacking direction of the first substrate and the second substrate, and at least one of the first substrate and the second substrate of the partition
  • a reflection suppression layer provided on an end surface facing one side, the reflection suppression layer including a polymer material and colored particles, and the volume fraction of the colored particles is 5% with respect to the polymer material. It is 40% or less.
  • An electronic apparatus includes the display device according to the embodiment of the present technology.
  • the partition wall extending in the stacking direction of the first substrate and the second substrate arranged to face each other is provided on at least one of the first substrate and the second substrate.
  • a reflection suppressing layer was provided on the facing end surface.
  • the reflection suppressing layer includes a polymer material and colored particles, and the volume fraction of the colored particles is 5% or more and 40% or less with respect to the polymer material, thereby suppressing reflection of the partition wall portion.
  • the adhesion between the reflection suppressing layer and the substrate is maintained.
  • the display device of one embodiment of the present technology at least the first substrate and the second substrate of the partition walls extending in the stacking direction of the first substrate and the second substrate arranged to face each other.
  • An end surface facing one side is provided with a reflection suppressing layer including a polymer material and colored particles, and the volume fraction of the colored particles is 5% or more and 40% or less with respect to the polymer material.
  • FIG. 2 is a schematic plan view illustrating a configuration of an electrophoretic element used in the display device illustrated in FIG. 1.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • 14 is a perspective view illustrating an appearance of application example 1.
  • FIG. 4B is a perspective view illustrating another example of the electronic book illustrated in FIG. 4A.
  • 12 is a perspective view illustrating an appearance of application example 2.
  • FIG. It is a characteristic view showing the relationship between the presence or absence of a black layer and the composition and adhesion of the black layer. It is a characteristic view showing the relationship between the composition of a black layer and the number of defective cells.
  • Embodiment (display device provided with black layer on bottom of partition wall) 1-1. Configuration of display device 1-2. Manufacturing method 1-3. Preferred display method 1-4. Action / Effect Application example (electronic equipment) 3. Example
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure.
  • the display device 1 is a display device that displays an image by generating contrast using an electrophoretic phenomenon, and is applied to various electronic devices such as an electronic paper display.
  • the display device 1 includes, for example, an electrophoretic element 30 as a display layer between a driving substrate 10 and a counter substrate 20 that are arranged to face each other with a partition wall 40 interposed therebetween.
  • at least one end face of the partition wall 40 extending in the stacking direction of the drive substrate 10 and the counter substrate 20 has a configuration in which, for example, a black layer 42 exhibiting black is provided as a reflection suppressing layer.
  • a TFT Thin Film Transistor
  • a protective layer 13 a pixel electrode 14
  • the TFT 12 and the pixel electrode 14 are arranged in a matrix or a segment, for example, depending on the pixel arrangement.
  • the support member 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like.
  • the inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like. Etc. are included.
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel.
  • the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
  • the support member 11 may be light transmissive or non-light transmissive.
  • the support member 11 may be a rigid substrate such as a wafer, or may be a flexible thin glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material.
  • the TFT 12 is a switching element for selecting a pixel.
  • the TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer.
  • the protective layer 13 is made of an insulating resin material such as polyimide, for example.
  • the pixel electrode 14 is formed of a metal material such as gold (Au), silver (Ag), or copper (Cu).
  • the pixel electrode 14 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13.
  • an adhesive layer 15 and a seal layer (sealing layer) 16 are provided on the pixel electrode 14, for example.
  • the adhesive layer 15 is for adhering the drive substrate 10 and the seal layer 16 and is made of, for example, an acrylic resin or a urethane resin.
  • a rubber-based adhesive sheet or the like may be used.
  • the sealing layer 16 is for sealing an insulating liquid (an insulating liquid 31 to be described later) in the electrophoretic element 30 and for preventing moisture and the like from entering the electrophoretic element 30. It is composed of a photocurable acrylic resin, urethane resin, rubber adhesive sheet, or the like.
  • the counter substrate 20 includes, for example, a support member 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support member 21 (a surface facing the drive substrate 10).
  • the support member 21 is made of the same material as the support member 11 except that it is light transmissive. This is because the image is displayed on the upper surface (display surface S1) of the counter substrate 20, and thus the support member 21 is required to be light transmissive.
  • the thickness of the support member 21 is, for example, 1 ⁇ m to 250 ⁇ m.
  • the counter electrode 22 includes one or more of conductive materials (transparent conductive materials) having translucency.
  • the conductive material include light transmissive conductive materials such as indium oxide-tin oxide (ITO), antimony-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • Transparent electrode material can be used.
  • the counter electrode 22 is formed, for example, on one surface of the support member 21, for example, the entire displayable region, like the pixel electrode 14. For example, the counter electrode 22 is divided and formed similarly to the pixel electrode 14. You may make it arrange
  • the light transmittance (transmittance) of the counter electrode 22 is preferably as high as possible. 80% or more.
  • the electric resistance of the counter electrode 22 is preferably as low as possible, for example, 100 ⁇ / ⁇ (square) or less.
  • an electrophoretic element 30 that is voltage-controlled is provided as a display element between the driving substrate 10 and the counter substrate 20.
  • FIG. 2 illustrates a planar configuration of the display layer of the display device 1, that is, a planar configuration of the electrophoretic element 30.
  • the electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having a plurality of pores 333 in an insulating liquid 31.
  • the insulating liquid 31 is filled in the space between the driving substrate 10 and the counter substrate 20, and the porous layer 33 is supported by the partition 40, for example.
  • the space filled with the insulating liquid 31 is divided into, for example, a retreat area R1 closer to the pixel electrode 14 and a display area R2 closer to the counter electrode 22 with the porous layer 33 as a boundary. (See FIGS. 3A and 3B). Note that FIG. 2 schematically shows the configuration of the electrophoretic element 30 and may differ from the actual size and shape.
  • the insulating liquid 31 is, for example, one type or two or more types of non-aqueous solvents such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 be as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
  • the insulating liquid 31 may contain various materials as necessary. This material is, for example, a colorant, a charge control agent, a dispersion stabilizer, a viscosity modifier, a surfactant or a resin.
  • the migrating particles 32 are one or more electrically movable charged particles dispersed in the insulating liquid 31, and pass through the pores 333 of the porous layer 33 according to the electric field, so that the pixel electrode 14 and the counter electrode Move between the two.
  • the migrating particles 32 also have arbitrary optical reflection characteristics (light reflectivity).
  • the light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast (CR) is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • the migrating particles 32 are, for example, one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). .
  • the migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
  • the specific forming material of the migrating particles 32 is selected according to the role of the migrating particles 32 in order to cause contrast, for example.
  • the material when the bright display (for example, white display) is performed by the migrating particles 32 is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate. Titanium oxide is preferred. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • the material when dark display (for example, black display) is performed by the migrating particles 32 is, for example, a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may be aggregated in some cases.
  • the average particle diameter of the migrating particles 32 only needs to be smaller than the average pore diameter of the porous layer 33, and is preferably in the range of 0.1 ⁇ m to 1 ⁇ m, for example.
  • the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 over a long period of time and are not easily adsorbed by the porous layer 33.
  • a dispersant or a charge adjusting agent
  • the electrophoretic particles 32 may be subjected to a surface treatment, or both may be used in combination.
  • the dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK® series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
  • the surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
  • the surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32.
  • the type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32.
  • carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced.
  • the graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • the dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • AIBN azobisisobutyronitrile
  • a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
  • the porous layer 33 is, for example, a three-dimensional solid structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG.
  • the porous layer 33 has a plurality of gaps (pores 333) through which the migrating particles 32 pass in places where the fibrous structure 331 does not exist.
  • the fibrous structure 331 includes one or more non-migrating particles 332, and the non-migrating particles 332 are held by the fibrous structure 331.
  • the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. However, both may be mixed.
  • each fibrous structure 331 preferably holds one or more non-migrating particles 332.
  • FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.
  • the porous layer 33 is a three-dimensional structure
  • the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 33 increases and the high light
  • the porous layer 33 can be thin in order to obtain the reflectance.
  • the contrast increases and the energy required to move the migrating particles 32 decreases.
  • the migrating particles 32 can easily pass through the pores 333. As a result, the time required to move the migrating particles 32 is shortened, and the energy required to move the migrating particles 32 is also reduced.
  • the reason why the non-migrating particles 332 are included in the fibrous structure 331 is that the light reflectance of the porous layer 33 is higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
  • the shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous material having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • the average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 333 increases. For this reason, it is preferable that the average fiber diameter of the fibrous structure 331 is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
  • the pore 333 is formed by overlapping a plurality of fibrous structures 331 or entwining one fibrous structure 331.
  • the average pore diameter of the pores 333 is not particularly limited, but is preferably as large as possible. This is because the migrating particles 32 easily pass through the pores 333. Therefore, the average pore diameter of the pores 333 is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the thickness of the porous layer 33 is not particularly limited, but is, for example, 5 ⁇ m to 100 ⁇ m. This is because the shielding property of the porous layer 33 is enhanced and the migrating particles 32 easily pass through the pores 333.
  • the fibrous structure 33 for example, one or two or more of polymer materials or inorganic materials are included, and other materials may be included.
  • the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
  • the fibrous structure 331 is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is likely to be diffusely reflected, the light reflectance of the porous layer 33 is further increased, and the volume ratio of the pores 333 to the unit volume of the porous layer 33 is increased. This is because the migrating particles 32 can easily pass through the pores 333. Thereby, the contrast becomes higher and the energy required to move the migrating particles 32 becomes lower.
  • Nanofiber is a fibrous substance having a fiber diameter of 0.001 ⁇ m to 0.1 ⁇ m and a length that is 100 times or more of the fiber diameter.
  • the fibrous structure 331 that is a nanofiber is preferably formed by an electrospinning method using a polymer material. This is because the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
  • This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32.
  • the light reflectance of the fibrous structure 331 is not particularly limited, but is preferably set so that at least the porous layer 33 can shield the migrating particles 32 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • Non-electrophoretic particles 332 are particles that are fixed to the fibrous structure 331 and do not migrate electrically. As long as the non-migrating particles 332 are held by the fibrous structure 331, the non-migrating particles 332 may be partially exposed from the fibrous structure 331 or embedded therein.
  • the specific forming material of the non-migrating particles 332 is selected according to the role played by the non-migrating particles 332 in order to generate contrast, for example.
  • the non-migrating particles 332 that have a light reflectance different from that of the migrating particles 32 are used.
  • the non-electrophoretic particle 332 displays brightly
  • the non-electrophoretic particle 332 displays darkly the electrophoretic particle 32 displays darkly.
  • the non-migrating particles 332 are preferably metal oxides and more preferably titanium oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity.
  • the constituent materials of the non-migrating particles 332 and the migrating particles 32 may be the same as long as contrast can be generated.
  • porous layer 33 may be in contact with either the pixel electrode 14 or the counter electrode 22, and a retreat area R1 and a display area R2, which will be described later, may not be clearly separated (see FIG. 3A, see FIG. 3B).
  • the migrating particles 32 move toward the pixel electrode 14 or the counter electrode 22 according to the electric field.
  • the partition 40 extends in the stacking direction of the drive substrate 10 and the counter substrate 20, and the partition 40 is adjusted to a predetermined distance between the drive substrate 10 and the counter substrate 20.
  • the partition 40 is provided, for example, in contact with the drive substrate 10 (specifically, the seal layer 16) and the counter substrate 20 (specifically, the counter electrode 22). Is divided into a plurality of cells 41.
  • the electrophoretic element 30 the electrophoretic particles 32 are accommodated in the respective cells 41 by the partition walls 40, and movement of the electrophoretic particles 32 between the cells 41 is suppressed. Thereby, the occurrence of display unevenness due to diffusion, convection, aggregation and the like of the migrating particles 32 is suppressed.
  • the partition 40 is made of, for example, an insulating polymer material.
  • the structure of the partition 40 is not specifically limited, For example, you may use the sealing material etc. in which microparticles
  • the height (Z direction) of the partition walls 40 is preferably aligned with each other.
  • the distance (gap) between the seal layer 16 and the counter electrode 22 is kept uniform over the entire surface, and the electric field strength can be kept constant. Thereby, the unevenness of response speed is eliminated.
  • the height of the partition 40 is, for example, 1 ⁇ m to 100 ⁇ m, and is preferably as thin as possible. Thereby, power consumption can be suppressed.
  • the shape of the partition wall 40 is preferably, for example, a so-called reverse taper shape in which the width (X direction) decreases from the counter substrate 20 toward the drive substrate 10 as shown in FIG.
  • the largest width W1 (the width of the surface facing the counter substrate 20) is preferably, for example, 5 ⁇ m to 50 ⁇ m, and the smallest width W2 (the width of the surface facing the driving substrate 10). Is preferably 1 ⁇ m to 30 ⁇ m, for example.
  • the arrangement shape of the partition walls 40 in the plane between the drive substrate 10 and the counter substrate 20 is not particularly limited.
  • the shape of the cell 41 is, for example, a rectangular shape or a regular hexagon (honeycomb structure). It is provided as follows.
  • a black layer 42 is provided as a reflection suppressing layer on the end face of the partition wall 40 facing the drive substrate 10 and the counter substrate 20.
  • the black layer 42 may be formed on either the end face of the partition wall 40 facing the driving substrate 10 or the counter substrate 20, but the surface of the partition wall 40 facing the driving substrate 10 as shown in FIG. Preferably, it is provided on the end surface to be driven, that is, on the surface facing the drive substrate 10.
  • the black layer 42 includes, for example, a polymer material and colored particles.
  • the polymer material preferably has a softening point lower than that of the porous layer 33 (specifically, the fibrous structure 332).
  • nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, poly Examples include methyl methacrylate, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene resin, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexafluoropropylene, cellulose acetate, collagen, gelatin, chitosan, and copolymers thereof.
  • the colored particles include organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, and the like mentioned as materials constituting the migrating particles 32.
  • Specific examples include black titania (titanium oxide), carbon black, copper oxide, and aniline black.
  • the ratio of the polymer material and the colored particles constituting the black layer 42 is defined by, for example, the volume fraction.
  • the volume fraction of the colored particles contained in the polymer material is preferably 5% or more and 40% or less, and more preferably 15% or more and 30% or less.
  • the adhesion and sealing properties between the black layer 42 and the drive substrate 10 specifically, the seal layer 16
  • the colored particles contained in the polymer material are less than 5%, the reflection of the pixel electrode 14 and the residue of the porous layer 33 sandwiched between the black layer 42 and the driving substrate 10 at the time of manufacture are sufficiently obtained. It becomes difficult to shield.
  • the sealing material 43 is for sealing the electrophoretic element 30 between the driving substrate 10 and the counter substrate 20, and is made of, for example, an insulating material such as a polymer material like the partition 40. ing. By providing the sealing material 43, it is possible to suppress intrusion of moisture or the like into the electrophoretic element 30 from the outside.
  • a sealing material containing fine particles may be used as the sealing material 43.
  • the thickness of the sealing material 43 is substantially the same as the height of the partition wall 40, that is, the gap.
  • the sealing material 43 may protrude from the periphery of the drive substrate 10 or the counter substrate 20.
  • the display device 1 of the present embodiment can be formed by, for example, the following method.
  • the counter electrode 22 is provided on one surface of the support member 21 by using an existing method such as various film forming methods, and the counter substrate 20 is formed.
  • the partition 40 is formed on the counter electrode 22.
  • the partition 40 can be formed by, for example, the following imprint method. First, a solution containing a constituent material (for example, a photosensitive resin material) of the partition 40 is applied onto the counter electrode 22. Next, a mold having a recess on the coated surface is pressed and exposed to light, and then the mold is removed. Thereby, the columnar partition 40 is formed. At this time, the partition 40 preferably has a so-called reverse taper in which the width gradually narrows from the counter substrate 20 side to the drive substrate 10 side. Thereby, a type
  • a black layer 42 is formed on the end face of the partition wall 40.
  • the black layer 42 can be formed, for example, by thermally transferring a black sheet made of acrylic resin and black titania to the partition wall 40.
  • the fibrous structure 331 is disposed between the adjacent partition walls 40, that is, in the cell 41.
  • polyacrylonitrile as a fibrous structure 331 is dispersed or dissolved in N, N′-dimethylformamide, and, for example, titanium oxide is added as non-electrophoretic particles 332 and sufficiently stirred to obtain a polymer solution (spinning). Solution).
  • the spinning solution is used to spin on another substrate by, for example, an electrostatic spinning method.
  • the fibrous structure 331 is formed by a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like instead of the electrostatic spinning method. May be.
  • the fibrous structure 331 is divided into an appropriate size and placed in each cell 41. Specifically, the fibrous structure 331 is rubbed off by the partition wall 40 (specifically, the black layer 42) by pressing the fibrous structure 331 from above (the direction opposite to the support member 21). The cut fibrous structure 331 is accommodated between the partition walls 40. In this manner, the porous layer 33 in which the non-electrophoretic particles 332 are held in the fibrous structure 331 can be formed for each cell 41.
  • the display device 1 is completed through the above steps.
  • the black layer 42 is formed on the partition wall 40 and then the seal layer 16 is bonded.
  • the present invention is not limited to this.
  • the black layer 42 is disposed on the seal layer 16, and then the partition wall 40. You may make it stick together. If the black layer 42 can be arrange
  • the migrating particles 32 are arranged in the retreat area R1 (FIG. 3A). In this case, since the migrating particles 32 are shielded by the porous layer 33 in all the pixels, no contrast is generated when the electrophoretic element 30 is viewed from the counter substrate 20 side (an image is not displayed). Is in a state.
  • the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to the display area R2 via (pore 333).
  • a contrast is generated. become. Thereby, an image is displayed.
  • the electrophoretic element 30 having a high response speed can display a high-quality image suitable for colorization and moving image display, for example.
  • a partition that partitions a display area in which the electrophoretic element is arranged into a plurality of cells is provided.
  • a white porous layer is sandwiched between the partition wall and the substrate during manufacturing, or the partition wall portion always displays white as viewed from the display surface due to reflection of the pixel electrode. There is a problem that the contrast is lowered.
  • a resin film in which black particles are dispersed or a metal film in which a metal such as chromium (Cr) is blackened is provided on a part of the substrate (for example, on the pixel electrode) or the entire surface. It is possible. However, when these resin films and metal films are partially patterned, position shift is likely to occur due to the pressure applied during the manufacturing process and the expansion and contraction of the substrate due to heat, and the contrast is reduced due to reflection of the electrode surface. There is playfulity.
  • the resistance of the resin film or metal film is equal to or higher than the cell resistance (resistance in the particle driving area)
  • a voltage is applied to the resin film or metal film. Distributed. For this reason, the voltage applied to the region where the migrating particles are driven becomes small, which may not lead to an improvement in contrast.
  • the resistance of the resin film or the metal film is too small, fine display becomes difficult due to the influence of the lateral electric field if the pixel electrode is patterned.
  • white particles and fibers may be sandwiched between the partition walls and the substrate when the upper and lower substrates are bonded together, so it is difficult to say that this is an effective means for eliminating the decrease in contrast. Note that, when particles or fibers are sandwiched between the partition wall and the substrate, the particles move from the gap, which causes problems such as display unevenness and lowering of the adhesion between the upper and lower substrates.
  • At least one end surface of the partition 40 extending in the stacking direction of the drive substrate 10 and the counter substrate 20 (here, the end surface in contact with the drive substrate 10) has a high height.
  • a black layer 42 containing molecular material and colored particles was provided.
  • the black layer 42 has a configuration in which the volume fraction of the colored particles with respect to the polymer material is 5% or more and 40% or less. As a result, the adhesion between the drive substrate 10 and the partition 40 (specifically, the black layer 42) is maintained while suppressing reflection of the partition 40 portion.
  • At least one end surface of partition 40 (here, the end surface in contact with drive substrate 10) includes the polymer material and the colored particles, and the polymer material is colored.
  • the black layer 42 having a configuration in which the volume fraction of particles is 5% or more and 40% or less is provided.
  • the adhesion between the drive substrate 10 and the partition 40 (specifically, the black layer 42) is maintained while suppressing reflection of the partition 40 when viewed from the display surface.
  • the partition 40 is separated from the drive substrate 10.
  • the reflected light from the sandwiched porous layer 33 and the pixel electrode 14 is shielded. Therefore, the contrast of the display device 1 can be improved. Moreover, the adhesiveness of the black layer 42 and the drive board
  • substrate 10 is hold
  • the display device 1 of the present technology can be applied to electronic devices for various uses, and the type of the electronic device is not particularly limited.
  • the display device 1 can be mounted on, for example, the following electronic devices.
  • the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as shown in FIG. 4A or may be provided on the upper surface as shown in FIG. 4B.
  • the display unit 110 is configured by the display device 1.
  • the display device 1 may be mounted on a PDA (Personal Digital Assistant) having the same configuration as the electronic book shown in FIGS. 4A and 4B.
  • PDA Personal Digital Assistant
  • FIG. 5 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 210 and a housing 220, and the touch panel unit 210 is configured by the display device 1.
  • an electrophoretic element having black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) is provided, and a black layer is formed on the bottom surface of the partition wall in contact with the driving substrate.
  • the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation.
  • the precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a dispersing group were obtained.
  • This washing operation was repeated three times, and an insulating liquid was added to the resulting precipitate so that the pigment component was 10% by weight. Subsequently, to this insulating liquid 76.7 g, 3.34 g of OLOA 1200 and 20 g of the electrophoretic particle dispersion were added and stirred to obtain an insulating liquid containing an additive and a black pigment.
  • the porous layer was formed as follows. First, titanium oxide having an average primary particle size of 450 nm is prepared as non-electrophoretic particles, mixed to 4 wt% in tetrahydrofuran in which a carboxylic acid anionic surfactant is dissolved, and 1 using a paint shaker. Stir for hours. Then, it is centrifuged (5000 rpm for 10 minutes), and the solvent is removed by decantation. After washing 3 times, it was dried at 70 ° C. overnight. As a result, titanium oxide coated with a carboxylic acid anionic surfactant was obtained.
  • polymethyl methacrylate was prepared as a constituent material of the fibrous structure.
  • 13 g of this polymethyl methacrylate was dissolved in 84 g of N, N′-dimethylformamide, 0.5 g of titanium oxide having a primary particle size of 450 nm as non-electrophoretic particles was added to 6.5 g of this solution and mixed with a bead mill.
  • a spinning solution for forming a fibrous structure was obtained.
  • This spinning solution was put into a syringe, and spinning with a basis weight of 1.2 mg / cm 2 was performed on the substrate using an electrospinning device (NANON manufactured by MEC Co., Ltd.).
  • a photo-curing resin photosensitive resin Photo Rec A-400 manufactured by Sekisui Chemical Co., Ltd.
  • the sealing material was provided along the outer periphery of the partition wall having a height of 30 ⁇ m, a width of 10 ⁇ m, and a pitch of 200 ⁇ m and a PET film.
  • thermoplastic polyurethane A containing carbon black (colored particles) on the partition wall (specifically, the end surface in contact with the driving substrate) (softening point: 102 ° C., carbon black contained in the thermoplastic polyurethane A)
  • the black layer was formed by thermally transferring a 10 ⁇ m thick black sheet having a volume fraction of 15%). Then, after dividing
  • thermoplastic polyurethane A film was formed as a sealing layer
  • electrophoretic element provided on the PET film was sealed.
  • a film substrate (driving substrate) provided with TFTs and pixel electrodes was bonded through an adhesive layer to produce a display device (Experimental Example 1).
  • thermoplastic polyurethane B softening point: 150 ° C. or higher
  • Experimental Example 2 volume fraction of carbon black with respect to thermoplastic polyurethane B 15%
  • thermoplasticity Experimental examples 2 and 3 using polyurethane C softening point; 52 ° C., experimental example 3; volume fraction of carbon black with respect to thermoplastic polyurethane C 15%
  • Experimental Example 4 in which a black layer was not formed was produced. Using these Experimental Examples 1 to 4, the surface adhesion between the counter substrate (specifically, the black layer) and the driving substrate was compared.
  • FIG. 6 is a comparison of the surface adhesion of Experimental Examples 1 to 4. From FIG. 6, it was found that the adhesion strength between the counter substrate and the driving substrate is improved by providing the black layer. Further, since the display device of Experimental Example 1 had higher surface adhesion than Experimental Example 2, that is, the polymer material used as the black layer was the same polymer material as that constituting the seal layer. It can be said that it is preferable to use it.
  • FIG. 7 compares the number of defective cells generated after pressing 10 times in Experimental Example 1 and Experimental Example 3. As can be seen from FIG. 7, in Experimental Example 1, defective cells were generated after pressing 10 times, whereas in Experimental Example 3, no defective cells were generated.
  • thermoplastic polyurethane C has a softening point lower than that of thermoplastic polyurethane A and is easy to flow, so that the contact area with the sealing layer is increased and the movement of particles between cells can be further prevented. Is done. Moreover, even if it has a high softening point such as thermoplastic polyurethane A, it is considered that the same effect can be obtained by sealing at a high temperature, but the softening point of polymethyl methacrylate constituting the porous layer Since the temperature is 80 ° C., application of a temperature higher than that is not preferred because the structure of the porous layer may be destroyed. That is, the polymer material constituting the black layer is the same material as the material constituting the seal layer or a material close thereto, and the porous layer (specifically, fibrous structure). A lower one than the softening point can be said to be preferable.
  • thermoplastic polyurethane C is used as the polymer material constituting the black layer
  • carbon black is used as the colored particles
  • the volume fraction of carbon black relative to thermoplastic polyurethane C is 0% (Experimental Example 5-1), 3% (Experimental example 5-2) 5% (Experimental example 5-3), 8% (Experimental example 5-4), 16% (Experimental example 5-5), 25 percent (Experimental example 5-6), 30% (Experimental Example 5-7), 40% (Experimental Example 5-8), 45% (Experimental Example 5-9), and 50% (Experimental Example 5-10) were produced as Experimental Examples 5-1 to 5-10.
  • the possibility of contrast (CR) and adhesion strength was examined. The results are shown in Table 1.
  • the judgment of the possibility of contrast was set as (circle) when the contrast was 10 or more, and x when it was less than 10.
  • the determination of whether or not the adhesion strength was possible was evaluated as ⁇ when the peel strength was 0.5 N / cm or more, and x when the peel strength was less than 0.5 N / cm.
  • the volume fraction of the colored particles with respect to the polymer material is preferably 5% or more and 40% or less. More preferably, it is 15% or more and 30% or less.
  • this technique can also take the following structures. (1) a first substrate, a second substrate disposed opposite to the first substrate, a porous layer formed by a fibrous structure and provided between the first substrate and the second substrate; A display element including migrating particles moving in the gap between the porous layers; a partition extending in a stacking direction of the first substrate and the second substrate; and the first substrate and the second substrate of the partition. A reflection suppression layer provided on an end surface facing at least one of the reflection suppression layers, the reflection suppression layer including a polymer material and colored particles, and the volume fraction of the colored particles is 5% with respect to the polymer material.
  • a display device that is 40% or less.
  • the colored particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, or glass, among (1) to (5)
  • the display device according to any one of the above.
  • the display device is provided between the first substrate, the second substrate disposed opposite to the first substrate, the first substrate and the second substrate, and is fibrous.
  • a display element including a porous layer formed by a structure and a migrating particle moving in a gap between the porous layers, a partition extending in a stacking direction of the first substrate and the second substrate, and the partition, A reflection suppression layer provided on an end surface facing at least one of the first substrate and the second substrate, the reflection suppression layer including a polymer material and colored particles, and a volume fraction of the colored particles Is an electronic device of 5% to 40% with respect to the polymer material.

Abstract

A display device according to one embodiment of the present technology comprises: a first substrate; a second substrate disposed opposing the first substrate; a display element that is provided between the first substrate and the second substrate, and that includes a porous layer formed of a fibrous structure and electrophoretic particles that move through gaps in the porous layer; a partition wall extending in the lamination direction of the first substrate and the second substrate; and a reflection suppressing layer provided on an end surface of the partition wall facing at least one of the first substrate and the second substrate. The reflection suppressing layer includes a polymer material and colored particles, and the volume fraction of the colored particles is 5 to 40% relative to the polymer material.

Description

表示装置および電子機器Display device and electronic device
 本技術は、電気泳動素子を含む表示装置およびこれを備えた電子機器に関する。 The present technology relates to a display device including an electrophoretic element and an electronic apparatus including the display device.
 近年、携帯電話機または携帯情報端末等のモバイル機器の普及に伴い、低消費電力で高品位画質の表示装置(ディスプレイ)に関する需要が高まっている。特に最近では、電子書籍の配信事業が始まり、読書用途に適した表示品位のディスプレイが望まれている。 In recent years, with the widespread use of mobile devices such as mobile phones or personal digital assistants, there is an increasing demand for display devices (displays) with low power consumption and high image quality. In particular, recently, the electronic book distribution business has started, and a display with a display quality suitable for reading applications is desired.
 このようなディスプレイとして、コレステリック液晶ディスプレイ,電気泳動型ディスプレイ,電気酸化還元型ディスプレイおよびツイストボール型ディスプレイ等の様々なディスプレイが提案されているが、読書用途には、反射型のディスプレイが有利である。反射型のディスプレイでは、紙と同様に、外光の反射(散乱)を利用して明表示を行うため、より紙に近い表示品位が得られる。 As such a display, various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications. . In the reflective display, bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
 反射型ディスプレイの中でも、電気泳動現象を利用した電気泳動型ディスプレイは、低消費電力であると共に応答速度が速く、有力候補として期待されている。例えば、特許文献1には、絶縁性液体中に荷電粒子を分散させると共に、多孔質層を配置した表示装置が開示されている。この表示装置では、電界に応じて、荷電粒子が多孔質層の細孔を経て移動する。多孔質層は、例えば、高分子材料からなる繊維状構造体と、この繊維状構造体に保持されると共に、荷電粒子とは光学的反射特性が異なる非泳動粒子とを含んでいる。 Among the reflective displays, electrophoretic displays utilizing the electrophoretic phenomenon are expected to be promising candidates because of their low power consumption and fast response speed. For example, Patent Document 1 discloses a display device in which charged particles are dispersed in an insulating liquid and a porous layer is disposed. In this display device, charged particles move through the pores of the porous layer according to the electric field. The porous layer includes, for example, a fibrous structure made of a polymer material, and non-electrophoretic particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles.
特開2015-4912号公報Japanese Patent Laid-Open No. 2015-4912 特開2007-017735号公報JP 2007-017735 A 特開2012-78748号公報JP 2012-78748 A
 このような表示装置では、対向配置された基板の間を複数のセルに仕切る隔壁を設けることで荷電粒子の偏り等を防いで表示ムラの発生を抑制している。しかしながら、隔壁が設けられた表示装置では、製造上、隔壁と基板との間に多孔質層が挟まれやすく、多孔質層が白色を呈している場合には、隔壁が常に白く表示され、コントラストが低下するという問題があった。また、多孔質層が挟み込まれていなくても、画素電極の反射によってコントラストが低下するという問題があった。 In such a display device, a partition that partitions a plurality of cells between opposing substrates is provided to prevent biased charged particles and the like, thereby suppressing display unevenness. However, in the display device provided with the partition wall, the porous layer is easily sandwiched between the partition wall and the substrate in manufacturing, and when the porous layer is white, the partition wall is always displayed in white and the contrast is increased. There was a problem that decreased. Further, even if the porous layer is not sandwiched, there is a problem that the contrast is lowered due to reflection of the pixel electrode.
 この問題を解決するために、例えば、特許文献2には、例えば、下部電極の全面に遮光膜を設けた画像表示装置が開示されている。しかしながら、この画像表示装置では、依然として隔壁と基板との間に白色の電気泳動粒子を噛み込む虞があり、コントラストを十分に改善することは困難であると推察される。また、特許文献3には、基板と、隔壁との間に絶縁性の有色層が設けられた情報表示用パネルが開示されているが、有色層と基板との密着性が十分に担保されない等の虞があり、機械的信頼性が低いという問題があった。 In order to solve this problem, for example, Patent Document 2 discloses an image display device in which a light shielding film is provided on the entire surface of the lower electrode, for example. However, in this image display device, white electrophoretic particles may still be caught between the partition walls and the substrate, and it is estimated that it is difficult to sufficiently improve the contrast. In addition, Patent Document 3 discloses an information display panel in which an insulating colored layer is provided between a substrate and a partition, but the adhesion between the colored layer and the substrate is not sufficiently ensured. There was a problem that the mechanical reliability was low.
 従って、信頼性が高く、コントラストを向上させることが可能な表示装置および電子機器を提供することが望ましい。 Therefore, it is desirable to provide a display device and an electronic device that are highly reliable and capable of improving contrast.
 本技術の一実施形態の表示装置は、第1基板と、第1基板と対向配置された第2基板と、第1基板および第2基板の間に設けられると共に、繊維状構造体により形成された多孔質層および多孔質層の間隙を移動する泳動粒子を含む表示素子と、第1基板および第2基板の積層方向に延在する隔壁と、隔壁の、第1基板および第2基板の少なくとも一方に面する端面に設けられた反射抑制層とを備えたものであり、反射抑制層は、高分子材料および着色粒子を含み、着色粒子の体積分率は、高分子材料に対して5%以上40%以下である。 A display device according to an embodiment of the present technology is formed of a fibrous structure while being provided between a first substrate, a second substrate disposed opposite to the first substrate, and the first substrate and the second substrate. A display element including migrating particles that move between the porous layer and the gap between the porous layers, a partition extending in the stacking direction of the first substrate and the second substrate, and at least one of the first substrate and the second substrate of the partition A reflection suppression layer provided on an end surface facing one side, the reflection suppression layer including a polymer material and colored particles, and the volume fraction of the colored particles is 5% with respect to the polymer material. It is 40% or less.
 本技術の一実施形態の電子機器は、上記本技術の一実施形態の表示装置を備えたものである。 An electronic apparatus according to an embodiment of the present technology includes the display device according to the embodiment of the present technology.
 本技術の一実施形態の表示装置および一実施形態の電子機器では、対向配置された第1基板および第2基板の積層方向に延在する隔壁の、第1基板および第2基板の少なくとも一方に面する端面に反射抑制層を設けた。これにより、表示面から見た際の隔壁部分の反射が抑制される。また、この反射抑制層を、高分子材料および着色粒子を含み、着色粒子の体積分率は、高分子材料に対して5%以上40%以下の構成とすることにより、隔壁部分の反射が抑制されると共に、反射抑制層と基板との密着性が保持される。 In the display device according to the embodiment of the present technology and the electronic device according to the embodiment, the partition wall extending in the stacking direction of the first substrate and the second substrate arranged to face each other is provided on at least one of the first substrate and the second substrate. A reflection suppressing layer was provided on the facing end surface. Thereby, reflection of the partition wall portion when viewed from the display surface is suppressed. Further, the reflection suppressing layer includes a polymer material and colored particles, and the volume fraction of the colored particles is 5% or more and 40% or less with respect to the polymer material, thereby suppressing reflection of the partition wall portion. In addition, the adhesion between the reflection suppressing layer and the substrate is maintained.
 本技術の一実施形態の表示装置および一実施形態の電子機器によれば、対向配置された第1基板および第2基板の積層方向に延在する隔壁の、第1基板および第2基板の少なくとも一方に面する端面に、高分子材料および着色粒子を含み、着色粒子の体積分率は、高分子材料に対して5%以上40%以下の構成を有する反射抑制層を設けるようにした。これにより、表示面から見た際の隔壁部分の反射が抑制されると共に、反射抑制層と基板との密着性が保持される。よって、信頼性が高く、コントラストが向上した表示装置およびこれを備えた電子機器を提供することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the display device of one embodiment of the present technology and the electronic device of one embodiment, at least the first substrate and the second substrate of the partition walls extending in the stacking direction of the first substrate and the second substrate arranged to face each other. An end surface facing one side is provided with a reflection suppressing layer including a polymer material and colored particles, and the volume fraction of the colored particles is 5% or more and 40% or less with respect to the polymer material. Thereby, the reflection of the partition walls when viewed from the display surface is suppressed, and the adhesion between the reflection suppressing layer and the substrate is maintained. Therefore, it is possible to provide a display device with high reliability and improved contrast and an electronic apparatus including the display device. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本技術の一実施の形態に係る表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus which concerns on one embodiment of this technique. 図1に示した表示装置に用いた電気泳動素子の構成を表す平面模式図である。FIG. 2 is a schematic plan view illustrating a configuration of an electrophoretic element used in the display device illustrated in FIG. 1. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 適用例1の外観を表す斜視図である。14 is a perspective view illustrating an appearance of application example 1. FIG. 図4Aに示した電子ブックの他の例を表す斜視図である。FIG. 4B is a perspective view illustrating another example of the electronic book illustrated in FIG. 4A. 適用例2の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 2. FIG. 黒色層の有無および黒色層の組成と密着性との関係を表す特性図である。It is a characteristic view showing the relationship between the presence or absence of a black layer and the composition and adhesion of the black layer. 黒色層の組成と不良セル数との関係を表す特性図である。It is a characteristic view showing the relationship between the composition of a black layer and the number of defective cells.
 以下、本技術の一実施形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態(隔壁の底面に黒色層を設けた表示装置)
  1-1.表示装置の構成
  1-2.製造方法
  1-3.好ましい表示方法
  1-4.作用・効果
 2.適用例(電子機器)
 3.実施例
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (display device provided with black layer on bottom of partition wall)
1-1. Configuration of display device 1-2. Manufacturing method 1-3. Preferred display method 1-4. Action / Effect Application example (electronic equipment)
3. Example
<1.実施の形態>
 図1は、本開示の一実施の形態の表示装置(表示装置1)の断面構成を表したものである。表示装置1は、電気泳動現象を利用してコントラストを生じさせ、画像を表示する表示装置であり、例えば電子ペーパーディスプレイ等の多様な電子機器に適用されるものである。この表示装置1は、例えば、隔壁40を介して対向配置された駆動基板10と対向基板20との間に、表示層として電気泳動素子30を備えたものである。本実施の形態では、駆動基板10および対向基板20の積層方向に延在する隔壁40の少なくとも一方の端面に、反射抑制層として、例えば、黒色を呈する黒色層42が設けられた構成を有する。
<1. Embodiment>
FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure. The display device 1 is a display device that displays an image by generating contrast using an electrophoretic phenomenon, and is applied to various electronic devices such as an electronic paper display. The display device 1 includes, for example, an electrophoretic element 30 as a display layer between a driving substrate 10 and a counter substrate 20 that are arranged to face each other with a partition wall 40 interposed therebetween. In the present embodiment, at least one end face of the partition wall 40 extending in the stacking direction of the drive substrate 10 and the counter substrate 20 has a configuration in which, for example, a black layer 42 exhibiting black is provided as a reflection suppressing layer.
(1-1.表示装置の構成)
 駆動基板10は、例えば、支持部材11の一面に、例えば、TFT(Thin Film Transistor)12、保護層13および画素電極14がこの順に積層されている。TFT12および画素電極14は、例えば画素配置に応じてマトリクス状またはセグメント状に配置されている。
(1-1. Configuration of display device)
In the drive substrate 10, for example, a TFT (Thin Film Transistor) 12, a protective layer 13, and a pixel electrode 14 are laminated in this order on one surface of the support member 11. The TFT 12 and the pixel electrode 14 are arranged in a matrix or a segment, for example, depending on the pixel arrangement.
 支持部材11は、例えば、無機材料、金属材料またはプラスチック材料等のいずれか1種類または2種類以上により形成されている。無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiOx)、窒化ケイ素(SiNx)または酸化アルミニウム(AlOx)等であり、その酸化ケイ素には、例えば、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料は、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等である。プラスチック材料は、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン(PEEK)、シクロオレフィンポリマー(COP)、ポリイミド(PI)またはポリエーテルサルフォン(PES)等である。 The support member 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like. The inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like. Etc. are included. Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel. Examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
 この支持部材11は、光透過性であってもよいし、非光透過性であってもよい。また、支持部材11は、ウェハ等の剛性を有する基板であってもよいし、可撓性を有する薄層ガラスまたはフィルム等であってもよい。但し、フレキシブル(折り曲げ可能)な電子ペーパーディスプレイを実現できることから、可撓性を有する材料からなることが望ましい。 The support member 11 may be light transmissive or non-light transmissive. The support member 11 may be a rigid substrate such as a wafer, or may be a flexible thin glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material.
 TFT12は、画素を選択するためのスイッチング用素子である。TFT12は、チャネル層として無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。保護層13は、例えば、ポリイミド等の絶縁性樹脂材料により構成されている。 TFT 12 is a switching element for selecting a pixel. The TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer. The protective layer 13 is made of an insulating resin material such as polyimide, for example.
 画素電極14は、例えば、金(Au)、銀(Ag)または銅(Cu)等の金属材料により形成されている。画素電極14は、保護層13に設けられたコンタクトホール(図示せず)を通じてTFT12に接続されている。画素電極14上には、例えば、接着層15およびシール層(封止層)16が設けられている。接着層15は、駆動基板10とシール層16とを接着させるためのものであり、例えば、アクリル系樹脂またはウレタン系樹脂により構成されている。接着層15には、ゴム系の粘着シートなどを用いるようにしてもよい。シール層16は、電気泳動素子30内の絶縁性液体(後述の絶縁性液体31)を封止すると共に電気泳動素子30への水分等の浸入を防ぐためのものであり、例えば、熱可塑性あるいは光硬化性のアクリル系樹脂、ウレタン系樹脂またはゴム系の粘着シートなどにより構成されている。 The pixel electrode 14 is formed of a metal material such as gold (Au), silver (Ag), or copper (Cu). The pixel electrode 14 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13. On the pixel electrode 14, for example, an adhesive layer 15 and a seal layer (sealing layer) 16 are provided. The adhesive layer 15 is for adhering the drive substrate 10 and the seal layer 16 and is made of, for example, an acrylic resin or a urethane resin. For the adhesive layer 15, a rubber-based adhesive sheet or the like may be used. The sealing layer 16 is for sealing an insulating liquid (an insulating liquid 31 to be described later) in the electrophoretic element 30 and for preventing moisture and the like from entering the electrophoretic element 30. It is composed of a photocurable acrylic resin, urethane resin, rubber adhesive sheet, or the like.
 対向基板20は、例えば支持部材21および対向電極22を有しており、支持部材21の全面(駆動基板10との対向面)に対向電極22が設けられている。 The counter substrate 20 includes, for example, a support member 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support member 21 (a surface facing the drive substrate 10).
 支持部材21は、光透過性であることを除き、支持部材11と同様の材料により構成されている。対向基板20の上面(表示面S1)に画像が表示されるため、支持部材21は光透過性であることが求められるからである。この支持部材21の厚みは、例えば1μm~250μmである。 The support member 21 is made of the same material as the support member 11 except that it is light transmissive. This is because the image is displayed on the upper surface (display surface S1) of the counter substrate 20, and thus the support member 21 is required to be light transmissive. The thickness of the support member 21 is, for example, 1 μm to 250 μm.
 対向電極22は、透光性を有する導電性材料(透明導電材料)のいずれか1種類または2種類以上を含んでいる。導電性材料としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等の光透光性導電性材料(透明電極材料)を用いることができる。なお、対向電極22は、画素電極14と同様に、例えば、支持部材21の一面の、例えば、表示可能な領域の全面に形成されているが、例えば、画素電極14と同様に分割形成され、マトリクス状またはセグメント状に配置するようにしてもよい。 The counter electrode 22 includes one or more of conductive materials (transparent conductive materials) having translucency. Examples of the conductive material include light transmissive conductive materials such as indium oxide-tin oxide (ITO), antimony-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). (Transparent electrode material) can be used. The counter electrode 22 is formed, for example, on one surface of the support member 21, for example, the entire displayable region, like the pixel electrode 14. For example, the counter electrode 22 is divided and formed similarly to the pixel electrode 14. You may make it arrange | position in a matrix form or a segment form.
 対向基板20側に画像を表示する場合には、対向電極22を介して電気泳動素子30を見ることになるため、対向電極22の光透過性(透過率)は、できるだけ高いことが好ましく、例えば、80%以上である。また、対向電極22の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□(スクエア)以下である。 When displaying an image on the counter substrate 20 side, since the electrophoretic element 30 is viewed through the counter electrode 22, the light transmittance (transmittance) of the counter electrode 22 is preferably as high as possible. 80% or more. The electric resistance of the counter electrode 22 is preferably as low as possible, for example, 100Ω / □ (square) or less.
 駆動基板10と対向基板20との間には表示素子として、例えば、電圧制御される電気泳動素子30が設けられている。図2は、表示装置1の表示層の平面構成、即ち、電気泳動素子30の平面構成を表したものである。電気泳動素子30は、絶縁性液体31中に、泳動粒子32と、複数の細孔333を有する多孔質層33とを含んでいる。絶縁性液体31は、駆動基板10と対向基板20との間の空間に充填されており、多孔質層33は、例えば、隔壁40により支持されている。絶縁性液体31が充填されている空間は、例えば、多孔質層33を境界として、画素電極14に近い側の待避領域R1と、対向電極22に近い側の表示領域R2とに区分けされている(図3A,図3B参照)。なお、図2は電気泳動素子30の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。 For example, an electrophoretic element 30 that is voltage-controlled is provided as a display element between the driving substrate 10 and the counter substrate 20. FIG. 2 illustrates a planar configuration of the display layer of the display device 1, that is, a planar configuration of the electrophoretic element 30. The electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having a plurality of pores 333 in an insulating liquid 31. The insulating liquid 31 is filled in the space between the driving substrate 10 and the counter substrate 20, and the porous layer 33 is supported by the partition 40, for example. The space filled with the insulating liquid 31 is divided into, for example, a retreat area R1 closer to the pixel electrode 14 and a display area R2 closer to the counter electrode 22 with the porous layer 33 as a boundary. (See FIGS. 3A and 3B). Note that FIG. 2 schematically shows the configuration of the electrophoretic element 30 and may differ from the actual size and shape.
 絶縁性液体31は、例えば、有機溶媒等の非水溶媒のいずれか1種類または2種類以上であり、具体的には、パラフィンまたはイソパラフィン等を含んで構成されている。この絶縁性液体31の粘度および屈折率は、出来るだけ低いことが好ましい。泳動粒子32の移動性(応答速度)が向上すると共に、それに応じて泳動粒子32の移動に要するエネルギー(消費電力)が低くなるからである。また、絶縁性液体31の屈折率と多孔質層33の屈折率との差が大きくなるため、その多孔質層33の光反射率が高くなるからである。なお、絶縁性液体31の代わりに、微弱導電性液体を用いてもよい。 The insulating liquid 31 is, for example, one type or two or more types of non-aqueous solvents such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 be as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
 なお、絶縁性液体31は、必要に応じて各種材料を含んでいてもよい。この材料は、例えば、着色剤、電荷制御剤、分散安定剤、粘度調整剤、界面活性剤または樹脂等である。 The insulating liquid 31 may contain various materials as necessary. This material is, for example, a colorant, a charge control agent, a dispersion stabilizer, a viscosity modifier, a surfactant or a resin.
 泳動粒子32は、絶縁性液体31中に分散された電気的に移動可能な1または2以上の荷電粒子であり、電界に応じて多孔質層33の細孔333を経て画素電極14と対向電極22との間を移動する。泳動粒子32は、また、任意の光学的反射特性(光反射率)を有している。泳動粒子32の光反射率は、特に限定されないが、少なくとも泳動粒子32が多孔質層33を遮蔽可能となるように設定されることが好ましい。泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラスト(CR)を生じさせるためである。 The migrating particles 32 are one or more electrically movable charged particles dispersed in the insulating liquid 31, and pass through the pores 333 of the porous layer 33 according to the electric field, so that the pixel electrode 14 and the counter electrode Move between the two. The migrating particles 32 also have arbitrary optical reflection characteristics (light reflectivity). The light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast (CR) is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
 泳動粒子32は、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)等のいずれか1種類または2種類以上の粒子(粉末)である。なお、泳動粒子32は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等でもよい。但し、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または染料に該当する材料から除かれることとする。 The migrating particles 32 are, for example, one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). . The migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
 有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、カーボンブラック、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。このように可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
 泳動粒子32の具体的な形成材料は、例えば、コントラストを生じさせるために泳動粒子32が担う役割に応じて選択される。例えば、泳動粒子32によって明表示(例えば、白表示)がなされる場合の材料は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性等に優れていると共に、高い反射率が得られるからである。一方、泳動粒子32により暗表示(例えば、黒表示)がなされる場合の材料は、例えば、炭素材料または金属酸化物等である。炭素材料は、例えば、カーボンブラック等であり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。 The specific forming material of the migrating particles 32 is selected according to the role of the migrating particles 32 in order to cause contrast, for example. For example, the material when the bright display (for example, white display) is performed by the migrating particles 32 is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate. Titanium oxide is preferred. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance. On the other hand, the material when dark display (for example, black display) is performed by the migrating particles 32 is, for example, a carbon material or a metal oxide. The carbon material is, for example, carbon black, and the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like. Among these, a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。泳動粒子32の遮蔽(隠蔽)性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽しにくくなる可能性がある。一方、10重量%よりも多いと、泳動粒子32の分散性が低下するため、泳動粒子32が泳動しにくくなり、場合によっては凝集する可能性がある。 The content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may be aggregated in some cases.
 泳動粒子32の平均粒径は、多孔質層33の平均孔径よりも小さければよく、例えば、0.1μm以上1μm以下の範囲であることが好ましい。 The average particle diameter of the migrating particles 32 only needs to be smaller than the average pore diameter of the porous layer 33, and is preferably in the range of 0.1 μm to 1 μm, for example.
 なお、泳動粒子32は、絶縁性液体31中で長期間に渡って分散および帯電しやすいと共に、多孔質層33に吸着されにくいことが好ましい。このため、静電反発により泳動粒子32を分散させるために分散剤(または電荷調整剤)を用いたり、泳動粒子32に表面処理を施してもよく、両者を併用してもよい。 In addition, it is preferable that the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 over a long period of time and are not easily adsorbed by the porous layer 33. For this reason, in order to disperse the electrophoretic particles 32 by electrostatic repulsion, a dispersant (or a charge adjusting agent) may be used, or the electrophoretic particles 32 may be subjected to a surface treatment, or both may be used in combination.
 分散剤は、例えばLubrizol社製のSolsperseシリーズ、BYK-Chemie社製のBYK シリーズまたはAnti-Terra シリーズ、あるいはICI Americas 社製Spanシリーズ等である。 The dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK® series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
 表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。中でも、グラフト重合処理、マイクロカプセル化処理またはそれらの組み合わせが好ましい。長期間の分散安定性等が得られるからである。 The surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. Among these, graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
 表面処理用の材料は、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着材料)等である。吸着可能な官能基の種類は、泳動粒子32の形成材料に応じて決定される。一例を挙げると、カーボンブラック等の炭素材料に対しては4-ビニルアニリン等のアニリン誘導体であり、金属酸化物に対してはメタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体である。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 The surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32. The type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32. For example, carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate. . Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 また、表面処理用の材料は、例えば、重合性官能基が導入された泳動粒子32の表面にグラフト可能な材料(グラフト性材料)である。このグラフト性材料は、重合性官能基と、絶縁性液体31中に分散可能であると共に、立体障害により分散性を保持可能な分散用官能基とを有していることが好ましい。重合性官能基の種類は、例えば、ビニル基、アクリル基、メタクリル基等である。分散用官能基は、例えば、絶縁性液体31がパラフィンである場合には分岐状のアルキル基等である。グラフト性材料を重合およびグラフトさせるためには、例えばアゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。この他、泳動粒子32の表面に吸着可能な官能基と分散性を付与するためのアルキル鎖を有する材料を用いることができる。このような材料としては、例えばチタネート系カップリング剤(例えば、味の素ファインテクノ株式会社製KR-TTS)およびアルミネート系カップリング剤が挙げられる。 Further, the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced. The graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group. The dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used. In addition, a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
 参考までに、上記したように絶縁性液体31中に泳動粒子32を分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For reference, the details of the method for dispersing the migrating particles 32 in the insulating liquid 31 as described above are described in “Dispersion Technology of Ultrafine Particles and Its Evaluation—Surface Treatment / Fine Grinding and Air / Liquid / Polymer”. It is published in books such as “Dispersion Stabilization ~ (Science & Technology)”.
 多孔質層33は、例えば、図1に示したように、繊維状構造体331により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)である。多孔質層33は、繊維状構造体331が存在していない箇所に、泳動粒子32が通過するための複数の隙間(細孔333)を有している。 The porous layer 33 is, for example, a three-dimensional solid structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG. The porous layer 33 has a plurality of gaps (pores 333) through which the migrating particles 32 pass in places where the fibrous structure 331 does not exist.
 繊維状構造体331には、1または2以上の非泳動粒子332が含まれており、その非泳動粒子332は、繊維状構造体331により保持されている。3次元立体構造物である多孔質層33では、1本の繊維状構造体331がランダムに絡み合っていてもよいし、複数本の繊維状構造体331が集合してランダムに重なっていてもよいし、両者が混在していてもよい。繊維状構造体331が複数本である場合、各繊維状構造体331は、1または2以上の非泳動粒子332を保持していることが好ましい。なお、図2では、複数本の繊維状構造体331により多孔質層33が形成されている場合を示している。 The fibrous structure 331 includes one or more non-migrating particles 332, and the non-migrating particles 332 are held by the fibrous structure 331. In the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. However, both may be mixed. When there are a plurality of fibrous structures 331, each fibrous structure 331 preferably holds one or more non-migrating particles 332. FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.
 多孔質層33が3次元立体構造物であるのは、その不規則な立体構造により外光が乱反射(多重散乱)されやすいため、多孔質層33の光反射率が高くなると共に、その高い光反射率を得るために多孔質層33が薄くてすむからである。これにより、コントラストが高くなると共に、泳動粒子32を移動させるために必要なエネルギーが低くなる。また、細孔333の平均孔径が大きくなると共に、その数が多くなるため、泳動粒子32が細孔333を通過しやすくなるからである。これにより、泳動粒子32の移動に要する時間が短くなると共に、その泳動粒子32の移動に要するエネルギーも低くなる。 The reason why the porous layer 33 is a three-dimensional structure is that the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 33 increases and the high light This is because the porous layer 33 can be thin in order to obtain the reflectance. As a result, the contrast increases and the energy required to move the migrating particles 32 decreases. In addition, since the average pore diameter of the pores 333 is increased and the number thereof is increased, the migrating particles 32 can easily pass through the pores 333. As a result, the time required to move the migrating particles 32 is shortened, and the energy required to move the migrating particles 32 is also reduced.
 繊維状構造体331に非泳動粒子332が含まれているのは、外光がより乱反射しやすくなるため、多孔質層33の光反射率がより高くなるからである。これにより、コントラストがより高くなる。 The reason why the non-migrating particles 332 are included in the fibrous structure 331 is that the light reflectance of the porous layer 33 is higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
 繊維状構造体331の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体331の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法等であることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易且つ安定に形成しやすいからである。 The shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction. The formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous material having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体331の平均繊維径は、特に限定されないが、できるだけ小さいことが好ましい。光が乱反射しやすくなると共に、細孔333の平均孔径が大きくなるからである。このため、繊維状構造体331の平均繊維径は、10μm以下であることが好ましい。なお、平均繊維径の下限は、特に限定されないが、例えば、0.1μmであり、それ以下でもよい。この平均繊維径は、例えば、走査型電子顕微鏡(SEM)等を用いた顕微鏡観察により測定される。なお、繊維状構造体331の平均長さは、任意でよい。 The average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 333 increases. For this reason, it is preferable that the average fiber diameter of the fibrous structure 331 is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
 細孔333は、複数の繊維状構造体331が重なりあい、または、1つの繊維状構造体331が絡まりあうことによって形成されたものである。細孔333の平均孔径は、特に限定されないが、中でも、できるだけ大きいことが好ましい。泳動粒子32が細孔333を通過しやすくなるからである。このため、細孔333の平均孔径は、0.1μm~10μmであることが好ましい。 The pore 333 is formed by overlapping a plurality of fibrous structures 331 or entwining one fibrous structure 331. The average pore diameter of the pores 333 is not particularly limited, but is preferably as large as possible. This is because the migrating particles 32 easily pass through the pores 333. Therefore, the average pore diameter of the pores 333 is preferably 0.1 μm to 10 μm.
 多孔質層33の厚さは、特に限定されないが、例えば、5μm~100μmである。多孔質層33の遮蔽性が高くなると共に、泳動粒子32が細孔333を通過しやすくなるからである。 The thickness of the porous layer 33 is not particularly limited, but is, for example, 5 μm to 100 μm. This is because the shielding property of the porous layer 33 is enhanced and the migrating particles 32 easily pass through the pores 333.
 繊維状構造体331を構成する材料としては、例えば、高分子材料または無機材料等のいずれか1種類または2種類以上を含んでおり、他の材料を含んでいてもよい。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマー等である。無機材料は、例えば、酸化チタン等である。中でも、繊維状構造体331の形成材料としては、高分子材料が好ましい。反応性(光反応性等)が低い(化学的に安定である)ため、繊維状構造体331の意図しない分解反応が抑制されるからである。なお、繊維状構造体331が高反応性の材料により形成されている場合には、その繊維状構造体331の表面は任意の保護層により被覆されていることが好ましい。 As a material constituting the fibrous structure 331, for example, one or two or more of polymer materials or inorganic materials are included, and other materials may be included. Examples of the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof. The inorganic material is, for example, titanium oxide. Among these, a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
 特に、繊維状構造体331は、ナノファイバーであることが好ましい。立体構造が複雑化して外光が乱反射しやすくなるため、多孔質層33の光反射率がより高くなると共に、多孔質層33の単位体積中に占める細孔333の体積の割合が大きくなるため、泳動粒子32が細孔333を通過しやすくなるからである。これにより、コントラストがより高くなると共に、泳動粒子32の移動に要するエネルギーがより低くなる。ナノファイバーとは、繊維径が0.001μm~0.1μmであると共に、長さが繊維径の100倍以上である繊維状物質である。ナノファイバーである繊維状構造体331は、高分子材料を用いて静電紡糸法により形成されていることが好ましい。繊維径が小さい繊維状構造体331を容易且つ安定に形成しやすいからである。 In particular, the fibrous structure 331 is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is likely to be diffusely reflected, the light reflectance of the porous layer 33 is further increased, and the volume ratio of the pores 333 to the unit volume of the porous layer 33 is increased. This is because the migrating particles 32 can easily pass through the pores 333. Thereby, the contrast becomes higher and the energy required to move the migrating particles 32 becomes lower. Nanofiber is a fibrous substance having a fiber diameter of 0.001 μm to 0.1 μm and a length that is 100 times or more of the fiber diameter. The fibrous structure 331 that is a nanofiber is preferably formed by an electrospinning method using a polymer material. This is because the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
 この繊維状構造体331は、泳動粒子32とは異なる光学的反射特性を有していることが好ましい。具体的には、繊維状構造体331の光反射率は、特に限定されないが、少なくとも多孔質層33が全体として泳動粒子32を遮蔽可能となるように設定されることが好ましい。上記したように、泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。 This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32. Specifically, the light reflectance of the fibrous structure 331 is not particularly limited, but is preferably set so that at least the porous layer 33 can shield the migrating particles 32 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
 非泳動粒子332は、繊維状構造体331に固定されており、電気的に泳動しない粒子である。非泳動粒子332は、繊維状構造体331により保持されていれば、繊維状構造体331から部分的に露出していてもよいし、その内部に埋設されていてもよい。 Non-electrophoretic particles 332 are particles that are fixed to the fibrous structure 331 and do not migrate electrically. As long as the non-migrating particles 332 are held by the fibrous structure 331, the non-migrating particles 332 may be partially exposed from the fibrous structure 331 or embedded therein.
 非泳動粒子332の具体的な形成材料は、例えば、コントラストを生じさせるために非泳動粒子332が担う役割に応じて選択される。具体的には、非泳動粒子332には、その光反射率が泳動粒子32の光反射率と異なるものを用いる。例えば、非泳動粒子332(多孔質層33)が明表示する場合には、上記泳動粒子32が明表示する場合の材料、非泳動粒子332が暗表示する場合には上記泳動粒子32が暗表示する場合の材料をそれぞれ用いることができる。多孔質層33により明表示を行う場合には、非泳動粒子332は金属酸化物が好ましく、酸化チタンがより好ましい。これにより、優れた化学的安定性、定着性および光反射性を得ることができる。なお、コントラストを生じさせることができれば、非泳動粒子332および泳動粒子32それぞれの構成材料は同じであってもよい。 The specific forming material of the non-migrating particles 332 is selected according to the role played by the non-migrating particles 332 in order to generate contrast, for example. Specifically, the non-migrating particles 332 that have a light reflectance different from that of the migrating particles 32 are used. For example, when the non-electrophoretic particle 332 (porous layer 33) displays brightly, the material when the electrophoretic particle 32 displays brightly, and when the non-electrophoretic particle 332 displays darkly, the electrophoretic particle 32 displays darkly. Each of the materials can be used. When bright display is performed by the porous layer 33, the non-migrating particles 332 are preferably metal oxides and more preferably titanium oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity. Note that the constituent materials of the non-migrating particles 332 and the migrating particles 32 may be the same as long as contrast can be generated.
 なお、多孔質層33は、画素電極14および対向電極22のうちのどちらか一方に接していてもよく、後述する待避領域R1と表示領域R2とが明確に区切られていなくてもよい(図3A,図3B参照)。泳動粒子32は、電界に応じて画素電極14または対向電極22に向かって移動する。 Note that the porous layer 33 may be in contact with either the pixel electrode 14 or the counter electrode 22, and a retreat area R1 and a display area R2, which will be described later, may not be clearly separated (see FIG. 3A, see FIG. 3B). The migrating particles 32 move toward the pixel electrode 14 or the counter electrode 22 according to the electric field.
 隔壁40は、駆動基板10および対向基板20の積層方向に延在するものであり、駆動基板10と対向基板20との間は、この隔壁40によって所定の間隔に調整されている。隔壁40は、例えば、駆動基板10(具体的には、シール層16)および対向基板20(具体的には、対向電極22)にそれぞれ接して設けられており、電気泳動素子30は、隔壁40によって複数のセル41に分割されている。換言すると、電気泳動素子30は、隔壁40によって泳動粒子32が各セル41に収容され、セル41間での泳動粒子32の移動が抑制されている。これにより、泳動粒子32の拡散、対流および凝集等による表示ムラの発生が抑制される。 The partition 40 extends in the stacking direction of the drive substrate 10 and the counter substrate 20, and the partition 40 is adjusted to a predetermined distance between the drive substrate 10 and the counter substrate 20. The partition 40 is provided, for example, in contact with the drive substrate 10 (specifically, the seal layer 16) and the counter substrate 20 (specifically, the counter electrode 22). Is divided into a plurality of cells 41. In other words, in the electrophoretic element 30, the electrophoretic particles 32 are accommodated in the respective cells 41 by the partition walls 40, and movement of the electrophoretic particles 32 between the cells 41 is suppressed. Thereby, the occurrence of display unevenness due to diffusion, convection, aggregation and the like of the migrating particles 32 is suppressed.
 隔壁40は、例えば、絶縁性を有する高分子材料等によって構成されている。隔壁40の構成は特に限定されず、例えば、微粒子が混入されたシール材等を用いてもよい。 The partition 40 is made of, for example, an insulating polymer material. The structure of the partition 40 is not specifically limited, For example, you may use the sealing material etc. in which microparticles | fine-particles were mixed.
 隔壁40の高さ(Z方向)は、互いに揃っていることが好ましい。同じ高さの隔壁40を設けることにより、シール層16と対向電極22との間の距離(ギャップ)が面全体で均一に保たれ、電界強度を一定に維持することができる。これにより、応答速度のムラが解消される。隔壁40の高さは、例えば、1μm~100μmであり、できるだけ薄くすることが好ましい。これにより、消費電力を抑えることができる。 The height (Z direction) of the partition walls 40 is preferably aligned with each other. By providing the partition walls 40 having the same height, the distance (gap) between the seal layer 16 and the counter electrode 22 is kept uniform over the entire surface, and the electric field strength can be kept constant. Thereby, the unevenness of response speed is eliminated. The height of the partition 40 is, for example, 1 μm to 100 μm, and is preferably as thin as possible. Thereby, power consumption can be suppressed.
 隔壁40の形状は、例えば、図1に示したように、対向基板20から駆動基板10に向かってその幅(X方向)が小さくなる形状、所謂逆テーパ形状であることが好ましい。隔壁40の幅のうち、最も大きな幅W1(対向基板20との対向面の幅)は、例えば、5μm~50μmであることが好ましく、最も小さな幅W2(駆動基板10との対向面の幅)は、例えば、1μm~30μmであることが好ましい。また、隔壁40の、駆動基板10と対向基板20との間の面内における配置形状は、特に限定されないが、例えば、セル41の形状が、例えば、矩形状あるいは正六角形(ハニカム構造)となるように設けられている。 The shape of the partition wall 40 is preferably, for example, a so-called reverse taper shape in which the width (X direction) decreases from the counter substrate 20 toward the drive substrate 10 as shown in FIG. Of the widths of the partition walls 40, the largest width W1 (the width of the surface facing the counter substrate 20) is preferably, for example, 5 μm to 50 μm, and the smallest width W2 (the width of the surface facing the driving substrate 10). Is preferably 1 μm to 30 μm, for example. The arrangement shape of the partition walls 40 in the plane between the drive substrate 10 and the counter substrate 20 is not particularly limited. For example, the shape of the cell 41 is, for example, a rectangular shape or a regular hexagon (honeycomb structure). It is provided as follows.
 本実施の形態では、隔壁40の駆動基板10および対向基板20に面する端面には、反射抑制層として黒色層42が設けられている。黒色層42の形成場所は、隔壁40の駆動基板10および対向基板20に面する端面のどちらでもよいが、後述する製造工程上、図1に示したように、隔壁40の駆動基板10に面する端面、即ち、駆動基板10との対向面に設けることが好ましい。 In the present embodiment, a black layer 42 is provided as a reflection suppressing layer on the end face of the partition wall 40 facing the drive substrate 10 and the counter substrate 20. The black layer 42 may be formed on either the end face of the partition wall 40 facing the driving substrate 10 or the counter substrate 20, but the surface of the partition wall 40 facing the driving substrate 10 as shown in FIG. Preferably, it is provided on the end surface to be driven, that is, on the surface facing the drive substrate 10.
 黒色層42は、例えば、高分子材料と着色粒子とを含んで構成されている。高分子材料としては、多孔質層33(具体的には、繊維状構造体332)よりも軟化点が低いものが好ましく、例えば、ナイロン,ポリ乳酸,ポリアミド,ポリイミド,ポリエチレンテレフタレート,ポリアクリロニトリル,ポリメタクリル酸メチル,ポリエチレンオキシド,ポリビニルカルバゾール,ポリビニルクロライド,ポリウレタン,ポリスチレン ,ポリビニルアルコール,ポリサルフォン,ポリビニルピロリドン,ポリビニリデンフロリド,ポリヘキサフルオロプロピレン,セルロースアセテート,コラーゲン,ゼラチン,キトサンまたはそれらのコポリマー等が挙げられる。着色粒子は、例えば、上記泳動粒子32を構成する材料として挙げた、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラス等が挙げられる。具体的には、黒色チタニア(酸化チタン),カーボンブラック,酸化銅,アニリンブラック等が挙げられる。なお、高分子材料は、上記シール層16を構成する材料と同系統の材料を用いることが好ましく、例えば、シール層16と同一の材料を用いることにより、黒色層42とシール層16との密着性が向上する。このため、高分子材料としては、例えば、熱可塑性あるいは光硬化性のアクリル系樹脂を用いることが好ましい。 The black layer 42 includes, for example, a polymer material and colored particles. The polymer material preferably has a softening point lower than that of the porous layer 33 (specifically, the fibrous structure 332). For example, nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, poly Examples include methyl methacrylate, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene resin, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexafluoropropylene, cellulose acetate, collagen, gelatin, chitosan, and copolymers thereof. It is done. Examples of the colored particles include organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, and the like mentioned as materials constituting the migrating particles 32. Specific examples include black titania (titanium oxide), carbon black, copper oxide, and aniline black. In addition, it is preferable to use the same material as the material constituting the sealing layer 16 as the polymer material. For example, by using the same material as the sealing layer 16, the adhesion between the black layer 42 and the sealing layer 16 is achieved. Improves. For this reason, it is preferable to use, for example, a thermoplastic or photocurable acrylic resin as the polymer material.
 黒色層42を構成する高分子材料および着色粒子の比率は、例えば、体積分率によって規定される。具体的には、高分子材料中に含まれる着色粒子の体積分率は、好ましくは、5%以上40%以下であり、より好ましくは、15%以上30%以下である。高分子材料中に含まれる着色粒子が40%よりも多くなると、黒色層42と駆動基板10(具体的には、シール層16)との密着性および封止性が低下する。また、高分子材料中に含まれる着色粒子が5%よりも少なくなると、画素電極14の反射や、製造時に黒色層42と駆動基板10との間に挟まった多孔質層33の残渣を十分に遮蔽することが難しくなる。 The ratio of the polymer material and the colored particles constituting the black layer 42 is defined by, for example, the volume fraction. Specifically, the volume fraction of the colored particles contained in the polymer material is preferably 5% or more and 40% or less, and more preferably 15% or more and 30% or less. When the colored particles contained in the polymer material exceeds 40%, the adhesion and sealing properties between the black layer 42 and the drive substrate 10 (specifically, the seal layer 16) are lowered. Further, when the colored particles contained in the polymer material are less than 5%, the reflection of the pixel electrode 14 and the residue of the porous layer 33 sandwiched between the black layer 42 and the driving substrate 10 at the time of manufacture are sufficiently obtained. It becomes difficult to shield.
 封止材43は、電気泳動素子30を駆動基板10と対向基板20との間に封止するためのものであり、例えば、隔壁40と同様に、高分子材料等の絶縁性材料により構成されている。封止材43を設けることにより、外部から電気泳動素子30への水分等の浸入を抑制することが可能となる。封止材43には、隔壁40と同様に、微粒子を含むシール材を用いるようにしてもよい。封止材43の厚みは、隔壁40の高さ、即ち、間隙と略同じである。封止材43が駆動基板10または対向基板20の周縁からはみ出していてもよい。 The sealing material 43 is for sealing the electrophoretic element 30 between the driving substrate 10 and the counter substrate 20, and is made of, for example, an insulating material such as a polymer material like the partition 40. ing. By providing the sealing material 43, it is possible to suppress intrusion of moisture or the like into the electrophoretic element 30 from the outside. As the sealing material 43, as in the partition wall 40, a sealing material containing fine particles may be used. The thickness of the sealing material 43 is substantially the same as the height of the partition wall 40, that is, the gap. The sealing material 43 may protrude from the periphery of the drive substrate 10 or the counter substrate 20.
(1-2.製造方法)
 本実施の形態の表示装置1は、例えば、以下の方法により形成することができる。支持部材21の一面に対向電極22を各種成膜法等の既存の方法を用いて設け、対向基板20を形成する。次に、対向電極22上に隔壁40を形成する。隔壁40は、例えば、以下のようなインプリント法により形成することができる。まず、隔壁40の構成材料(例えば、感光性樹脂材料)を含む溶液を対向電極22上に塗布する。次いで、塗布面に凹部を有する型を押し当て、感光させた後、型を外す。これにより、柱状の隔壁40が形成される。このとき、隔壁40は、幅が対向基板20側から駆動基板10側に徐々に狭くなる、いわゆる逆テーパとすることが好ましい。これにより、隔壁40から型を容易に外すことができる。
(1-2. Manufacturing method)
The display device 1 of the present embodiment can be formed by, for example, the following method. The counter electrode 22 is provided on one surface of the support member 21 by using an existing method such as various film forming methods, and the counter substrate 20 is formed. Next, the partition 40 is formed on the counter electrode 22. The partition 40 can be formed by, for example, the following imprint method. First, a solution containing a constituent material (for example, a photosensitive resin material) of the partition 40 is applied onto the counter electrode 22. Next, a mold having a recess on the coated surface is pressed and exposed to light, and then the mold is removed. Thereby, the columnar partition 40 is formed. At this time, the partition 40 preferably has a so-called reverse taper in which the width gradually narrows from the counter substrate 20 side to the drive substrate 10 side. Thereby, a type | mold can be easily removed from the partition 40. FIG.
 続いて、隔壁40の端面に黒色層42を形成する。黒色層42は、例えば、アクリル樹脂と黒色チタニアから構成された黒色シートを隔壁40に熱転写することによって形成することができる。次に、隣り合う隔壁40の間、即ち、セル41内に繊維状構造体331を配設する。まず、例えば、N,N'-ジメチルホルムアミドに繊維状構造体331としてポリアクリロニトリルを分散または溶解させると共に、非泳動粒子332として、例えば、酸化チタンを加えて十分に攪拌し、高分子溶液(紡糸溶液)を調整する。続いて、この紡糸溶液を用いて、例えば、静電紡糸法によって、別の基板上で紡糸する。なお、繊維状構造体331は、静電紡糸法に代えて、相分離法、相反転法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法およびスプレー塗布法等によって形成してもよい。 Subsequently, a black layer 42 is formed on the end face of the partition wall 40. The black layer 42 can be formed, for example, by thermally transferring a black sheet made of acrylic resin and black titania to the partition wall 40. Next, the fibrous structure 331 is disposed between the adjacent partition walls 40, that is, in the cell 41. First, for example, polyacrylonitrile as a fibrous structure 331 is dispersed or dissolved in N, N′-dimethylformamide, and, for example, titanium oxide is added as non-electrophoretic particles 332 and sufficiently stirred to obtain a polymer solution (spinning). Solution). Subsequently, the spinning solution is used to spin on another substrate by, for example, an electrostatic spinning method. The fibrous structure 331 is formed by a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like instead of the electrostatic spinning method. May be.
 また、繊維状構造体331の形成方法としては、高分子フィルムにレーザ加工を用いて孔開けを行い、繊維状構造体を形成する方法も提案されているが(特開2005-107146号公報参照)、この方法では孔径50μm程度の大きな孔しか形成できず、繊維状構造体により泳動粒子を完全に遮蔽することができない虞がある。 As a method for forming the fibrous structure 331, a method of forming a fibrous structure by perforating a polymer film using laser processing has been proposed (see Japanese Patent Application Laid-Open No. 2005-107146). ), Only large pores having a pore diameter of about 50 μm can be formed by this method, and the migrating particles may not be completely shielded by the fibrous structure.
 次いで、繊維状構造体331を適当な大きさに分断して各セル41内に載置する。具体的には、繊維状構造体331を上(支持部材21と反対の方向)から押圧することによって、隔壁40(具体的には、黒色層42)により繊維状構造体331は摺り切られる。この切断された繊維状構造体331を隔壁40間に収容する。このようにして、繊維状構造体331に非泳動粒子332が保持された多孔質層33をセル41毎に形成することができる。 Next, the fibrous structure 331 is divided into an appropriate size and placed in each cell 41. Specifically, the fibrous structure 331 is rubbed off by the partition wall 40 (specifically, the black layer 42) by pressing the fibrous structure 331 from above (the direction opposite to the support member 21). The cut fibrous structure 331 is accommodated between the partition walls 40. In this manner, the porous layer 33 in which the non-electrophoretic particles 332 are held in the fibrous structure 331 can be formed for each cell 41.
 続いて、多孔質層33が配置された対向基板20に、泳動粒子32を分散させた絶縁性液体31を塗布したのち、これを、例えば、シール層16が配設された剥離部材を対向させる。最後に、剥離部材を剥がしたのち、シール層16上に接着層15を介してTFT12および画素電極14が形成された駆動基板10を固定する。以上の工程により、表示装置1が完成する。 Subsequently, after applying the insulating liquid 31 in which the migrating particles 32 are dispersed to the counter substrate 20 on which the porous layer 33 is disposed, this is opposed to, for example, a peeling member on which the seal layer 16 is disposed. . Finally, after peeling off the peeling member, the driving substrate 10 on which the TFT 12 and the pixel electrode 14 are formed on the seal layer 16 is fixed via the adhesive layer 15. The display device 1 is completed through the above steps.
 なお、ここでは、黒色層42を隔壁40上に形成したのち、シール層16を貼り合わせたが、これに限らず、例えば、黒色層42をシール層16上に配置し、その後、隔壁40に貼り合わせるようにしてもよい。黒色層42を隔壁40とシール層16との間に配置することができれば、その方法は特に限定されない。 Here, the black layer 42 is formed on the partition wall 40 and then the seal layer 16 is bonded. However, the present invention is not limited to this. For example, the black layer 42 is disposed on the seal layer 16, and then the partition wall 40. You may make it stick together. If the black layer 42 can be arrange | positioned between the partition 40 and the sealing layer 16, the method will not be specifically limited.
(1-3.好ましい表示方法)
 初期状態の表示装置1では、泳動粒子32は待避領域R1に配置されている(図3A)。この場合には、全ての画素で泳動粒子32が多孔質層33により遮蔽されているため、対向基板20側から電気泳動素子30を見ると、コントラストが生じていない(画像が表示されていない)状態にある。
(1-3. Preferred display method)
In the display device 1 in the initial state, the migrating particles 32 are arranged in the retreat area R1 (FIG. 3A). In this case, since the migrating particles 32 are shielded by the porous layer 33 in all the pixels, no contrast is generated when the electrophoretic element 30 is viewed from the counter substrate 20 side (an image is not displayed). Is in a state.
 一方、TFT12により画素が選択され、画素電極14と対向電極22との間に電界が印加されると、図3Bに示したように、画素毎に泳動粒子32が待避領域R1から多孔質層33(細孔333)を経由して表示領域R2に移動する。この場合には、泳動粒子32が多孔質層33により遮蔽されている画素と遮蔽されていない画素とが併存するため、対向基板20側から電気泳動素子30を見ると、コントラストが生じている状態になる。これにより、画像が表示される。 On the other hand, when a pixel is selected by the TFT 12 and an electric field is applied between the pixel electrode 14 and the counter electrode 22, as shown in FIG. 3B, the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to the display area R2 via (pore 333). In this case, since the pixels in which the migrating particles 32 are shielded by the porous layer 33 and the pixels that are not shielded coexist, when the electrophoretic element 30 is viewed from the counter substrate 20 side, a contrast is generated. become. Thereby, an image is displayed.
 この表示装置1によれば、高い応答速度を有する電気泳動素子30により、例えば、カラー化や動画表示にも適した高品位な画像を表示できる。 According to the display device 1, the electrophoretic element 30 having a high response speed can display a high-quality image suitable for colorization and moving image display, for example.
(1-4.作用・効果)
 表示素子として電気泳動素子を用いた表示装置では、電気泳動素子が配置されている表示領域を複数のセルに仕切る隔壁が設けられている。一般的な表示装置では、前述したように、製造時に隔壁と、基板との間に白色を呈する多孔質層が挟まれたり、画素電極の反射によって、表示面から見て隔壁部分が常に白く表示され、コントラストが低下するという問題があった。
(1-4. Action and effect)
In a display device using an electrophoretic element as a display element, a partition that partitions a display area in which the electrophoretic element is arranged into a plurality of cells is provided. In a general display device, as described above, a white porous layer is sandwiched between the partition wall and the substrate during manufacturing, or the partition wall portion always displays white as viewed from the display surface due to reflection of the pixel electrode. There is a problem that the contrast is lowered.
 コントラストを向上させる方法としては、例えば、基板の一部(例えば、画素電極上)あるいは全面に、黒色粒子を分散させた樹脂膜や、クロム(Cr)等の金属を黒化した金属膜を設けることが考えられる。しかしながら、これら樹脂膜や金属膜が一部にパターニングされている場合、製造プロセス中に加えられる圧力や、熱による基板の伸縮によって位置ずれが生じやすく、かえって電極面の反射によってコントラストの低下につながる愚がある。一方、樹脂膜や金属膜が基板全面に形成されている場合には、樹脂膜や金属膜の抵抗がセル抵抗(粒子駆動域の抵抗)と同等以上であると樹脂膜や金属膜に電圧が分散される。このため、泳動粒子が駆動する領域に印加される電圧が小さくなってしまい、コントラストの向上につながらない虞がある。また、樹脂膜や金属膜の抵抗が小さすぎる場合には、画素電極がパターニングされていると横電界の影響によって精細な表示が難しくなる。更に、どちらの場合でも、上下の基板を貼り合わせる際に、隔壁と基板との間に白色の粒子や繊維を挟み込む可能性があるため、コントラストの低下を解消する有効な手段とは言い難い。なお、隔壁と基板との間に粒子や繊維を挟み込んだ場合には、その隙間から粒子の移動が起こるため、表示ムラや上下基板の密着性の低下という問題が生じる。 As a method for improving the contrast, for example, a resin film in which black particles are dispersed or a metal film in which a metal such as chromium (Cr) is blackened is provided on a part of the substrate (for example, on the pixel electrode) or the entire surface. It is possible. However, when these resin films and metal films are partially patterned, position shift is likely to occur due to the pressure applied during the manufacturing process and the expansion and contraction of the substrate due to heat, and the contrast is reduced due to reflection of the electrode surface. There is stupidity. On the other hand, when the resin film or metal film is formed on the entire surface of the substrate, if the resistance of the resin film or metal film is equal to or higher than the cell resistance (resistance in the particle driving area), a voltage is applied to the resin film or metal film. Distributed. For this reason, the voltage applied to the region where the migrating particles are driven becomes small, which may not lead to an improvement in contrast. In addition, when the resistance of the resin film or the metal film is too small, fine display becomes difficult due to the influence of the lateral electric field if the pixel electrode is patterned. Furthermore, in either case, white particles and fibers may be sandwiched between the partition walls and the substrate when the upper and lower substrates are bonded together, so it is difficult to say that this is an effective means for eliminating the decrease in contrast. Note that, when particles or fibers are sandwiched between the partition wall and the substrate, the particles move from the gap, which causes problems such as display unevenness and lowering of the adhesion between the upper and lower substrates.
 これに対して、本実施の形態の表示装置1では、駆動基板10と対向基板20の積層方向に延在する隔壁40の少なくとも一方の端面(ここでは、駆動基板10と接する端面)に、高分子材料および着色粒子を含む黒色層42を設けるようにした。これにより、製造プロセス時に隔壁40と駆動基板10との間に白色の多孔質層33を挟んでも、隔壁40の端面に設けられた黒色層42によって多孔質層33の白色は遮蔽される。また、多孔質層33が挟まれていない場合でも、画素電極14による反射光は黒色層42によって遮蔽される。更に、この黒色層42は、高分子材料に対する着色粒子の体積分率が5%以上40%以下の構成を有するようにした。これにより、隔壁40部分の反射を抑制しつつ、駆動基板10と隔壁40(具体的には、黒色層42)との密着性が保持される。 On the other hand, in the display device 1 of the present embodiment, at least one end surface of the partition 40 extending in the stacking direction of the drive substrate 10 and the counter substrate 20 (here, the end surface in contact with the drive substrate 10) has a high height. A black layer 42 containing molecular material and colored particles was provided. Thus, even when the white porous layer 33 is sandwiched between the partition wall 40 and the drive substrate 10 during the manufacturing process, the white color of the porous layer 33 is shielded by the black layer 42 provided on the end face of the partition wall 40. Even when the porous layer 33 is not sandwiched, the reflected light from the pixel electrode 14 is shielded by the black layer 42. Further, the black layer 42 has a configuration in which the volume fraction of the colored particles with respect to the polymer material is 5% or more and 40% or less. As a result, the adhesion between the drive substrate 10 and the partition 40 (specifically, the black layer 42) is maintained while suppressing reflection of the partition 40 portion.
 以上のように、本実施の形態の表示装置1では、隔壁40の少なくとも一方の端面(ここでは、駆動基板10と接する端面)に、高分子材料および着色粒子を含むと共に、高分子材料に対する着色粒子の体積分率が5%以上40%以下の構成を有する黒色層42を設けるようにした。これにより、表示面から見た際の隔壁40部分の反射を抑制しつつ、駆動基板10と隔壁40(具体的には、黒色層42)との密着性が保持される。具体的には、高分子材料に対する着色粒子の体積分率を5%以上とすることにより、例えば、対向基板20と駆動基板10とを貼り合わせる際に、隔壁40と駆動基板10との間に挟み込まれた多孔質層33や、画素電極14からの反射光が遮蔽される。よって、表示装置1のコントラストを向上させることが可能となる。また、高分子材料に対する着色粒子の体積分率を40%以下とすることにより、黒色層42と駆動基板10との密着性が保持される。よって、表示装置1における膜剥れの発生が抑えられ、信頼性を向上させることが可能となる。 As described above, in display device 1 of the present embodiment, at least one end surface of partition 40 (here, the end surface in contact with drive substrate 10) includes the polymer material and the colored particles, and the polymer material is colored. The black layer 42 having a configuration in which the volume fraction of particles is 5% or more and 40% or less is provided. Thereby, the adhesion between the drive substrate 10 and the partition 40 (specifically, the black layer 42) is maintained while suppressing reflection of the partition 40 when viewed from the display surface. Specifically, by setting the volume fraction of the colored particles with respect to the polymer material to 5% or more, for example, when the counter substrate 20 and the drive substrate 10 are bonded together, the partition 40 is separated from the drive substrate 10. The reflected light from the sandwiched porous layer 33 and the pixel electrode 14 is shielded. Therefore, the contrast of the display device 1 can be improved. Moreover, the adhesiveness of the black layer 42 and the drive board | substrate 10 is hold | maintained by making the volume fraction of the colored particle with respect to a polymeric material 40% or less. Therefore, the occurrence of film peeling in the display device 1 is suppressed, and the reliability can be improved.
<2.適用例>
(電子機器)
 次に、上記表示装置1の適用例について説明する。本技術の表示装置1は、各種用途の電子機器に適用可能であり、その電子機器の種類は特に限定されない。表示装置1は、例えば、以下の電子機器に搭載可能である。ただし、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。
<2. Application example>
(Electronics)
Next, an application example of the display device 1 will be described. The display device 1 of the present technology can be applied to electronic devices for various uses, and the type of the electronic device is not particularly limited. The display device 1 can be mounted on, for example, the following electronic devices. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
 図4A,4Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図4Aに示したように非表示部120の前面に設けられていてもよいし、図4Bに示したように上面に設けられていてもよい。表示部110が表示装置1により構成される。なお、表示装置1は、図4A,4Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。 4A and 4B show the external configuration of the electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. Note that the operation unit 130 may be provided on the front surface of the non-display unit 120 as shown in FIG. 4A or may be provided on the upper surface as shown in FIG. 4B. The display unit 110 is configured by the display device 1. The display device 1 may be mounted on a PDA (Personal Digital Assistant) having the same configuration as the electronic book shown in FIGS. 4A and 4B.
 図5は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部210および筐体220を有しており、タッチパネル部210が上記表示装置1により構成されている。 FIG. 5 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 210 and a housing 220, and the touch panel unit 210 is configured by the display device 1.
<3.実施例>
 次に、本技術の実施例について詳細に説明する。以下の手順により、黒色(暗表示)の泳動粒子および白色(明表示)の多孔質層(粒子含有繊維状構造体)を有する電気泳動素子を備えると共に、駆動基板と接する隔壁の底面に黒色層を有する表示装置を作製した。
<3. Example>
Next, embodiments of the present technology will be described in detail. According to the following procedure, an electrophoretic element having black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) is provided, and a black layer is formed on the bottom surface of the partition wall in contact with the driving substrate. A display device having was produced.
(泳動粒子の準備)
 まず、テトラヒドロフラン400mlとメタノール400mlとの混合溶液を調製した後、この溶液に複合酸化物微粒子(銅-鉄-マンガンの酸化物:大日精化工業株式会社製ダイピロキサイドカラーTM9550)50gを加え、超音波浴槽にて超音波攪拌(25℃~35℃で30分間)を行った。次いで、この複合酸化物微粒子の分散液に28%アンモニア水40mlを30分間かけて滴下したのち、テトラヒドロフラン80mlにプレンアクト KR-TTS(味の素ファインテクノ株式会社製)10gを溶解させた溶液を30分間かけて滴下した。続いて、超音波浴槽を60℃まで昇温させ3時間保持したのちこれを室温まで冷却して遠心分離(6000rpmで10分間)およびデカンテーションを行った。続いて、このデカンテーション後の沈殿物をテトラヒドロフランとメタノールとの混合溶媒(体積比1:1)に再分散させ、遠心分離(6000rpmで10分間)およびデカンテーションを行った。この洗浄作業を3回繰り返して得られた沈殿物を70℃の真空オーブンで一晩乾燥させた。これにより、分散基で被覆された黒色の泳動粒子が得られた。
(Preparation of migrating particles)
First, a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution. Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath. Next, 40 ml of 28% ammonia water was added dropwise to the dispersion of the composite oxide fine particles over 30 minutes, and then a solution in which 10 g of preneact KR-TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.) was dissolved in 80 ml of tetrahydrofuran was added over 30 minutes. And dripped. Subsequently, the ultrasonic bath was heated to 60 ° C. and held for 3 hours, and then cooled to room temperature, followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. Subsequently, the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. The precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a dispersing group were obtained.
(絶縁性液体の準備)
 泳動粒子を調製した後、分散剤および電荷調整剤(Chevron Chemicals製OLOA1200)16.7gを絶縁性液体83.3gに溶解させた。絶縁性液体はイソパラフィン(エクソンモービル社製IsoparG)を用いた。この絶縁性液体9gに上記泳動粒子1gを添加し、超音波分散を行った。続いて、遠心分離(6000rpmで90分間)を行い、デカンテーションを行った後、さらに絶縁性液体に再分散させた。この洗浄作業を3回繰り返し、得られた沈殿物を顔料成分が10重量%になるように絶縁性液体を加えた。続いて、この絶縁性液体76.7gに、OLOA1200 3.34gおよび上記泳動粒子分散液20g加えて撹拌することにより、添加剤および黒色顔料を含有した絶縁性液体を得た。
(Preparation of insulating liquid)
After preparing the migrating particles, 16.7 g of a dispersant and a charge control agent (OLOA 1200 manufactured by Chevron Chemicals) were dissolved in 83.3 g of an insulating liquid. Isoparaffin (Isopar G manufactured by ExxonMobil) was used as the insulating liquid. 1 g of the migrating particles was added to 9 g of this insulating liquid, and ultrasonic dispersion was performed. Subsequently, centrifugation (90 minutes at 6000 rpm) was performed, followed by decantation, and then redispersed in an insulating liquid. This washing operation was repeated three times, and an insulating liquid was added to the resulting precipitate so that the pigment component was 10% by weight. Subsequently, to this insulating liquid 76.7 g, 3.34 g of OLOA 1200 and 20 g of the electrophoretic particle dispersion were added and stirred to obtain an insulating liquid containing an additive and a black pigment.
(多孔質層の準備)
 一方、多孔質層は以下のようにして形成した。まず、非泳動粒子として平均一次粒径450nmの酸化チタンを用意し、カルボン酸系陰イオン性界面活性剤を溶解させたテトラヒドロフラン中に4重量%になるように混合し、ペイントシェイカーを用いて1時間攪拌した。その後、遠心分離(5000rpmで10分)にかけ、デカンテーションにより溶媒を取り除き。3回洗浄した後、70℃で一晩乾燥させた。これにより、カルボン酸系陰イオン性界面活性剤でコーティングされた酸化チタンが得られた。
(Preparation of porous layer)
On the other hand, the porous layer was formed as follows. First, titanium oxide having an average primary particle size of 450 nm is prepared as non-electrophoretic particles, mixed to 4 wt% in tetrahydrofuran in which a carboxylic acid anionic surfactant is dissolved, and 1 using a paint shaker. Stir for hours. Then, it is centrifuged (5000 rpm for 10 minutes), and the solvent is removed by decantation. After washing 3 times, it was dried at 70 ° C. overnight. As a result, titanium oxide coated with a carboxylic acid anionic surfactant was obtained.
 次いで、繊維状構造体の構成材料としてポリメチルメタクリレートを準備した。このポリメチルメタクリレート13gをN,N'-ジメチルホルムアミド84gに溶解させた後、この溶液6.5gに、非泳動粒子として一次粒径が450nmの酸化チタン0.5gを加えてビーズミルで混合した。これにより繊維状構造体を形成するための紡糸溶液が得られた。この紡糸溶液をシリンジに入れ、基板上に電界紡糸装置(株式会社メック製NANON)を用いて坪量1.2mg/cm2の紡糸を行った。 Next, polymethyl methacrylate was prepared as a constituent material of the fibrous structure. After 13 g of this polymethyl methacrylate was dissolved in 84 g of N, N′-dimethylformamide, 0.5 g of titanium oxide having a primary particle size of 450 nm as non-electrophoretic particles was added to 6.5 g of this solution and mixed with a bead mill. As a result, a spinning solution for forming a fibrous structure was obtained. This spinning solution was put into a syringe, and spinning with a basis weight of 1.2 mg / cm 2 was performed on the substrate using an electrospinning device (NANON manufactured by MEC Co., Ltd.).
(表示装置の組み立て)
 次に、対向電極(ITO)が全面形成されたPETフィルム(対向基板)の上に、インプリント法を用いて光硬化性樹脂(積水化学工業株式会社製感光性樹脂フォトレックA-400)で、例えば、高さ30μm、幅10μm、ピッチ200μmのピッチの隔壁およびPETフィルムの外周に沿って封止材を設けた。続いて、隔壁上(具体的には、駆動基板と接する端面)に、例えば、カーボンブラック(着色粒子)を含む熱可塑性ポリウレタンA(軟化点;102℃,熱可塑性ポリウレタンA中に含まれるカーボンブラックの体積分率15%)からなる厚み10μmの黒色シートを熱転写することで黒色層を形成した。続いて、適当な大きさに分断し多孔質層をPETフィルム上の隔壁によって区画されたセル内に載置したのち、泳動粒子を分散させた絶縁性液体を塗布した。こののち、PETフィルムにシール層として熱可塑性ポリウレタンA膜が形成された剥離部材を対向させ、PETフィルム上に設けられた電気泳動素子を封止した。最後に、TFTおよび画素電極が設けられたフィルム基板(駆動基板)を、接着層を介して貼り合わせ、表示装置を作製した
(実験例1)。
(Assembly of display device)
Next, on the PET film (counter substrate) on which the counter electrode (ITO) is formed on the entire surface, a photo-curing resin (photosensitive resin Photo Rec A-400 manufactured by Sekisui Chemical Co., Ltd.) is used using an imprint method. For example, the sealing material was provided along the outer periphery of the partition wall having a height of 30 μm, a width of 10 μm, and a pitch of 200 μm and a PET film. Subsequently, for example, thermoplastic polyurethane A containing carbon black (colored particles) on the partition wall (specifically, the end surface in contact with the driving substrate) (softening point: 102 ° C., carbon black contained in the thermoplastic polyurethane A) The black layer was formed by thermally transferring a 10 μm thick black sheet having a volume fraction of 15%). Then, after dividing | segmenting into a suitable magnitude | size and mounting the porous layer in the cell divided by the partition on PET film, the insulating liquid which disperse | distributed the electrophoretic particle was apply | coated. After that, a peeling member on which a thermoplastic polyurethane A film was formed as a sealing layer was opposed to the PET film, and the electrophoretic element provided on the PET film was sealed. Finally, a film substrate (driving substrate) provided with TFTs and pixel electrodes was bonded through an adhesive layer to produce a display device (Experimental Example 1).
 この実験例1のほか、黒色層を構成する高分子材料として、熱可塑性ポリウレタンB(軟化点;150℃以上,実験例2;熱可塑性ポリウレタンBに対するカーボンブラックの体積分率15%)および熱可塑性ポリウレタンC(軟化点;52℃,実験例3;熱可塑性ポリウレタンCに対するカーボンブラックの体積分率15%)を用いた実験例2,実験例3を作製した。また、比較例として、黒色層が形成されていない実験例4を作製した。これら、実験例1~4を用いて、対向基板(具体的には、黒色層)と駆動基板との面密着力を比較した。 In addition to Experimental Example 1, as a polymer material constituting the black layer, thermoplastic polyurethane B (softening point: 150 ° C. or higher, Experimental Example 2; volume fraction of carbon black with respect to thermoplastic polyurethane B 15%) and thermoplasticity Experimental examples 2 and 3 using polyurethane C (softening point; 52 ° C., experimental example 3; volume fraction of carbon black with respect to thermoplastic polyurethane C 15%) were produced. As a comparative example, Experimental Example 4 in which a black layer was not formed was produced. Using these Experimental Examples 1 to 4, the surface adhesion between the counter substrate (specifically, the black layer) and the driving substrate was compared.
 図6は、実験例1~4の面密着力を比較したものである。図6から、黒色層を設けることによって、対向基板と駆動基板との間の密着強度が向上することがわかった。また、実験例2よりも実験例1の表示装置の方が、面密着力が高かったことから、即ち、黒色層として用いる高分子材料としては、シール層を構成する材料と同じ高分子材料を用いることが好ましいといえる。図7は、実験例1および実験例3における10回押圧後に生じた不良セル数を比較したものである。図7からわかるように、実験例1では10回押圧後に不良セルが生じたのに対して、実験例3では不良セルは生じなかった。これは、熱可塑性ポリウレタンCが、熱可塑性ポリウレタンAよりも軟化点が低く流動しやすいため、シール層との接触面積が大きくなり、セル間の粒子の移動をより防ぐことができたものと推察される。また、熱可塑性ポリウレタンAのような高い軟化点を持つものでも、高い温度をかけて封止することで同様の効果が得られると考えられるが、多孔質層を構成するポリメチルメタクリレートの軟化点が80℃であるため、それよりも高い温度をかけると多孔質層の構造が崩れる等の虞があり、好ましくない。即ち、黒色層を構成する高分子材料としては、シール層を構成する材料と同一の材料、もしくはそれに近い材質のものであり、且つ、多孔質層(具体的には、繊維状構造体)の軟化点よりも低いものが好ましいといえる。 FIG. 6 is a comparison of the surface adhesion of Experimental Examples 1 to 4. From FIG. 6, it was found that the adhesion strength between the counter substrate and the driving substrate is improved by providing the black layer. Further, since the display device of Experimental Example 1 had higher surface adhesion than Experimental Example 2, that is, the polymer material used as the black layer was the same polymer material as that constituting the seal layer. It can be said that it is preferable to use it. FIG. 7 compares the number of defective cells generated after pressing 10 times in Experimental Example 1 and Experimental Example 3. As can be seen from FIG. 7, in Experimental Example 1, defective cells were generated after pressing 10 times, whereas in Experimental Example 3, no defective cells were generated. This is probably because thermoplastic polyurethane C has a softening point lower than that of thermoplastic polyurethane A and is easy to flow, so that the contact area with the sealing layer is increased and the movement of particles between cells can be further prevented. Is done. Moreover, even if it has a high softening point such as thermoplastic polyurethane A, it is considered that the same effect can be obtained by sealing at a high temperature, but the softening point of polymethyl methacrylate constituting the porous layer Since the temperature is 80 ° C., application of a temperature higher than that is not preferred because the structure of the porous layer may be destroyed. That is, the polymer material constituting the black layer is the same material as the material constituting the seal layer or a material close thereto, and the porous layer (specifically, fibrous structure). A lower one than the softening point can be said to be preferable.
 更に、黒色層を構成する高分子材料として熱可塑性ポリウレタンCを、着色粒子としてカーボンブラックを用いると共に、熱可塑性ポリウレタンCに対するカーボンブラックの体積分率が0%(実験例5-1)、3%(実験例5-2)、5%(実験例5-3)、8%(実験例5-4)、16%(実験例5-5)、25パーセント(実験例5-6)、30%(実験例5-7)、40%(実験例5-8)、45%(実験例5-9)、50%(実験例5-10)の実験例5-1~5-10を作製し、コントラスト(CR)および密着強度の可否を調べた。この結果を表1に示した。なお、コントラストの可否の判定は、コントタストが10以上であった場合を○、10未満であった場合を×とした。密着強度の可否の判定は、ピール強度が0.5N/cm以上の場合を○、0.5N/cm未満の場合を×とした。 Further, thermoplastic polyurethane C is used as the polymer material constituting the black layer, carbon black is used as the colored particles, and the volume fraction of carbon black relative to thermoplastic polyurethane C is 0% (Experimental Example 5-1), 3% (Experimental example 5-2) 5% (Experimental example 5-3), 8% (Experimental example 5-4), 16% (Experimental example 5-5), 25 percent (Experimental example 5-6), 30% (Experimental Example 5-7), 40% (Experimental Example 5-8), 45% (Experimental Example 5-9), and 50% (Experimental Example 5-10) were produced as Experimental Examples 5-1 to 5-10. The possibility of contrast (CR) and adhesion strength was examined. The results are shown in Table 1. In addition, the judgment of the possibility of contrast was set as (circle) when the contrast was 10 or more, and x when it was less than 10. The determination of whether or not the adhesion strength was possible was evaluated as ◯ when the peel strength was 0.5 N / cm or more, and x when the peel strength was less than 0.5 N / cm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、高分子材料に対する着色粒子の体積分率を多くすることによって、黒反射率が低下し、コントラストが向上することがわかった。なお、高分子材料に対する着色粒子の体積分率が40%以上となると、対向基板と駆動基板との密着性が低下し、膜剥れが生じやすくなる。よって、黒色層を構成する高分子材料に対する着色粒子の体積分率は、5%以上40%以下が好ましいことがわかる。また、より好ましくは、15%以上30%以下である。 From Table 1, it was found that increasing the volume fraction of the colored particles relative to the polymer material decreases the black reflectance and improves the contrast. In addition, when the volume fraction of the colored particles with respect to the polymer material is 40% or more, the adhesion between the counter substrate and the driving substrate is lowered, and film peeling is likely to occur. Therefore, it can be seen that the volume fraction of the colored particles with respect to the polymer material constituting the black layer is preferably 5% or more and 40% or less. More preferably, it is 15% or more and 30% or less.
 以上、実施の形態および実施例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。 Although the present technology has been described with reference to the embodiments and examples, the present technology is not limited to the above-described embodiments and the like, and various modifications are possible.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本技術は以下のような構成も取ることができる。
(1)第1基板と、前記第1基板と対向配置された第2基板と、前記第1基板および前記第2基板の間に設けられると共に、繊維状構造体により形成された多孔質層および前記多孔質層の間隙を移動する泳動粒子を含む表示素子と、前記第1基板および前記第2基板の積層方向に延在する隔壁と、前記隔壁の、前記第1基板および前記第2基板の少なくとも一方に面する端面に設けられた反射抑制層とを備え、前記反射抑制層は、高分子材料および着色粒子を含み、前記着色粒子の体積分率は、前記高分子材料に対して5%以上40%以下である表示装置。
(2)前記反射抑制層は、前記第2基板に面する前記隔壁の端面に設けられている、前記(1)に記載の表示装置。
(3)前記高分子材料は、前記繊維状構造体を構成する材料よりも軟化点が低い、前記(1)または(2)に記載の表示装置。
(4)前記第1基板と前記第2基板との間に前記表示素子を封止する封止層を有し、前記封止層と前記反射抑制層とは、同一材料を含む、前記(1)乃至(3)のうちいずれか1つに記載の表示装置。
(5)前記高分子材料は、熱可塑性樹脂または光硬化性樹脂である、前記(1)乃至(4)のうちに記載の表示装置。
(6)前記着色粒子は、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、あるいはガラスのうちの少なくとも1種により構成されている、前記(1)乃至(5)のうちいずれか1つに記載の表示装置。
(7)表示装置を備え、前記表示装置は、第1基板と、前記第1基板と対向配置された第2基板と、前記第1基板および前記第2基板の間に設けられると共に、繊維状構造体により形成された多孔質層および前記多孔質層の間隙を移動する泳動粒子を含む表示素子と、前記第1基板および前記第2基板の積層方向に延在する隔壁と、前記隔壁の、前記第1基板および前記第2基板の少なくとも一方に面する端面に設けられた反射抑制層とを有し、前記反射抑制層は、高分子材料および着色粒子を含み、前記着色粒子の体積分率は、前記高分子材料に対して5%以上40%以下である電子機器。
In addition, this technique can also take the following structures.
(1) a first substrate, a second substrate disposed opposite to the first substrate, a porous layer formed by a fibrous structure and provided between the first substrate and the second substrate; A display element including migrating particles moving in the gap between the porous layers; a partition extending in a stacking direction of the first substrate and the second substrate; and the first substrate and the second substrate of the partition. A reflection suppression layer provided on an end surface facing at least one of the reflection suppression layers, the reflection suppression layer including a polymer material and colored particles, and the volume fraction of the colored particles is 5% with respect to the polymer material. A display device that is 40% or less.
(2) The display device according to (1), wherein the reflection suppression layer is provided on an end surface of the partition wall facing the second substrate.
(3) The display device according to (1) or (2), wherein the polymer material has a softening point lower than that of a material constituting the fibrous structure.
(4) A sealing layer for sealing the display element is provided between the first substrate and the second substrate, and the sealing layer and the reflection suppressing layer include the same material. ) To (3).
(5) The display device according to any one of (1) to (4), wherein the polymer material is a thermoplastic resin or a photocurable resin.
(6) The colored particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, or glass, among (1) to (5) The display device according to any one of the above.
(7) Provided with a display device, the display device is provided between the first substrate, the second substrate disposed opposite to the first substrate, the first substrate and the second substrate, and is fibrous. A display element including a porous layer formed by a structure and a migrating particle moving in a gap between the porous layers, a partition extending in a stacking direction of the first substrate and the second substrate, and the partition, A reflection suppression layer provided on an end surface facing at least one of the first substrate and the second substrate, the reflection suppression layer including a polymer material and colored particles, and a volume fraction of the colored particles Is an electronic device of 5% to 40% with respect to the polymer material.
 本出願は、日本国特許庁において2015年6月3日に出願された日本特許出願番号2015-113198号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-113198 filed on June 3, 2015 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (7)

  1.  第1基板と、
     前記第1基板と対向配置された第2基板と、
     前記第1基板および前記第2基板の間に設けられると共に、繊維状構造体により形成された多孔質層および前記多孔質層の間隙を移動する泳動粒子を含む表示素子と、
     前記第1基板および前記第2基板の積層方向に延在する隔壁と、
     前記隔壁の、前記第1基板および前記第2基板の少なくとも一方に面する端面に設けられた反射抑制層とを備え、
     前記反射抑制層は、高分子材料および着色粒子を含み、前記着色粒子の体積分率は、前記高分子材料に対して5%以上40%以下である
     表示装置。
    A first substrate;
    A second substrate disposed opposite to the first substrate;
    A display element that is provided between the first substrate and the second substrate, and includes a porous layer formed of a fibrous structure and migrating particles that move through a gap between the porous layers;
    Partition walls extending in the stacking direction of the first substrate and the second substrate;
    A reflection suppressing layer provided on an end surface of the partition wall facing at least one of the first substrate and the second substrate;
    The reflection suppression layer includes a polymer material and colored particles, and the volume fraction of the colored particles is 5% to 40% with respect to the polymer material.
  2.  前記反射抑制層は、前記第2基板に面する前記隔壁の端面に設けられている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the reflection suppressing layer is provided on an end face of the partition wall facing the second substrate.
  3.  前記高分子材料は、前記繊維状構造体を構成する材料よりも軟化点が低い、請求項1に記載の表示装置。 The display device according to claim 1, wherein the polymer material has a softening point lower than that of a material constituting the fibrous structure.
  4.  前記第1基板と前記第2基板との間に前記表示素子を封止する封止層を有し、
     前記封止層と前記反射抑制層とは、同一材料を含む、請求項1に記載の表示装置。
    A sealing layer for sealing the display element between the first substrate and the second substrate;
    The display device according to claim 1, wherein the sealing layer and the reflection suppression layer include the same material.
  5.  前記高分子材料は、熱可塑性樹脂または光硬化性樹脂である、請求項1に記載の表示装置。 2. The display device according to claim 1, wherein the polymer material is a thermoplastic resin or a photocurable resin.
  6.  前記着色粒子は、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、あるいはガラスのうちの少なくとも1種により構成されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the colored particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, or glass.
  7.  表示装置を備え、
     前記表示装置は、
     第1基板と、
     前記第1基板と対向配置された第2基板と、
     前記第1基板および前記第2基板の間に設けられると共に、繊維状構造体により形成された多孔質層および前記多孔質層の間隙を移動する泳動粒子を含む表示素子と、
     前記第1基板および前記第2基板の積層方向に延在する隔壁と、
     前記隔壁の、前記第1基板および前記第2基板の少なくとも一方に面する端面に設けられた反射抑制層とを有し、
     前記反射抑制層は、高分子材料および着色粒子を含み、前記着色粒子の体積分率は、前記高分子材料に対して5%以上40%以下である
     電子機器。
    A display device,
    The display device
    A first substrate;
    A second substrate disposed opposite to the first substrate;
    A display element that is provided between the first substrate and the second substrate, and includes a porous layer formed of a fibrous structure and migrating particles that move through a gap between the porous layers;
    Partition walls extending in the stacking direction of the first substrate and the second substrate;
    A reflection suppressing layer provided on an end surface of the partition wall facing at least one of the first substrate and the second substrate;
    The antireflection layer includes a polymer material and colored particles, and the volume fraction of the colored particles is 5% to 40% with respect to the polymer material.
PCT/JP2016/062497 2015-06-03 2016-04-20 Display device and electronic component WO2016194504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015113198A JP2016224370A (en) 2015-06-03 2015-06-03 Display device and electronic apparatus
JP2015-113198 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016194504A1 true WO2016194504A1 (en) 2016-12-08

Family

ID=57441042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062497 WO2016194504A1 (en) 2015-06-03 2016-04-20 Display device and electronic component

Country Status (2)

Country Link
JP (1) JP2016224370A (en)
WO (1) WO2016194504A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164967A (en) * 2003-12-02 2005-06-23 Canon Inc Electrophoretic display element, and method for manufacturing the electrophoretic display element
JP2007017735A (en) * 2005-07-08 2007-01-25 Hitachi Displays Ltd Image display device
JP2011242439A (en) * 2010-05-14 2011-12-01 Mitsubishi Pencil Co Ltd Method of manufacturing electrophoretic display medium
JP2014228701A (en) * 2013-05-22 2014-12-08 大日本印刷株式会社 Reflective display device
JP2015004912A (en) * 2013-06-24 2015-01-08 ソニー株式会社 Display unit and electronic apparatus
JP2015090477A (en) * 2013-11-07 2015-05-11 ソニー株式会社 Display unit and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164967A (en) * 2003-12-02 2005-06-23 Canon Inc Electrophoretic display element, and method for manufacturing the electrophoretic display element
JP2007017735A (en) * 2005-07-08 2007-01-25 Hitachi Displays Ltd Image display device
JP2011242439A (en) * 2010-05-14 2011-12-01 Mitsubishi Pencil Co Ltd Method of manufacturing electrophoretic display medium
JP2014228701A (en) * 2013-05-22 2014-12-08 大日本印刷株式会社 Reflective display device
JP2015004912A (en) * 2013-06-24 2015-01-08 ソニー株式会社 Display unit and electronic apparatus
JP2015090477A (en) * 2013-11-07 2015-05-11 ソニー株式会社 Display unit and electronic apparatus

Also Published As

Publication number Publication date
JP2016224370A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5741829B2 (en) Electrophoretic element, display device and electronic device
US8711469B2 (en) Electrophoretic element and display device
TWI505008B (en) Electrophoresis device and display
JP5741122B2 (en) Electrophoretic element, display device and electronic device
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP5942394B2 (en) Electrophoretic element and display device
JP5880295B2 (en) Method for manufacturing electrophoretic element
WO2014038291A1 (en) Electrophoretic element, display device, and electronic apparatus
JP6127924B2 (en) Display device and electronic device
JP5673269B2 (en) Electrophoretic element, display device and electronic device
JP5966885B2 (en) Electrophoretic element and display device
JP2017167344A (en) Reflective display device and electronic device
JP5942776B2 (en) Electrophoretic element and display device
JP5817464B2 (en) Electrophoretic element and display device
WO2016194504A1 (en) Display device and electronic component
JP2012173602A (en) Electrophoretic element and display device
JP2015004912A (en) Display unit and electronic apparatus
WO2015151409A1 (en) Display unit and electronic apparatus
WO2016114011A1 (en) Display device and electronic device
WO2016129435A1 (en) Electrophoretic element and method for manufacturing same, and display device
WO2015141303A1 (en) Display device, method for manufacturing display device and electronic device
WO2016199617A1 (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802941

Country of ref document: EP

Kind code of ref document: A1